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ABSTRACT 

Completing the description of the possible radii of convergence of q-series 

F(z) = I + I: ( ]I (A -q’))i’, 
, I 1~1 

it is shown in this paper that, for any given 1~ R<cx, there is a q-series with A = exp(2nicx), 

q= exp(2niD) such that its radius convergence is R. If (Y is a rational number, then for any irrational 

p, the radius is always 1. 

1. The study and applications of the q- or basic hypergeometric series 

(1) F(z) = l+ i ( {I (A -qk))Zj= i (a; q)jWj (L7=Am1q, w=AZ) 
,-I h=l / 0 

is a standard subject in approximation theory (see [CR]). The radii of con- 

vergence of these and related series have been investigated in several papers 

(see, p.e. [DL], [DLPS], [HL]). In the most interesting case IA 1 = /q1 = 1 it has 

been proved in [DLPS], that the radius is 1, if A = 1, and also that choosing 

the irrationals CX, p in a suitable way and putting A = exp(2zia), q = exp(2ni/3), 

one can obtain a transcendental entire function in (1). Our aim in this paper 

is to fill the gap between 1 and 00 by showing, that any 1 <R< 03 can be 

prescribed as the radius of convergence, which makes the list of radii in [DLPS] 

complete. We also prove (Theorem 5), that the case of rational (Y is analogous 

to A = 1, that is the radius of convergence is 1 for any irrational p. Our main 

result is the following theorem. 
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THEOREM 1. For every 1 CR < 03 there exists a pair of irrationals (Y, j3 such 

that with A = exp(2nia), q = exp(2n@), the radius of convergence of the power 

series in (1) is R. 

2. For any given real number x we denote by a, = a,(x) (n = 0, 1, . , . ) the par- 

tial quotients of the simple continued fraction expansion of x = [ae; al, a2, . . . 1. 

The corresponding approximants in their lowest terms are denoted by 

pn(x)/q,(x)=pn/qn. This notation will be applied throughout in this paper. 

The recursions 

(2) 

Pk=akPk-1 +Pk-2, qk=akqk-1 +qk-2, qkpk-I-Pkqk-1 = te1Jk9 

(kz2) 

and relations 

(3) 
(-l)/( 

qh.x-pk = 
qk+l fak+lqk 

(O<G+ I < I), 

as well as the best approximation property: if a, b are integers and a< qk + , , 
then 

(4) lax-b1 2 lqkX-pk/ 

are well known facts in the theory of continued fractions (see [HW] or [Nl]). 

LEMMA 1. Let a,, qll,pll denote as above and let s, = C:‘-, q,. Then 

0) s,, < 3q, 9 
(ii) and if a, + ~0, then s,/q,, + 1. 

PROOF. Addingtheinequalitiesqj+r=aj+tqj+qJ_trqj+qJ_t, (j=l,...,n-1), 

weobtainq,~q,+s,~,>s,_,andhences,<3q,.Thuss,=s,~,+q,<3q,~,+ 

q,l. This implies 

1 <S”<34n +1<1+1, 
qn qN a, 

and the statement follows. 

LEMMA 2. For any given c>O there exists an irrational number x= [O; a,, a,, . . .] 

which is defined inductively by 

k= 1,2,..., 

such that x admits the following properties: 

(6) a,<a,,+ I, n-1,2,...; 

(7) 
logqn+, 

lim ~ = c. 
I, +tm qn 
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Any irrational satisfying (7) also satisfies 

(8) 

PROOF. Let c>O be given. The partial quotients a, will be defined by induc- 

tion. If c is large (say, c> l), then the inductive definition is automatic by (5). 

