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Abstract. There is not much that can be said for all x and for all n about

the sum
n∑

k=1

1

| sin kπx|
.

However, for this and similar sums, series, and products, we can establish

results for almost all x using the tools of continued fractions. This story

includes various parts of late 19th century and early 20th century mathematics.
etc.

1. Introduction

In this paper we survey a class of estimates for sums, series, and products that
involve Diophantine approximation. We both sort out a timeline of the literature
on these questions and give careful proofs of many lesser known results. Rather
than being an open-pit mine for the history of Diophantine approximation, this
paper follows one vein as deep as it goes.

For x ∈ R, we write ‖x‖ = minn∈Z |x − n|, the distance from x to a nearest
integer. In this paper we give a comprehensive presentation of estimates for sums
whose jth term involves ‖jx‖ and determine the abscissa of convergence and radius
of convergence respectively of Dirichlet series and power series whose jth term
involves ‖jx‖. We also give a detailed proof of a result of Hardy and Littlewood
that

lim
n→∞

(
n∏
k=1

| sin kπx|

)1/n

=
1

2

for almost all x.
We either prove or state in detail and give references for all the material on

continued fractions and measure theory that we use in this paper. Many of the
results we prove in this paper do not have detailed proofs written in any books,
and the proofs we give for results that do have proofs in books are often written
significantly more meticulously here than anywhere else; in some cases the proofs
in the literature are so sketchy that the proof we give is written from scratch,
for example Lemma 9. Our presentation of Hardy and Littlewood’s estimate for∏n
k=1 | sinπkx| makes clear exactly what results in Diophantine approximation one

needs for the proof.
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In the next section we introduce the Bernoulli polynomials, the Euler-Maclaurin
summation formula, and Euler’s constant, which we shall use in a few places. Be-
cause the calculations are similar to what we do in the rest of this paper and because
we want to be comfortable using Bernoulli polynomials, we work things out from
scratch rather than merely stating results as known. In the section after that we
summarize various problems that involve sums of the type we are talking about in
this paper.

2. The Bernoulli polynomials, the Euler-Maclaurin summation
formula, and Euler’s constant

For k ≥ 0, the Bernoulli polynomial Bk(x) is defined by

(1)
zexz

ez − 1
=

∞∑
k=0

Bk(x)
zk

k!
, |z| < 2π.

The Bernoulli numbers are Bk = Bk(0), the constant terms of the Bernoulli
polynomials. For any x, using L’Hospital’s rule the left-hand side of (1) tends to 1
as z → 0, and the right-hand side tends to B0(x), hence B0(x) = 1. Differentiating
(1) with respect to x,

∞∑
k=0

B′k(x)
zk

k!
=

z2exz

ez − 1
=

∞∑
k=0

Bk(x)
zk+1

k!
=

∞∑
k=1

Bk−1(x)
zk

(k − 1)!
,

so B′0(x) = 0 and for k ≥ 1 we have
B′k(x)
k! = Bk−1(x)

(k−1)! , i.e.

B′k(x) = kBk−1(x).

Furthermore, integrating (1) with respect to x on [0, 1] gives, since
∫
exzdx = ez−1

z ,

1 =

∞∑
k=0

(∫ 1

0

Bk(x)dx

)
zk

k!
, |z| < 2π,

hence
∫ 1

0
B0(x)dx = 1 and for k ≥ 1,

∫ 1

0

Bk(x)dx = 0.

The first few Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3

2
x2 +

1

2
x.
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The Bernoulli polynomials satisfy the following:
∞∑
k=0

Bk(x+ 1)
zk

k!
=
ze(x+1)z

ez − 1

=
zexz(ez − 1 + 1)

ez − 1

= zexz +
zexz

ez − 1

=

∞∑
k=0

xkzk+1

k!
+

∞∑
k=0

Bk(x)
zk

k!

=

∞∑
k=1

xk−1zk

(k − 1)!
+

∞∑
k=0

Bk(x)
zk

k!
,

hence

(2) Bk(x+ 1) = kxk−1 +Bk(x), k ≥ 1, x ∈ R.

In particular, for k ≥ 2, Bk(1) = Bk(0). The identity (2) yields Faulhaber’s
formula, for k ≥ 0 and positive integers a < b,

(3)
∑

a≤m≤b

mk =
Bk+1(b+ 1)−Bk+1(a)

k + 1
.

The following identity is the multiplication formula for the Bernoulli poly-
nomials, found by Raabe [117, pp. 19–24, §13].

Lemma 1. For k ≥ 0, q ≥ 1, and x ∈ R,

qBk(qx) = qk
q−1∑
j=0

Bk

(
x+

j

q

)
.

Proof. Using (2) with x = qn+j
q = n+ j

q ,

(qn+ j)k =
qk

k + 1

(
Bk+1

(
n+

j

q
+ 1

)
−Bk+1

(
n+

j

q

))
,

thus
Nq−1∑
m=q

mk =

N−1∑
n=1

q−1∑
j=0

(nq + j)k

=
qk

k + 1

q−1∑
j=0

N−1∑
n=1

(
Bk+1

(
n+

j

q
+ 1

)
−Bk+1

(
n+

j

q

))

=
qk

k + 1

q−1∑
j=0

(
Bk+1

(
N +

j

q

)
−Bk+1

(
1 +

j

q

))
.

Then by (3),

Bk+1(qN)−Bk+1(q) = qk
q−1∑
j=0

(
Bk+1

(
N +

j

q

)
−Bk+1

(
1 +

j

q

))
.
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Let Fk,q(x) = Bk+1(qx)− qk
∑q−1
j=0 Bk+1(x+ j/q), which is a polynomial of degree

≤ k + 1. The above means that for N ≥ 1, Fk,q(N) = Fk,q(1), which implies that
the polynomial Fk,q(x)−Fk,q(1) is identically 0 and, a fortiori, F ′k,q(x) is identically
0:

qB′k+1(qx)− qk
q−1∑
j=0

B′k+1

(
x+

j

q

)
= 0.

Using B′k+1(x) = (k + 1)Bk(x),

qBk(qx) = qk
q−1∑
j=0

Bk

(
x+

j

q

)
.

�

We remark that for prime p and for k ≥ 0, one uses Lemma 1 to prove that
there is a unique p-adic distribution µB,k on the p-adic integers Zp such that

µB,k(a+ pNZp) = pN(k−1)Bk(a/pN ) [77, p. 35, Chapter II, §4], called a Bernoulli
distribution.

For x ∈ R, let [x] be the greatest integer ≤ x, and let R(x) = x − [x], called
the fractional part of x. Write T = R/Z and define the periodic Bernoulli
functions Pk : T→ R by

Pk = Bk ◦R.

For k ≥ 2, because Bk(1) = Bk(0), the function Pk is continuous. For f : T → C
define its Fourier series f̂ : Z→ C by

f̂(n) =

∫
T
f(t)e−2πintdt, n ∈ Z.

For k ≥ 1, one calculates P̂k(0) = 0 and using integration by parts, P̂k(n) =
− 1

(2πin)k
for n 6= 0. Thus for k ≥ 1, the Fourier series of Pk is

Pk(t) ∼
∑
n∈Z

P̂k(n)e2πint = − 1

(2πi)k

∑
n 6=0

n−ke2πint.

For k ≥ 2,
∑
n∈Z |P̂k(n)| < ∞, from which it follows that

∑
|n|≤N P̂k(n)e2πint

converges to Pk(t) uniformly for t ∈ T. Furthermore, for t 6∈ Z [98, p. 499, Theorem
B.2],

P1(t) = − 1

π

∞∑
n=1

1

n
sin 2πnt.

Thus for example,

B1

(
1

2π

)
= P1

(
1

2π

)
= − 1

π

∞∑
k=1

sin k

k
.

The Euler-Maclaurin summation formula is the following [98, p. 500, Theo-
rem B.5]. If a < b are real numbers, K is a positive integer, and f is a CK function
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on an open set that contains [a, b], then

∑
a<m≤b

f(m) =

∫ b

a

f(x)dx+

K∑
k=1

(−1)k

k!
(Pk(b)f (k−1)(b)− Pk(a)f (k−1)(a))

− (−1)K

K!

∫ b

a

PK(x)f (K)(x)dx.

Applying the Euler-Maclaurin summation formula with a = 1, b = n,K =
2, f(x) = log x yields [98, p. 503, Eq. B.25]∑

1≤m≤n

log n = n log n− n+
1

2
log n+

1

2
log 2π +O(n−1).

Using e1+O(n−1) = 1 +O(n−1), taking the exponential of the above equation gives
Stirling’s approximation,

n! = nne−n
√

2πn(1 +O(n−1)).

Write an = − log n+
∑

1≤m≤n
1
m . Because x 7→ log(1− x) is concave,

an − an−1 =
1

n
+ log

(
1− 1

n

)
≤ 1 + 1− 1

n
= 0,

which means that the sequence an is nonincreasing. For f(x) = 1
x , because f is

positive and nonincreasing,∑
1≤m≤n

f(m) ≥
∫ n+1

1

f(x)dx = log(n+ 1) > log n,

hence an > 0. Because the sequence an is positive and nonincreasing, there exists
some nonnegative limit, γ, called Euler’s constant. Using the Euler-Maclaurin
summation formula with a = 1, b = n,K = 1, f(x) = 1

x , as P1(x) = [x]− 1
2 ,∑

1<m≤n

1

m
= log n+

1

2n
− 1

2
+

1

2

∫ n

1

1

x2
dx−

∫ n

1

R(x)
1

x2
dx,

which is ∑
1<m≤n

1

m
= log n−

∫ ∞
1

R(x)

x2
dx+

∫ ∞
n

R(x)

x2
dx.

As 0 ≤ R(x)x−2 ≤ x−2, the function x 7→ R(x)x−2 is integrable on [1,∞); let
C = 1−

∫∞
1
R(x)x−2. Since 0 ≤

∫∞
n
R(x)x−2dx ≤

∫∞
n
x−2dx = n−1,∑

1≤m≤n

1

m
= log n+ C +O(n−1)

f. But − log n+
∑

1≤m≤n
1
m → γ as n→∞, from which it follows that C = γ and

thus ∑
1≤m≤n

1

m
= log n+ γ +O(n−1).
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3. Background

For x ∈ R, let [x] be the greatest integer ≤ x and let R(x) = x − [x]. It
will be handy to review some properties of x 7→ [x]. For n ∈ Z it is immediate
that [x + n] = [x]. For x, y ∈ R we have 0 ≤ x − [x] + y − [y] < 2, which
means 0 = [0] ≤ [x − [y] + y − [y]] < [2] = 2, and using [x + n] = [x] this is
0 ≤ [x+ y]− [x]− [y] < 2, therefore

[x] + [y] ≤ [x+ y] ≤ [x] + [y] + 1.

For m,n ∈ Z, n > 1, and x ∈ R,[
x+m

n

]
=

[
[x] +m

n

]
.

For n a positive integer and for real x,

[x] =

[
x+

0

n

]
≤
[
x+

1

n

]
≤ · · ·

[
x+

n− 1

n

]
≤
[
x+

n

n

]
= [x] + 1.

There is a unique ν, 1 ≤ ν ≤ n, such that
[
x+ ν−1

n

]
= [x] and

[
x+ ν

n

]
= [x] + 1,

and therefore
[
R(x) + ν−1

n

]
= 0 and

[
R(x) + ν

n

]
= 1, consequently R(x) + ν−1

n < 1

and R(x) + ν
n ≥ 1, which means 1 − ν

n ≤ R(x) < 1 − ν−1
n , from which finally we

get n ≤ [nx]− n[x] + ν < n+ 1 and so n = [nx]− n[x] + ν. But

n−1∑
k=0

[
x+

k

n

]
=

ν−1∑
k=0

[x] +

n−1∑
k=ν

([x] + 1) = ν[x] + (n− ν)([x] + 1) = n[x] + n− ν,

and using ν = n− [nx] + n[x],

n−1∑
k=0

[
x+

k

n

]
= n[x] + n− (n− [nx] + n[x]) = [nx].

This identity is proved by Hermite [62, pp. 310–315, §V].
The Legendre symbol is defined in the following way. Let p be an odd prime,

and let a be an integer that is not a multiple of p. If there is an integer b such that

a ≡ b2 (mod p) then
(
a
p

)
= 1, and otherwise

(
a
p

)
= −1. In other words, for an

integer a that is relatively prime to p, if a is a square mod p then
(
a
p

)
= 1, and if

a is not a square mod p then
(
a
p

)
= −1. For example, one checks that there is no

integer b such that b2 ≡ 6 (mod 7), and hence
(

6
7

)
= −1, while 32 ≡ 2 (mod 7),

and so
(

2
7

)
= 1.

If p and q are distinct odd primes, define integers uk, 1 ≤ k ≤ p−1
2 , by

kq = p

[
kq

p

]
+ uk;

namely, uk is the remainder of kq when divided by p. We have 1 ≤ uk ≤ p− 1. Let
µ(q, p) be the number of k such that uk >

p−1
2 . It can be shown that [58, p. 74,

Theorem 92] (
q

p

)
= (−1)µ(q,p);
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this fact is called Gauss’s lemma. For example, for p = 13 and q = 3 we work
out that

u1 = 3, u2 = 6, u3 = 9, u4 = 12, u5 = 2, u6 = 5,

and hence µ(3, 13) = 2, so (−1)µ(3,13) = 1; on the other hand, 42 ≡ 3 (mod 13),
hence

(
3
13

)
= 1. With

S(q, p) =

p−1
2∑
j=1

[
jq

p

]
,

it is known that [58, pp. 77-78, §6.13]

S(q, p) ≡ µ(q, p) (mod 2).

And it can be shown that [58, p. 76, Theorem 100]

(4) S(q, p) + S(p, q) =
p− 1

2
· q − 1

2
.

Thus (
p

q

)(
q

p

)
= (−1)µ(p,q)+µ(q,p)

= (−1)S(p,q)+S(q,p)

= (−1)
p−1
2 ·

q−1
2 .

This is Gauss’s third proof of the law of quadratic reciprocity in the numbering
[6, p. 50, §20]. This proof was published in Gauss’s 1808 “Theorematis arithmetici
demonstratio nova”, which is translated in [134, pp. 112–118]. Dirichlet [36, pp. 65–
72, §§42–44] gives a presentation of the proof. Eisenstein’s streamlined version of
Gauss’s third proof is presented with historical remarks in [89]. Lemmermeyer [90]
gives a comprehensive history of the law of quadratic reciprocity, and in particular
writes about Gauss’s third proof [90, pp. 9–10]. The formula (4) resembles the
reciprocity formula for Dedekind sums [118, p. 4, Theorem 1].

Gauss obtains (4) from the following [134, p. 116, §5]: if x is irrational and n is
a positive integer, then

(5)

n∑
k=1

[kx] +

[nx]∑
k=1

[
k

x

]
= n[nx],

which he proves as follows. If
[
j
x

]
< k ≤

[
j+1
x

]
, then [kx] = j. Therefore

n∑
k=1

[kx] =

[nx]∑
j=1

j

([
j + 1

x

]
−
[
j

x

])

= n[nx]−
[nx]∑
j=1

[
j

x

]
.

Bachmann [5, pp. 654–658, §4] surveys later work on sums similar to (5); see also
Dickson [33, Chapter X]. If m and n are relatively prime, then{

R
(m
n

)
, R

(
2m

n

)
, . . . , R

(
(n− 1)m

n

)}
=

{
1

n
,

2

n
, . . . ,

n− 1

n

}
,
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and so
n−1∑
k=1

R

(
km

n

)
=

n−1∑
k=1

k

n
=

1

n
· (n− 1)n

2
=
n− 1

2
.

Hence

(6)

n−1∑
k=1

[
km

n

]
=

n−1∑
k=1

km

n
−
n−1∑
k=1

R

(
km

n

)
=

(m− 1)(n− 1)

2
.

There is also a simple lattice point counting argument [113, p. 113, No. 18] that
gives (6).

In 1849, Dirichlet [35] shows that
n∑
k=1

d(k) =

n∑
k=1

[n
k

]
,

where d(n) denotes the number of positive divisors of an integer n. (This equality
is Dirichlet’s “hyperbola method”.) He then proves that

n∑
k=1

[n
k

]
= n log n+ (2γ − 1)n+O(

√
n).

Hardy and Wright [58, pp. 264–265, Theorem 320] give a proof of this. Finding
the best possible error term in the estimate for

∑n
k=1 d(k) is “Dirichlet’s divisor

problem”. Dirichlet cites the end of Section V Gauss’s Disquisitiones Arithmeticae
as precedent for determining average magnitudes of arithmetic functions. (In Sec-
tion V, Articles 302–304, of the Disquisitiones Arithmeticae, Gauss writes about
averages of class numbers of binary quadratic forms, cf. [34, Chapter VI].)

Define (x) to be 0 if x ∈ Z + 1
2 ; if x 6∈ Z + 1

2 then there is an integer mx for
which |x−mx| < |x− n| for all integers n 6= mx, and we define (x) to be x−mx.
Riemann [120, p. 105, §6] defines

f(x) =

∞∑
n=1

(nx)

n2
;

for any x, the series converges absolutely because |(−nx)| < 1
2 . Riemann states

that if p and m are relatively prime and x = p
2m , then

f(x+) = lim
h→0+

f(x+h) = f(x)− π2

16m2
, f(x−) = lim

h→0−
f(x+h) = f(x)+

π2

16m2
,

thus

f(x−)− f(x+) =
π2

8m2
,

and hence that f is discontinuous at such points, and says that at all other points
f is continuous; see Neuenschwander [103] about Riemann’s work on pathological
functions, and also [114, p. 37]. For any interval [a, b] and any σ > 0, it is apparent
from the above that there are only finitely many x ∈ [a, b] for which f(x−) −
f(x+) > σ, and Riemann deduces from this that f is Riemann integrable on [a, b];
cf. Hawkins [60, p. 18] on the history of Riemann integration. Later in the same
paper [120, p. 129, §13], Riemann states that the function

x 7→
∞∑
n=1

(nx)

n
,
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is not Riemann integrable in any interval.
In 1897, Cesàro [27] asks the following question (using the pseudonym, and

anagram, “Rosace” [107, p. 331]). Let ε(x) = x− [x]− 1
2 . Is the series

(7)

∞∑
n=1

ε(nx)

n

convergent for all non-integer x? This is plausible because the expected value of
ε(x) is 0. Landau [85] answers this question in 1901. Landau proves that if there
is some g such that

n∑
k=1

[kx] =
n(n+ 1)x

2
− n

2
+O(g(n))

where g is a nonnegative function such g(n) = o(n) and such that
∑∞
n=1

g(n)
n(n+1)

converges, then (7) converges. And he proves that if x is rational then (7) diverges.
We return to this series in §9.

Also in 1898, Franel [49] asks whether for irrational x and for ε > 0 we have

n∑
k=1

[kx] =
n(n+ 1)x

2
− n

2
+O(nε).

