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ABSTRACT 

Let DE (0,l) be irrational and let {n/3} denote the fractional part of n/3, n z 1. The uniform 

distribution of {n/3}, n? 1, implies that 

I 
lim L i g(Q/31) = I g(t) dt, 
n-m n ,=I 0 

for each bounded and Riemann integrable g. Hardy and Littlewood proved that this relation per- 

sists when g has integrable singularities at 0 and 1, under suitable conditions on g and /3. 

We show that by choosing suitable 8, and g with an arbitrarily weak singularity at a suitable in- 

terior point (Y E (0, l), one can ensure that 

lim 1 i g({jP}) = co. 
n-m n ,=I 

On the other hand, if the singularity lies at 0, then at least 

I 

lim inf _! i g({ j/3}) = j g(t) dt. 
n-a n ,=, 0 

The motivation for these results lies in determination of the radius of convergence of the q or 

basic hypergeometric series 

- I 

f(z):=l+ C (n (A-&}zj, 
j=l k=l 

the solution of the functional equation 

f(z)(l -zA) = 1 -zqf(qz). 

Especially for IA / = /q1 = 1, these power series are of interest in Pade approximation. Although the 



radius of convergence is 1 for “most” A and q, we show thatfmay be a transcendental entire func- 

tion for suitable IAl = /q1 = 1. 

8 1. INTRODUCTION AND STATEMENT OF RESULTS 

Let /I E (0,l) be irrational and {np} denote the fractional part of n/3, n 2 1. 
The sequence {nfi), n = 1,2,3, . . . , is uniformly distributed in [0, 11: That is, 

(l-1) lim L i g((.iP)) = i g(t) dt, 
n-m n j-1 0 

for each g bounded and Riemann integrable on [0, 11. In investigating certain 
power series, Hardy and Littlewood [5] extended (1 .l) to g with integrable 
singularities at 0 and 1. 

Suppose that g(x) is bounded and Riemann-integrable in [a, 1 - 61 for all 
0< 6~ 1, and increases steadily to 03 as x-+ 0+ or x+ l-. Then they showed 
[5, p. 89, Thm. 51 that (1.1) persists if the integral there is finite, and if the se- 
quence of partial quotients { aj}jml in the continued fraction expansion 

(1.2) B=&J+$++&J+... 

is bounded. 
The set of p E (41) with this latter property has linear measure 0. As a sup- 

plementary result, Hardy and Littlewood [5, p. 89, Thm. 41 showed that (1.1) 
persists for almost all BE (41) if also 

~g(t)dt[log2++log2& dt 
1 

converges. 
Recently, consideration of certain power series has led the authors to in- 

vestigation of the convergence of (1.1) for all irrational fi E (0, l), and even for 
n + 03 through a subsequence. In the positive direction, we prove: 

THEOREM 1.1. Let I,U : (0, l] --t [0, 00) be monotone decreasing with 

(1.3) lim y(t) = co, 
t-o+ 

but 

(1.4) d w(t)dt<m. 

Let p E (0,l) be irrational. Then 

(1.5) lim inf i ,_, w((jp}) = i ty(t) dt. 
n-m 0 

It is easy to show, and well known, that, no matter how weak is the singulari- 
ty of I+Y at 0, there exists /3 for which the lim inf cannot be replaced by lim. One 
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of the essential features here is that the singularity of w lies at an endpoint of 

[O,l]. When the singularity lies inside (O,l), not even a subsequence of the 

quadrature sums need be bounded, let alone converge: 

In formulating our result, we need the convergents Pji/qj, j= 1,2,3, . . . of the 

continued fraction (1.2). These may be defined by the relations p. := 0; p1 := 1; 

qo:=l; q,:=al and 

pn = a,p,-l+p,-2; qn = w-~+q,-2, nd. 

THEOREM 1.2. Let t+~ be as in Theorem 1.1. There exists irrational fl E (0,l) 

and cx E (0, p) such that 

The pair (a, /I) may be any pair satisfying the following: Let Pj /qj, j = 1,2,3, . . . , 

denote the convergents of the continued fraction (1.2) of /3, and assume that 

1 
(1.7) lim w - 

j-m ( >i 
i qk=cQ. 