If however c is small, we have to be more careful to make sure, that the frac- 

tions in (5) are large enough. Let a, 22 so large, that 

e (‘0, (‘u, 

-> 1, 
a: + a, 

then %> 
af+a, 
~ = a, + 1, 

a, a, 

thus defining a2 by (5) for k= 1 and taking into account q, =a,, we get 

azza, + 12 3. Suppose that for 12 ks n we have defined ak, qk such that (5) 

and (6) hold for 1 I k I n. To show that the inductive definition (5) makes sense 

for n and that (6) holds true for n+ 1 as well, we need to estimate the fraction 

in (5) from below. (5) implies exp(cq,)rak+ , qk, 1 5 kr n - 1, (6) implies 

ak?3, 2rk%n, thus we obtain for any 2<kln 

exp(cq,) = exp(c(akqkm I +4X--2)) = (exp(cqk- I))‘“’ exp(cqk-2) 

That is, 

> (a, qh ~, )“” = (akqk~I)2(akqk~I)Ui-2>qk(akf lb 

Wh 
e>ak+ 1, 

qk 

and we can complete the induction by putting k = n. Notice that by (6) we ob- 

viously have a,,> n, in particular a, + 03. 
As an upper estimate for q,$+ , we have 

(9) qn + , = a, + , qn + q,, _ , < e”q,l + q,, , < 2ec4iJ. 

For the other side, notice first that 

e wn 
-->a,+, >n, which implies e”al> nq,,, 
4n 

and 

e’“-l<a,+,, that is e”“‘-q,<a,+, q,l<qn+, , 
4n 

and hence 

c j 1-’ ecGl<qn+,. 
n 

By this and (9) we get 

log 
c J 

1-J +cq,<logq,,+,<cq,+log2, 
n 
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and dividing by q,, and letting n -+ co we obtain (7). We have to show that 

implies (8). Taking the logarithm in a,,+, qn < qn+ , <2a,+, qn and dividing 

q,, we obtain 

lim 
log== 

rr - m 4, 

as an obvious consequence of (7). This implies in particular a,, - 00, and 

(10) ec4~i<(a,+,)‘+E<(qn+l)‘+C 

if n is large enough. Also 

log%+,<(l+&)cq, 

holds for n IN, N fixed. Adding 

,I+ I 

these inequalities we get 

log n 4j<(1+E)csfl, 
,=lV 

and hence by Lemma 1 (ii) 

lOi3 II qj<(l l t2&)Cqn, 
,=I 

if n is large enough. Finally by (10) we obtain 

and the lemma is proved. We remark, that the same argument provides 

analogous lower estimate for this product as well, thus (7) in fact implies 

lim C:‘_ 1 log 4j 

J? rm logq, = l. 

(7) 

by 

an 

LEMMA 3. For a real number x let /1x1( denote its distance to the nearest in- 

teger, and let O<t<llxll. Then 

(11) 
t’ nt 

Isinrc(x+t)l = /l+p(.lsinnx/, where 1~/%~n”+- 
w . 

PROOF. Since Isin7r(Xkt)l = jsinn(bt-x-tt)j, where b is an arbitrary integer, 

we can assume without loss of generality that O<XS l/2. Then x= 1Ix11, 

sin ~1x2 2x and 

lsinrr(xkf)j = /sinnxcos77t+cos7rxsinnt/ 

I ( 
cos 7Tx 

= l+ cosnt-l+----- 
sin 7rx 

sin nt 
>I 

jsin 77x1. 

But 
cos 77x t2 Ttt 

COSTcf-11 ~ 
sin nx 

sinrct 5-7r2+- 
2 2x’ 

and the lemma is proved. 
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LEMMA 4. Let x be an irrational number, then 

(12) ,Z_W*‘Ii: log2/sinnkxl=O. lim 
II 

REMARK. This statement has been proved in [DLPS] for the special case, 

when n runs through the even indices. But this is just a minor technical advan- 

tage and a similar idea combined with Lemma 3 here works for the general case. 

PROOF. Let 1 I kr qn - 1 and write 

/sinr&xI = ~sinn(K~+k(x-:))I. 

Since 

(p,, and qn are coprime), and by (3) 

we can apply Lemma 3 with 

t;=k x-3 and,y:=kfi, I I %I qn 
and obtain 

/sin Tckxl = sin nk& * 11 +tkl. 
I I 4/l 

Since pn and qn are coprime, the numbers kp, for k = 1, . . . , q,, - 1 run through 

the non-zero residue classes mod qn, thus the set of fractions 
{k(p,/q,,): lrksq,- l> is identical mod 1 to the set {(k/q,): lrksq,,- I}. 

