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1. INTRODUCTION

Let θ be a real number, 0 < θ < 1, and let {nθ} be the fractional parts of the numbers nθ,
n = 1, 2, . . . . One of the consequences of the Weyl criterion for a numerical sequence to have a uniform
distribution (see, for example, [1]) is that, for each Riemann integrable function f(x) on the closed
interval [0, 1], the equality

lim
n→∞

1

n

n∑

i=1

f({iθ}) =
ˆ 1

0
f(x) dx (1.1)

holds if and only if θ is an irrational number.
Hardy and Littlewood [2] studied the following question: For what values of θ, relation (1.1) holds for

some class of unbounded functions f in neighborhoods of the points x = 0 and x = 1?
In a further study of this question, Oskolkov [3] considered the class H of functions

f(x), x ∈ (0, 1), f(0+) = f(1−) = +∞,

for which there exists a value h = h(f) ∈ (0, 1/2) such that f(x) is nonincreasing on (0, h), nondecreas-
ing on (1− h, 1), positive on these intervals, Riemann integrable on [−h, h], and the integral

´ 1
0 f(x) dx

converges.
The main result of [3] is the statement that, for f ∈ H , relation (1.1) holds if and only if

f({qkθ}) = o(qk), k → ∞,

where qk is the denominator of the convergent of order k of the continued fraction for the number θ.
Let us no longer require the convergence of the integral in the definition of the class H . The resulting

new class of functions will be denoted by A.
It follows from the results obtained below that, for a function f ∈ A, the condition

f({qkθ}) = o

(
qk

ˆ 1−1/qk

1/qk

f(x) dx

)
, k → ∞,

is sufficient, while if

δ(f(δ) + f(1− δ)) = o

(ˆ 1−δ

δ
f(x) dx

)
, δ → +0,
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it is also necessary for the validity of the equality

1

n

n∑

i=1

f({iθ}) = (1 + o(1))

ˆ 1−1/n

1/n
f(x) dx, n → ∞.

In particular, if the integral of f on [0, 1] converges, then we obtain Oskolkov’s result.
In the statements given below, we consider functions f decreasing on (0, 1]. Obviously, the case of

functions increasing on [0, 1) can also be reduced to this case. These statements can easily be extended
to functions from A, because, in their proofs, only the monotonicity of functions in neighborhoods of the
points x = 0 and x = 1 is essential.

2. AUXILIARY STATEMENTS
Lemmas 1 and 2 given below are only used to prove Lemma 3, which, in turn, serves to prove

Lemma 4. Lemma 3 actually contains the arithmetical part of the problem. Similar statements whose
form is not convenient for our purpose were given, for example, in [4, Chap. II, Sec. 3, Lemma 1] as well
as in [3].

For the convergents pk/qk of a continued fraction θ = [0; a1, a2, . . . ], we use the notation from [3]:

q0 = 0, q1 = 1, qk+1 = akqk + qk−1, pk+1 = akpk + pk−1, k = 1, 2, . . . ,

which is in contrast, for example, to the notation from the book [5], in which

qk+1 = ak+1qk + qk−1, pk+1 = ak+1pk + pk−1, k = 0, 1, . . . .

By ‖ξ‖ we denote the distance from a real number ξ to the nearest integer.

Lemma 1. Let s and i0 be arbitrary integers, let k ≥ 2, and let

ik(s) = qk

(
1−

{
sqk−1

qk

})
, (2.1)

ik(s, i0) = i0 + ik(s), (2.2)

εk(s, i0) = ‖qkθ‖
ik(s, i0)

qk
. (2.3)

Then

ik(s, i0)θ =
i0pk
qk

+ (−1)k−1

(
s

qk
+ εk(s, i0)

)
+N0, (2.4)

where N0 is an integer (N0 depends on s, k, θ).

Proof. First, choose i0 = 0 so that

ik(s, i0) = ik(s), εk(s, i0) = ηk(s) := ‖qkθ‖
ik(s)

qk
.

Since

qkθ = pk + (−1)k−1‖qkθ‖, pkqk−1 − qkpk−1 = (−1)k

(see [5]), it follows that

ik(s)θ =
ik(s)

qk
(pk + (−1)k−1‖qkθ‖) = (−1)k−1ηk(s) +

(
1−

{
sqk−1

qk

})
pk

= (−1)k−1

(
s

qk
+ ηk(s)

)
+ (pkqk−1 − qkpk−1)

s

qk
+ pk −

{
sqk−1

qk

}
pk

= (−1)k−1

(
s

qk
+ ηk(s)

)
+

(
sqk−1

qk
−

{
sqk−1

qk

})
pk − pk−1s+ pk

= (−1)k−1

(
s

qk
+ ηk(s)

)
+N0.
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Hence we have

ik(s, i0)θ = (i0 + ik(s))θ =
i0
qk

(pk + (−1)k−1‖qkθ‖) + (−1)k−1

(
s

qk
+ ηk(s)

)
+N0

=
i0pk
qk

+ (−1)k−1

(
s

qk
+ ‖qkθ‖

i0 + ik(s)

qk

)
+N0,

which proves the assertion.

