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Stable processes

o An a-stable process is a Lévy process such that ¢'/®X, has the
same distribution as X;.
o Lévy processes satisfy

E[eith] _ eft\ll(z)’
where U(z) is the characteristic exponent.

o The Lévy-Khintchine formula tells us that

2
)

U(z) = 5 2% —az - /R(ei” =1 —izlq,1y)(de)

o For stable processes, the Lévy measure II(dz) has density given
by
m(x) = clx_l_o‘l{g»o} + cz|x|_1_0‘1{m<0}.
o After choosing ¢ in the right way, the characteristic exponent
becomes

ia(L— —ria(L—
\I’(Z) _ ‘Z|a (ema(z P)1{2>0} +e (2 P)l{z<o}) .
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Distribution of the supremum

Let us define X; = sup{X, : 0 <s <t}.

Question: What is the distribution of X;?

@ D. A. Darling.
The maximum of sums of stable random variables.

@ C. C. Heyde.
On the maximum of sums of random variables and the supremum
functional for stable processes.

@ N H Bingham.
Maxima of sums of random variables and suprema of stable
processes.
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Distribution of the supremum

Let us define X; = sup{X, : 0 <s <t}
o The density of W is

n

—x n2 2n
p(a) = v/2me ™ = /o] Z
o For stable processes we have the formula for X; in form

Z Z b X C’ﬂ c0+('1m+('2n

m>0 n>0

B F. Hubalek and A. Kuznetsov (2011)
“A convergent series representation for the density of the
supremum of a stable process.”
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The Great Question of Stable Processes

Why do minor changes in «a lead to drastic modifications in
the qualitative behavior of the parameters which define the
density of the supremum?
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The Great Question of Life, the Universe anc

Everything

The hitchhiker’s guide to the Galaxy

Both of the men had been trained for this moment, their lives had been a preparation for it, they had been
selected at birth as those who would witness the answer, but even so they found themselves gasping and
squirming like excited children.

*And you're ready 10 give it to us?" urged Loonquawl.

"l am."

"Now?"

"Now," said Deep Thought.

‘They both licked their dry lips

“Though I donit think,” added Deep Thought, “that you're going to like it."

"Doesn't matter!” said Phouchg. "We must know it! Now!"

"Now?" inquired Decp Thought

"Yes! Now _."

"Alright," said the computer and settled into silence again. The two men fidgeted. The tension was
unbearable.

"Youre really not going to like it" observed Decp Thought

“Tell us!”

"Alright," said Deep Thought. "The Answer to the Great Question

"Yes.!"
"Of Life, the Universe and Everything ..." said Deep Thought

aid Decp Thought, and paused.
I
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The Answer to the Great Question of Stable Processes

The answer is 4242.
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Positive self-similar Markov processes: (pssMp)

{kX)—ay, t>0, Xo=a} Z{X,, t>0, Xo=ka}

Examples:
(i) Bessel processes (o = 2).

(i) Stable process killed on the first exit from (0,00) (« € (0,2)).
Stable process conditioned to stay positive, or stable process
conditioned to hit zero continuously (a € (0,2)).

Can we describe all PSSMPs?
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Lamperti’s transformation

Let £ be a Lévy process. Define
t
1) = [ explag.ds,
0

and ¢(t) = I71(t) for 0 <t < I(o0). Then
Xt = zexp(€g(tz—o))

is a pssMp. Also, the time 7 =inf{t >0 : X; ¢ (0,00)} 4 x*1(00).

Any pssMp X +— Lévy process &
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Example
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Let X be a stable process with stability parameter o and
p:=P(X; >0).

