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ON IGNORING THE SINGULARITY* 

G. MYERSONt 

Abstract. Conditions are given, weaker than those previously known, under which one can 
ignore a singularity while carrying out a numerical quadrature. The conditions apply in all (finite) 
dimensions. A special case concerns the theory of uniformly distributed sequences. 
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1. The problem, a solution, and previous work. We are concerned with 
applying quadrature rules to functions with endpoint singularities. For n = 1, 2, **, 
let Q. be the quadrature rule given by 

n 

Qn(f) = ZWnkf(Xnk), 
k=1 

where the weights wnk are real or complex numbers, and the nodes Xnk are in (0, 1] 
and are nondecreasing in k. We shall assume throughout that 

lim Qnj(f f(x) dx 

for all f continuous on [ 0, 1]. 
Let R be the class of all functions for which the Riemann integrals fl f(x) dx 

exist for all a in (0, 1 ] and converge to a finite limit as a approaches zero. Let M 
denote the class of functions in R that are monotone, and BM the class of functions 
in R that are bounded in absolute value by a member of M. We wish to integrate 
functions in BM numerically by applying the quadrature rules Qn this is known as 
"ignoring the singularity." Miller [4] and Rabinowitz [6] gave a simple condition on the 
weights and nodes that guarantees convergence of Qn(f) to f0 f(x) dx for f in BM. 
We shall refer to this condition, which we state below, as "the standard hypothesis." 
We present an equally simple and strictly weaker condition for convergence. 

We write Z(a) for a sum over all k such that Xnk is less than a. 
THEOREM 1. If there is a positive constant c such that Z(a) lWnk I < ca for all 

a < ao and all n > no, then 

lim Qn (f)= f(x) dx 

for all f in BM. 
We defer the proof, as the theorem will follow from a more general result given 

below. We pause to demonstrate that the hypothesis in Theorem 1 is strictly weaker 
than the standard hypothesis. 

*Received by the editors July 16, 1990; accepted for publication (in revised form) January 21, 
1991. 
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1804 G. MYERSON 

The standard hypothesis is the existence of positive constants c and a such that 
Xnk < a implies 

|Wnk ? C(Xnk - Xn,k-1) 

for all n > no. Summing on k, it is clear that this hypothesis implies that of Theorem 1. 
Now let Qn be the quadrature rule given by 

1 1 k -i 
Wnk = -X Xnl = -, Xnk= for 2 < k < n. 

n n n7--1 

It is clear that Qn(f) tends to 1f f(x) dx for all f continuous on [0, 1]. Taking k = 2 
in the standard hypothesis, we find that c must satisfy 1/n < c/n(n - 1), which is 
impossible for large n. On the other hand, #{ k: Xnk < a } < 2na, as we readily 
establish, so 

(a) 1 
Wnk = X#Ik Xnk < al} < 2a 

and the quadrature rule satisfies the hypothesis of Theorem 1, with c = 2. 

2. Higher dimensions, main theorem, and proof. Theorem 1 generalizes 
easily to functions of any number of variables, the most difficult problem being to find 
congenial notation. 

Write Hm for (0, 1]m. A quadrature rule Qn is given by 
n 

Qn (f) = Wnk f (Xnk), 
k=1 

where the weights Wnk are real or complex numbers, and the nodes Xnk are in Hm. 
Let a = (al,. ,am) and b = (bi,m ,bm) be in Hm. We adopt the following 

notation: 

a < b :=aj < bj for 1 < j < m; 
a < b :=aj < bj for 1 < j < m; 
lal := ala2 .... am; 

m(a) := min(aj); 
3 

B(a,b) :={ x: a < x < b }; 
b1 

jf (x) dV:= I f (x) dV. 
a B~~~~~(a, b) 

We assume throughout that 

lim Qn (f )= f (x) dV 

for all f continuous on the closure of Hm-of course, 0 = (0O*. , 0) and 1 = (1, * ,1). 

Let R be the class of all functions for which the Riemann integrals f1 f(x) dV exist 
for all a in Hm and converge to a finite limit as a approaches 0. Let M be the class 
of functions in R that are decreasing in each variable, and BM the class of functions 
in R that are bounded in absolute value by a member of M. 