Lemma 2. In the notation of Lemma 1, if i0 ≥ 0 and i0 + qk < qk+1, then

{ik(s, i0)θ} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{
s+ i0pk

qk

}
+ εk(s, i0) for k odd,

1−
{
s− i0pk

qk

}
− εk(s, i0) for k even.

(2.5)

Here

0 < εk(s, i0) <
1

qk
. (2.6)

Proof. Indeed, ‖qkθ‖ < 1/qk+1 (see [5]) and ik(s, i0) = i0 + ik(s) ≤ i0 + qk (see (2.1)), so that, from
the conditions i0 ≥ 0, i0 + qk < qk+1 and from (2.3), we obtain (2.6). Relations (2.6), (2.4) and the
definition of the fractional part of a number imply (2.5).

Lemma 3. Let n ∈ N, let qm ≤ n < qm+1, m ≥ 2, and let

n =

m∑

s=1

bsqs, (2.7)

be the Euclidean representation of the number n, where the bs are integers, 0 ≤ bs ≤ as, bm ≥ 1.
Set

nk =

k∑

s=1

bsqs, k = 1, . . . ,m, nm = n, (2.8)

δ = δk(ν) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if
{
νqk−1

qk

}
< 1− nk−1

qk
,

1 if
{
νqk−1

qk

}
≥ 1− nk−1

qk
,

k = 2, . . . ,m, ν = 0, 1, . . . , qk − 1. (2.9)

For k such that bk �= 0, we also set

ik,j(ν) = qk

(
j + δ −

{
νqk−1

qk

})
, j = 1, . . . , bk, (2.10)

εk,j(ν) = ‖qkθ‖
ik,j(ν)

qk
= ‖qkθ‖

(
j + δ −

{
νqk−1

qk

})
. (2.11)

Then 0 < εk,j(ν) < 1/qk and, for i = ik,j(ν), ν = 0, 1, . . . , qk − 1,

{iθ} =

⎧
⎪⎨

⎪⎩

ν

qk
+ εk,j(ν) for k odd,

1− ν

qk
− εk,j(ν) for k even.

(2.12)

Here the function i = ik,j(ν) takes its values only from the sequence i0 + 1, i0 + 2, . . . , i0 + qk,
where

i0 := nk−1 + (j − 1)qk, (2.13)

whenever ν assumes the values 0, 1, . . . , qk − 1.
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Proof. Let s = 0, 1, . . . , qk − 1, and let ν = ν(s) be the remainder of the division of s+ (−1)k−1i0pk
by qk, so that

s ≡ ν + (−1)ki0pk (mod qk), (2.14)
{
s+ (−1)k−1i0pk

qk

}
=

ν

qk
, ν ∈ [0, qk − 1]. (2.15)

Using (2.14), (2.15), and the equality pkqk−1 = (−1)k + qkpk−1 (see [5]), we obtain

sqk−1 ≡ (ν + (−1)ki0pk)qk−1 ≡ νqk−1 + (−1)knk−1pkqk−1 ≡ νqk−1 + nk−1 (mod qk). (2.16)

Therefore (see (2.1), (2.2), (2.13), (2.16), and (2.9)), for bk �= 0, we can write

ik(s, i0)

qk
=

i0 + ik(s)

qk
=

nk−1

qk
+ (j − 1) +

(
1−

{
sqk−1

qk

})

=
nk−1

qk
+ j −

{
νqk−1 + nk−1

qk

}
= j + δ −

{
νqk−1

qk

}
.

Hence

ik(s, i0) = ik,j(ν), (2.17)

εk(s, i0) = εk,j(ν) (2.18)

(see, respectively, (2.10) and (2.3), (2.11)). Since

i0 + qk = nk−1 + jqk ≤ nk−1 + bkqk = nk < qk+1,

and i0 ≥ 0, we see that the assumptions of Lemma 2 hold. Therefore (see (2.16) and (2.18)), we have
0 < εk,j(ν) < 1/qk , and, from (2.5), taking into account (2.17), (2.18), and (2.15), we obtain (2.12).