We have

¢
(X)) i/egsd&
0

where & is a killed Lévy process with the Laplace exponent

B el 'l 4 az)l'(a— az)
¥(z) =InEle ¢ ] = _I‘(l —ap+az)l'(ap —az)’

@ A. Kuznetsov and J.C. Pardo (2013)

“Fluctuations of stable processes and exponential functionals of
hypergeometric Levy processes”
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Definitions and notations

©

Let X be a Lévy process started from zero;

(4]

Let e(gq) denote an exponential random variable with mean 1/g;

(4]

The exponential functional is defined as

o We define the Mellin transform of I, as

M(s) :=E[I;7'].
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Main result

Theorem

Assume that Cramér’s condition is satisfied: there exists 0 > 0 such
that ¥(0) = q. Then

M(s+1) = q%p(s)M(S)

for all s in the strip 0 < Re(s) < 6.

B K. Maulik and B. Zwart (2006)
“ Tail asymptotics for exponential functionals of Lévy processes.”

E V. Rivero (2007)
“Recurrent extensions of self-similar Markov processes and
Cramér’s condition.”
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To find the Mellin transform of X; we need to find f(s) such that

(1 —ap+ az)l(ap — az)
I'(l+ az)l'a—az)

f(s+1)=f(s) x s x
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To find the Mellin transform of X; we need to find f(s) such that

(1 —ap+ az)l(ap — az)

f(s+1) = f(s) x s x I'(l+ az)a— az)

How do we solve this type of equations?
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Barnes double gamma function

o Double gamma function satisfies G(1;7) = 1 and

Giz+L;1) = F(;) G(z;7),

Glz+77) = (21)F 77 7T20(2)G(2; 7).

o G(z;7) is an entire function in z and has simple zeros on the
lattice m7 +n, m <0, n <0.

o Many other properties: infinite product representations,
transformations of G(z;1/7), etc.
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Mellin transform of X

Define M(s) := E[(X1)*~}].

Theorem

For s e C

e G(ap; @)
M(s) = 1G(oz(l —p)+ 1)
Gla(l—p)+2--s;a) " Gla—1+s;a)
Glap—1+s;a) Gla+1-s;a)
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Dealing with uniqueness

Assume Cramér’s condition and

() £(1) =1 and f(s+1) = sf(s)/(q — ¥(s)) for all s € (0,6),

(i1) f(s) is analytic and zero-free in the strip Re(s) € (0,1 +0),
(iii) |f(s)|7t = o(exp(2n|Im(s)])) as Im(s) — oo, Re(s) € (0,1 + 6),

then B[I;~'] = f(s) for Re(s) € (0,1 +6).

~ —

@ A. Kuznetsov and J.C. Pardo (2013)
“Fluctuations of stable processes and exponential functionals of
hypergeometric Levy processes”
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Density of Si: asymptotics

Assume that a ¢ Q. Define sequences {am, n tm>0,n>0 and
{bm,n}mZO,nZI as

" B (71)m+n
e Fr(l—p—n-— )I‘(ap—l—m—i—om)
"rsin (Z (ap+j—1)) sin(ra(p+ 37— 1))
% ]1;[1 sm( ) % H sin(maj) ’
. F(1—-p—n—2)T(ap+m+an)
m,n — Am,n-

L(14+n+2)T(—m—an)
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Density of Si: asymptotics

Theorem

Assume that o ¢ Q. Then we have the following asymptotic
eTPansions:
p(x) ~ 27! Z Z R
n>0m>0
p(z) ~ z717@ Z Z bnnt1z 2", T — +oo.
n>0m>0

@ A. Kuznetsov
On extrema of stable processes.
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Hardy and Littlewood (1946)

For almost all 6 we have

s 1
lim [T |sin(kn0)]'/" = =
im k=1|sm( 70)| 5

n—-+o0o

@ G.H. Hardy and J.E. Littlewood
Notes on the theory of series (XXIV): a curious power-series.
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Hardy and Littlewood (1946)

For almost all 6 we have

s 1
lim [T |sin(kn0)]'/" = =
im k=1|sm( 70)| 5

n—-+o0o

@ G.H. Hardy and J.E. Littlewood
Notes on the theory of series (XXIV): a curious power-series.