Then in 1899, Franel [50] asks if we can do better than this: is the error term in fact
O(1)? Cesàro and Franel each contributed many problems to L’Intermédiaire des
mathématiciens, the periodical in which they posed their questions. Information
about Franel is given in [79].

Lerch [91] answers Franel’s questions in 1904. If x is irrational and p
q is a con-

vergent of x (which we will define in §4), then using Theorem 2 (from §4) we can

show that if 1 ≤ k ≤ q then [kx] = [kpq ]. Lerch uses this and (6) to show that if x

is irrational and p
q is a convergent of x then

q∑
k=1

[kx] =
q(q + 1)x

2
− q

2
+R, 0 < R <

1

2
.

Lerch states that if the continued fraction expansion of x has bounded partial
quotients (defined in §4) then, for any positive integer n,

n∑
k=1

[kx] =
n(n+ 1)x

2
− n

2
+O(log n).

Lerch only gives a brief indication of the proof of this. This result is proved by Hardy
and Littlewood in 1922 [56, p. 24, Theorem B3], and also in 1922 by Ostrowski [105,
p. 81]. On the other hand, Lerch also constructs examples of x such that, for some
positive integer c, ∣∣∣∣∣

n∑
k=1

[kx]− n(n+ 1)x

2
+
n

2

∣∣∣∣∣� n1− 1
c .

Nevertheless, in 1909 Sierpinski [130] proves that if x is irrational then

n∑
k=1

[kx] =
n(n+ 1)x

2
− n

2
+ o(n).
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A bibliography of Lerch’s works is given in [133]. Lerch had written earlier papers
on Gauss sums, Fourier series, theta functions, and the class number; many of
his papers are in Czech, but some of them are in French, several of which were
published in the Paris Comptes rendus. Several of Lerch’s papers are discussed in
Cresse’s survey of the class number of binary quadratic forms [34, Chapter VI].

In 1899, a writer using the pseudonym “Quemquaeris” [116] (“quem quaeris”=“whom
you seek”) asks if we can characterize φ(n) such that for all irrational θ the series

∞∑
n=1

φ(n)

sinnπθ

converges. In particular, the writer asks if φ(n) = 1
n! satisfies this. In the same

year, de la Vallée-Poussin [32] answers this question. (There are also responses
following de la Vallée-Poussin’s by Borel and Fabry.) For a given function φ(n), de
la Vallée-Poussin shows that if we have an >

1
φ(qn−1) for all n, for an the nth partial

quotient of θ and qn the denominator of the nth convergent of θ, then the series

∞∑
n=1

φ(n)

sinnπθ

will diverge. Hardy and Littlewood prove numerous results on similar series, e.g.
for φ(n) = n−r for real r > 1 and for certain classes of θ, in their papers on
Diophantine approximation [55]. In 1931, Walfisz [146, p. 570, Hilfssatz 4] shows,
following work of Behnke [12, p. 289, §16], that for almost all irrational x ∈ [0, 1],
if ε > 0 then

n∑
k=1

1

‖kθ‖
= O(n(log n)2+ε),

where ‖x‖ = min(R(x), 1−R(x)). Walfisz’s paper includes many results on related
sums.

In 1916, Watson [147] finds the following asymptotic series for Sn =
∑n−1
m=1 csc

(
mπ
n

)
:

πSn ∼ 2n log(2n) + 2n(γ − log π) +

∞∑
j=1

(−1)j
B2

2j(2
2j − 2)π2j

j(2j)!n2j−1
,

where γ is Euler’s constant and Bj are the Bernoulli numbers. Truncating the
asymptotic series and rewriting gives

Sn =
2n log n

π
+ n · 2 log 2 + 2γ − 2 log π

π
+O

(
1

n

)
.

For example, computing S1000 directly we get S1000 = 4477.593932 . . ., and com-
puting the right-hand side of the above formula without the error term we ob-
tain 4477.594019 . . . A cleaner derivation of the asymptotic series using the Euler-
Maclaurin summation formula is given later by Williams [149].

Early surveys of Diophantine approximation are given by Bohr and Cramér [19,
pp. 833–836, §39] and Koksma [78, pp. 102–110]. Hlawka and Binder [63] present
the history of the initial years of the theory of uniform distribution. Narkiewicz
[101, pp. 82–95, §2.5 and pp. 175–183 §3.5] gives additional historical references on
Diophantine approximation. The papers of Hardy and Littlewood on Diophantine
approximation are reprinted in [55]. Perron [108] and Brezinski [22] give historical
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references on continued fractions, and there is reliable material on the use of con-
tinued fractions by 17th century mathematicians in Whiteside [148]. Fowler [48]
presents a prehistory of continued fractions in Greek mathematics.

4. Preliminaries on continued fractions

Let

‖x‖ = min
k∈Z
|x− k| = min(R(x), 1−R(x)).

Let µ be Lebesgue measure on [0, 1], and let Ω = [0, 1] \Q.
For positive integers a1, . . . , an, we define

[a1, . . . , an] =
1

a1 +
1

· · ·+
1

an−1 +
1

an

.

For example, [1, 1, 1] = 2
3 .

Let N be the set of positive integers. We call a ∈ NN a continued fraction, and
we call an the nth partial quotient of a. If there is some K > 0 such that an ≤ K
for all n then we say that a has bounded partial quotients. We call [a1, . . . , an] the
nth convergent of a. For n ≥ 1 let

pn
qn

= [a1, . . . , an],

with pn, qn positive integers that are relatively prime, and set

p0 = 0, q0 = 1.

One can show by induction [42, p. 70, Lemma 3.1] that for n ≥ 1 we have

(8)

(
pn pn−1

qn qn−1

)
=

(
0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an 1
1 0

)
.

We have

p1 = 1, q1 = a1,

and from (8) we get for all n ≥ 1 that

pn+1 = an+1pn + pn−1,

and

qn+1 = an+1qn + qn−1.

Since the an are positive integers we get by induction that for all n ≥ 1,

(9) pn ≥ 2(n−1)/2, qn ≥ 2(n−1)/2.

In fact, setting F1 = 1, F2 = 1, Fn+1 = Fn + Fn−1 for n ≥ 2, with Fn the nth
Fibonacci number, as an ≥ 1 we check by induction that

pn ≥ Fn, qn ≥ Fn+1.

Taking determinants of (8) gives us for all n ≥ 1 that

(10) pnqn−1 − pn−1qn = (−1)n+1,
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and then by induction we have for all n ≥ 1,

pn
qn

=

n∑
k=1

(−1)k+1

qk−1qk
.

For any a ∈ NN, as n→∞ this sequence of sums converges and we denote its limit
by v(a). We have for all n ≥ 1,

v(a)− pn
qn

=

∞∑
k=n+1

(−1)k+1

qk−1qk
.

Since the right hand side is an alternating series we obtain for n ≥ 1,

(11)

∣∣∣∣v(a)− pn
qn

∣∣∣∣ < 1

qnqn+1
,

and

(12)

∣∣∣∣v(a)− pn
qn

∣∣∣∣ > 1

qnqn+1
− 1

qn+1qn+2
=

an+2

qnqn+2
≥ 1

qn(qn+1 + qn)
,

and

(13)
p2

q2
<
p4

q4
< · · · < v(a) < · · · < p3

q3
<
p1

q1
.

For x ∈ Ω, we say that p
q ∈ Q, q > 0, is a best approximation to x if

‖qx‖ = |qx− p| and ‖q′x‖ > ‖qx‖ for 1 ≤ q′ < q. The following theorem shows in
particular that the convergents of a continued fraction a are best approximations
to v(a) [122, p. 22, Chapter 2, §3, Theorem 1].

Theorem 2 (Best approximations). Let a ∈ NN. For any n ≥ 1,

‖qnv(a)‖ = |pn − qnv(a)|.
If 1 ≤ q < qn+1, then for any p ∈ Z,

|qv(a)− p| ≥ |pn − qnv(a)|.

Proof. By (11), |qnv(a)− pn| < 1
qn+1

. But

qn+1 ≥ q2 = a2q1 + q0 ≥ q1 + q0 = a1 + 1 ≥ 2.

So |qnv(a)− pn| < 1
2 , which means ‖qnv(a)‖ = |qnv(a)− pn|.

Write x = v(a) and let A =

(
pn+1 pn
qn+1 qn

)
. Applying (10),

detA = pn+1qn − pnqn+1 = (−1)n.

Let(
µ
ν

)
= A−1

(
p
q

)
=

1

detA

(
qn −pn
−qn+1 pn+1

)(
p
q

)
= (−1)n

(
qn −pn
−qn+1 pn+1

)(
p
q

)
.

Then

qx− p = (µqn+1 + νqn)x− (pn+1µ+ pnν) = µ(qn+1x− pn+1) + ν(qnx− pn)

and (
p
q

)
= A

(
µ
ν

)
=

(
pn+1 pn
qn+1 qn

)(
µ
ν

)
=

(
pn+1µ+ pnν
qn+1µ+ qnν

)
.
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In particular, µ, ν ∈ Z. Suppose by contradiction that ν = 0. Then (q−µqn+1)x =
p − µpn+1, and as x 6∈ Q it must then be that q = µqn+1 and p = µpn+1. But
q = µqn+1, 1 ≤ q < qn+1, and µ ∈ Z are together a contradiction. Therefore ν 6= 0.
Either µ = 0 or µ 6= 0. For µ = 0,

|qx− p| = |ν||qnx− pn| ≥ |qnx− pn|,

which is the claim. For µ 6= 0 we use the fact q = qn+1µ+ qnν and 1 ≤ q < qn+1. If
µ, ν > 0 then q < qn+1 is contradicted, and if µ, ν < 0 then q ≥ 1 is contradicted.
Therefore µ and ν have different signs, say µ = (−1)N |µ| and ν = (−1)N+1|ν|.
Furthermore, we get from (13) that

sgn (qnx− pn) = (−1)n, sgn (qn+1x− pn+1) = (−1)n+1.

Therefore

qx− p = µ(qn+1x− pn+1) + ν(qnx− pn)

= (−1)N |µ| · (−1)n+1|qn+1x− pn+1|+ (−1)N+1|ν| · (−1)n|qnx− pn|,

hence

|qx− p| = |µ||qn+1x− pn+1|+ |ν||qnx− pn| ≥ |ν||qnx− pn| ≥ |qnx− pn|,

which is the claim. �

The above theorem says, a fortiori, that the convergents of a are best approxi-
mations to v(a). It can also be proved that if pq ∈ Q, q > 0, is a best approximation

to v(a) then p
q is a convergent of a [88, p. 9, Theorem 6]. Cassels [26, p. 2, Chapter

I] works out the theory of continued fractions according to this point of view. Sim-
ilarly, Milnor [96, p. 234, Appendix C] works out the theory of continued fractions
in the language of rotations of the unit circle.

We define the Gauss transformation T : Ω → Ω by T (x) = R
(

1
x

)
for x ∈ Ω,

and we define Φ : Ω→ NN by

(Φ(x))n =

[
1

Tn−1(x)

]
, n ≥ 1.

One can check that if a ∈ NN then v(a) ∈ Ω [42, p. 73, Lemma 3.2]. (Namely,
the value of a nonterminating continued fraction is irrational.) One can prove that
v : NN → Ω is injective [42, p. 75, Lemma 3.4], and for x ∈ Ω that [42, p. 78,
Lemma 3.6]

(v ◦ Φ)(x) = x.

Therefore Φ : Ω→ NN is a bijection. Moreover, Φ is a homeomorphism, when N has
discrete topology, NN has the product topology, and Ω has the subspace topology
inherited from R [42, p. 86, Exercise 3.2.2]. That NN and Ω are homeomorphic
can also be proved without using continued fractions [1, p. 106, Theorem 3.68]. In
descriptive set theory, the topological space N = NN is called the Baire space,
and the Alexandrov-Urysohn theorem states that N has the universal property
that any nonempty Polish space that is zero-dimensional (there is a basis of clopen
sets for the topology) and all of whose compact subsets have empty interior is
homeomorphic to N [72, p. 37, Theorem 7.7]. Some of Baire’s work on N is
described in [68, pp. 119–120] and [4, pp. 349, 372].
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For I = [0, 1] and for T : I → I, T (x) = R(1/x) for x > 0 and T (0) = 0. For

k ≥ 1 let Ik =
(

1
k+1 ,

1
k

)
, so if x ∈ Ik then T (x) = x−1 − k. Then for x ∈ I = [0, 1],

T (x) =

∞∑
k=1

1Ik(x)(x−1 − k).

For S = {0} ∪ {k−1 : k ≥ 1}, I \ S =
⋃
k≥1 Ik, and for x ∈ I \ S,

T ′(x) = −
∞∑
k=1

1Ik(x)x−2,

and for x ∈ Ik, k2 < |T ′(x)| < (k+1)2. Differentiability and dynamical properties of
the Gauss transformation are worked out by Cornfeld, Fomin and Sinai [29, pp. 165–
177, Chapter 7, §4], as an instance of piecewise monotonic transformations.

For each n ≥ 1 we define an : Ω → N by an(x) = (Φ(x))n. For example,
e− 2 ∈ Ω, and it is known [88, p. 74, Theorem 2] that for k ≥ 1,

a3k(e− 2) = a3k−2(e− 2) = 1 and a3k−1(e− 2) = 2k.

The pattern for the continued fraction expansion of e seems first to have been
worked out by Roger Cotes in 1714 [47], and was later proved by Euler using a
method involving the Riccati equation [30].

For n ≥ 1 and i ∈ Nn, let

In(i) = {ω ∈ Ω : ak(x) = ik, 1 ≤ k ≤ n}.

For x ∈ In(i),

pn(x)

qn(x)
= [i1, . . . , in],

pn−1(x)

qn−1(x)
= [i1, . . . , in−1].

The following is an expression for the sets In(i) [66, p. 18, Theorem 1.2.2].

Theorem 3. Let n ≥ 1, i ∈ Zn≥1, and for pn = pn(x), qn = qn(x), x ∈ In(i),

un(i) =

{
pn+pn−1

qn+qn−1
n odd

pn
qn

n even

and

vn(i) =

{
pn
qn

n odd
pn+pn−1

qn+qn−1
n even.

Then

In(i) = Ω ∩ (un(i), vn(i)).

It follows from the above that for i ∈ Nn, n ≥ 1,

µ(In(i)) =
1

qn(qn + qn−1)
.
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5. Diophantine conditions

For real τ, γ > 0 let

D(τ, γ) =
⋂

q∈Z≥1,p∈Z

{
x ∈ [0, 1] :

∣∣∣∣x− p

q

∣∣∣∣ ≥ γq−τ}
=

⋂
q∈Z≥1

{
x ∈ [0, 1] : ‖qx‖ ≥ γq−τ+1

}
,

and let
D(τ) =

⋃
τ>0

D(τ, γ).

We relate the sets D(τ) and continued fractions expansions [96, p. 241, Lemma
C.6], cf. [152, p. 130, Proposition 2.4].

Lemma 4. For τ > 0 and x ∈ Ω, x ∈ D(τ) if and only if there is some C =
C(x) > 0 such that qn+1(x) ≤ Cqn(x)τ−1 for all n ≥ 1.

Proof. For x ∈ Ω, write qn = qn(x). By (12), ‖qnx‖ > 1
qn+1+qn

, and by (11),

‖qnx‖ < 1
qn+1

. Suppose x ∈ D(τ), so there is some γ > 0 such that x ∈ D(τ, γ).

Then

qn+1 <
1

‖qnx‖
≤ γ−1qτ−1

n .

Suppose qn+1 ≤ Cqτ−1
n for all n ≥ 1. For q ∈ Z≥1, take qn ≤ q < qn+1. Using

Theorem 2,

‖qx‖ ≥ ‖qnx‖ >
1

qn+1 + qn
>

1

2qn+1
≥ 1

2
C−1q−τ+1

n ≥ 1

2C
· q−τ+1,

which means that x ∈ D(τ, 1
2C ). �

For K a positive integer, let

BK = {x ∈ Ω : an(x) ≤ K for all n ≥ 1},
so
⋃
K≥1 BK is the set of those x ∈ Ω with bounded partial quotients.

Lemma 5. For x ∈ Ω, x ∈ D(2) if and only if x has bounded partial quotients.

Proof. Write an = an(x) and qn = qn(x). If x ∈ D(2) then there is some γ > 0
such that x ∈ D(2, γ), hence for n ≥ 1,

qn+1 <
1

‖qnx‖
≤ γ−1qn.

Now, qn+1 = an+1qn + qn−1 for n ≥ 1, so

an+1 < qn+1q
−1
n < q−1

n · γ−1qn = γ−1,

which shows that x has bounded partial quotients.
If x ∈ BK , let q ∈ Z≥1 and let qn ≤ q < qn+1. Using Theorem 2 and then (12),

‖qx‖ ≥ ‖qnx‖ >
1

qn+1 + qn
=

1

an+1qn + qn−1 + qn
>

1

(an+1 + 2)qn
.

As x ∈ BK ,

‖qx‖ > 1

(K + 2)qn
≥ 1

K + 2
q−1,

which means that x ∈ D(2, 1
K+2 ). �
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A complex number α is called an algebraic number of degree d, d ≥ 0, if
there is some polynomial f ∈ Z[x] with degree d such that f(α) = 0 and if g ∈ Z[x]
has degree < d and g(α) = 0 then g = 0. An algebraic number number of degree 2
is called a quadratic irrational. Let α ∈ Ω. It was proved by Euler [58, p. 144,
Theorem 176] that if there is some p > 0 and some L such that al+p(α) = al(α)
for all l ≥ L then α is a quadratic irrational The converse of this was proved
by Lagrange [58, p. 144, Theorem 177], namely that a quadratic irrational has

eventually periodic partial quotients. For example, α =
√

11− 3 ∈ Ω is a quadratic
irrational, being a root of x2 +6x−2, and one works out that a1(α) = 3, a2(α) = 6,
and that al+2(α) = al(α) for l ≥ 1. In particular, if α ∈ Ω is a quadratic irrational,
then α has bounded partial quotients.

Liouville [58, p. 161, Theorem 191] proved that if x ∈ Ω is an algebraic number
of degree d ≥ 2, then x ∈ D(d). The Thue-Siegel-Roth theorem [46, p. 55,
Theorem 1.23] states that if x ∈ Ω is an algebraic number, then for any δ > 0 there
is some qδ ∈ Z≥1 such that for all q ≥ qδ,

‖qx‖ ≥ q−1−δ.

See Schmidt [126, p. 195, Theorem 2B].

6. Sums of reciprocals

We are interested in getting bounds on the sum
∑m
j=1

1
‖jx‖ . This is an appealing

question because the terms 1
‖jx‖ are unbounded.

Rather than merely stating that
∑∞
k=1

1
k = ∞, we give more information by

giving the estimate
n∑
k=1

1

k
= log n+ γ +O(n−1),

where γ is Euler’s constant. Likewise, rather than merely stating that there are
infinitely many primes, we state more information with [86, p. 102, §28]∑

p≤x

1

p
= log log x+B +O

(
1

log x

)
,

for a certain constant B (namely “Merten’s constant”), or with [86, p. 226, §61]∑
p≤x

p =
x2

2 log x
+O

(
x2

(log x)2

)
.

