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Abstract For every irrational number satisfying the property lim., o0 |SinTan| =" = 1
and for every numbeg > 1, it is shown that the difference equation

Ent1+ &1+ 2BC02man +0)5, =0, nel

has a non-trivial solutiori, } satisfyinglim oo |£,/Y"" < ||~ if and only if 6 =
2ran + 27k + /2 for somen, k € Z.

1. Introduction

The problem to prove the existence of (exponentially) localized eigenfunctions for almost
periodic operators is a very difficult one, which has been solved to date in certain special
cases only (seeS| CS, FSW for some of the more recent contributions). Most of
the known proofs establishing the existence of localized eigenfunctions are probabilistic
in nature, exploiting the ergodicity of an underlying dynamical system. It follows, for
instance, from the theorems proven i [and [FSW] for a particular class of one-
dimensional almost periodic difference operators, known as almost Mathieu operators, that
for almost all numbers in the spectrum of these operators (with respect to the integrated
density of states) there is a localized eigenfunction. It would be desirable, beyond
these generic results, to identify specific points in these spectra, and exhibit localized
eigenfunctions associated with them by an explicit construction. This is the objective
of the present paper. We will show that for rotation numbers satisfying a diophantine
condition the almost Mathieu operators have an exponentially localized eigenfunction at
zero, whenever the (averaged) Lyapunov index is strictly positive. Our approach utilizes
power series expansions and is inspired by a paper of Hardy and Littlewadd\\Ve will

also discuss the question for which values of the underlying phase shift may a localized
eigenfunction exist. The arguments involved in answering this questiofi*aedgebraic

in nature and are valid for any poirtin the spectrum which is known to have at least one
eigenfunction.
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2.

For any irrational numbet: the rotationC*-algebra. A associated withy is (up to
isomorphisms) determined by two unitary generatorand v satisfying the relation
uv = Avu wherex = ¢2™, Throughout this paragraph we will assume thastisfies the
diophantine condition ligL, o |SinTan|~Y/" = 1.

THEOREM2.1. For every complex numbet, |8| > 1, there exist analytic functiong
andg on the open annulug € C | |11 < |z| < |B]} such that

ef(uv*)(u + u* + ﬂ(U + v*))e*f(uv*) — eg(uv*)(v + U*).

Proof. Lettingh = u + u* + B(v + v*), we have
h = BB uv* + v + Bv*(B Lou* + 1).
But

00 ayn+l n
ﬁ_lz,+1=eXp<Z( 12 (%) ) for |z| < |BI.

n=1
So, defining

) (_1)n+1 1 <Z)n
=S 1- 1 ),
fo(z) 2, ( ) 5

o0 n
- (_1))1+1 1 <Z >
fo(z) = (i Il )
2 ?
and observing thatv = Avu, we obtain

BLh = ¢ fotv) o= fouv™) | o= o) % o folvu™)

Note that the diophantine condition imposedmimsures thatfy and f are analytic in
{z € C||z| < |Bl}. Now, letting

A@ = fo@) + foe™ =Y and". (BT <1zl < 18D,

n|=1
we have
B le o) pofoluv®) — o 4 o= V™) ko fr(uv®)
— y e S2v)
= (1 + /2 y=2)y,
where
o0 o0
fo@) =) 0F=Dapz" = Y b,
|n|=1 [n]=1
Next, letting

£ =Y @A=22)"b,7",

[n]=1
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we have
ﬂ—le—fo(uv*)hefo(uv*) =1+ efs(uv*)v—Ze—fs(uv*))U

= efs(uv*)(l + U—Z)e—fa(uv*)v
— efB(Mv*)(U + v*)e—fg(kuv*)_

Note that lim,— o |SinTan| =" = 1 implies lim,_ « |sin 2ran|~Y" = 1, so thatfs is
analyticin{z € C | |87t < |z| < |B]}. Finally, letting f(z) = — f3a(Az) — fo(z) and
2(z) = f3(z) — f3(Az) + ¢, wheree® = g,

e W o T o) — @) ) 4y

as claimed. O

Remarks.