Compare this with

. 1
lim —
n—+oco n

" . 1 .
;ln|31n(k7r0)| = /0 In(| sin(7z)|)dz = — In(2)
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Hardy and Littlewood (1946)

Theorem

If the radius of convergence of

n

Z z
= sin(ndr)

ni

is r (where r € (0,1]), then the radius of convergence of

ZTL

Z sin(f7) sin(207) . . . sin(nfr)

n>1

is r/2.

The proof is based on the identity

n n

z

DD T ey Rkl D sy

n>0 n>1
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Density of Si: convergent series

Theorem

For almost all o
zlme Z Z b1z ™", if e (0,1),
n>0m>0
p(z) =
L Z Z A ™ if € (1,2).
n>0m>0
forallz >0 .
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Diophantine approximations

The main question: how closely can we approximate a given
irrational number by rational numbers?

Theorem (Liouville, 1840s)

If © is an irrational algebraic number of degree n over the rational
numbers, then

is satisfied only by finitely many integers p,q.

Corollary (Liouville, 1840s)

The number > 10~™ is transcendental!
n>1
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Diophantine approximations

Definition

Irrationality measure of an irrational number z is the smallest p such
that the inequality

is satisfied only by finitely many integers p, q.

Note that p > 2, since

Theorem (Borel (1903))

For any irrational x there exist infinitely many integers p,q such that

I

< —.
V5¢?

q
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Diophantine approximations

Theorem (Khintchine)

Almost all irrational numbers have irrationality measure equal to two.
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Theorem (Khintchine)

Almost all irrational numbers have irrationality measure equal to two.

Liouville: irrationality measure of an algebraic number of degree n is
at most n.
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Diophantine approximations

Theorem (Khintchine)

Almost all irrational numbers have irrationality measure equal to two.

Liouville: irrationality measure of an algebraic number of degree n is
at most n.

Theorem (Roth (1955))

Irrationality measure of any algebraic number is two.

30/43



Extrema
000000000000 O000000e0O000000000000

Diophantine approximations

Theorem (Khintchine)

Almost all irrational numbers have irrationality measure equal to two.

Liouville: irrationality measure of an algebraic number of degree n is
at most n.

Theorem (Roth (1955))

Irrationality measure of any algebraic number is two.

o Lindemann (1882): 7 is transcendental (not algebraic).
o What is the irrationality measure of 77

o The current best result (due to Salikhov, 2008) is that
< 7.6063.

30/43
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Continued fractions

o 355/113 = 3+ 16/113
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Continued fractions
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Continued fractions

0 355/113 = 3+ 16/113
o 113/16 =7+1/16

]

355/113 = 3 +

1
= [3;7,16]
1

T4
+16
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o The golden ratio: (1++/5)/2=[1;1,1,1,1,1,1,...]
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Continued fractions: examples

o The golden ratio: (1++/5)/2=[1;1,1,1,1,1,1,...]
o V7=1[2;1,1,1,4,1,1,1,4,1,1,1,4,...]
0 e=[2;1,2,1,1,4,1,1,6,1,1,8,...]
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Continued fractions

T =[3;7,15,1,292,1,1,1,2,...] =3+

7+
15 +
1

* 1

292 + —
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Continued fractions

T =[3;7,15,1,292,1,1,1,2,...] =3+

7+
15 +
1+

1
1
292 + —

o Truncating this infinite continued fraction gives very good
approximations to 7:

TR ?, the error is —0.0013...,

355

e — -7
113’ the error is —2.66 x 10

™=
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Continued fractions

o The continued fraction representation of a real number x is
defined as

x = lag;a1,az,...] =ag+
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Continued fractions

o The continued fraction representation of a real number x is
defined as

x = [ag; a1, az,...] =ap+
a; +

1
CL2+...

o truncating after n steps gives us a rational number
Dn/Gn = [a0; a1, a2, ..., ay], which is called the n-th convergent.
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Continued fractions

o The continued fraction representation of a real number x is
defined as

x = [ag; a1, az,...] =ap+
a; +

1
as + ...
o truncating after n steps gives us a rational number
Dn/Gn = [a0; a1, a2, ..., ay], which is called the n-th convergent.
® pn/qn provides the best rational approximation to x in the
following sense
= min {