4j+l k=l 

Define a by 

(1.8) o:=P+ i @kb-Pkh 
k=l 

The rather surprising feature here is that the full sequence in (1.6) diverges. 

This is in contrast to the situation for other procedures of numerical integra- 

tion, such as Gauss quadratures, where at least a subsequence converges in the 

presence of an interior singularity [ 1,12,15]. There, as here, an interior singu- 

larity causes more difficulties than an endpoint singularity, as evidenced (in this 

case) by the more negative assertion of Theorem 1.2. 

Note that it is possible to ensure (1.7) by assigning the partial quotients aj in 

the continued fraction (1.2) to grow sufficiently rapidly. Since the condition 

(1.7) forces the denominators qj of the convergents to grow fairly rapidly, the 

set 8 of /3 satisfying (1.7) is generally “quite thin”. For example, if 

v(t) := log f, tE(O,ll, 

(1.7) implies that 

lim (log qj+ 1)/qj = 03, 
J-m 

and hence that (by standard estimates) 

IP_Pj/4jl 5 l/(4jQj+l) 5 exP(-<jqj)3 jzl, 

where rj~O0 asJ.+w. 

We can use the Jarnik-Besicovitch theorem [9, p. 510, Thm. 31 to deduce that 

not only does B have linear Lebesgue measure zero, but Hausdorff h-measure 
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zero, for the function 

1 -fi 

Nt) = log t ( > 
7 P>2. 

Hence 8 has Hausdorff dimension zero and logarithmic dimension at most 2 

(see [16] for definitions). In the other direction, 9 will be dense in (0,l) and 

will have positive Hausdorff h-measure for a suitable function h. Unfortunate- 

ly, this is not an immediate consequence of classical theorems on diophantine 

approximation, but we shall not give further attention to this point. 

As alluded to above, Hardy and Littlewood considered (1.1) for singular g, 

in their investigation of the radius of convergence of certain power series. They 

investigated, for example, the basic hypergeometric series 

f(z) := i zj/ ir (1 - qk) 
j=O k=l 

= i Zj/(C?;q)j, 

j=O 

where 

1 k=O. 

(1 -a)(1 -aq)...(l -aqk-I): k>O. 

With the aid of the remarkable identity 

m 
f(z) = exp( C z”/(n(l -q?)), 

n=l 

they established [5, p. 861 that the radius of convergence off is 

(1.10) liminfji (l-qj)l”“=liminf ll-q”I”“, 
n-m j=l n-m 

for any 141 I 1. This limit relation is itself of some interest. 

Recently, there have been several studies of convergence of Padt approx- 

imants for certain q-hypergeometric series when /q1 = 1 [2,3,4,13]. This was 

made possible by explicit formulae derived for the PadC approximants by 

P. Wynn, back in the 1960’s [19]. The convergence problem is of particular 

interest for /ql = 1, since in this case the power series usually have natural 

boundaries on their circle of convergence. While there 

convergence of Pade approximants for functions with 

branchpoints 114,171, not so much is known for 

boundaries. 

are general theorems on 

essential singularities or 

functions with natural 

One of the series considered [2,3] was 

(1.11) 
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F(A;q;z):= l+ E (h (A-qk))zj 
j=l k=l 

= f (A-‘q;q)j (AZ)‘, 

j-0 



which satisfies the functional equation 

(1.12) F(A;q;z)(l -z/l) = 1 -zqF(A;q;qz). 

The radius of convergence of this series turned out to be far more enigmatic 

than expected, and was the inspiration for this paper. To avoid trivialities, sup- 

pose that 

(1.13) A#qk, k=O,1,2 ).... 

The interesting case is when (A / = /q1 = 1 and q = exp(2n$), p E (91) irra- 

tional. However, for completeness, we first enumerate the other cases: Let us 

denote the radius of convergence of F(A;q;z) by R(A;q). So 

(1.14) l/R(A; q) = lim sup 1 fi (A - qj)] 1’n. 
“-CC ,=I 

CASE I: Iql>l. Then R(A;q)=O. 

CASE II: [ql<l. Then R(A;q)=l/IAl andfis meromorphic in C. 

CASE 111: q = exp(2rcip/v), where p, v are coprime integers. Then F(A; q; z) is 

a rational function with simple poles contained in the set of vth roots of A” - 1. 