We write E(a) for the sum over all k such that Xnk < a. 
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THEOREM 2. If there is a positive constant c and a function O(x) in M, such 
that Z(a) lWnki < cjajV(a) provided m(a) < ao and n > no, then 

1 

lim Qn (f f(x)dV 
nf oo o 

for all f in R for which f4' is in BM. 
Remark. In the one-variable case, we recover Theorem 1 by taking 4 to be 

identically 1. 
Proof. Given the hypotheses, choose a < aol, let T = xnk>a wnkf(xnk), and 

let S=Q.(f)-T. Now 

lim lim T= J f(x)dV, 
a-*O n-oo O 

so it suffices to show that lima limn S = 0. 
Write w(j, a) = 2-ia if j > 0, w(j, a) = 1 otherwise. Given an m-tuple of 

integersj = (ji,*** jm) write aj for (w(ji,al),... ,w(jm,am)) and Aj for the box 
B(aj, aji1). Then 

00 

s= E E Wnkf(Xnk), 
j=O xnkEAj 

where ' means omit the term j = O. Writing c(j) for ji + *-* + jm, and taking 
n > no, we have 

(aji-) 

K Wnkf(Xnk) <maxjf(x)l 1J jWnki 

Xnk EAj xEAj 

? max If(x)I c2-0f(j)+m jai 4(aj-1) 
xEAj 

< g(aj) c 2-a(j)+m lal , 
where g(x) in M is a bound for If 4l. Writing JAI for the volume of A, we have 

g(x)dV > IAj+ll min g(x) = 2-f7(i)-mtatg(aj). 
Aj+l ~~~~~xEAj+l. 

Thus, 

| Wnkf(Xnk) < 4mc g(x)dV, 
Xnk EAj + 

and 

St < E>4mc I g(x) dV < 4mc g(x) dV. 
j=o 0+1 

It follows that lima limn S = 0, as was to be proved. 
We applied a similar but rather ad hoc argument to a special case in [5]. 

3. Uniform distribution. Let u = (Ul, U2, **) be a sequence of points in 
Km = [0, 1)m. We say that u is uniformly distributed if 

lim -#{k < n: a < Uk < b} = lb-at n-oo n 

for all a and b with 0 < a < b < 1. The definition and the following theorem are due 
to Weyl [8]. 
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THEOREM 3. If u is uniformly distributed and f is Riemann-integrable then 
in 1 

lim -E f (Uk) =jf (x) dV. 
n-+oo n2 

k=1 

In the one-variable case, there is a quantitative version of this theorem due to 
Koksma [2]. We define the discrepancy Dn(u) by 

Dn(U) = sup #{k<n:Uk<a _} a. 
O<a<l n 

Bergstr6m and van der Corput were among the pioneers in the study of discrepancy 

(cf., e.g., [3]). 
THEOREM 4. If f is of bounded variation V(f) on [0,1), then 

n1 

, f (Uk)) f(x) dx < Dn(u)V(f). 
k=1 

Write Va(f) for the variation of f on [a,1]. Let ,<(n) = min{uk : k < n7}. It 
follows from Theorem 4 that if Dn(U)Vp(n)(f) tends to zero, then 1 En f(uk) tends 

to f (x) dx (as n tends to infinity). This was pointed out by Sobol' [7], without 
explicit reference to Koksma's Theorem. 

Koksma's Theorem can be generalized to higher dimensions. The interested 
reader may wish to start with the account given by Kuipers and Niederreiter [3] 
(who write D* where we have D). In [7] Sobol' generalized his convergence result to 
higher dimensions. Theorem 2 gives rise to a rather different result. We assume u is 
uniformly distributed. 

THEOREM 5. If there is a positive constant c, and a function +(x) in M, such 
that 

#{ k < n: Uk < a} < cnlal(a) 
provided m(a) < ao and n > no, then 

i n 

lim -E f(Uk) =jf(x) dV 
n-~oo 72 

k=1 

for all f in R for which f4' is in BM. 
Proof. Given u, define quadrature rules Qn by Wnk = 1/n and Xnk = Uk. Then 

(a) 1 
Wnk = -#{k < n: Uk < a} < clalP(a) n 

provided m(a) < ao and n > no, so Theorem 2 applies. The conclusion of Theorem 2 
is precisely that of Theorem 5. 

Hardy and Littlewood [1] gave a similar result for the special sequence Uk = kO, 
with 0 irrational. 

Acknowledgment. I asked the students in a course on uniformly distributed se- 
quences to prove limN,o N-2 log((Nf) (N) (NJ 1)) = as an exercise. One student, 
Bo-Ping Jin, pointed out that the method that I had in mind required an unjustified 
application of Theorem 3 to f(x) = log x. This paper began as a justification of that 
application, and it is a pleasure to thank Ping for her observation. 
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