Because | sin(πx)| = sin(π ‖x‖) ≤ π ‖x‖ and

| sin(πx)| = sin(π ‖x‖) ≥ 2

π
π ‖x‖ = 2 ‖x‖ ,

we have

(14)
1

π

m∑
j=1

1

‖jx‖
≤

m∑
j=1

1

| sinπjx|
≤ 1

2

m∑
j=1

1

‖jx‖
.

Thus, getting bounds on
∑m
j=1

1
‖jx‖ will give us bounds on

∑m
j=1

1
| sinπjx| .

Let ψ be a nondecreasing function defined on the positive integers such that
ψ(h) > 0 for h ≥ 1 (for example, ψ(h) = log(2h)). Following Kuipers and Nieder-
reiter [81, p. 121, Definition 3.3], we say that an irrational number x is of type
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< ψ if ‖hx‖ ≥ 1
hψ(h) for all integers h ≥ 1. If ψ is a constant function, then we say

that x is of constant type.

Lemma 6. x ∈ Ω is of constant type if and only if it has bounded partial quotients.

Proof. Suppose that x ∈ Ω is of constant type. So there is some K > 0 such that
‖hx‖ ≥ 1

hK for all integers h ≥ 1. For n ≥ 2 we have qn = anqn−1 + qn−2, and
hence, by (11),

an =
qn
qn−1

− qn−2

qn−1
<

qn
qn−1

≤ qn ·K ‖qn−1x‖ < K,

showing that x has bounded partial quotients.
Suppose that x ∈ Ω has bounded partial quotients, say an ≤ K for all n ≥ 1.

Let h be a positive integer and take qn ≤ h < qn+1. Then first by Theorem 2 and
then by (12),

‖hx‖ ≥ ‖qnx‖ >
1

qn + qn+1
>

1

2qn+1
=

1

2(an+1qn + qn−1)
>

1

2(an+1qn + qn)
,

and so

‖hx‖ > 1

2(K + 1)

1

qn
≥ 1

2(K + 1)

1

h
,

showing that x is of constant type. �

However, almost all x do not have bounded partial quotients [75, p. 60, Theorem
29]. Shallit [129] gives a survey on numbers with bounded partial quotients.

We state and prove a result of Khinchin’s [75, p. 69, Theorem 32] that we then
use.

Lemma 7. Let f be a positive function on the positive integers. If

∞∑
q=1

f(q) <∞,

then for almost all x ∈ Ω there are only finitely many q such that ‖qx‖ < f(q).

Proof. For each positive integer q, let Eq = {t ∈ Ω : ‖qt‖ < f(q)}. If t ∈ Eq, then

there is some integer p with 0 ≤ p ≤ q such that
∣∣∣t− p

q

∣∣∣ < f(q)
q . It follows that

Eq ⊂
(

0,
f(q)

q

)
∪
(

1− f(q)

q
, 1

)
∪
q−1⋃
p=1

(
p

q
− f(q)

q
,
p

q
+
f(q)

q

)
.

Therefore
∞∑
q=1

µ(Eq) ≤
∞∑
q=1

2q · f(q)

q
= 2

∞∑
q=1

f(q) <∞.

Let E = lim supq→∞Eq, i.e. E = {t ∈ Ω : t ∈ Eq for infinitely many q}. Then
by the Borel-Cantelli lemma [18, p. 59, Theorem 4.3] we have that µ(E) = 0.
Therefore, for almost all t ∈ Ω there are only finitely many q such that t ∈ Eq, i.e.,
for almost all t ∈ Ω there are only finitely many q such that ‖qt‖ < f(q). �
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The above lemma is proved in Benedetto and Czaja [14, p. 183, Theorem 4.3.3]
using the fact that a function of bounded variation is differentiable almost ev-

erywhere. We outline the proof. Define F : [0, 1] → R>0 by F (x) = f(q)
q if

x = a
q , gcd(a, q) = 1, 0 ≤ a ≤ q, and F (x) = 0 if x ∈ Ω. Writing Aq ={

a
q : 0 ≤ a ≤ q, gcd(a, q) = 1

}
, for 0 = t0 < t1 < · · · < tN = 1,

N∑
j=0

F (tj) =

∞∑
q=1

N∑
j=0

F (tj) · 1Aq (tj) =

∞∑
q=1

f(q)

q

N∑
j=0

1Aq (tj) ≤
∞∑
q=1

f(q).

It follows that the total variation of F is ≤ 2
∑∞
q=1 f(q) and hence F is a function

of bounded variation. Because F has bounded variation, the set DF of x ∈ [0, 1]
at which F is differentiable is a Borel set with λ(DF ) = 1. Check that F ′(x) = 0
for x ∈ DF \ Q, and using this, if an

qn
→ x with gcd(an, qn) = 1 and 0 ≤ an ≤ qn

then for some N , if n ≥ N then
∣∣∣x− an

q

∣∣∣ ≥ F (qn)
qn

.

We use the above lemma to prove the following result.

Lemma 8. Let ε > 0. For almost all x ∈ Ω, there is some K > 0 such that x is of
type < K(log h)1+ε.

Proof. Let

E =

{
t ∈ Ω : ‖ht‖ < 1

h(log h)1+ε
for infinitely many h

}
.

Since
∑∞
h=1

1
h(log h)1+ε converges, we have by Lemma 7 that µ(E) = 0. Let t ∈ Ω\E.

Then ‖ht‖ ≥ 1
h(log h)1+ε for all sufficiently large h. It follows that there is some K

such that t is of type < K(log h)1+ε. �

The following technical lemma is from Kuipers and Niederreiter [81, p. 130,
Exercise 3.9]; cf. Lang [88, p. 39, Lemma].

Lemma 9. Let x ∈ Ω be of type < ψ. If n ≥ 0 and if 0 ≤ h0 < qn+1, then∑
1≤j≤qn

j+h0<qn+1

1

‖(j + h0)x‖
< 6qn(ψ(qn) + log qn).

Proof. Since pn and qn are relatively prime, the remainders of jpn, j = 1, . . . , qn,
when divided by qn are all distinct. Then also, the remainders of jpn + h0pn,
j = 1, . . . , qn, when divided by qn are all distinct. Let λj , j = 1, . . . , qn, be the
remainder of jpn + h0pn when divided by qn. We have {λj : 1 ≤ j ≤ qn} =
{0, . . . , qn − 1}; let λj1 = 0, λj2 = 1, and λj3 = qn − 1.

Write x = pn
qn

+ δn
qnqn+1

; by (11) we have |δn| < 1. If j + h0 < qn+1 then by

Theorem 2 we have ‖(j + h0)x‖ ≥ ‖qnx‖, and since x is of type < ψ we have

‖(j + h0)x‖ ≥ ‖qnx‖ ≥
1

qnψ(qn)
.

Let, for i = 1, 2, 3,

Ai =

{
1, if ji + h0 < qn+1,

0, if ji + h0 ≥ qn+1.
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If j + h0 < qn+1 and j 6= j1, j2, j3, then∥∥∥∥λjqn +
(j + h0)δn
qnqn+1

∥∥∥∥ ≥ min

{∥∥∥∥λjqn +
1

qn

∥∥∥∥ ,∥∥∥∥λjqn − 1

qn

∥∥∥∥} .
It follows that∑

1≤j≤qn
j+h0<qn+1

1

‖(j + h0)x‖
=

A1

‖(j1 + h0)x‖
+

A2

‖(j2 + h0)x‖
+

A3

‖(j3 + h0)x‖

+
∑

1≤j≤qn
j+h0<qn+1

j 6=j1,j2,j3

1∥∥∥λjqn + (j+h0)δn
qnqn+1

∥∥∥
≤ 3qnψ(qn) +

∑
1≤j≤qn

j+h0<qn+1

j 6=j1,j2,j3

1∥∥∥λjqn + (j+h0)δn
qnqn+1

∥∥∥
≤ 3qnψ(qn) +

∑
1≤j≤qn

j+h0<qn+1

j 6=j1,j2,j3

1∥∥∥λjqn + 1
qn

∥∥∥
+

∑
1≤j≤qn

j+h0<qn+1

j 6=j1,j2,j3

1∥∥∥λjqn − 1
qn

∥∥∥
< 3qnψ(qn) + 2

qn−1∑
k=1

1∥∥∥ k
qn

∥∥∥ .
But 1

‖y‖ <
1

R(y) + 1
1−R(y) for y 6∈ Z, so

qn−1∑
k=1

1∥∥∥ k
qn

∥∥∥ <

qn−1∑
k=1

1

R
(
k
qn

) +
1

1−R
(
k
qn

)
=

qn−1∑
k=1

1
k
qn

+
1

1− k
qn

= 2qn

qn−1∑
k=1

1

k

< 3qn log qn;

the last inequality is because, for all m ≥ 1,

m∑
k=1

1

k
<

3

2
log(m+ 1).

�

We now use Lemma 9 to obtain a bound on
∑m
j=1

1
‖jx‖ in terms of the type of

x. This is from Kuipers and Niederreiter [81, p. 131, Exercise 3.11]; cf. Lang [88,
p. 39, Theorem 2].
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Theorem 10. If x ∈ Ω is of type < ψ, then for all m ≥ 1 we have
m∑
j=1

1

‖jx‖
< 12m(ψ(m) + logm).

Proof. We shall prove the claim by induction. Because x is of type < ψ, we have

1

‖x‖
≤ ψ(1) < 12ψ(1),

so the claim is true for m = 1. Take m > 1 and assume that the claim is true for
all 1 ≤ m′ < m. We shall show that it is true for m.

Let qn ≤ m < qn+1. Either m < 2qn or m ≥ 2qn. In the first case, using Lemma
9 we have

m∑
j=1

1

‖jx‖
=

qn∑
j=1

1

‖jx‖
+

m−qn∑
j=1

1

‖(j + qn)x‖

< 12qn(ψ(qn) + log qn)

< 12m(ψ(m) + logm).

In the second case, using the induction assumption (with m′ = m − qn) and
Lemma 9 we have, because qn < m− qn,

m∑
j=1

1

‖jx‖
=

m−qn∑
j=1

1

‖jx‖
+

qn∑
j=1

1

‖(j +m− qn)x‖

< 12(m− qn) (ψ(m− qn) + log(m− qn)) + 6qn(ψ(qn) + log qn)

< 12(m− qn) (ψ(m) + logm) + 12qn(ψ(qn) + log qn)

= 12m(ψ(m) + logm)− 12qn (ψ(m)− ψ(qn) + logm− log qn)

≤ 12m(ψ(m) + logm).

The claim is true in both cases, which completes the proof by induction. �

We can now establish for almost all x ∈ Ω a tractable upper bound on the sum∑m
j=1

1
‖jx‖ , and thus by (14) also on

∑m
j=1

1
| sinπjx| ; cf. Lang [88, p. 44, Theorem

3].

Theorem 11. Let ε > 0. For almost all x ∈ Ω, we have
m∑
j=1

1

‖jx‖
= O

(
m (logm)

1+ε
)
,

while if x has bounded partial quotients then
m∑
j=1

1

‖jx‖
= O (m logm) .

Proof. Let ε > 0. By Lemma 8, for almost all x ∈ Ω there is some K such that x
is of type < K(log h)1+ε. For such an x, it follows from Theorem 10 that for all
m ≥ 1,

m∑
j=1

1

‖jx‖
< 12m(K(logm)1+ε + logm) = O

(
m (logm)

1+ε
)
.
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Figure 1. 1
m logm ·

∑m
j=1

1
‖jx‖ for x = −1+

√
5

2 , m = 20000, . . . , 25000

If x has bounded partial quotients then by Lemma 6 it is of constant type, say
ψ(m) = K for some K. It follows from Theorem 10 that for all m ≥ 1,

m∑
j=1

1

‖jx‖
< 12m(K + logm) = O (m logm) .

�

For example, take x = −1+
√

5
2 , for which an(x) = 1 for all n ∈ N, and so in

particular x has bounded partial quotients. In Figure 1 we plot 1
m logm ·

∑m
j=1

1
‖jx‖

for m = 20000, . . . , 25000. These computations suggest that there is some constant
C for which

∑m
j=1

1
‖jx‖ > Cm logm for all m. In Theorem 13 we shall prove that

for almost all x ∈ Ω there is such a C(x).
However, the estimate in Theorem 11 is not true for all x ∈ Ω. Define a ∈ NN as

follows. Let a1 be any element of N. Then inductively, define an+1 to be any element
of N that is > qn−1

n . Then for any n ∈ N, using (11) and qn+1 = an+1qn + qn−1 >
an+1qn we get

|qnv(a)− pn| <
1

qn+1
<

1

an+1qn
<

1

qnn
,

hence ‖qnv(a)‖ < 1
qnn

, and then

qn∑
j=1

1

‖jv(a)‖
>

1

‖qnv(a)‖
> qnn .

Using ε = 1, it is then straightforward to check that there is no constant C such
that

∑m
j=1

1
‖jv(a)‖ ≤ Cm(logm)2 for all m.

We will need the following lemma [18, p. 324, Lemma 3] to prove a theorem; cf.
Khinchin [75, p. 63, Theorem 30].
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Lemma 12. If φ is a function defined on the positive integers such that φ(n) ≥ 1
for all n and

∞∑
n=1

1

φ(n)
<∞,

then for almost all x ∈ Ω there are only finitely many n such that an(x) ≥ φ(n).

Proof. For a measurable set A ⊂ Ω, define

γ(A) =
1

log 2

∫
A

1

1 + x
dµ(x),

in other words dγ(x) = 1
(1+x) log 2dµ(x). Thus for a measurable set A ⊂ Ω we have

γ(A) ≤ 1

log 2

∫
A

dx =
1

log 2
µ(A)

and

γ(A) ≥ 1

log 2

∫
A

1

2
dx =

1

2 log 2
µ(A).

We will use that γ is an invariant measure for the Gauss transformation T : Ω→
Ω [42, p. 77, Lemma 3.5], i.e., if A ⊂ Ω is a measurable set then

(T∗γ)(A) = γ(T−1(A)) = γ(A).

Let An = {x ∈ Ω : an(x) ≥ φ(n)}, n ≥ 1. As

an(x) =

[
1

Tn−1(x)

]
,

we have

An ⊂ {x ∈ Ω :
1

Tn−1(x)
> φ(n)}

=

{
x ∈ Ω : Tn−1(x) <

1

φ(n)

}
= (Tn−1)−1

([
0,

1

φ(n)

)
\Q
)
.

Hence

µ(An) ≤ µ

(
(Tn−1)−1

([
0,

1

φ(n)

)
\Q
))

≤ 2 log 2 · γ
(

(Tn−1)−1

([
0,

1

φ(n)

)
\Q
))

= 2 log 2 · γ
([

0,
1

φ(n)

)
\Q
)

≤ 2 log 2 · 1

log 2
· µ
([

0,
1

φ(n)

)
\Q
)

=
2

φ(n)
.

It follows that
∞∑
n=1

µ(An) <∞,
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and thus by the Borel-Cantelli lemma [18, p. 59, Theorem 4.3] we have

µ(lim sup
n→∞

An) = 0.

�

Let λ be Lebesgue measure on I = [0, 1], let dγ(x) = 1
(1+x) log 2dλ(x), and let

T : I → I be the Gauss transformation, T (x) = x−1− [x]−1 for x > 0 and T (0) = 0,
for which T∗γ = γ [42, p. 77, Lemma 3.5]. Suppose that ν is a Borel probability
measure on [0, 1] such that the pushforward measure T∗ν is absolutely continuous
with respect to ν. For f ∈ L1(ν), define dνf = fdν, and define Pν : L1(ν)→ L1(ν)
by

Pνf =
d(T∗νf )

dν
, f ∈ L1(ν).

Thus, for g ∈ L∞(ν), using the change of variables formula,∫
I

g · Pνfdν =

∫
I

gd(T∗νf ) =

∫
I

g ◦ Tdνf =

∫
I

(g ◦ T ) · fdν,

in particular, ∫
I

Pνfdν =

∫
I

fdν.

We call Pν : L1(ν) → L1(ν) a Perron-Frobenius operator for T . It is a fact
that if f ≥ 0 then Pνf ≥ 0 [66, p. 57, Proposition 2.1.1], namely Pν ≥ 0. It can be
proved that for f ∈ L1(γ), for almost all x ∈ I [66, p. 59, Proposition 2.1.2],

(Pγf)(x) =

∞∑
k=1

x+ 1

(x+ k)(x+ k + 1)
· f
(

1

x+ k

)
,

and for f ∈ L1(λ), for almost all x ∈ I [66, p. 60, Corollary 2.1.4],

(Pλf)(x) =

∞∑
k=1

1

(x+ k)2
· f
(

1

x+ k

)
,

and with g(x) = (x+1)f(x), for n ≥ 1 it holds for almost all x ∈ I that (Pnλ f)(x) =
(Pnγ g)(x)

x+1 . Iosifescu and Kraaikamp [66, Chapter 2] give a detailed presentation of
Perron-Frobenius operators for the Gauss map. We make the final remark that
Pν1I = 1I is equivalent with

∫
I

1Edν =
∫
I

1T−1(E)dν for all Borel sets E in I,

i.e. ν(E) = ν(T−1(E)), which in turn means T∗ν = ν, cf. Markov operators. An
object similar to Perron-Frobenius operators for the Gauss transformation is the
zeta-function for the Gauss transformation, for which see Lagarias [83, p. 58,
§3.3].

The following theorem gives a lower bound on the sum
∑m
j=1

1
‖jx‖ , cf. [144, p. 4,

Theorem 3.1].

Theorem 13. For almost all x ∈ Ω there is some C > 0 such that
m∑
j=1

1

‖jx‖
> Cm logm.
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Proof. For all x ∈ Ω, if n ≥ 1 then qn ≥ 2
n−1
2 , by (9). Take φ(n) = 2

n−2
2 . The

series
∑∞
n=1

1
φ(n) converges, so by Lemma 12, for almost all x ∈ Ω there are only

finitely many n such that an ≥ φ(n). That is, for almost all x ∈ Ω there is some
n0 such that if n ≥ n0 then

an < φ(n) = 2
n−2
2 ≤ qn−1.

Hence, if n ≥ n0 then

qn = anqn−1 + qn−2 < q2
n−1 + qn−2 < 2q2

n−1.

It follows that for almost all x ∈ Ω there is some K such that

(15) qn+1 < Kq2
n

for all n ≥ 0.
For such an x, let m be a positive integer and let qn ≤ m < qn+1. For 1 ≤ j ≤ m

we have by (11),∥∥∥∥jx− jpn
qn

∥∥∥∥ ≤ ∣∣∣∣jx− jpn
qn

∣∣∣∣ = j

∣∣∣∣x− pn
qn

∣∣∣∣ < j

qnqn+1
<

1

qn
.

Therefore for 1 ≤ j ≤ m we have

‖jx‖ ≤
∥∥∥∥jx− jpn

qn

∥∥∥∥+

∥∥∥∥jpnqn
∥∥∥∥ < 1

qn
+

∥∥∥∥jpnqn
∥∥∥∥ .