CASEIV: q=exp(2niP) wherepE(O,l) is irrationaland JAI fl. ThenR(A;q)= 

l/max{l, IA I}, and the circle of convergence is the natural boundary off. 

For a proof of these relatively simple facts, we refer the reader to [2,3]. We 

now turn to the remaining case. In formulating our result, we need logarithmic 

capacity, which may be defined as follows: Let 9, denote the set of poly- 

nomials of degree at most n. For compact &CC, we set 

cap(&) := lim ( min l~P]lL,(s$l’n. 
n + m degree(P) = n 

P manic 

For arbitrary .!F'cC, its (inner) logarithmic capacity is 

cap($) := sup(cap(&): 8c.F and 8 compact). 

A set of cap 0 is thin indeed. It has planar Lebesgue measure 0. More- 

over, its intersection with every line has linear Lebesgue measure 0, and it has 

Hausdorff dimension 0. See [7,8,18]. 

THEOREM 1.3. Consider the power series (1.11) subject to (1.13). Let 

(1.15) q = exp(2niP), /?~(0,1) irrational, 

and 

(1.16) IAl = 1. 

Then 

(I) R(A;q)rl. 

(II) When A=l, R(A;q)=l. 

(III) There exists a set .Yq, depending on q, with cap&) = 0 such that R(A; q) = 1 

whenever A B ~7~. 
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(IV) There exist A and q satisfying (1.13), (1.15) and (1.16) such that R(A; q) =CQ, 

that is, F(A; q; z) is a transcendental entire function. For the pair (A, q), we re- 

quire only that the convergents Pj/qj, j ~1, of the continued fraction (1.2) of 

p satisfy 

(1*17) ,I\? (log 4j+1)/4j = 03, 

and that 

(1.18) A = exp(2zio), 

where a is defined by (1.8). 

Note that in the cases (II) and (III), f has a natural boundary on its circle 

of convergence [2,3]. It seems certain that given TE (1,03), there exists a pair 

(A, q) as above for which R(A; q) = r. The set of such (A, q) should be “thin” 

in {z: 1.z = 1}2, as indicated by the above theorem. 

We prove Theorems 1.1 and 1.2 in Section 2, and prove Theorem 1.3 in Sec- 

tion 3. 

ACKNOWLEDGEMENT. We acknowledge helpful discussions with Prof. J.N. 

Ridley of the University of the Witwatersrand. 

$2. PROOFS OF THEOREMS 1.1 AND 1.2 

We begin by recalling some elementary properties of continued fractions: 

LEMMA 2.1. Let DE (0,l) be irrational, with continued fraction (1.2). Let 

Pj/qj, j=l,2,3 ,..., denote the sequence of convergents to the continued frac- 

tion of p. Then 

(a) 

(2.1) IP_Pj/4jl 5 11(4j4j+l)9 j>l. 

(b) (-l)‘(qjp-Pj)=Iqjp-Pj(>O, jz-1, and Iqjp-Pjl decreases strictly as j 

increases. Moreover, Pj, qj are coprime for jr 1. 

(c) qj increases strictly as j increases, and 

(2.2) p > l/(q, + 1). 

PROOF. (a), (b) See [6, pp. 137-81. 

(c) See 16, p. 1321 for the proof that qj is increasing. Also, from (1.2), 

/3>L=L 0 
a, + 1 4,+1’ 

We let (x) denote the integer part of XE IR, that is, the greatest integer IX. 
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PROOF OF THEOREM 1.1. First let ~~(41) and 

g(t) := 
u/(0, tE [&,l]. 
o 

, otherwise. 

Then g is bounded and Riemann integrable in [O,l], so 

lim L i g({jg}) = i g(t) dt = i v(t) dt. 
n-m n j=l 0 E 

Since vrg and E> 0 is arbitrary, we deduce from Lebesgue’s Monotone Con- 

vergence Theorem that 

(2.3) fim_Ffi +, w({jPI) 2 i do dt. 
I 0 

The other direction is more difficult. Choose j even, and let p/q = pj/qj be an 

even order convergent to the continued fraction expansion of p. Then by (2. l), 

(2.4) og-p/qs1/q2, 

and 

(2.5) (P94) = 1. 

One immediate consequence of (2.5) is that 

(2.6) {{jp/q}: lljlq-1) = {j/q: lsjlq-1). 