Therefore the number of indices k such that 

is 2fi. Extending the summation for these indices and applying Lemma 3 and 

(12a) we obtain by trivial estimate 

(71 = 1 .~ log(l+&N2filog3. 
lWCP,,/U,,ll 5 l,‘q,,, 

If, on the other hand 

then by Lemma 3 
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and extending the summation to these indices of second kind we get 

02 = c log(1 +&)<qn log 
llk(P,3/4,,)ll > 1 /v7 n 

Thus 

-&~~,‘log2~sinnkx~ =&yc,‘log2 
n ” 

1 Y,r ’ 
=- C log2 sin rr: +0(l) = o(l), 

qn-1 A=I I I n 

since, more generally 

is well known. 

3. Now we turn to the proof of Theorem 1. The statement is reformulated in 

a slightly stronger way in Theorem 2, which together with Lemma 2 obviously 

imply Theorem 1. 

THEOREM 2. Let R = e”, c>O be given. If an irrational number /3 satisfies 

condition (7), then there exists another (irrational) number (x such that putting 

A =exp(2nia), q= exp(2n@), the radius of convergence of (1) is R. 

PROOF. The main tool in the proof (just as it was for R = 03 in [DLPS]) is the 

function defined by 

(13) f(x) = ; (q&)x-&W). 
!,=O 

This function has many interesting number theoretic and function theoretic 

properties, which will be studied independently in the forthcoming papers by 

J.N. Ridley and the author. Here we only deal with the irrationality off(x) in 

section 4. 

Note that the series in (13) is an alternating series of terms decreasing in ab- 

solute value (properties (3) and (4)), therefore 

(14) E (4jx-Pj)=~(4n+Ix-Pn+I) ("<L9<1)- 

j-n+1 

If furthermore a,, + 03, or equivalently (qn+ ,/q,J -+ 00, then by (3) 
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where19,~1.Foragivenl<R<ooletc=logR,andletthenP=[O;a,,a,,...] 

denote an irrational with the properties as stated by Lemma 2. Put 01 =f(P) and 

let A,q be as in the statement of the theorem. We have to show that 

or writing it in logarithmic form 

(16) limsup~(i+,log~A-q”~)=-C. 
,I + m 

We write, as usual, 

log IA - qk 1 = log I $nia - e2nrkfl ( 

=logll-e 2n’(kBp a) 1 = log 2 1 sin 1r(k/3 - a) 1, 

and denote 

~,~~1~,log21sinn(kp-a)l, 

(2) _ L 

h fs, 

ON - N c log21 sin rr(s;p-~x)1, 
,, d .?, 

then o,v = a”) + oc2) N 
N (recall that s,= CiIqk). Let first k#Sj, say s,<~<.s,,+,. 

Then k=s,+m, where lIM<q,+,--1, and by (15) 

/sin n(kp--aa)1 = jsin n(mp- iY: (qjP-Rj))l = 
,-?I+, 

Since m<q,,+,, (4) implies IImp I/ 2 1 qn j3 - p,, / > (1/2q, + , ), thus applying Lem- 

ma 3 we obtain 

(17) log2jsinn.(k/3-a)1 =log2~sinnm/3I+log(l+~,,+,,,,,), 

where 

49,+1 
1&J+1,m 54, 

ni- 
independent of m. Suppose s, I N<s,+ 1. Writing (17) in a:) we obtain 

No(')= i '$log2l 
N-S, 

N sinnmpl+ 1 log2Isin7mBI+L~, 
n=l m=l m=l 

where 
v q”-l N-S, 

L,AJ= c c lw(l +P,,,)+ c log(l +P”+I,m)- 
n-, m=, rn=l 

Since a,, -+ CO implies log( 1 + ,D~,,) + 0, we obtain LN= o(N) for N+ 03. Put 

briefly 
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then 

SN-S,. + o(l). 