(1) The similarity transformation in Theorem 2.1 is analytigin

(2) The operatorgz(uv*) andg(uv*) are self-adjoint whenever is real.

(3) Explicit Laurent expansions can be obtained for the functions involved by tracking
their construction. This has been done by Hardy and LittlewoodHh][for
functions of the type /0 ande/fo.

(4) Itis clear from the proof that it is possible to trade off a narrower annulus for
a moderately relaxed diophantine condition éor In other words, the similarity
transformation in Theorem 2.1 with analytic functiofisandg is still possible for
sufficiently larges as long as satisfies the condition lip, o [SinTan| =" < co.

COROLLORY 2.2. For every complex numbé, |8| > 1, the difference equatiof), 1 +
£n—1+ 2B cog2ran + )&, = 0 has a non-trivial solution satisfyingm |« £,/ <
18]~ wheneved = 2ram + 7/2 for somen € Z.

Proof. For a giver = 2ram + 7 /2 we consider the representationof the C*-algebra
A on the Hilbert spacé?(Z) which is determined by the assignments

po W&y = Eny1,  (Pp()E), = " AT,
Sincepy (v + v*)§,, = 0, where

8,,(1) 1 forn =m,
mn) =
0 forn # m,

Theorem 2.1 yields thatg (e =/ “¥")s,, is the desired solution. Expanding the function
e~/ into a Laurent series shows that this solution decays exponentially[fes oo as
claimed. a

Remarks.

(1) Employing the formalism developed iR], one can show that the inequality sign in
Corollary 2.2 can be replaced by an equality sign.

(2) It is well known that without any diophantine condition ferthere may be no
localized eigenfunction at zero at all for the almost Mathieu opevateven when
the Lyapunov index is strictly positive. However, it can be shown (for ggahat,
regardless of the diophantine natureogfthe (averaged) Lyapunov index at zero
always equals md®, log|B|}.
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3.
We now turn to the second question raised in the introduction. Hencefagtan arbitrary
irrational number ang is real.

LEMMA 3.1. For any two real numberg; and6, the corresponding representatiopg;
and pg, of theC*-algebra.4 are equivalent if and only #; — 61 € 2raZ + 27 Z.

Proof. If 92 — 01 = 2w an + 27k,
po2(a) = pg1(u) ™" pa1(a)pes(u)”.

Thuspg1 andpg, are equivalent. Now suppose thgy andpg, are equivalent. Then there
exists a unitary operatas on ¢2(Z) such that

pao(a) = w*pgq(a)w foreverya e A.

Substitutingv for @ and letting

5, (k) = 1 fork =n,
0 fork #n,
we get
23718, = w* pgq (V)WS,,
or

Po1(V)(W8y) = €227 (w8),).

In other wordsws, is an eigenvector and®2~" is an eigenvalue fope 1 (v). In particular,
(9107 | n € Z) = {20 | n e Z} which is equivalent witlh, — 01 € 2raZ + 277Z. O

THEOREM3.2. If ¢® ¢ ¢2(Z) is an eigenfunction ofy,(h) for the eigenvaluey
(k =1, 2),thendy — 01 € 2naZ + 2nZ or 01 + 02 € 2naZ + 2n’Z.

Proof. We recall from R] that an eigenstate df for x is a statey on theC*-algebrad
satisfying
Y(ah) =Y (ha) = xy¥(a) foralla € A.

So the functionals
or@) = (o @E® e®) ae A, kefl2),

are pure eigenstates fgr It was shown in R] that there are at most two pure eigenstates
for x. If 91 = @2, then the representatiops; andpy, must be equivalen], §3.3.7], and
Lemma 3.1vyield®, — 01 € 2raZ + 2n7Z. If p1 # @2, thenpg, andpy, are not equivalent
andgy, = ¢1 o 0, Whereo is the automorphism afd determined by the assignments
o(u) = u* ando (v) = v*. This implies that1 + 02 € 2raZ + 27 Z. O

Note added in proofThis paper was submitted for publication for the first time in 1995.
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