Hence for lrjlq-1, 

(2.7) l/q 5 { jp/q} 5 1 - l/q. 

Then in view of (2.4), and (2.7), 

0 5 {j(P-p/q)) + {jP/q) 

Ij(/3-p/q) + 1 -l/q 

5j/q2+1-l/q<l/q+l-l/q=l. 

Hence for 1 ijsq-1, 

{jP> = {j(P - p/q) +jp/q) 

= { (j(P -p/q)1 + {jP/qI 1 

= {j(P- p/q)1 + {j@q}. 

Then (2.4) and the monotonicity of I,Y ensure that 

(2.8) w({jPI) 5 v/({jP/q)), 1 Ijsq- 1. 

Now, (2.6) ensures that 
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<-$ ‘1” ~,~(t)dt - (b y monotonicity of I+Y) 

as q + 00. We deduce that 

lim inf i 
n-c=- 

g, w({jp}) I ; y(t) dt. 
, 0 

Together with (2.3), this proves the theorem. 0 

In proving Theorem 1.2, we shall need: 

LEMMA 2.2. Assume the notation of Lemma 2.1. Let q. := 1, and 

(2.9) Sj:= i qk, j2l. 

k=O 

Then (a) 

(2.10) {sjP} =P+ i (q/rP-Pk)E(OYfl), jzl* 
k=l 

(b) There exists 

lim{sj/?) =/?+ i (qkP-Pk)=:aE(O,l). 
1-m k=l 

PROOF. (a) By Lemma 2.1, C’,=, (qk P-pk) is an alternating finite series of 
terms that decrease in magnitude. Since 

41B-Pl < 09 

we have 

%P-Pl< .i (qkP-Pk)<O* 
k=l 

Now 

P>P+qiP-pi ZB-l/q2 (by (2.1)) 

rp-l/(q1+1)>0, 

by (2.2). Hence 

p>P+ i (qkfi-lt7k)>P+qlP-PI>0* 
k=l 

Then 

= {p+k+, (qkP-Pk)) =P+kzil (qkP-Pk)* 
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(b) This follows directly 

PROOFOFTHEOREM 1.2. 

Sj_1 I n < Sj. 

Then 
ln 

from the alternating series test. q 

Let (Sj)jm, be as in Lemma 2.2. Let j22, and let 

(2.11) ! I{sj-lPl-~l = lkYEj(4k8-P!f)l 

by Lemma 2.1. Then 

= WC1/4j+l)/(l + i q/c) + O”* 
k=l 

as j+o3, by (1.7). 0 

53. PROOFOFTHEOREM 1.3 

PROOF OF THEOREM 1.3(I). Let pn be the unit measure assigning mass l/n to 

qj, 15 js n. One way to reformulate the uniform distribution of (qj)yZ 1 on the 

unit circle, is that /.I,, converges weakly as n -+ 03 to normalized Lebesgue 

measure on the circle: 

&,(B) L d8/(27r), n --+ 00. 

Let us consider the associated potential functions 

U(z;/f,) = Slog iz-tl-‘dM), 

and note that 

I!, (z-qj)ll’n = exp(-Wz;,G). 

Let e>O. By the maximum modulus principle, 

l/R(A;q) = lim sup I fi (A -qi)ll'n 

n-m j=l 

5 lim sup( max I fI (z-qj)l)l'n 

n-m ~Z~=I+& ,=I 

= exp(-lim inf(, miri, U(z; ,Uu,))). 
n-m z 
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Since K : = {z: IzJ = 1 + E} is a compact set lying at a positive distance to the sup- 
port of (p,),“= 1 and dW(2n), equicontinuity of (U(z; ,uJ),“=, on K, and the 
Arzela-Ascoli Theorem shows that 

lim min U(z;C(J) 
rl*m iZI=l+& 

= min U(z;dO/(271)) 
121 =I +E 

= min -!- i log lz-eieI-‘dO 
iZ]=I+& 2n _B 

= log(1 + &))I. 
Hence 

l/R(A;q) I1 +&. 