By Lemma 4 we have S,_, +O. Thus in the first part of (18), we form 

averages of the terms of a null sequence, therefore that part tends to 0 with 

v + 03. It is easy and well known (see formula (4.4) in [HL]), that 

lim sup S, 5 0 
,I + m 

holds for any irrational /?. This implies immediately, that 

N-S 
lim sup v SNPS,.~O, 

*h/,m N 

and hence lim supo~‘~O. Taking N=s,+t - 1 we obtain by Lemma 4 

(19) lim sup 0:’ = lim oi,‘!, = 0. 
/v-m i’+m 

It remains to study the behaviour of 0:‘. Applying (15) again 

log2Isinn(s,p-a)/ =log2 sinrr 
I 3 

271 
= log p+log 

qn+2 ( 

qnt2 sin II &l 

71 4n+2 > 

= log2n-logq,+2+A,, 

where An + 0. Hence assuming S, 5 N< s,+ t we obtain 

(2) _ v 
ON -NlOgZn-ilOg i q,+2+$ i Ajzj, 

,=I J 1 

or, 

O$‘=-‘10 fI qj+*+O(l), 
N g,_, 

where we have made use of the obvious relations 

v<v+O and A,AO. 
N-S, 

The estimate 

ilOg I) qj+21 
1 

,-I 
_llOg ir 9j+2 
S"+l j-i 

is trivial, and hence by (7), (8) and Lemma 1 we get 

1 
limsupblog h -= 

1 
log fi 

1 
lim ~ 

-log 9v+2 

W) -= lim = -c. 
N+rn /=I 9j+2 I'-brn s,+, - 1 J=I qj+2 p+m 4v+l 
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Since lim sup,, m oNs limsup,, co a:) + lim sup,,,, m a$‘, and both limsups on 

the right hand side are attained on the same sequence N=s, - 1, we get by (19) 

and (20) 

lim sup o,,v = lim (T,~, ~, = -c, 
N+m * Vm+m 

and the proof is complete, apart from the irrationality of a, which is irrelevant 

to the fact that the radius can be prescribed. 

The question of the rationality of cr will be discussed in the next two sections. 

4. It is not true that f(x) maps any irrational number x onto an irrational 

value. Moreover, it can be shown that any number (in particular, any rational 

number) in (0,l) is taken by f in an irrational point. However, in the theorems 

below, we prove that (Y =f (p) considered in section 3 is indeed irrational. 

THEOREM 3. Let x be a given irrational. Let q,ls a< q,,+ 1 and b be integer 

numbers, and define 

fl= min[~,max(I,~)j . 

Then 

lax-b ~,4q,x-P,,l. 

PROOF. The weaker estimate ILIX- blz /qnx-pn/ is just the best approxima- 

tion property (4). A slightly refined version of its standard proof (see for in- 

stance [NI]) will suffice for our theorem. Given CI and b, the linear system 

Q=W,,+W,+l b = UP,,+ VP,,., 

has a unique and integer solution for u and v, since the determinant q,,p,,+ , - 

q,,+lp,,= *I. Since qnsa<qn+l, we have either v=O, u>O, or uv<O. But 

also 

(4nX-P,1)(4n+,X-Pn+,)<O, 

thus 

lax-b1 = I~(q,x-Pn)+u(qn+lx-Pn+l)I 

= le7,X-P,)lf l4q,t-, X-P,+,)1 2 /bI. 14nX-Pn/. 

If u=O, then 
a 

If v>O, then u<O and 

361 



If finally o<O, then u>O and 

IUI = U = ‘vIQ,+I+cIzP, 
4n 

i.e. in all three cases we obtain 1~1 rp and hence the statement follows. 

THEOREM 4. Suppose O<x< 1 is irrational. If 

(i) f(x) = P/Q, or more generally 

(ii) P+Qf(x)+Rx=O (P,REZ, QEN), then 

a,(x)<4Q (n = 1,2;..) 

in the first case, and 

lim sup a,(x) I 4Q 

in the second. That is, if {a,(x), n = 1,2, . . .} is unbounded, then f(x) is irra- 

tional, moreover l,x,f(x) are rationally independent numbers. 