Pn
xr— —
an

w—p’ :pEZ,ISqun}.
q



Extrema
000000000000 O0000000O0O00Oe000000000

Continued fractions

o The continued fraction representation of a real number x is
defined as

x = [ag; a1, az,...] =ap+
a; +

1
a9 + ...
o truncating after n steps gives us a rational number
Dn/Gn = [a0; a1, a2, ..., ay], which is called the n-th convergent.
® pn/qn provides the best rational approximation to x in the
following sense

_bn :min{ x—p’ : pEZ,lgngn}.
dn q
o There is also a converse result: if integers p and ¢ satisfy
p 1
r—=| < —
q‘ 2¢%’

then p = p, and g = ¢, for some n.
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Defining the set £

Definition

Let £ be the set of all real irrational numbers x, for which there exists
a constant b > 1 such that the inequality

is satisfied for infinitely many integers p and gq.
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Properties of the set £

(i) Ifx € L then zz € L and z+x € L for all z € Q\ {0}.
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Properties of the set £

(i) Ifx € L then zz € L and z+x € L for all z € Q\ {0}.
(ii) = € L if and only if x=! € L.
(iii) = ¢ LUQ if and only if | sin(nmx)|/™ — 1 as n — +oo.
(iv) x ¢ LUQ if and only if

. 1
im kl:[l | sin(kma)| 5

n—-+4oo

(v) & = [ag;a1,as,...] € L if and only if there exists b > 1 such that
Gn41 > bI is satisfied for infinitely many n.
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Properties of the set £

(i) Ifx € L then zz € L and z+x € L for all z € Q\ {0}.
(ii) = € L if and only if x=! € L.
(iii) = ¢ LUQ if and only if | sin(nmx)|/™ — 1 as n — +oo.
(iv) x ¢ LUQ if and only if

. 1
im kl:[l | sin(kma)| 5

n—-+4oo

(v) & = [ag;a1,as,...] € L if and only if there exists b > 1 such that
Gn41 > bI is satisfied for infinitely many n.

(vi) L has Lebesgue measure zero and Haursdorff dimention zero.
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Density of Si: convergent series

Theorem

Assume that o ¢ LUQ. Then for all x >0

x e Z Z bmnrrz” 0", ifa € (0,1),

n>0m>0

zP~1 Z Z AT if a € (1,2).

n>0m>0

p(z) =

@ F. Hubalek and A. Kuznetsov
A convergent series representation for the density of the
supremum of a stable process.
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Theorem

Assume that o ¢ Q. Then for all x > 0
gl kli_)rgo Z b1z ", ifa € (0,1),
m+l4o(nt3)<qe
m>0,n>0
p(x) =
Pl klir{:o Z A T if a € (1,2),
m+1+a(nt+i)<qe
m>0,n>0
where g, = qx(2/a) is the denominator of the k-th convergent for 2/c.

@ D. Hackmann and A. Kuznetsov (2013)
“A note on the series representation for the density of the
supremum of a stable process”
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The Great Question of Stable Processes

Why do minor changes in «a lead to drastic modifications in
the qualitative behavior of the parameters which define the
density of the supremum?
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Density of S1: o = 1.1944446...

Logarithms of coefficients b,,
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The answer to the Great Question: 4242

we have

1.194590640382233... = [1,5,7,5,7,5,7,5,7,5,7, ...]
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The answer to the Great Question: 4242

we have
1.194590640382233... = [1,5,7,5,7,5,7,5,7,5,7, ...]

while
1.194444626329026... = [1,5,7,4242,7,5,7,5,7,...]
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Thank you!

www.math.yorku.ca/~akuznets
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