Now let s-O+. 0 

PROOF OF THEOREM 1.3(11). Now in view of (1.14), 

(3.1) 

where 

l/R(l;q) = limsup 1 fi (1 -qj)jl’” 
n-c= j=l 

= exp 
L 

-Iim inf + 
n-m 

i, g({jP}) , 
I I 

(3.2) g(t) := -log 11 -e2nitI = -log(2 sin rrt), tE (41). 

Let T/S be an even order convergent in the continued fraction expansion of /?. 
Then, as at (2.7), 

(3.3) l/s5 (jr/s} 5 l-l/s, lrjss-1, 

and 

(3.4) o<p-r/s5 l/s2; (r,s)=l. 

If first, 

(3.5) 
log s log s 
ss{jr/.s}51-- 

s ’ 

then by elementary inequalities, 

IgC{jPl>~ 

= log 

I log 

I 

1-r 
sin(n { j/3}) - sin(n { jr/s}) 

sin(rr { jr/s}) II 

jrc(p- T/s) 

I/ 

-’ 
l- 

sin(n(log s)/s) 

jlr/s 
I log l- 
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I 7r/(s log s), 

for large enough s. If z?~ denotes the set of indices j satisfying (3.5), we obtain 

for large enough s, 

(3.6) -& ,c Is({jBWg({jrW 5 &. 
JEgS 

Let .&= (1,2, . . . . s - l} \ SS. Now exactly as in the proof of (2.6) and (2.7), we 

can show that 

I{jir/s}-{jzr/s}I 21/s, lrj,#j,Is-1. 

Hence the number of elements of XS is at most 2(logs+ 1). Moreover, if 

jESS, (3.3) shows, as above, that for large enough s, 

Ig(Li~))-g({jr~4>l 5 log l- 1 Ij:&i_ii / I-’ 
slog l- 

jrc/s' -’ 

(n/s) (1 - 2/s2) 

Hence, for large enough s, 

; 

& C lg(~j~l)-g(~jrW 

(3.7) 
/Et% 

-= & (log ss 1) (log(2s)). - 

Thus, by (3.6) and (3.7), 

& ‘4’ n({jr/s})i = o(l), s-+ 00. 
J 1 

Now since 

{{jr/s}: lljls-1) = {j/s: llj5s-1}, 

we have 

em 

where we have used (3.2), and the polynomial 

S-l 

P(z):= n (z-e 2niq = (z”-1)&--l), zzl, 
J=1 
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which satisfies P(1) =s. Combined with (3.8), this yields 

(3.9) S-m & S;’ g({_iP)) = 0, lim 
I 1 

ss.N 

where JV is the set of all integers s that are the denominator in an even order 

convergent to /3. Finally, g is bounded below by -log 2, so introducing the trun- 

cations 

gN(t):= min{g(t),N}, tE(O,l), nzl, 

we obtain that g, is bounded and Riemann-integrable, so 

lim inf t ji, s({jP)) 
n-m 

By monotone convergence, as N-t 03, this last integral increases to 

1 g(t) dt = --i log 1 1 - e2”‘1 dt = 0. 
0 

Together with (3.9), this shows that 

lim inf t jir g({jp}) = 0. 
Il-m 

By (3.1), R(l;q)=l. El 

PROOF OF THEOREM 1.3(111). Now with the notation used in the proof of 

Theorem 1.3(I), we have 

R(A; q) = exp(-lim inf U(A; ,DJ). 
n-C= 

But the weak convergence 

and the lower envelope theorem of potential theory [ll, Thm. 3.81 shows that 

there exists a set gq of cap 0 such that for A $ Pq, 

liminfU(A;p,)=U(A;dB/(2n))=&~ logjA-e’eI-‘dr3=0. 
n-00 II 

Hence for IAl =l, Ar$Yq, R(A;q)=l. 0 

PROOF OF THEOREM 1.3(1v). Let us assume the notation of Lemma 2.2, and 

in particular the definition (2.9) of (Sj)jm_i. If Sj_i <n <Sj, then 
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CkC, IA - dlP 

<2wv”I&qS, III/n - 

=2/sin(n(cr-.s_,p))l”” (by (1.15) and (1.18)) 

=2lsin(7r(cr-{.sP,j3}))~“” 

I 2(7c/qi+,)"" (by (2.11)) 

I2(Tc/q,+p~ 

52nexp(-logqj+,/(l+ i: qk))-'O, 
k:l 

as j-+ w, by (1.17). 0 
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