PROOF. Suppose f(x) = P/Q. Then for any n we have 

i (y,xP,)-~l = I i (4jX-Pj)l<14n+lX-P,+Il. 

J-O ,=n+, 

This can be written as 

(21) Is,Qx-EI<QI~,+,x-~P,+II, 
where E is an integer. Assuming (ii), the same reasoning gives 

(22) I(s,Q+R)x-El<Qlq,+,x-p,,,/. 

If R f 0, then for a given E > 0 choose n so large, that &qn_, > IR 1, and suppose 

a ,,+ ,z (4 + E)Q. If R = 0, then simply choose any n with a,, ,? 4Q and put 

E= 0. In either case, by Lemma 1 (i) we obtain 

qn<qnQ<SnQ- IRI <%Q+ IRI 
<(3+&)q,Q<(4+&)Qq,Ia,+Iq,<q,+I, 

thus Theorem 3 applies with a=s,Q+ R. By (s,Q+ R)/q, > Q and q,,+ I - 

s,Q-R>q,Q we get both from (21) and (22) 

Q/w-n,l< k,Qx-El <Qlqn+lx--Pn+,l. 
i.e. 

14nX-PnI < kLz+lX-Pn 
a contradiction. 

+1 9 

COROLLARY. If p is the irrational number we considered in Theorem 2, then 

a=f(P) is irrational as well. 
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5. In this section we are going to show that, if a = P/Q is a rational number, 

and p is an arbitrary irrational, then with the usual notations for A and q the 

radius of convergence of (1) is 1. This extends Theorem 1.3 (II) of [DLPS], 

where the statement was validated for a= 0. Besides, this section provides a 

second and indirect proof of the fact, that f(P) constructed in the proof of 

Theorem 2 is irrational. 

THEOREM 5. Let 0< P/Q< 1, (P, Q) = 1 be a given rational, and x an irra- 

tional number. Then the radius of convergence of the q-series with A = 

exp(2ni(P/Q)), q = exp(2nix) is 1. 

PROOF. It is enough to show that 

1 
(23) Iim sup ~4J,‘log2)sinn(~-~x)l =O. 

qn-1 j-l 

This statement generalizes Lemma 4 by allowing P/Q to appear, but it is weaker 

than Lemma 4 because of the limsup in place of lim. Nevertheless, a similar 

proof applies. Since qn and qn+ , are coprime numbers for any n (see (2)), there 

are infinitely many q,, such that Q is not a divisor of q,,. In what follows, this 

will always be supposed. Then Pq, -jQ # 0 for any j, and hence 

Since 

Ik-.iQI >L 
qnQ -qnQ’ 

(25) $$: Isksq,- 1 
” 

we have by (24) 

Let lsklq,-1 and write 

then apply Lemma 3 to obtain 

isinX(i--k-x)1 = lsini(&~~)~. ll+&l. 

Making use of (26) and the same reasoning we applied in the proof of Lemma 

4, we get 

(27) 

Thus by (27) and (25) 
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i 

1 
lim sup -‘~t’log2/sinn(~-kx)( 

qn-1 k-21 

(28) 

By (26) there is a j such that 

J<p<j+l 

qn Q q,l ’ 
and for these indices 

(29) iiog2lsin=(~-j~)ll~Ilog2sinn~ 5 log kq,Q, 

and the same estimate holds for the term of index j+ 1. Separating these two 

terms from the summation we write 

; 

1 
-q~‘log21sinrc(~-J-)l 
qn-1 k=l 

(30) 
1 

=- C iog’2Jsinn(g-:)I +0(%). 
qn-1 kfj,j+l 

But 
1 

lim - C log2lsinrr(~-~)l =blog2lsinrc(:-t)l dt 
.X-CC qn- 1 k#j,j+l 

= ilog sin nt 1 dt = 0, 
0 

is immediate by the piecewise monotone property of the integrand, thus by (30) 

the proof is complete. 
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