Let L = [mqn ], so Lqn ≤ m. Then,

m∑
j=1

1

‖jx‖
>

m∑
j=1

1

1
qn

+
∥∥∥ jpnqn ∥∥∥

≥
L−1∑
l=0

qn∑
h=1

1

1
qn

+
∥∥∥ (lqn+h)pn

qn

∥∥∥
= qn

L−1∑
l=0

qn∑
h=1

1

1 + qn

∥∥∥hpnqn ∥∥∥
= Lqn

qn∑
h=1

1

1 + qn

∥∥∥hpnqn ∥∥∥
= Lqn

qn−1∑
k=0

1

1 + qn · kqn
> Lqn log qn.

But if y ≥ 1 then [y] > y
2 , so L = [mqn ] > m

2qn
. Hence by (15),

m∑
j=1

1

‖jx‖
>
m

2
log qn >

m

2
log

√
qn+1

K
>
m

2
log

√
m

K
,

and thus there is some C > 0 such that
∑m
j=1

1
‖jx‖ > Cm logm for all m ≥ 1. �

The following is from Kuipers and Niederreiter [81, p. 131, Exercise 3.12].
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Theorem 14. If x ∈ Ω is of type < ψ, then for all m ≥ 1 we have

m∑
j=1

1

j ‖jx‖
< 24

(logm)2 + ψ(m) +

m∑
j=1

ψ(j)

j

 .

Proof. Summation by parts is the following identity, which can be easily checked:

N∑
n=1

an(bn+1 − bn) = aN+1bN+1 − a1b1 −
N∑
n=1

bn+1(an+1 − an).

Let aj = 1
j , let sj =

∑j
h=1

1
‖hx‖ , let b1 = 0, and let bj = sj−1 for j ≥ 2. Doing

summation by parts gives

m∑
j=1

1

j ‖jx‖
=

1

m+ 1
sm −

m∑
j=1

sj

(
1

j + 1
− 1

j

)
=

1

m+ 1
sm +

m∑
j=1

sj
1

j(j + 1)
.

As x is of type < ψ, we can use Theorem 10 to get sj < 12j(ψ(j) + log j) for each
j ≥ 1. Therefore

m∑
j=1

1

j ‖jx‖
<

1

m+ 1
12m(ψ(m) + logm) +

m∑
j=1

12(ψ(j) + log j)

j + 1

< 12(ψ(m) + logm) + 12(logm)2 + 12

m∑
j=1

ψ(j)

j + 1

< 24(logm)2 + 12ψ(m) + 12

m∑
j=1

ψ(j)

j + 1
.

�

Erdős [43] proves that for almost all x,

m∑
j=1

1

j ‖jx‖
= (1 + o(1))(logm)2.

Kruse [80] gives a comprehensive investigation of the sums
∑m
j=1

1
js‖jx‖t , s, t ≥ 0.

The results depend on whether s and t are are less than, equal, or greater than 1,
and on whether t < s. One of the theorems proved by Kruse is the following [80,
p. 260, Theorem 7]. If t > 1 and 0 ≤ s ≤ t, and if ε > 0, then for almost all x we
have

m∑
j=1

1

js ‖jx‖t
= O

(
mt−s(logm)(1+ε)t

)
.

Haber and Osgood [53, p. 387, Theorem 1] prove that for real t ≥ 1, A > 1,
M > 0, r > 0, there is some C = C(t, A,M, r) > 0 such that for all x ∈ Ω
satisfying qn+1(x) < Mqn(x)r, for all positive integers K,

[AK]∑
n=K+1

‖nx‖−t >

{
CK logK t = 1

CK1+(t−1)/r t > 1.
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We remind ourselves that according to Theorem 4, the elements of D(r + 1) are
those x ∈ Ω for which there is some c(x) > 0 such that qn+1(x) ≤ C(x)qn(x)r for
all n ≥ 1.

For x ∈ Z + 1
2 , define {{x}} = 1

2 . If x 6∈ Z + 1
2 , then there is an integer mx for

which |x −mx| < |x − n| for all integers n 6= mx, and we define {{x}} = x −mx.
Sinai and Ulcigrai [132, p. 96, Proposition 2] prove that if α has bounded partial
quotients, then there is some C(α) such that for all M ,∣∣∣∣∣

M∑
m=1

1

{{mα}}

∣∣∣∣∣ ≤ C(α)M.

7. Weyl’s inequality, Vinogradov’s estimate, Farey fractions, and
the circle method

Write

A = {(a, q) ∈ Z2 : gcd(a, q) = 1, q ≥ 1}.
We first prove four estimates following Nathanson [102, pp. 104–110, Lemmas 4.8–
4.11] that we will use in what follows; cf. Vinogradov [143, p. 26, Chapter I, Lemma
8b].

Lemma 15. There is some C such that if α ∈ R, (a, q) ∈ A , and∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

then ∑
1≤r≤q/2

1

‖αr‖
≤ Cq log q.

Proof. For q = 1,
∑

1≤r≤q/2
1
‖αr‖ = 0. For q ≥ 2, let 1 ≤ r ≤ q

2 . As gcd(a, q) = 1

and r 6≡ 0 (mod q), ar 6≡ 0 (mod q). So for µr =
[
ar
q

]
, there is some 1 ≤ σr ≤ q−1

such that ar = µrq + σr. Then∥∥∥∥arq
∥∥∥∥ =

∥∥∥∥σrq
∥∥∥∥ ∈ {σrq , 1− σr

q

}
=

{
σr
q
,
q − σr
q

}
.

Put sr
q =

∥∥∥arq ∥∥∥, so (i) sr = σr or (ii) sr = q − σr. In case (i), sr
q = ar

q − µr. In

case (ii), sr
q = 1 −

(
ar
q − µr

)
. In case (i) let εr = 1,mr = µr, and in case (ii) let

εr = −1,mr = µr + 1. Thus, whether (i) or (ii) holds we have

sr
q

= εr

(
ar

q
−mr

)
,

sr
q

=

∥∥∥∥arq
∥∥∥∥ , 1 ≤ sr ≤

q

2
.

Write

α− a

q
=

θ

q2
,

for some real θ, |θ| ≤ 1. For θr = 2r
q θ, which satisfies |θr| ≤ |θ| ≤ 1,

αr =
ar

q
+
rθ

q2
=
ar

q
+
θr
2q
.
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Then

‖αr‖ =

∥∥∥∥arq +
θr
2q

∥∥∥∥
=

∥∥∥∥εr srq +mr +
θr
2q

∥∥∥∥
≥
∥∥∥∥εr srq +mr

∥∥∥∥− ∥∥∥∥ θr2q

∥∥∥∥
=
sr
q
−
∣∣∣∣ θr2q

∣∣∣∣
≥ sr

q
− 1

2q
.

Take 1 ≤ r1, r2 ≤ q
2 and suppose that sr1 = sr2 . So

εr1

(
ar1

q
−mr1

)
= εr2

(
ar2

q
−mr2

)
hence ar1 ≡ εr1εr2ar2 (mod q). As gcd(a, q) = 1, r1 ≡ εr1εr2r2 (mod q). Because
1 ≤ r1, r2 ≤ q, if r1 ≡ r2 (mod q) then r1 = r2 and if r1 ≡ −r2 (mod q) then
r1 = q

2 and r2 = q
2 , so in any case r1 = r2. Therefore{

sr
q

: 1 ≤ r ≤ q

2

}
=

{
s

q
: 1 ≤ s ≤ q

2

}
.

Using the two things we have established,∑
1≤r≤q/2

1

‖αr‖
≤

∑
1≤r≤q/2

1
sr
q −

1
2q

=
∑

1≤s≤q/2

1
s
q −

1
2q

= 2q
∑

1≤s≤q/2

1

2s− 1

≤ 2q
∑

1≤s≤q/2

1

s

≤ 2q
(

log
q

2
+ γ +O(q−1)

)
= O(q log q).

�

Lemma 16. There is some C such that if α ∈ R, (a, q) ∈ A , and∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

then for any positive real V and nonnegative integer h,

q∑
r=1

min

(
V,

1

‖α(hq + r)‖

)
≤ C(V + q log q).
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Proof. Write

α =
a

q
+

θ

q2
,

which satisfies |θ| ≤ 1, and for 1 ≤ r ≤ q define

δr = R(θh) +
θr

q
,

which satisfies −1 ≤ δr < 2. Then

α(hq + r) =

(
a

q
+

θ

q2

)
(hq + r)

= ah+
ar

q
+
θh

q
+
θr

q2

= ah+
ar

q
+
R(θh) + [θh]

q
+
θr

q2

= ah+
ar + [θh] + δr

q
.

For mr =
[
ar+[θh]+δr

q2

]
,

R(α(hq + r)) = R

(
ar + [θh] + δr

q

)
=
ar + [θh] + δr

q
−mr.

Suppose that t ∈
[
0, 1− 1

q

]
and that t ≤ R(α(hq + r)) ≤ t+ 1

q . Then

qt ≤ ar + [θh] + δr − qmr ≤ qt+ 1.

This implies, as δr ≥ −1,

ar − qmr ≤ qt+ 1− [θh]− δr ≤ qt+ 1− [θh] + 1 = qt− [θh] + 2

and, as δr < 2,

ar − qmr ≥ qt− [θh]− δr > qt− [θh]− 2,

so ar − qmr ∈ Jt, writing

Jt = (qt− [θh]− 2, qt− [θh] + 2].

For 1 ≤ r1, r2 ≤ q, if ar1 − qmr1 = ar2 − qmr2 then ar1 ≡ ar2 (mod q), and
gcd(a, q) = 1 implies r1 ≡ r2 (mod q); and 1 ≤ r1, r2 ≤ q so r1 = r2. For

t ∈
[
0, 1− 1

q

]
, four integers belong to Jt, hence

{1 ≤ r ≤ q : ar − qmr ∈ Jt}

has at most four elements. But{
1 ≤ r ≤ q : R(α(hq + r)) ∈

[
t, t+

1

q

]}
⊂ {1 ≤ r ≤ q : ar − qmr ∈ Jt}.
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Now, {
1 ≤ r ≤ q : ‖α(hq + r)‖ ∈

[
t, t+

1

q

]}
=

{
1 ≤ r ≤ q : R(α(hq + r)) ∈

[
t, t+

1

q

]}
∪
{

1 ≤ r ≤ q : 1−R(α(hq + r)) ∈
[
t, t+

1

q

]}
=

{
1 ≤ r ≤ q : R(α(hq + r)) ∈

[
t, t+

1

q

]}
∪
{

1 ≤ r ≤ q : R(α(hq + r)) ∈
[
1− 1

q
− t, 1− t

]}
,

whence{
1 ≤ r ≤ q : ‖α(hq + r)‖ ∈

[
t, t+

1

q

]}
⊂ {1 ≤ r ≤ q : ar − qmr ∈ Jt}

∪ {1 ≤ r ≤ q : ar − qmr ∈ J1− 1
q−t
}.

This shows that if t ∈
[
0, 1− 1

q

]
then{

1 ≤ r ≤ q : ‖α(hq + r)‖ ∈
[
t, t+

1

q

]}
has at most eight elements. For 0 ≤ k < q

2 , writing

Ik =

[
k

q
,
k

q
+

1

q

]
,

the set {1 ≤ r ≤ q : ‖α(hq + r)‖ ∈ Ik} has at most eight elements. Therefore∑
1≤r≤q

min

(
V,

1

‖α(hq + r)‖

)
=

∑
0≤k<q/2

∑
1≤r≤q,‖α(hq+r)‖∈Ik

min

(
V,

1

‖α(hq + r)‖

)
≤ 8V +

∑
1≤k<q/2

∑
1≤r≤q,‖α(hq+r)‖∈Ik

1

‖α(hq + r)‖

≤ 8V +
∑

1≤k<q/2

8 · q
k

= O(V + q log q).

�

Lemma 17. There is some C such that if α ∈ R, (a, q) ∈ A ,∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

U ≥ 1 is a real number, and n is a positive integer, then∑
1≤k≤U

min

(
n

k
,

1

‖αk‖

)
≤ C

(
n

q
+ U + q

)
log 2qU.
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Proof. For 1 ≤ k ≤ U there is some 0 ≤ hk < U
q and 1 ≤ rk ≤ q such that

k = qhk + rk, and then∑
1≤k≤U

min

(
n

k
,

1

‖αk‖

)
≤

∑
0≤h<U/q

∑
1≤r≤q

min

(
n

qh+ r
,

1

‖α(hq + r)‖

)

≤
∑

1≤r≤q/2

1

‖αr‖
+

∑
q/2<r≤q

min

(
n

r
,

1

‖αr‖

)

+
∑

1≤h<U/q

∑
1≤r≤q

min

(
n

qh+ r
,

1

‖α(hq + r)‖

)

≤ C1q log q +
∑

q/2<r≤q

min

(
n

r
,

1

‖αr‖

)

+
∑

1≤h<U/q

∑
1≤r≤q

min

(
n

qh+ r
,

1

‖α(hq + r)‖

)
,

the last inequality by Lemma 15. If q
2 < r ≤ q then 1

r <
2
q = 2

(h+1)q for h = 0,

and if 1 ≤ h < U
q and 1 ≤ r ≤ q then h ≥ h+1

2 so hq + r > hq ≥ (h+1)q
2 and hence

1
hq+r <

2
(h+1)q , whence

∑
q/2<r≤q

min

(
n

r
,

1

‖αr‖

)
+

∑
1≤h<U/q

∑
1≤r≤q

min

(
n

qh+ r
,

1

‖α(hq + r)‖

)

≤2
∑

q/2<r≤q

min

(
n

(h+ 1)q
,

1

‖αr‖

)
+ 2

∑
1≤h<U/q

∑
1≤r≤q

min

(
n

(h+ 1)q
,

1

‖α(hq + r)‖

)
.

Consquently∑
1≤k≤U

min

(
n

k
,

1

‖αk‖

)
≤ C1q log q+2

∑
0≤h<U/q

∑
1≤r≤q

min

(
n

(h+ 1)q
,

1

‖α(hq + r)‖

)
.

Lemma 16 with V = n
(h+1)q says

∑
1≤r≤q

min

(
n

(h+ 1)q
,

1

‖α(hq + r)‖

)
≤ C2

(
n

(h+ 1)q
+ q log q

)
,

therefore∑
1≤k≤U

min

(
n

k
,

1

‖αk‖

)
� q log q +

∑
0≤h<U/q

(
n

(h+ 1)q
+ q log q

)

� q log q +
n

q

∑
1≤h<U

q +1

1

h
+ q(log q)

(
U

q
+ 1

)

� q log q +
n

q
log

(
U

q
+ 1

)
+ U log q

� U log 2qU + q log 2qU +
n

q
log

(
U

q
+ 1

)
.
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If U ≤ q then U
q + 1 ≤ 2 ≤ 2qU , and if U > q then U

q + 1 ≤ U + 1 ≤ 2U ≤ 2qU ,

hence ∑
1≤k≤U

min

(
n

k
,

1

‖αk‖

)
� U log 2qU + q log 2qU +

n

q
log 2qU.

�

Lemma 18. There is some C such that if α ∈ R, (a, q) ∈ A ,∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
,

and U, V ≥ 1 are real numbers, then∑
1≤k≤U

min

(
V,

1

‖αk‖

)
≤ C

(
q + U + V +

UV

q

)
max{1, log q}.

Proof. For 1 ≤ k ≤ U there is some 0 ≤ hk < U
q and 1 ≤ rk ≤ q such that

k = qhk + rk, and then, as in the proof of Lemma 17,∑
1≤k≤U

min

(
V,

1

‖αk‖

)
≤

∑
0≤h<U/q

∑
1≤r≤q

min

(
V,

1

‖α(hq + r)‖

)

≤ C1q log q + 2
∑

0≤h<U/q

∑
1≤r≤q

min

(
V,

1

‖α(hq + r)‖

)
.

Using Lemma 16,∑
1≤k≤U

min

(
V,

1

‖αk‖

)
≤ C1q log q + 2C2

∑
0≤h<U/q

(V + q log q)

� q log q + (V + q log q)

(
U

q
+ 1

)
� q log q +

UV

q
+ V + U log q.

�

Weyl’s inequality [102, p. 114, Theorem 4.3] is the following. For k ≥ 2 and
ε > 0, there is some C(k, ε) such that if α ∈ R, f(x) is a real polynomial with
highest degree term αxk, (a, q) ∈ A , and∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

then, writing SN (f) =
∑N
j=1 e

2πif(j) and K = 2k−1,

|SN (f)| ≤ C(k, ε) ·N1+ε(N−1 + q−1 +N−kq)
1
K .

Weyl’s inequality is proved using Lemma 18.
Montgomery [97, Chapter 3] gives a similar but more streamlined presentation

of Weyl’s inequality. Chandrasekharan [28] gives a historical survey of exponential
sums.
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Vinogradov’s estimate [140, p. 26, Theorem 3.1] states that there is some C

such that for n ≥ 2, 1 ≤ q ≤ n, gcd(a, q) = 1, and
∣∣∣α− a

q

∣∣∣ ≤ q−2, then

(16) |fn(α)| ≤ C(nq−1/2 + n4/5 + n1/2q1/2)(log n)4,

where fn(α) =
∑
p≤n(log p)e2πiαp; cf. Nathanson [102, p. 220, Theorem 8.5] and

Vinogradov [143, p. 131, Chapter IX, Theorem 1]. This is proved using Lemma 17.
Fix B > 0 and let Pn = (log n)B . For 1 ≤ a ≤ q ≤ Pn and gcd(a, q) = 1, let

Mn(q, a) =

{
α ∈ R :

∣∣∣∣α− a

q

∣∣∣∣ ≤ Pnn−1

}
,

called a major arc. One checks that there is some nB such that if n ≥ nB , then
Mn(q, a) and Mn(q′, a′) are disjoint when (q, a) 6= (q′, a′). Let

Mn =
⋃

1≤a≤q≤Pn,gcd(a,q)=1

Mn(q, a).

The Farey fractions of order N are

FN =

{
h

k
: 0 ≤ h ≤ k ≤ N, gcd(h, k) = 1

}
.

Cf. the Stern-Brocot tree [52, §4.5]. For early appearances of Farey fractions,
see Dickson [33, pp. 155–158, Chapter V]. It is proved by Cauchy that if h/k and
h′/k′ are successive elements of FN , then kh′ − hk′ = 1 [58, p. 23, Theorem 28].
Let

φ(m) = |{1 ≤ k ≤ m : gcd(k,m) = 1}|,
the Euler phi function, and write Φ(N) =

∑
1≤m≤N φ(m). One sees that |FN | =

1 + Φ(N), and it was proved by Mertens [58, p. 268] that

Φ(N) =
3N2

π2
+O(N logN).