Obviously, ik(s, i0) takes its values only from the series i0 + 1, . . . , i0 + qk whenever s assumes the
values 0, 1, . . . , qk − 1 (see (2.1), (2.2)). At the same time, by (2.14), s is a function of ν (s = s(ν)) taking
its values 0, 1, . . . , qk − 1 whenever ν ranges over the sequence of values 0, 1, . . . , qk − 1. Therefore, the
function i = ik,j(ν) = ik(s(ν), i0) takes its values i0 + 1, . . . , i0 + qk whenever ν assumes the values
0, 1, . . . , qk − 1. The lemma is proved.

Lemma 4. Suppose that f(x) is a nonnegative nonincreasing function on (0, 1], θ = [0; a1, a2, . . . ]
is an irrational number on (0, 1), qk are the denominators of its convergents,

δk = min

{
{qkθ},

1

qk

}
;

n is an arbitrary natural number, and the number m is defined by the condition

qm ≤ n < qm+1, m ≥ 2;

let

n =
m∑

k=1

bkqk (2.19)

be the Euclidean representation of the number n, and let the bk be integers, 0 ≤ bk ≤ ak, bm ≥ 1.
In that case, if

f(δk) = o

(
qk

ˆ 1

1/qk

f(x) dx

)
, k → ∞, (2.20)

then
n∑

i=1

f({iθ}) = (1 + o(1))
m∑

k=1

bkqk

ˆ 1

1/qk

f(x) dx. (2.21)
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Proof. For bk �= 0, set

Ik,j = {nk−1 + (j − 1)qk + 1, . . . , nk−1 + jqk}, j = 1, . . . , bk, k = 2, . . . ,m.

By Lemma 3, for i ∈ Ik,j, the numbers {iθ} coincide, up to permutation, with the numbers
ν

qk
+ εk,j(ν), ν = 0, 1, . . . , qk − 1,

for k odd and with the numbers

1− ν

qk
− εk,j(ν), ν = 0, 1, . . . , qk − 1,

for k even; here εk,j(ν) ∈ (0, 1/qk), εk,j(0) = ‖qkθ‖ · j, j = 1, . . . , bk.
Only one of the numbers {iθ}, i ∈ Ik,j, satisfies the inequality {iθ} < 1/qk. This holds for

i = ik,j(0) = qkj and k odd; the number in question coincides with

εk,j(0) = ‖qkθ‖ · j = {qkθ} · j ≥ δk.

Combining this result with the fact that the function f(x) is decreasing, for k odd, we obtain

∑

i∈Ij,k

f({iθ}) ≤ f(δk) +

qk−1∑

ν=1

f

(
ν

qk

)
≤ f(δk) + f

(
1

qk

)
+ qk

ˆ 1

1/qk

f(x) dx

≤ 2f(δk) + qk

ˆ 1

1/qk

f(x) dx. (2.22)

Obviously, this inequality also remains valid for even k’s (even when the summand 2f(δk) is replaced by
f(δk) = f(1/qk)).

Thus, (see (2.19) and (2.22)),

n∑

i=1

f({iθ}) =
m∑

k=1

bk∑

j=1

∑

i∈Ik,j

f({iθ}) ≤ 2

m∑

k=1

bkf(δk) +

m∑

k=1

bkqk

ˆ 1

1/qk

f(x) dx,

where, by condition (2.20),

f(δk) =
1

2
αkqk

ˆ 1

1/qk

f(x) dx, αk → 0 for k → ∞.

Therefore, taking into account the fact that the function f is decreasing, we can write
n∑

i=1

f({iθ}) ≤
( m∑

k=1

bkqk · αk

)ˆ 1

1/qm

f(x) dx+

m∑

k=1

bkqk

ˆ 1

1/qk

f(x) dx. (2.23)

Set

ñ :=

m−1∑

k=1

akqk ≡ −1 + qm−1 + qm

(recall that akqk = qk+1 − qk−1, q1 = 1). Obviously,

1

n

m∑

k=1

bkqk · αk ≤ ñ

n

(
1

ñ

m−1∑

k=1

akqk · αk

)
+ αm, (2.24)

(the elements ak are independent of n). Here the expression in parentheses is the arithmetic mean of the
first ñ terms of the sequence

α1, . . . , α1︸ ︷︷ ︸
a1q1times

, . . . , α2, . . . , α2︸ ︷︷ ︸
a2q2times

, . . . , αk, . . . , αk︸ ︷︷ ︸
akqktimes

, . . . ,

MATHEMATICAL NOTES Vol. 99 No. 2 2016



ESTIMATES OF THE AVERAGED SUMS OF FRACTIONAL PARTS 325

tending to zero, and, therefore, it also tends to zero.
Since here ñ < 2n, it follows that the left-hand side of inequality (2.24) is infinitely small as n → ∞.