Let λ be Lebesgue measure on R. For n ≥ nB , because the major arcs are pairwise
disjoint,

λ(Mn) =
∑

1≤a≤q≤Pn,gcd(a,q)=1

2Pnn
−1

=

(
Pn∑
m=1

φ(m)

)
2Pnn

−1

=
6

π2
P 3
nn
−1 +O(P 2

nn
−1 logPn).

Let In = (Pnn
−1, 1+Pnn

−1], which for n > 2P 2
n contains Mn. Let mn = In\Mn,

the minor arcs. With fn(α) =
∑
p≤n(log p)e2πiαp and

R(n) =
∑

p1+p2+p3=n

(log p1)(log p2)(log p3),

we have

R(n) =

∫
In

fn(α)3e−2πinαdα =

∫
Mn

fn(α)3e−2πinαdα+

∫
mn

fn(α)3e−2πinαdα.
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Using (16), it can be proved that for A > 0 with B ≥ 2A+ 10 [140, p. 29, Theorem
3.2], ∫

mn

|fn(α)|3dα = O(n2(log n)−A).

Writing

S(n) =

∏
p-n

(1 + (p− 1)−3)

∏
p|n

(1− (p− 1)−2),

called the singular series, it is proved, using the Siegel-Walfisz theorem on primes
in arithmetic progressions [98, p. 381, Corollary 11.19], that for A > 0 with B ≥ 2A
[140, p. 31, Theorem 3.3],∫

Mn

fn(α)3e−2πinαdα =
1

2
n2S(n) +O(n2(log n)−A).

Thus

R(n) =
1

2
n2S(n) +O(n2(log n)−A),

and it follows from this that there is some n0 such that if n ≥ n0 is odd then there
are primes p1, p2, p3 such that n = p1 + p2 + p3.

For integers a, b with gcd(a, b) = 1, the Ford circle C(a, b) is the circle in C
that touches the line Im z = 0 at z = a

b and has radius 1
2b2 ; in other words, C(a, b)

is the circle in C with center a
b + i

2b2 and radius 1
2b2 . It is straightforward to prove

that if C(a, b) and C(c, d) are Ford circles, then they are tangent if and only if
(bc − ad)2 = 1, and otherwise they are disjoint [3, p. 100, Theorem 5.6]. It is also
straightforward to prove [3, p. 101, Theorem 5.7] that if h1

k1
< h

k <
h2

k2
are successive

elements of FN , then C(h1, k1) and C(h, k) touch at

h

k
− k1

k(k2 + k2
1)

+
i

k2 + k2
1

and C(h, k) and C(h2, k2) touch at

h

k
+

k2

k(k2 + k2
2)

+
i

k2 + k2
2

.

Bonahon [20, pp. 207 ff., Chapter 8] explains Ford circles in the language of hyper-
bolic geometry.

We remind ourselves that |FN | = 1 + Φ(N) = 1 +
∑N
m=1 φ(m) and let ρ0,N <

· · · < ρΦ(N),N be the elements of FN . In particular, ρ0,N = 0 and ρΦ(N),N = 1.

For ρn,N =
hn,N
kn,N

with gcd(hh,N , kn,N ) = 1, write Cn,N = C(hn,N , kn,N ). Let P0,N

be the clockwise arc of C0,N from i to the point at which C0,N and C1,N touch.
For 0 < n < Φ(N), let Pn,N be the clockwise arc of Cn,N from the point at which
Cn−1,N and Cn,N touch to the point at which Cn,N and Cn+1,N touch. Finally, let
PΦ(N),N be the clockwise arc of CΦ(N),N from the point at which CΦ(N)−1,N and
CΦ(N),N touch to i+ 1. Let PN be the composition of the arcs P0,N , . . . , PΦ(N),N ),
which is a contour from i to i+ 1.

Write H = {τ ∈ C : Im τ > 0}. The Dedekind eta function η : H → C is
defined by

η(τ) = eπiτ/12
∞∏
m=1

(1− e2πimτ ).
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It is straightforward to check that η is analytic and that η(τ) 6= 0 for all τ ∈ H
[137, pp. 17–18, §1.44]. For (h, k) ∈ A , let

s(h, k) =

k−1∑
r=1

r

k

(
hr

k
−
[
hr

k

]
− 1

2

)
=

k−1∑
r=1

r

k
P1(hr/k),

called a Dedekind sum; P1 is the periodic Bernoulli function. Also, for

(
a b
c d

)
∈

SL2(Z) write

ε(a, b, c, d) = exp

(
πi

(
a+ d

12c
+ s(−d, c)

))
.

The functional equation for the Dedekind eta function [3, p. 52, Theorem
3.4] is

η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)(−i(cτ + d))1/2η(τ),

(
a b
c d

)
∈ SL2(Z), τ ∈ H.

Let p(n) be the number of ways of writing n as a sum of positive integers where
the order does not matter, called the partition function. For example, 4, 3 +
1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1 are the partitions of 4, so p(4) = 5. Denoting by
D(0, 1) the open disc with center 0 and radius 1, define F : D(0, 1)→ C by

F (z) =

∞∏
m=1

(1− zm)−1 =

∞∑
n=0

p(n)zn;

that the product and the series are equal was found by Euler. F is analytic. On

the one hand, p(n) = F (n)(0)
n! , and on the other hand, by Cauchy’s integral formula

[137, p. 82, Theorem 2.41], if C is a circle with center 0 and radius 0 < R < 1 then

F (n)(0) =
n!

2πi

∫
C

F (z)

zn+1
dz.

Taking C to be the circle with center 0 and radius e−2π and doing the change of
variable z = e2πiτ ,

p(n) =
1

2πi

∫ i+1

i

F (e2πiτ )

e2πi(n+1)τ
· 2πie2πiτdτ

=

∫ i+1

i

F (e2πiτ )e−2πinτdτ

=

∫
PN

F (e2πiτ )e−2πinτdτ.

Using this and the functional equation for the Dedekind eta function, Rademacher
[3, p. 104, Theorem 5.10] proves that for n ≥ 1,

p(n) =
1

π
√

2

∞∑
k=1

Ak(n)k1/2 d

dn

sinh
(
π
√

2
3 ·

1
k

√
n− 1

24

)
√
n− 1

24

,

for Ak(n) =
∑

0≤h<k,gcd(h,k)=1 e
πis(h,k)−2πinh/k.
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We make a final remark about the Farey fractions. Writing the elements of FN
as ρ0,N < · · · < ρΦ(N),N , let ηn,N = ρn,N − n

Φ(N) for 1 ≤ n ≤ N . For example,

Φ(5) = 10 and

{ρ1,5, . . . , ρ10,5} =

{
1

5
,

1

4
,

1

3
,

2

5
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
, 1

}
,

and

{η1,5, . . . , η10,5} =

{
1

10
,

1

20
,

1

30
, 0, 0, 0,− 1

30
,− 1

20
,− 1

10
, 0

}
.

Landau [87], following work of Franel, proves that the Riemann hypothesis is
true if and only if for every ε > 0,

Φ(N)∑
n=1

|ηn,N | = O(N
1
2 +ε).

For example, for N = 5, the left-hand side is 11
30 . See Narkiewicz [101, p. 40, §2.2.3].

8. Discrepancy and exponential sums

Discrepancy and Diophantine approximation are covered by Kuipers and Nieder-
reiter [81, Chapters 1–2 ] and by Drmota and Tichy [39, §§1.1–1.4], especially [39,
pp. 48–66, §1.4.1].

Let ω = (xn), n ≥ 1, be a sequence of real numbers, and let E ⊂ [0, 1). For
a positive integer N , let A(E;N ;ω) be the number of xn, 1 ≤ n ≤ N , such that
R(xn) ∈ E. We say that the sequence ω is uniformly distributed modulo 1 if
we have for all a and b with 0 ≤ a < b ≤ 1 that

lim
N→∞

A([a, b);N ;ω)

N
= b− a.

It can be shown [81, p. 3, Corollary 1.1] that a sequence xn is uniformly distributed
modulo 1 if and only if for every Riemann integrable function f : [0, 1] → R we
have

(17) lim
N→∞

1

N

N∑
n=1

f(R(xn)) =

∫ 1

0

f(t)dt.

Thus, if a sequence is uniformly distributed then the integral of any Riemann
integrable function on [0, 1] can be approximated by sampling according to this
sequence. This approximation can be quantified using the notion of discrepancy.

It can be proved [81, p. 7, Theorem 2.1] that a sequence xn is uniformly dis-
tributed modulo 1 if and only if for all nonzero integers h we have

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0;

this is called Weyl’s criterion. But if x ∈ Ω, then

(18)

∣∣∣∣∣
N∑
n=1

e2πihnx

∣∣∣∣∣ =

∣∣∣∣1− e2πihNx

1− e2πihx

∣∣∣∣ ≤ 2

|1− e2πihx|
=

1

| sinπhx|
.

We thus obtain the following theorem.

Theorem 19. If x ∈ Ω then the sequence nx is uniformly distributed modulo 1.
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The discrepancy of a sequence ω is defined, for N a positive integer, by

DN (ω) = sup
0≤a<b≤1

∣∣∣∣A([a, b);N ;ω)

N
− (b− a)

∣∣∣∣
One proves that the sequence ω is uniformly distributed modulo 1 if and only if
DN (ω)→ 0 as N →∞ [81, p. 89, Theorem 1.1].

For f : [0, 1]→ R, let V (f) denote the total variation of f . Koksma’s inequality
[81, p. 143, Theorem 5.1] states that for any sequence ω = (xn), for any f : [0, 1]→
R of bounded variation, and for any positive integer N , we have

(19)

∣∣∣∣∣ 1

N

N∑
n=1

f(R(xn))−
∫ 1

0

f(t)dt

∣∣∣∣∣ ≤ V (f)DN (ω).

Following Kuipers and Niederreiter [81, p. 122, Lemma 3.2], we can bound the
discrepancy of the sequence nx in terms of the sum on the left-hand side of Theorem
14

Lemma 20. There is some C > 0 such that for all x ∈ Ω, ω = (nx), and for all
positive integers m we have

DN (ω) < C

 1

m
+

1

N

m∑
j=1

1

j ‖jx‖

 .

Proof. We shall use the following inequality, which lets us bound the discrepancy of
a sequence in terms of exponential sums formed from the elements of the sequence.
The Erdős-Turán theorem [81, p. 114, Eq. 2.42] states that there is some constant
C > 0 such that for any sequence ω = (xn) of real numbers, any positive integer
N , and any positive integer m we have

(20) DN (ω) ≤ C

 1

m
+

m∑
j=1

1

j

∣∣∣∣∣ 1

N

N∑
n=1

e2πijxn

∣∣∣∣∣
 .

Take xn = nx. For each j ≥ 1, by (18) we have∣∣∣∣∣
N∑
n=1

e2πijnx

∣∣∣∣∣ ≤ 1

| sinπjx|
=

1

sin(π ‖jx‖)
.

But sin t ≥ 2
π t for 0 ≤ t ≤ π

2 , so

1

sin(π ‖jx‖)
≤ 1

2 ‖jx‖
<

1

‖jx‖
.

Using this in (20) gives us

DN (ω) < C

 1

m
+

m∑
j=1

1

j
· 1

N
· 1

‖jx‖

 = C

 1

m
+

1

N

m∑
j=1

1

j ‖jx‖

 ,

which is the claim. �
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It follows from Theorem 14 and Lemma 20 (taking m = N) that if x is of type
< K(log h)1+ε then

(21) DN (ω) = O

(
(logN)2+ε

N

)
.

Lemma 8 tells us that for almost all x ∈ Ω there is some K > 0 such that x is of
type < K(log h)1+ε, so for almost all x ∈ Ω, the bound (21) is true. It likewise
follows that if x has bounded partial quotients then

(22) DN (ω) = O

(
(logN)2

N

)
.

In fact, it can be proved that if x ∈ BK then, for g = 1+
√

5
2 [81, p. 125, Theorem

3.4],

DN (ω) ≤ 3N−1 +

(
1

log g
+

K

log(K + 1)

)
N−1 logN.

We use the above bounds in the proof of the following theorem.

Theorem 21. Let ε > 0. For almost all x we have

N∑
n=1

‖nx‖ =
N

4
+O((logN)2+ε),

while if x has bounded partial quotients then

N∑
n=1

‖nx‖ =
N

4
+O((logN)2).

Proof. Let f(t) = ‖t‖. Then V (f) = 1 and
∫ 1

0
f(t)dt = 1

4 , so we get from Koksma’s
inequality (19) that ∣∣∣∣∣ 1

N

N∑
n=1

‖nx‖ − 1

4

∣∣∣∣∣ ≤ DN (ω),

thus
N∑
n=1

‖nx‖ =
N

4
+O(NDN (ω)).

The claims then follow respectively from (21) and (22). �

Like we mentioned at the beginning of §6, because | sin(πx)| = sin(π ‖x‖) ≤ π ‖x‖
and | sin(πx)| = sin(π ‖x‖) ≥ 2

π · π ‖x‖ = 2 ‖x‖, we have

2

N∑
n=1

‖nx‖ ≤
N∑
n=1

| sin(πnx)| ≤ π
N∑
n=1

‖nx‖ .

Thus Theorem 21 also gives estimates for
∑N
n=1 | sin(πnx)|.

We can investigate the sum
∑N
n=1R(nx) rather than

∑N
n=1 ‖nx‖; see Lang [88,

p. 37, Theorem 1], who proves that for almost all x ∈ Ω,

N∑
n=1

R(nx) =
N

2
+O((logN)2+ε).
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For x ∈ Ω, let qn = qn(x), the denominator of the nth convergent of the continued
fraction expansion of x, and let an = an(x), the nth partial quotient of the continued
fraction expansion of x. For m ≥ 1, one can prove [17, p. 211, Proposition 1] that
m can be written in one and only one way in the form

(23) m =

∞∑
k=1

zkqk−1 =

t∑
k=1

zkqk−1,

where (i) 0 ≤ z1 ≤ a1 − 1, (ii) 0 ≤ zk ≤ ak for k ≥ 2, (iii) for k ≥ 1, if zk+1 = ak+1

then zk = 0, and (iv) zt 6= 0 and zk = 0 for k > t. The expression (23) is called
the Ostrowski expansion of m. We emphasize that this expansion depends on x.
Berthé [17] surveys applications of this numeration system in combinatorics. For
n ≥ 0, define d2n = q2nx− p2n and d2n+1 = p2n+1 − q2n+1x. Brown and Shiue [23,
p. 184, Theorem 1] prove that for x ∈ Ω,

(24)

m∑
k=1

(
R(kx)− 1

2

)
=

t∑
k=1

(−1)kzk

(
1

2
− dk−1

(
mk−1 +

1

2
zkqk−1 +

1

2

))
,

where m0 = 0 and if k ≥ 1 then mk =
∑k
j=1 zjqj−1. If k ≥ 0, then by (11) we have

0 < dk <
1

qk+1
. For k ≥ 1, using the fact that qk ≥ mk + 1 (for the same reason

that if the highest power of 2 appearing in a number’s binary expansion is 2k−1,
then the number is ≤ 2k − 1),

mk−1 +
1

2
zkqk−1 +

1

2
= mk −

1

2
zkqk−1 +

1

2

≤ qk − 1− 1

2
zkqk−1 +

1

2

= qk −
1

2
− 1

2
zkqk−1

< qk.

Using (24), this inequality, and the inequality 0 < dk <
1

qk+1
, we obtain∣∣∣∣∣

m∑
k=1

(
R(kx)− 1

2

)∣∣∣∣∣ ≤
t∑

k=1

zk

∣∣∣∣12 − dk−1

(
mk−1 +

1

2
zkqk−1 +

1

2

)∣∣∣∣
<

1

2

t∑
k=1

zk

<
1

2

t∑
k=1

ak.

If the continued fraction expansion of x has bounded partial quotients, say ak ≤ K
for all k, we obtain from the above that∣∣∣∣∣

m∑
k=1

(
R(kx)− 1

2

)∣∣∣∣∣ < Kt

2
.

It can be proved [23, p. 185, Fact 2] that t < 3 logm. Thus, if ak ≤ K for all k,
then for m ≥ 1, ∣∣∣∣∣

m∑
k=1

(
R(kx)− 1

2

)∣∣∣∣∣ < 3K logm

2
.
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This is Lerch’s claim stated in §3. For example, if x = −1+
√

5
2 ∈ Ω then ak(x) = 1

for all k ≥ 1. We compute that

1000000∑
k=1

(
R(kx)− 1

2

)
= 0.941799 . . . ;

on the other hand, we compute that

1000000∑
k=1

(
R(kπ)− 1

2

)
= 19.223414 . . . .

Brown and Shiue [23, p. 185, Fact 1] use (24) to obtain the result of Sierpinski
stated in §3 that for all x ∈ Ω,

m∑
k=1

R(kx) =
m

2
+ o(m).

They also prove [23, p. 188, Theorem 4] that for A > 0, there exists some dA > 0

such that for x ∈ Ω, if there are infinitely many t such that
∑t
k=1 ak ≤ At (which

happens in particular if x has bounded partial quotients), then there are infinitely
many m such that

m∑
k=1

(
R(kx)− 1

2

)
> dA logm,

and there are infinitely many m such that
m∑
k=1

(
R(kx)− 1

2

)
< −dA logm.

It can be shown [88, p. 44, Theorem 4] that if k is a positive integer and ε > 0,
then for almost all x we have∣∣∣∣∣

N∑
n=1

e2πinkx

∣∣∣∣∣ = O
(
N

1
2 +ε
)
.

Lang attributes this result to Vinogradov. But it is not so easy to obtain a bound
on this exponential sum for specific x. For k = 2, one can prove [88, p. 45, Lemma]
that for any x ∈ Ω,∣∣∣∣∣

N∑
n=1

e2πin2x

∣∣∣∣∣
2

≤ N + 4
N∑
n=1

1

| sin 4πnx|
< N + 4

4N∑
n=1

1

| sinπnx|
;

cf. Steele [136, Problem 14.2]. By (14) this gives us∣∣∣∣∣
N∑
n=1

e2πin2x

∣∣∣∣∣
2

< N + 2

4N∑
n=1

1

‖jx‖
.

If x has bounded partial quotients, it follows from Theorem 11 that∣∣∣∣∣
N∑
n=1

e2πin2x

∣∣∣∣∣ = O
(
N1/2(logN)1/2

)
.

Hardy and Littlewood [56, p. 28, Theorem B5] prove that if x ∈ Ω is an algebraic

number, then there is some 0 < α(x) < 1 such that
∑N
n=1R(nx) = N

2 +O(Nα(x)).
Pillai [110] gives a different proof of this.
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Theorem 22 (Hardy and Littlewood, Pillai). For τ > 2, if x ∈ D(τ) then for
α = τ−2

τ−1 ,

N∑
n=1

R(nx) =
N

2
+O(Nα).

Pillai [109] proves other identities and inequalities for
∑N
n=1R(nx), some for all

x ∈ Ω and some for all algebraic x ∈ Ω.
For ω = (xn), n ≥ 1 and for E ⊂ [0, 1), we remind ourselves that A(E;M ;ω)

denotes the number of xn, 1 ≤ n ≤M , such that R(xn) ∈ E. Define for M ≥ 1,

D∗M (ω) = sup
0<β≤1

∣∣∣∣A([0, β);M ;ω)

M
− β

∣∣∣∣ .
It is straightforward to prove that D∗M ≤ DM ≤ 2D∗M [81, p. 91, Theorem 1.3]. For

N ≥ 1 write r = logN . Let ε0 > 0 and let N1/2 ≤ τ ≤ N exp(−rε0). Suppose that
α ∈ R and

α =
a

q
+

θ

qτ
, gcd(a, q) = 1, exp(rε0) ≤ q ≤ τ, |θ| ≤ 1.

For 0 < β < 1 denote by Hβ(N) the number of primes p ≤ N such that R(αp) ≤ β.
Vinogradov [143, p. 177, Chapter XI, Theorem] proves that for ε > 0,

Hβ(N) = βπ(N) +O(N(q−1 + qN−1)
1
2−ε +N

4
5 +ε), N →∞.

Let ω = (pnα), n ≥ 1, where pn is the nth prime. Using Vinogradov’s estimate, one
proves that for α ∈ R \Q, D∗N (ω)→ 0 as N →∞, which implies that the sequence
(pnα) is uniformly distributed modulo 1. A clean proof of this is given by Pollicott
[111, p. 200, Theorem 1], and this is also proved by Vaaler [139] using a Tauberian
theorem. See also the early survey by Hua [65, pp. 98–99, §38].

Defining Sα(n) =
∑n
k=1

(
R(kα)− 1

2

)
, Beck [9, p. 14, Theorem 3.1] proves that

there is some c > 0 such that for every λ ∈ R,

1

N

∣∣∣∣{1 ≤ n ≤ N :
S√2(n)

c
√

log n
≤ λ

}∣∣∣∣→ 1√
2π

∫ λ

−∞
exp

(
−u

2

2

)
du

as N → ∞. Beck [10, p. 20, Theorem 1.2] further proves that if α is a quadratic
irrational, there are C1 = C1(α) ∈ R and C2 = C2(α) ∈ R>0 such that for A,B ∈ R,
A < B,

1

N

∣∣∣∣{0 ≤ n < N : A ≤ Sα(n)− C3 logN

C4

√
logN

≤ B
}∣∣∣∣

=(2π)−1/2

∫ B

A

e−u
2/2du+O((logN)−1/10 log logN).

Beck and Chen [11]

9. Dirichlet series

The result of de la Vallée-Poussin [32] stated in §3 implies that there is no s

such that for all irrational x the Dirichlet series
∑∞
n=1

n−s

| sinnπx| converges. It follows

from this fact that there is no s such that for all irrational x the Dirichlet series∑∞
n=1

n−s

‖nx‖ converges.
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Lerch [92] in 1904 gives some statements without proof about the series
∞∑
ν=1

cot νωπ

(2νπ)2m+1
.

He states that if ω is a real algebraic number that does not belong to Q, then
for sufficiently large m this series converges, and states, for example, that with

ω = 1+
√

5
2 ,

√
5

∞∑
ν=1

cot νωπ

(2νπ)7
= − 8

10!
.

Writing cr(θ) =
∑∞
n=1

cot(πnθ)
n2r−1 , Berndt [16, p. 135, Theorem 5.1] proves that if θ is

a real algebraic number of degree d and 1 < d < 2r− 1 (to say that d > 1 is to say
that θ is irrational), then cr(θ) converges.

For a Dirichlet series
∑∞
n=1 ann

−s, one can show [137, pp. 289–290, §9.11] that
if the series is convergent at s = σ0 + it0, then for σ > σ0 and any t the series is
convergent at s = σ+ it. It follows that there is some σ0 ∈ [−∞,∞] such if σ < σ0

then the series diverges at s = σ + it, and if σ > σ0 then the series converges at
s = σ+ it. We call σ0 the abscissa of convergence of the Dirichlet series. If each
an is a nonnegative real number, then the function

F (s) =

∞∑
n=1

ann
−s, Re s > σ0,

cannot be analytically continued to any domain that includes s = σ0 [64, p. 101,
Proposition 18].

Let an be a sequence of complex numbers. It can be shown [137, pp. 292–293,
§9.14] that if sn = a1 + . . .+ an and the sequence sn diverges, then the abscissa of
convergence of the Dirichlet series

∑∞
n=1 ann

−s is given by

σ0 = lim sup
n→∞

log |sn|
log n

.

By Theorem 11 and Theorem 13 (taking, say, ε = 1), for almost all x ∈ Ω there are
C1, C2 such that for all positive integers n we have

C1n log n <

n∑
j=1

1

‖jx‖
< C2n(log n)2.

Thus, if an = 1
‖nx‖ , then

logC1

log n
+ 1 +

log log n

log n
<

log sn
log n

<
logC2

log n
+ 1 +

2 log log n

log n
,

and hence

lim
n→∞

log sn
log n

= 1.

It follows that for almost all x ∈ Ω the abscissa of convergence of the Dirichlet
series

∑∞
n=1

1
‖nx‖n

−s is σ0 = 1.

Likewise, by Theorem 21 (taking ε = 1), we get for almost all x ∈ Ω that∑n
j=1 ‖jx‖ = n

4 + O
(
(log n)3

)
. We can then check that limn→∞

log sn
logn = 1, and

hence that the abscissa of convergence of the Dirichlet series
∑∞
n=1 ‖nx‖n−s is

σ0 = 1.



42 JORDAN BELL

A 1953 result of Mahler [46, pp. 107–108] implies that if α ∈ R is an algebraic

number of degree d, then, for m = [20 · 2
5(d−1)

2 ], the Dirichlet series
∞∑
n=1

n−s

sinnα

has abscissa of convergence σ0 ≤ d(m+ 1) log(m+ 1), and the power series
∞∑
n=1

zn

sinnα

has radius of convergence 1.
Rivoal [121] presents later work on similar Dirichlet series. See also Queffélec and

Queffélec [115]. Laĺın, Rodrigue and Rogers [84] prove results about Dirichlet series

of the form
∑∞
n=1

n−s

cos(nπz) . Duke and Imamoḡlu [40] review Hardy and Littlewood’s

work on estimating lattice points in triangles, and prove results about lattice points
in cones.

For θ ∈ Ω, write

Rr,θ(ζ,m) =

m∑
n=0

1

r!
Pr(ζ + nθ),

where Pr is a periodic Bernoulli function. Spencer [135] proves that for any ε > 0
and almost all θ ∈ Ω,

R1,θ(ζ,m) = O
(
(logm)1+ε

)
.

Another result Spencer proves in this paper is that if qn(θ) = O(qhn−1), then

Rr,θ(ζ,m) = O(m1− rh ) for 1 ≤ r < h. Schoißengeier [127] gives an explicit for-

mula for
∑N−1
k=0 P2(kα).

10. Power series

For a power series
∑
anz

n with radius of convergence 0 ≤ R ≤ ∞, the Cauchy-
Hadamard formula [119, p. 111, Chapter 4, §1] states

(25) R =
1

lim supn→∞ |an|1/n
= lim inf

n→∞
|an|−1/n.

The radius of convergence R is equal to the supremum of those t ≥ 0 for which
|an|tn is a bounded sequence.

Lemma 23. If x ∈ Ω, then the power series
∞∑
n=1

zn

‖nx‖

and
∞∑
n=1

zn

| sinπnx|
,

have the same radius of convergence.

Proof. The radii of convergence of these power series are respectively

lim inf
n→∞

‖nx‖1/n and lim inf
n→∞

| sin(πnx)|1/n.

On the one hand,
| sin(πnx)| = sin(π ‖nx‖) ≤ π ‖nx‖
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Therefore, since limn→∞ π1/n = 1,

lim inf
n→∞

| sin(πnx)|1/n ≤ lim inf
n→∞

(π ‖nx‖)1/n
= lim inf

n→∞
‖nx‖1/n

On the other hand, since sin t ≥ 2
π t for t ≥ 0,

| sin(πnx)| = sin(π ‖nx‖) ≥ 2

π
π ‖nx‖ = 2 ‖nx‖ .

Therefore, using limn→∞ 21/n = 1, we have

lim inf
n→∞

| sin(πnx)|1/n ≥ lim inf
n→∞

(2 ‖nx‖)1/n
= lim inf

n→∞
‖nx‖1/n ,

showing that the two power series have the same radius of convergence. �

We show in the following theorem that for almost all x, the power series
∑∞
n=1

zn

‖nx‖
has radius of convergence 1.

Theorem 24. For almost all x ∈ Ω, the power series

(26)

∞∑
n=1

zn

‖nx‖

has radius of convergence 1.

Proof. For x ∈ Ω, let Rx be the radius of convergence of the power series (26). We

have 0 < ‖nx‖ < 1
2 , so 1

‖nx‖ > 2. Therefore
∑N
n=1

1
‖nx‖ → ∞ as N → ∞, and so

the power series (26) diverges at z = 1. Therefore Rx ≤ 1 for all x ∈ Ω.
We shall use Lemma 7 to get a lower bound on Rx that holds for almost all

x ∈ Ω. Let A = {x ∈ Ω : Rx < 1}, let Am = {x ∈ Ω : Rx < 1 − 1
m}, and let

Bm be those x ∈ Ω such that ‖nx‖1/n < 1 − 1
m infinitely often. If x ∈ Am, then

Rx = lim infn→∞ ‖nx‖1/n < 1− 1
m , and this implies that there are infinitely many n

such that ‖nx‖1/n < 1− 1
m , so x ∈ Bm, i.e. Am ⊂ Bm. But let fm(n) =

(
1− 1

m

)n
.

Then
∑∞
n=1 fm(n) converges, since 1− 1

m < 1, so, by Lemma 7, for almost all x ∈ Ω
there are only finitely many n such that ‖nx‖ < fm(n). Thus µ(Bm) = 0. Hence
µ(Am) = 0, and since A =

⋃∞
m=2Am we get that

µ(A) ≤
∞∑
m=2

µ(Am) = 0,

that is, Rx ≥ 1 for almost all x ∈ Ω. In conclusion, Rx = 1 for almost all x ∈ Ω. �

In fact, we can prove the above theorem using the bounds we obtained in The-
orem 11. By Theorem 11, for almost all x ∈ Ω we have that

∑m
j=1

1
‖jx‖ = O(m2).

(Here we will merely need the fact that the sum is subexponential in m.) For such
an x, take 0 < r < 1. Let an = rn, let sn =

∑n
j=1

1
‖jx‖ , let b1 = 0, and let

bn = sn−1 for n ≥ 2. Using summation by parts, namely

N∑
n=1

an(bn+1 − bn) = aN+1bN+1 − a1b1 −
N∑
n=1

bn+1(an+1 − an),

we get
N∑
n=1

rn

‖nx‖
= rN+1sN +

N∑
n=1

snr
n(1− r).
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Therefore
N∑
n=1

rn

‖nx‖
= O

(
rN+1N2

)
+O

(
N∑
n=1

n2rn

)
= O(1).

Since
∑N
n=1

rn

‖nx‖ is increasing in N (being a sum of positive terms), we obtain that

the series
∑∞
n=1

rn

‖nx‖ converges. Since this is true for all r with 0 < r < 1, it follows

that Rx ≥ 1.
For x ∈ Ω let Rx be the radius of convergence of the power series

∑∞
q=1

zq

‖qx‖ .

We proved in Theorem 26 that for almost all x ∈ Ω, Rx = 1.

Theorem 25. For x ∈ Ω, let Rx be the radius of convergence of the power series∑∞
q=1

zq

‖qx‖ , and let an = an(x) and qn = qn(x). Then

Rx = lim inf
n→∞

a
−1/qn
n+1 .

For any 0 ≤ R ≤ 1 there is some x ∈ Ω such that Rx = R.

Proof. From the Cauchy-Hadamard formula (25),

Rx = lim inf
q→∞

‖qx‖1/q .

Then Rx ≤ lim infn→∞ ‖qnx‖1/qn . On the one hand, by (11), ‖qnx‖ < q−1
n+1,

and qn+1 = an+1qn + qn−1 > an+1qn hence ‖qnx‖ < a−1
n+1q

−1
n , and using that

limn→∞ q
−1/qn
n = 1,

Rx ≤ lim inf
n→∞

a
−1/qn
n+1 q−1/qn

n = lim inf
n→∞

a
−1/qn
n+1 .

On the other hand, let q ≥ 2 and take qn ≤ q < qn+1. Applying (12),

‖qnx‖ >
1

qn+1 + qn
>

1

2qn+1
=

1

2(an+1qn + qn−1)
>

1

4an+1qn
.

Then applying Theorem 2, and using that 0 < ‖qnx‖ < 1 and q ≥ qn,

‖qx‖1/q ≥ ‖qnx‖1/q ≥ ‖qnx‖1/qn >
(

1

4an+1qn

)1/qn

.

As (4qn)−1/qn → 1 as n→∞, this implies

Rx = lim inf
q→∞

‖qx‖1/q ≥ lim inf
n→∞

a
−1/qn
n+1 .

For 0 < R < 1, let R = e−r for r > 0. Define a ∈ NN as follows. Define a1 = 1.
Suppose for n ≥ 1 that we have defined a1, . . . , an and thus p1, . . . , pn and q1, . . . , qn.

Define an+1 = [erqn ]. Then a
1/qn
n+1 ≤ er, so a

−1/qn
n+1 ≥ e−r. Therefore for x = v(a),

Rx ≥ e−r. Now, erqn > 1 so an+1 = [erqn ] ≥ 2−1erqn . Then a
1/qn
n+1 ≥ 2−1/qner,

hence

Rx = lim inf
n→∞

a
−1/qn
n+1 ≤ lim inf

n→∞
21/qne−r = e−r.

We have therefore established that when x = v(a), Rx = e−r.
For R = 0, define a ∈ NN by a1 = 1 and an+1 = [enqn ], which satisfies an+1 ≥

2−1enqn . For x = v(a),

Rx = lim inf
n→∞

a
−1/qn
n+1 ≤ lim inf

n→∞
21/qne−n = 0.
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For R = 1, define a ∈ NN by an = 1 for all n ≥ 1. Namely, v(a) = −1+
√

5
2 ∈ Ω.

For x = v(a) it is immediate that Rx ≥ 1. �

Since R(nx) < 1, of course the power series
∑∞
n=1R(nx)zn has radius of con-

vergence ≥ 1. The following result, for which Pólya and Szegő [112, p. 280, Part
II, No. 168] cite Hecke, shows in particular that the radius of convergence of this
power series is ≤ 1 for x ∈ Ω and is thus equal to 1.

Theorem 26. For x ∈ Ω, let

f(z) =

∞∑
n=1

R(nx)zn, |z| < 1.

We have

lim
r→1−

(1− r)f(re2πix) =
1

2πi
.

Proof. Since x ∈ Ω, the sequence nx is uniformly distributed modulo 1. Therefore,
with f(t) = te2πit we have by (17) that

lim
N→∞

1

N

N∑
n=1

R(nx)e2πinx = lim
N→∞

1

N

N∑
n=1

f(R(nx)) =

∫ 1

0

te2πitdt =
1

2πi
.

We will use the following result [112, p. 21, Part I, No. 88]. If a sequence of

complex numbers an satisfies limN→∞
1
N

∑N
n=1 an = s, then

lim
t→1−

(1− t)
∞∑
n=1

ant
n = s.

Let an = R(nx)e2πinx, and we thus have

lim
t→1−

(1− t)
∞∑
n=1

R(nx)e2πinxtn =
1

2πi
.

�

It follows from the above theorem that if x ∈ Ω then |z| = 1 is a natural boundary
of the function f defined on the open unit disc by f(z) =

∑∞
n=1R(nx)zn; cf.

Segal [128, p. 255, Chapter 6], who writes about this power series, and who gives a
thorough introduction to natural boundaries in the same chapter. Breur and Simon
[21] prove a generalization of this result.

Hata [59, p. 173, Problem 12.6] mentions the appearance of the function f from
the above theorem in the study of the Caianiello neuron equations.

11. Product

We will use the following lemma proved by Hardy and Littlewood [57, p. 89],
whose brief proof we expand.

Lemma 27. Let ψ : (0,∞)→ R be positive and nondecreasing. If
∞∑
k=1

1

kψ(k)
<∞,

then for almost all x ∈ Ω, there exists some H such that for all n ≥ 1 and for all

real h ≥ H, there are at most max{nψ(h)
h , 1} integers m ∈ {1, . . . , n} that satisfy

‖mx‖ < 1
h .
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Proof. By Lemma 7, for almost all x ∈ Ω there is some K such that if k ≥ K then

(27) ‖kx‖ ≥ 2

kψ(k)
.

Let H be large enough so that

min
k<K
‖kx‖ ≥ 2

H
;

also let ψ(H) ≥ 1. Now suppose by contradiction that there is some n ≥ 1 and some

h ≥ H such that there are more than max{nψ(h)
h , 1} integers m ∈ {1, . . . , n} that

satisfy ‖mx‖ < 1
h . Then there are some 1 ≤ m1 < m2 ≤ n satisfying ‖m1x‖ < 1

h

and ‖m2x‖ < 1
h and such that

µ = m2 −m1 <
n

nψ(h)
h

=
h

ψ(h)
,

so µψ(h) < h. On the other hand,

‖µx‖ ≤ ‖m1x‖+ ‖m2x‖ <
1

h
+

1

h
=

2

h
,

so h < 2
‖µx‖ . Thus µψ(h) < 2

‖µx‖ , i.e.,

‖µx‖ < 2

µψ(h)
≤ 2

µψ(µ)
;

µ < h because µ < h
ψ(h) and ψ(h) ≥ ψ(H) ≥ 1. Moreover, since ‖µx‖ < 2

h ≤
2
H ,

we have µ ≥ K. This contradicts (27). �

Hardy and Littlewood [57, p. 89, Theorem 4] prove the following theorem that
gives us the conclusion (17) for certain functions that are not Riemann integrable
on [0, 1].

Theorem 28. Let f : (0, 1) → R be nonnegative, let f be nonincreasing on (0, 1
2 )

and nondecreasing on ( 1
2 , 1), and let∫ 1

0

f(t)dt <∞.

Let ψ : (1,∞)→ R be a positive and nondecreasing function such that

∞∑
k=2

1

kψ(k)
<∞.

If ∫ 1

0

f(t)

(
ψ

(
1

t

)
+ ψ

(
1

1− t

))
dt <∞,

then for almost all x ∈ Ω,

lim
n→∞

1

n

n∑
m=1

f(R(mx)) =

∫ 1

0

f(t)dt.
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Proof. For 0 < δ < 1
2 , define

fδ(t) =

{
f(t), δ ≤ t ≤ 1− δ,
0, 0 < t < δ or 1− δ < t < 1.

From Lemma 27, for almost all x ∈ Ω there is some C such that for all n and h

there are at most C nψ(h)
h integers m ∈ {1, . . . , n} satisfying ‖mx‖ < 1

h . Let

Sn =
1

n

n∑
m=1

f(R(mx)) = S1
n(δ) + S2

n(δ),

where

S1
n(δ) =

1

n

n∑
m=1

fδ(R(mx))

and

S2
n(δ) =

1

n

n∑
m=1

f(R(mx))− fδ(R(mx))

=
1

n

∑
1≤m≤n
‖mx‖<δ

f(R(mx))

=
1

n

∞∑
k=0

∑
1≤m≤n

δ

2k+1≤‖mx‖<
δ

2k

f(R(mx))

=
1

n

∞∑
k=0

Tk,n(δ).

There are at most C
nψ
(

2k

δ

)
2k

δ

integers m ∈ {1, . . . , n} that satisfy ‖mx‖ < δ
2k

,

thus, as ψ is nondecreasing, there are at most 2C
nδψ

(
2k

δ

)
2k+1 ≤ 2C

nδψ
(

2k+1

δ

)
2k+1 terms

in Tk,n(δ). For each term f(R(mx)) in Tk,n(δ), since δ
2k+1 ≤ ‖mx‖ we have, by

assumption on f , either f(R(mx)) ≤ f
(

δ
2k+1

)
or f(R(mx)) ≤ f

(
1− δ

2k+1

)
, and

hence

f(R(mx)) ≤ f
(

δ

2k+1

)
+ f

(
1− δ

2k+1

)
.

Therefore,

S2
n(δ) ≤ 1

n

∞∑
k=0

2C
nδψ

(
2k+1

δ

)
2k+1

(
f

(
δ

2k+1

)
+ f

(
1− δ

2k+1

))

= 4C

∞∑
k=0

δ

2k+2
ψ

(
2k+1

δ

)
f

(
δ

2k+1

)
+ 4C

∞∑
k=0

δ

2k+2
ψ

(
2k+1

δ

)
f

(
1− δ

2k+1

)

≤ 4C

∫ δ
2

0

ψ

(
1

t

)
f(t)dt+ 4C

∫ 1

1− δ2
ψ

(
1

1− t

)
f(t)dt.

Let ε > 0. Because
∫ 1

0
f(t)

(
ψ
(

1
t

)
+ ψ

(
1

1−t

))
dt < ∞, there exists a δ1 such that

if δ ≤ δ1 then S2
n(δ) < ε.
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On the other hand, since fδ is Riemann integrable on [0, 1] and because, by (18),
the sequence mx is uniformly distributed modulo 1, we obtain from (17) that

lim
n→∞

S1
n(δ) =

∫ 1

0

fδ(t)dt =

∫ 1−δ

δ

f(t)dt.

As
∫ 1

0
f(t)dt <∞, there exists a δ2 such that for δ ≤ δ2 and for sufficiently large n,∣∣∣∣S1

n(δ)−
∫ 1

0

f(t)dt

∣∣∣∣ ≤
∣∣∣∣∣S1
n(δ)−

∫ 1−δ

δ

f(t)dt

∣∣∣∣∣+

∣∣∣∣∣
∫ δ

0

f(t)dt

∣∣∣∣∣+

∣∣∣∣∫ 1

1−δ
f(t)dt

∣∣∣∣ < 3ε.

Therefore, for sufficiently large n and for sufficiently small δ,∣∣∣∣Sn − ∫ 1

0

f(t)dt

∣∣∣∣ ≤ ∣∣∣∣S1
n(δ)−

∫ 1

0

f(t)dt

∣∣∣∣+
∣∣S2
n(δ)

∣∣ < 4ε.

Thus for sufficiently large n, ∣∣∣∣Sn − ∫ 1

0

f(t)dt

∣∣∣∣ ≤ 4ε.

�

By the Birkhoff ergodic theorem [42, p. 44, Theorem 2.30], if f ∈ L1[0, 1] and
x ∈ Ω, then for almost all α ∈ [0, 1],

lim
n→∞

1

n

n∑
j=1

f(R(α+ jx)) =

∫ 1

0

f(t)dt.

This equality holding for α = 0 is the conclusion of Theorem 28.
Baxa [8] reviews further results that give conditions when a function f : [0, 1]→

R ∪ {+∞} that is not Riemann integrable on [0, 1] nevertheless satisfies

lim
n→∞

1

n

n∑
m=1

f(R(mx)) =

∫ 1

0

f(t)dt

for certain x ∈ Ω. Oskolkov [104, p. 170, Theorem 1] shows that if f : (0, 1) →
R satisfies limt→0+ f(t) = +∞ and limt→1− f(t) = +∞, and also the improper
Riemann integral of f on [0, 1] exists, then, for x ∈ Ω,

lim
n→∞

1

n

n∑
m=1

f(R(mx)) =

∫ 1

0

f(t)dt

if and only if

lim
n→∞

1

qn(x)
f(R(qn(x)x)) = 0,

where qn(x) is the denominator of the nth convergent of the continued fraction
expansion of x.

Driver, Lubinsky, Petruska and Sarnak [38]
Using Theorem 28 we can now prove the following theorem of Hardy and Little-

wood [57, p. 88, Theorem 2].

Theorem 29. For almost all x ∈ Ω,

lim
n→∞

(
n∏
k=1

| sin kπx|

)1/n

=
1

2
.
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Proof. Let f(t) = − log sinπt. Using cos(t− π
2 ) = sin t and sin 2t = 2 sin t cos t, one

can check that
∫ 1

0
log sinπtdt = − log 2. (The earliest evaluation of this integral of

which we are aware is by Euler [44], who gives two derivations, the first using the

Euler-Maclaurin summation formula, the power series expansion for log
(

1+z
1−z

)
, and

the power series expansion of z cot(z), and the second using the Fourier series of

log | sin t|.) Thus,
∫ 1

0
f(t)dt = log 2 < ∞. So f satisfies the conditions of Theorem

28.
Let ψ(t) = (log t)2. First, upper bounding the series by an integral,

∞∑
k=2

1

k(log k)2
≤ 1

2(log 2)2
+

∫ ∞
2

1

t(log t)2
dt =

1

2(log 2)2
+ log 2 <∞.

Second,∫ 1

0

f(t)

(
ψ

(
1

t

)
+ ψ

(
1

1− t

))
dt =

∫ 1

0

f(t) (ψ(t) + ψ(1− t)) dt

=

∫ 1
2

0

−2 log sin(πt)(
(log t)2 + (log(1− t))2

)
dt

≤
∫ 1

2

0

−2 log(2t)
(
(log t)2 + (log(1− t))2

)
dt

< ∞.

Therefore by Theorem 28, for almost all x ∈ Ω,

lim
n→∞

1

n

n∑
m=1

− log sin(πR(mx)) =

∫ 1

0

− log sinπtdt,

i.e.

lim
n→∞

1

n

n∑
m=1

log | sinπmx| = log
1

2
.

�

Hardy and Littlewood give another proof [57, p. 86, Theorem 1] of the above
theorem, which we now work out. This proof is complicated and we greatly expand
on the abbreviated presentation of Hardy and Littlewood.

We remind ourselves that the Cauchy-Hadamard formula states that the radius
of convergence R of a power series

∑
anz

n satisfies

R =
1

lim supn→∞ |an|1/n
= lim inf

n→∞
|an|−1/n.

Theorem 30. Fix x ∈ Ω and write q0 = e2πix. Let ρ and R respectively be the
radii of convergence of the power series

f(z) =

∞∑
n=1

zn

n(1− qn0 )
, F (z) = 1 +

∞∑
n=1

zn

(1− q0)(1− q2
0) · · · (1− qn0 )

.

Then R = ρ, and if |z| < ρ then F (z) = ef(z).
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The functions f : D(0, ρ) → C and F : D(0, R) → C are analytic [137, p. 69,
Theorem 2.16].

Using the Cauchy-Hadamard formula we have

ρ = lim inf
n→∞

n1/n|1− qn0 |1/n ≤ lim inf
n→∞

(2n)1/n = 1

and

(28) R = lim inf
n→∞

(|1− q0||1− q2
0 | · · · |1− qn0 |)1/n ≤ 2ρ.

Lemma 31. For |u| = 1 and for 0 ≤ r < 1,∣∣∣∣ 1− u
1− ru

∣∣∣∣ ≤ 2.

Proof.

|1− u| ≤ |1− ru|+ |ru− u| = |1− ru|+ 1− r.
Because Reu ≤ 1 we have 1 − r ≤ 1 − rReu = Re (1 − ru) ≤ |1 − ru|. Hence
|1− u| ≤ 2|1− ru|, from which the claim follows. �

We assert the following as a common fact in complex analysis.

Lemma 32. For |w| < 1 define

L(w) =

∞∑
n=1

wn

n
.

If |w| < 1, then eL(w) = (1− w)−1.

For |q|, |z| < 1, we define

f(z, q) =

∞∑
n=1

zn

n(1− qn)
, F (z, q) = 1 +

∞∑
n=1

zn

(1− q)(1− q2) · · · (1− qn)
.

For |q| < 1, define c0(q) = 0 and for n ≥ 1,

cn(q) =
1

n(1− qn)
,

and thus for |z| < 1,

f(z, q) =

∞∑
n=0

cn(q)zn.

Furthermore define γ0 = 0 and for n ≥ 1,

γn =
1

n(1− qn0 )
,

and thus for |z| < ρ,

f(z) =

∞∑
n=0

γnz
n.

For |q| < 1, define C0(q) = 1 and for n ≥ 1,

Cn(q) =
1

(1− q)(1− q2) · · · (1− qn)
,
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and thus for |z| < 1,

F (z, q) =

∞∑
n=0

Cn(q)zn.

Furthermore define Γ0 = 1 and for n ≥ 1,

Γn =
1

(1− q0)(1− q2
0) · · · (1− qn0 )

,

and thus for |z| < R,

F (z) =

∞∑
n=0

Γnz
n.

We prove directly the following, which is an instance of the q-binomial formula
[2, p. 17, Theorem 2.1].

Proposition 33. If |q|, |z| < 1 then

F (z, q) = ef(z,q).

Proof. By Lemma 32,

f(z, q) =

∞∑
n=1

zn

n

( ∞∑
m=0

qnm

)
=

∞∑
m=0

( ∞∑
n=1

(zqm)n

n

)
=

∞∑
m=0

L(zqm).

Because eL(w) = (1− w)−1 for |w| < 1,

ef(z,q) =

∞∏
m=0

eL(zqm) =

∞∏
m=0

(1− zqm)−1.

Define

G(z, q) =

∞∏
m=0

(1− zqm)−1 =

∞∑
n=0

gn(q)zn.

On the one hand, g0(q) = G(0, q) = 1. On the other hand,

G(qz, q) = (1− z)G(z, q),

thus
∞∑
n=0

gn(q)zn+1 =

∞∑
n=0

gn(q)(1− qn)zn,

and therefore for n ≥ 1 we have gn(q) = (1− qn)−1gn−1(q). Thus by induction, for
n ≥ 1,

gn(q) =
1

(1− q)(1− q2) · · · (1− qn)
.

Hence

ef(z,q) = 1 +

∞∑
n=1

zn

(1− q)(1− q2) · · · (1− qn)
= F (z, q).

�

Proposition 34. R ≥ ρ, and if |z| < ρ then ef(z) = F (z).
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Proof. If ρ = 0 then the claim is immediate. Otherwise, 0 < ρ ≤ 1. Let 0 < t < ρ,
0 < r < 1, and define G(θ) = F (teiθ, rq0). On the one hand,

G(θ) =

∞∑
n=0

Cn(rq0)(teiθ)n =

∞∑
n=0

Cn(rq0)tneinθ,

which implies that Ĝ(n) = Cn(rq0)tn for n ≥ 0 and Ĝ(n) = 0 for n < 0. On the
other hand, for n ∈ Z, using Proposition 33,

Ĝ(n) =
1

2π

∫ 2π

0

G(θ)e−inθdθ

=
1

2π

∫ 2π

0

F (teiθ, rq0)e−inθdθ

=
1

2π

∫ 2π

0

ef(teiθ,rq0)e−inθdθ.

By Lemma 31,

|f(teiθ, rq0)| ≤
∞∑
n=1

tn

n|1− rnqn0 |
≤ 2

∞∑
n=1

tn

n|1− qn0 |
= M(t),

and because t < ρ it is the case that M(t) <∞. Then for n ≥ 0,

|Cn(rq0)tn| = |Ĝ(n)| ≤ 1

2π

∫ 2π

0

|ef(teiθ,rq0)|dθ ≤ eM(t).

Cn(rq0)→ Γn as r → 1, and therefore

|Γntn| ≤ eM(t), 0 < t < ρ, n ≥ 0.

Now fix |z| < ρ, take t such that |z| < t < ρ, and write 0 ≤ δ = |z|
t < 1 and

Mn = eM(t)δn. Because |Γntn| ≤ eM(t),

∞∑
n=0

|Γnzn| =
∞∑
n=0

δn|Γntn| ≤
∞∑
n=0

Mn =
eM(t)

1− δ
<∞,

which implies that |z| ≤ R. Therefore R ≥ ρ. Furthermore, because

|Cn(rq0)zn| = δn|Cn(rq0|tn| = Mn, r ∈ (0, 1),

by the WeierstrassM -test [123, p. 148, Theorem 7.10], the sequence
∑N
n=0 Cn(rq0)zn

converges uniformly for r ∈ (0, 1) and therefore [123, p. 149, Theorem 7.11]

lim
r→1

F (z, rq0) = lim
r→1

lim
N→∞

N∑
n=0

Cn(rq0)zn

= lim
N→∞

lim
r→1

N∑
n=0

Cn(rq0)zn

= lim
N→∞

N∑
n=0

Γnz
n

= F (z).
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Now, for 0 < r < 1, by Lemma 31,

|cn(rq0)zn| =
∣∣∣∣ zn

n(1− rnqn0 )

∣∣∣∣ ≤ 2

∣∣∣∣ zn

n(1− qn0 )

∣∣∣∣ = mn.

Because |z| < ρ, the series
∑∞
n=0mn converges, and therefore by the Weierstrass

M -test, the sequence
∑N
n=0 cn(rq0)zn converges uniformly for r ∈ (0, 1). Then

lim
r→1

f(z, rq0) = lim
r→1

lim
N→∞

N∑
n=0

cn(rq0)zn

= lim
N→∞

lim
r→1

N∑
n=0

cn(rq0)zn

= lim
N→∞

N∑
n=0

γnz
n

= f(z).

Then using Lemma 33,

exp(f(z)) = exp
(

lim
r→1

f(z, rq0)
)

= lim
r→1

exp(f(z, rq0))

= lim
r→1

F (z, rq0)

= F (z),

completing the proof. �

Lemma 35. If |u| = 1 and u 6= 1 then∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ ≤ 2

|1− u|
.

Proof. ∣∣∣∣∣
N∑
n=1

un

∣∣∣∣∣ =

∣∣∣∣u− uN+1

1− u

∣∣∣∣ =

∣∣∣∣1− uN1− u

∣∣∣∣ ≤ 2

|1− u|
.

�

Lemma 36. Let 0 < a < 1, let x ∈ Ω, and suppose that there is some C such that
an

| sinnπx| ≤ C for all n. Then

N∑
n=1

a2n

sin2 nπx
= o(N), N →∞.

Proof. Take 0 < ε < 1
2 and let

EN = {n : 1 ≤ n ≤ N, ‖nx‖ < ε}.
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Thus if 1 ≤ n ≤ N and n 6∈ EN then ‖nx‖ ≥ ε. Write SN =
∑N
n=1

a2n

sin2 nπx
.

Because | sinnπx| = sin(π ‖nx‖) ≥ 2 ‖nx‖,

SN =
∑
n∈EN

a2n

sin2 nπx
+

∑
n 6∈EN ,1≤n≤N

a2n

sin2 nπx

≤ C2|EN |+
∑

n 6∈EN ,1≤n≤N

a2n

4ε2

≤ C2|EN |+
1

4ε2(1− a2)
.

Because x is irrational, by Theorem 19 the sequence nx is uniformly distributed
modulo 1. Therefore

|EN |
N
→ 2ε, N →∞,

and this implies

lim sup
N→∞

SN
N
≤ 2ε · C2.

Because this is true for each 0 < ε < 1
2 it follows that limN→∞

SN
N = 0, proving the

claim. �

Proposition 37. R ≤ ρ.

Proof. We have found in (28) that R ≤ 2ρ, i.e. ρ ≥ R
2 . Assume by contradiction

that R > ρ; in particular R > 0, which implies ρ ≥ R
2 > 0. By Proposition 34, we

have F (z) = ef(z) for |z| < ρ and so F (z) 6= 0 for z ∈ D(0, ρ).
Let u1ρ, . . . , usρ be the distinct zeros of F on |z| = ρ, with respective multi-

plicities p1, . . . , ps; if there is none, take s = 0, and use
∑
∅ = 0 and

∏
∅ = 1.

Define

G(z) = F (z)

s∏
j=1

(
1− z

ujρ

)−pj
, z ∈ D(0, R).

Because G : D(0, R) → C is analytic and G(z) 6= 0 for z ∈ D(0, ρ), there is some
T , ρ < T ≤ R, such that G(z) 6= 0 for z ∈ D(0, T ) [124, p. 208, Theorem 10.18].
As D(0, T ) is simply connected, there is an analytic function g : D(0, T )→ C such
that G(z) = eg(z) for z ∈ D(0, T ) [124, p. 274, Theorem 13.11]. Thus

F (z) = eg(z)
s∏
j=1

(
1− z

ujρ

)pj
, z ∈ D(0, T ).

For z ∈ D(0, ρ) we have
∣∣∣ z
ujρ

∣∣∣ = |z|
ρ < 1, and then by Lemma 32, e

L
(

z
ujρ

)
=(

1− z
ujρ

)−1

. Therefore for z ∈ D(0, ρ),

ef(z) = F (z) = eg(z)
s∏
j=1

e
−pjL

(
z
ujρ

)
= exp

g(z)−
s∑
j=1

pjL

(
z

ujρ

) ,

i.e.

exp

f(z)− g(z)−
s∑
j=1

pjL

(
z

ujρ

) = 1, z ∈ D(0, ρ).
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But the image of a continuous function D(0, ρ)→ 2πiZ is connected, and because
2πiZ has the discrete topology it follows that the image is a singleton, thus there
is some ν ∈ Z such that

f(z)− g(z) +

s∑
j=1

pjL

(
z

ujρ

)
= 2πiν, z ∈ D(0, ρ).

But eg(0) = G(0) = F (0) · 1 = 1, so g(0) = 0, and f(0) = 0, hence ν = 0. Therefore

f(z) = g(z)−
s∑
j=1

pjL

(
z

ujρ

)
, z ∈ D(0, ρ).

Now, for z ∈ D(0, ρ),

s∑
j=1

pjL

(
z

ujρ

)
=

s∑
j=1

pj

∞∑
n=1

(
z
ujρ

)n
n

=

∞∑
n=1

 1

n

s∑
j=1

pj(ujρ)−n

 zn.

Let gn = g(n)(0)
n! . For z ∈ D(0, ρ),

∞∑
n=1

γnz
n =

∞∑
n=1

gnz
n −

∞∑
n=1

 1

n

s∑
j=1

pj(ujρ)−n

 zn,

so for n ≥ 1,

1

n(1− qn0 )
= γn = gn −

1

n

s∑
j=1

pj(ujρ)−n.

Then

(29)
ρn

1− qn0
= nρngn −

s∑
j=1

pju
−n
j .

Cauchy’s integral formula [137, p. 82, Theorem 2.41] tells us that for 0 < V < T ,
C(t) = V eit, 0 ≤ t ≤ 2π,

gn =
g(n)(0)

n!
=

1

2πi

∫
C

g(w)

wn+1
dw,

whence, as the length of C is 2πV ,

|gn| ≤
1

V n
max
|w|=V

|g(w)|.

Fix ρ < V < T , with which

|nρngn| ≤ n
( ρ
V

)n
max
|w|=V

|g(w)|,

and for ρ
V < δ < 1 we have

|nρngn| = O(δn).

Using this and ∣∣∣∣∣∣
s∑
j=1

pju
−n
j

∣∣∣∣∣∣ ≤
s∑
j=1

pj = O(1),
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(29) yields
ρn

1− qn0
= O(1).

As
ρn

1− qn0
=

ρn

1− e2πinx
=

ρn

−2ieπinx sinπnx
=
ie−πinxρn

2 sinπnx
,

we get
ρ2n

sin2 πnx
= O(1).

For any M , there is some nM such that sin2 πnMx ≥ M , and thus the above
estimate is contradicted if ρ = 1; hence 0 < ρ < 1. (We emphasize that ρ < 1 is de-
duced from the assumption R > ρ, which we are showing to imply a contradiction.)
By Lemma 36 we then get that

(30)

N∑
n=1

ρ2n

sin2 nπx
= o(N).

Now, multiplying each side of (29) by its complex conjugate and using that

|nρngn| = O(δn) and that
∣∣∣∑s

j=1 pju
−n
j

∣∣∣ = O(1),

ρ2n

4 sin2 πnx
=

 s∑
j=1

pju
−n
j

( s∑
k=1

pku
n
k

)
+O(δn),

i.e.

(31)
ρ2n

4 sin2 πnx
=

s∑
j=1

p2
j +

∑
j 6=k

pjpk(u−1
j uk)n +O(δn).

Let E = {(j, k) : 1 ≤ j, k ≤ s, j 6= k} and let P =
∑s
j=1 p

2
j > 0. Then summing

(31) for n = 1, . . . , N , using
∑N
n=1 δ

n = δ · 1−δN
1−δ = O(1),

N∑
n=1

ρ2n

4 sin2 πnx
= NP +

∑
(j,k)∈E

pjpk

(
N∑
n=1

(u−1
j uk)n

)
+O(1).

Because uj 6= uk for (j, k) ∈ E, we have according to Lemma 35 that∣∣∣∣∣
N∑
n=1

(u−1
j uk)n

∣∣∣∣∣ ≤ 2

|1− u−1
j uk|

= O(1).

Thus
N∑
n=1

ρ2n

sin2 πnx
= 4NP +O(1),

and because P > 0 this contradicts (30). Therefore, it is false that R > ρ, which
means that R ≤ ρ, proving the claim. �

Theorem 38. Let x ∈ Ω and let ρ1 and R1 respectively be the radii of convergence
of the power series

∞∑
n=1

zn

sinnπx
,

∞∑
n=1

zn

sinπx · sin 2πx · · · sinnπx
.
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Then R1 = ρ1
2 .

Proof.

|1− qn0 | = |1− e2πinx| = 2| sinπnx|.
By the Cauchy-Hadamard formula,

R1 = lim inf
n→∞

| sinπx · · · sinnπx|1/n =
1

2
· lim inf
n→∞

|(1− q0) · · · (1− qn0 )|1/n =
R

2

and

ρ1 = lim inf
n→∞

| sinnπx|1/n = ρ.

Theorem 30 says R = ρ, hence R1 = R
2 = ρ

2 = ρ1
2 . �

By Lemma 23 and Theorem 24, for almost all x, the power series
∑∞
n=1

zn

sinnπx
has radius of convergence 1. Then using Theorem 38, for almost all x the power
series

∑∞
n=1

zn

sinπx·sin 2πx··· sinnπx has radius of convergence 1
2 , and thus for almost

all x ∈ Ω,

lim inf
n→∞

(
n∏
k=1

| sin kπx|

)1/n

=
1

2
.

Hardy and Littlewood give a separate argument [57, p. 88, Eq. 4.3] proving that
for almost all x ∈ Ω,

lim sup
n→∞

(
n∏
k=1

| sin kπx|

)1/n

=
1

2
,

and combining the formulas for the limit inferior and limit superior yields Theorem
29.

Lubinsky [93] proves more results about products of the form
∏n
k=1(1− e2πikθ).

For example, Lubinsky [93, p. 219, Theorem 1.1] proves that for all ε > 0, for almost
all θ ∈ Ω we have∣∣∣∣∣log

∣∣∣∣∣
n∏
k=1

(1− e2πikθ)

∣∣∣∣∣
∣∣∣∣∣ = O((log n)(log log n)1+ε).

The first author [13, p. 532, Theorem 2] gives asymptotic expressions for the
Lp[0, 1] norm of

∏n
k=1(1− e2πikθ) as n→∞, for 1 ≤ p ≤ ∞.

For ω ∈ R let Pn(ω) =
∏n
r=1 |2 sinπrω|. Let Fn be the nth Fibonacci number

and let g = −1+
√

5
2 . Verschueren and Mestel [142, p. 204, Theorem 2.2] prove that

there is some c = 2.407 . . . such that

PFn(g)→ c, n→∞

and
PFn−1(g)

Fn
→ c

2π
√

5
, n→∞,

and that there are C1 ≤ 0 and C2 ≥ 1 such that for all n,

nC1 ≤ Pn(g) ≤ nC2 .

Let X be a measure space with probability measure λ. Following [131, p. 21,
Definition 3.6], we say that a measure preserving map T : X → X is r-fold mixing
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if for all g, f1, . . . , fr ∈ Lr+1(X) we have

lim
m1→∞,...,mr→∞

∫
X

g(t) ·
r∏

k=1

fk

(
T
∑k
j=1mj (t)

)
dλ(t)

=

(∫
X

g(t)dλ(t)

) r∏
k=1

(∫
X

fk(t)dλ(t)

)
.

(32)

If for each r the map T is r-fold mixing, we say that T is mixing of all orders.
Let q ≥ 2 be an integer, and define Tq : [0, 1] → [0, 1] by Tq(t) = R(qt). We

assert that Tq is mixing of all orders. This can be proved by first showing that
the dynamical system ([0, 1], µ, Tq) is isomorphic to a Bernoulli shift (cf. [42, p. 17,
Example 2.8]). This implies that if the Bernoulli shift is r-fold mixing then Tq is
r-fold mixing. One then shows that a Bernoulli shift is mixing of all orders [42,
p. 53, Exercise 2.7.9]. Using that Tq is mixing of all orders gets us the following
result.

Theorem 39. Let q ≥ 2 be an integer. For each n ≥ 1 we have

lim
m→∞

∫ 1

0

| sin(2πt)| ·
n∏
k=1

∣∣sin (2πqkmt)∣∣ dt =

(
2

π

)n+1

.

Proof. Define g(t) = f1(t) = · · · = fn(t) = | sin(2πt)|. For any nonzero integer N
we have ∫ 1

0

| sin(2πNt)|dt =
2

π
,

and it follows from (32), using m1 = m, . . . ,mn = m, that

lim
m→∞

∫ 1

0

| sin(2πt)| ·
n∏
k=1

∣∣sin (2πqkmt)∣∣ dt =

(
2

π

)n+1

.

�

Write Sk(α) =
∑k
j=1Xj(α), where Xj(α) = log |2−2 cos(2πjα)| and α = −1+

√
5

2 .

Knill and Tangerman [76] talk about motivations from KAM theory for caring
about these sums. See Lagarias [82] and Ghys [51] for more on small divisors in
Hamiltonian dynamics, and Carleson and Gamelin [25, p. 48, Theorem 7.2] and
Yoccoz [152] for Arnold’s theorem on analytic circle diffeomorphisms.

Marmi and Sauzin [94]

12. Conclusions

Kac and Salem [70] prove the following. Let ck be a sequence of nonnegative
real numbers for which

∑∞
k=1 ck <∞. If the series

∞∑
k=1

ck
1

| sin kx|

converges in a set of positive measure, then
∞∑
k=1

ck log

(
1

ck

)
<∞,

and if this condition is satisfied then
∑∞
k=1 ck

1
| sin kx| converges for almost all x.
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Muromskii [100, p. 54, Theorem 1] proves that if ck is a sequence of nonnegative
real numbers, if α > 1, and if there is a set of positive measure on which the series

∞∑
k=1

ck
1

| sin kx|α

converges, then for any δ > 0, the series
∞∑
k=1

c
4

α+3 +δ

k

converges.
Let X be a random variable that is uniformly distributed on [0, 1]. Kesten [74,

p. 111, Theorem 1 ] proves that if
∑∞
k=0 |ck| <∞, then the series

∞∑
k=0

ck
sin(2π2kX)

converges with probability 1. Stated using measure theory, the conclusion is that
for almost all x ∈ Ω, the series

∞∑
k=0

ck
sin(2π2kx)

converges. Kesten [74, p. 114, Theorem 3] also proves if an ∈ R and an →∞, then

1

an

n−1∑
k=0

1

sin(2π2kX)
→ 0

in probability. Stated using measure theory, the conclusion is that for each ε > 0,

lim
n→∞

µ

{
x ∈ Ω :

∣∣∣∣∣ 1

an

n−1∑
k=0

1

sin(2π2kx)

∣∣∣∣∣ ≥ ε
}

= 0.

For Td = Rd/Zd = (R/Z)d, let σ be Haar measure on T and let σd =
⊗

1≤j≤d σ

be Haar measure on Td, with σ(T) = 1. A sequence t(n) ∈ Td, n ≥ 1, is said to be

uniformly distributed if for any arcs I1, . . . , Id in T, with I =
∏d
j=1 Ij ,

lim
N→∞

|{t(n) ∈ I : 1 ≤ n ≤ N}|
N

= σd(I).

Kronecker’s approximation theorem [138, p. 108, Theorem 6.3] states that
if α1, . . . , αd ∈ R and {1, α1, . . . , αd} is linearly independent over Q, then the se-
quence (nα1 + Z, . . . , nαd + Z), n ≥ 1, is uniformly distributed in Td. Meyer [95]
is a thorough presentation of multidimensional Diophantine approximation and
Diophantine approximation with locally compact abelian groups, and harmonic
analysis involving sets satisfying various Diophantine properties.

Measure theoretic results in Diophantine approximation are presented in Khinchin
[75], Einsiedler and Ward [42, Chapter 3], Rockett and Szüsz [122, Chapters V and
VI], Billingsley [18, pp. 13–15, 319–326], Kac [71, Chapter 5], Bugeaud [24], and
Kesseböhmer, Munday and Stratmann [73]. The significance of continued fraction
expansions of irrational numbers in the early history of axiomatic probability theory
is described by Barone and Novikoff [7], Durand and Mazliak [41], and von Plato
[145]. Veech [141] presents material on Diophantine approximation in the setting
of topological dynamics.
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We have been interested in results about almost all x ∈ Ω, using Lebesgue
measure µ on [0, 1]. If E ⊂ Ω has µ(E) = 0, one can ask what the Hausdorff
dimension dimH E of the set E is. Let BK be the set of those x ∈ Ω such that
an(x) ≤ K for all n ≥ 1, and let B =

⋃
K≥1 BK , the set of those x ∈ Ω with bounded

partial quotients. We have already stated that µ(B) = 0 [75, p. 60, Theorem 29],
and Jarńık [37, Theorem 4.3] proves that the Hausdorff dimension of B is in fact
1; cf. Falconer [45, p. 155, Theorem 10.3] and Wolff [151, p. 67, Chapter 9] on
Hausdorff dimension. Hensley [61] proves

dimH BK = 1− 6

π2
K−1 − 72

π4
K−2 logK +O(K−2), K →∞.

Dodson and Kristensen [37] give a survey of results on the Hausdorff dimension of
various sets that appear in Diophantine approximation.

For a decreasing positive function ψ, the set

W (ψ) = {x ∈ [0, 1] : ‖qx‖ < qψ(q) for infinitely many q ∈ N}
can be written as the limsup of a sequence of sets,

W (ψ) = lim sup
n→∞

W (ψ, n) =

∞⋂
N=1

∞⋃
n=N

W (ψ, n),

where

W (ψ, n) =
⋃

2n−1<q≤2n

⋃
0≤p≤q

(
p

q
− ψ(q),

p

q
+ ψ(q)

)
∩ [0, 1].

One can exploit nice properties of limsup sets, such as the Borel-Cantelli lemma and
invariance under ergodic transformations, to prove fundamental results in Diophan-
tine approximation. Beresnevich, Dickinson and Velani [15] use this motiviation of
Diophantine approximation to build a framework for a natural class of limsup sets
on compact metric spaces. Their general results readily imply the divergent case of
Khinchin’s theorem: µ(W (ψ)) = 0 if

∑
qψ(q) < ∞ (Lemma 7) and µ(W (ψ)) = 1

if
∑
qψ(q) = ∞. Their framework also establishes the divergent case of Jarńık’s

theorem: the f -Hausdorff dimension of W (ψ) is 0 if
∑
qf(ψ(q)) <∞ and is infinity

if
∑
qf(ψ(q)) =∞, where f is a dimension function such that r−1f(r)→∞ as

r → 0, and r−1f(r) is decreasing.
As well, rather than making statements about subsets of Ω of measure 1, we can

talk about sets whose complements are meager. (Measure theoretically, the notion
of a negligible set is made precise as a set of measure 0, and topologically the notion
of a negligible set is made precise as a meager set.) Some results of this type are
proved in Oxtoby [106, Chapter 2].

Let p be prime, let Np = {0, . . . , p − 1}, and let Qp ⊂
∏

ZNp be the p-adic
numbers. For x ∈ Qp let

vp(x) = inf{k ∈ Z : x(k) 6= 0}, |x|p = p−vp(x),

and let Zp = {x ∈ Qp : vp(x) ≥ 0}, the p-adic integers. Let µp be the Haar measure
on the additive locally compact abelian group Qp with µp(Zp) = 1. We call λ ∈ Zp
a p-adic Liouville number if ν(λ) = lim infn→∞ |n − λ|1/np = 0, and let Lp be
the set of p-adic Liouville numbers. One checks that if λ ∈ Z≥0 then ν(λ) = 1 [125,
p. 201, Exercise 66.A]. It can be proved that Lp is a dense Gδ set in Zp [125, p. 204,
Theorem 67.3] and that µp(Lp) = 0 [125, p. 205, Theorem 67.4]. One reason for
caring about p-adic Liouville numbers is that if x ∈ Zp is algebraic over Q then
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ν(x) = 1, and hence a p-adic Liouville number is transcendental over Q [125, p. 203,
Theorem 67.2].

Unlike in estimating exponential sums, the sums that we have been estimating
in this paper do not have cancellation. Instead we have estimated them by showing
that the terms are only occasionally large. For An(t) =

∑n
k=1

sin kt
k , it can be

proved [113, p. 74, no. 25] that

|An(t)| <
∫ π

0

sin θ

θ
dθ = 1.8519 . . .

On the other hand, let Mn be the maximum of
∑n
k=1

| sin kt|
k . It can be proved [113,

p. 77, no. 38] that

Mn =
2

π
log n+O(1).

Walfisz [146] presents results of his, of Oppenheim, and of Chowla on sums∑
j≤n

g(j)e2πijx

for g(j) = rk(j), the number of ways to write j as a sum of k squares, and for
g(j) = d(j), the number of positive divisors of j. One of the results of Chowla is
that if x ∈ Ω has bounded partial quotients, then

n∑
j=1

d(j)e2πijx = O
(
n

1
2 log n

)
.

One of the results Walfisz proves is that if ε > 0, then for almost all x ∈ Ω,
n∑
j=1

d(j)e2πijx = O
(
n

1
2 (log n)2+ε

)
.

Wilton [150] proves some similar results. For example, Wilton proves that for any
x ∈ Ω,

n∑
j=1

d(j)

j
cos 2πjx = o((log n)2),

See Jutila’s book on exponential sums [69].
Let f(t) = P1(t) for t 6∈ Z and {t} = 0 for t ∈ Z, where P1 is a periodic Bernoulli

function. Namely, for all t ∈ R,

f(t) = − 1

π

∞∑
m=1

sin 2πmt

m
.

Define SN (θ) =
∑N
n=1

µ(n)
n f(nθ), where µ is the Möbius function. Davenport

[31, p. 11, Theorem 2] proves that there is some C such that for all N and for all θ,∣∣∣∣∣
N∑
n=1

µ(n)

n
f(nθ)

∣∣∣∣∣ ≤ C.
Davenport [31, p. 13, Theorem 4] also proves that for almost all θ,

∑N
n=1

µ(n)
n f(nθ)→

− 1
π sin 2πθ. See Jaffard [67].
It would be a useful project to give an organized presentation of Hardy and

Littlewood’s results on Diophantine approximation. Their papers in this area are
all included in Hardy’s collected works [55]. Hardy and Littlewood proved many
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pleasant results on various sums and series with coefficients related to sin(nπx) and
R(nx). It would be desirable to streamline and systematically prove these results,
to let a modern reader to be able to understand them without having to read the
whole series of papers to figure out what results are being tacitly used from earlier
work or assumed as general knowledge. There is only a bare summary of Hardy and
Littlewood’s work in the commentary in Hardy’s collected papers. Hardy’s work on
Diophantine approximation is briefly summarized by Mordell [99]. See also lecture
V of Hardy’s lectures on Ramanujan [54].
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35. P. G. L. Dirichlet, Über die Bestimmung der mittleren Werthe in der Zahlentheorie, Ab-

handlungen der Königlichen Akademie der Wissenschaften zu Berlin (1849), 69–83, Werke,
Band II, pp. 49–66.

36. , Lectures on number theory, History of Mathematics, vol. 16, American Mathematical

Society, Providence, RI, 1999, Supplements by R. Dedekind, translated from the German by
John Stillwell.

37. M. Maurice Dodson and Simon Kristensen, Hausdorff dimension and Diophantine approx-
imation, Fractal Geometry and Applications: A Jubilee of Benôıt Mandelbrot, Part 1
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112. George Pólya and Gábor Szegő, Problems and theorems in analysis, volume I, Die

Grundlehren der mathematischen Wissenschaften, vol. 193, Springer, 1972, Translated from
the German by D. Aeppli.

113. , Problems and theorems in analysis, volume II, Die Grundlehren der mathematischen

Wissenschaften, vol. 216, Springer, 1976, Translated from the German by C. E. Billigheimer.
114. Alfred Pringsheim, Grundlagen der allgemeinen Funktionenlehre, Encyklopädie der math-
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