Therefore, from (2.23), we obtain the inequality

1

n

n∑

i=1

f({iθ}) ≤ 1

n

m∑

k=1

bkqk

ˆ 1

1/qk

f(x) dx+ o

(ˆ 1

1/qm

f(x) dx

)
, n → ∞. (2.25)

On the other hand, for any k (even and, especially, odd), independently of condition (2.20), using the
fact that the function f is decreasing, we can write

∑

i∈Ij,k

f({iθ}) ≥
qk∑

ν=1

f

(
ν

qk

)
≥ qk

ˆ 1

1/qk

f(x) dx+ f(1), f(1) ≥ 0,

n∑

i=1

f({iθ}) =
m∑

k=1

bk∑

j=1

∑

i∈Ik,j

f({iθ}) ≥
m∑

k=1

bkqk

ˆ 1

1/qk

f(x) dx+ f(1)

m∑

k=1

bk.

Combining this with inequality (2.25), we obtain (2.21). The lemma is proved.

3. MAIN STATEMENT. COROLLARIES

Theorem. Let f(x) be a nonnegative nonincreasing function on (0, 1], let θ be an irrational number
on (0, 1), and let qk be the denominators of its convergents. Then the condition

f(‖qkθ‖) = o

(
qk

ˆ 1

1/qk

f(x) dx

)
, k → ∞, (3.1)

is sufficient for the following equality to hold:

1

n

n∑

i=1

f({iθ}) = (1 + o(1))

ˆ 1

1/n
f(x) dx, n → ∞. (3.2)

If

δf(δ) = o

(ˆ 1

δ
f(x) dx

)
, δ → +0, (3.3)

then condition (3.1) is also necessary for the validity of (3.2).

Proof. Set δk = 1/qk(δk ↓ 0). Since f(x) is nonincreasing and ‖qkθ‖ < 1/qk+1 = δk+1 for all
k = 1, 2, . . . , it follows from (3.1) that

δkf(δk+1) = γk

ˆ 1

δk

f(x) dx, (3.4)

where γk → 0 as k → ∞. Combining this with the fact that f is nonincreasing, we obtain
ˆ δk

δk+1

f(x) dx ≤ δkf(δk+1) = γk

ˆ 1

δk

f(x) dx, (3.5)

so that, as k → ∞, ˆ 1

δk+1

f(x) dx ∼
ˆ 1

δk

f(x) dx. (3.6)

By Lemma 4, in view of (3.1), we can write
n∑

i=1

f({iθ}) ∼
m∑

k=1

bkqk

ˆ 1

δk

f(x) dx, n → ∞. (3.7)
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In view of the Abel transformation, we have

m∑

k=1

bkqk

ˆ 1

δk

f(x) dx =

ˆ 1

δm

f(x) dx ·
m∑

k=1

bkqk −
m−1∑

k=1

ˆ δk

δk+1

f(x) dx ·
k∑

i=1

biqi. (3.8)

By the definition of the numbers bi, we can write

0 ≤
k∑

i=1

biqi < qk+1, (3.9)

whence
m−1∑

k=1

ˆ δk

δk+1

f(x) dx ·
k∑

i=1

biqi ≤
m−1∑

k=1

qk+1

ˆ δk

δk+1

f(x) dx. (3.10)

Set

ñ =

m−1∑

k=1

qk+1 =

m∑

k=2

qk.

Since qk ≤ qk+2 − qk+1, it follows that

ñ ≤
m−2∑

k=2

(qk+2 − qk+1) + qm−1 + qm = −q3 + qm + qm−1 + qm < 3qm ≤ 3n. (3.11)

Using (3.5), (3.11) and taking into account the fact that, as k increases, so does the integral
´ 1
δk
f(x) dx,

we can write
m−1∑

k=1

qk+1

ˆ δk

δk+1

f(x) dx ≤ 3n

ˆ 1

δm

f(x) dx ·
(
1

ñ

m−1∑

k=1

qk+1γk

)
= o

(
n

ˆ 1

δm

f(x) dx

)
.

Hence, from (3.10) and (3.8), we obtain
m∑

k=1

bkqk

ˆ 1

δk

f(x) dx ∼ n

ˆ 1

δm

f(x) dx, n → ∞. (3.12)

It remains to use the inequalitiesˆ 1

δm

f(x) dx ≤
ˆ 1

1/n
f(x) dx ≤

ˆ 1

δm+1

f(x) dx, qm ≤ n < qm+1,

obtaining (see (3.6)) ˆ 1

δm

f(x) dx ∼
ˆ 1

1/n
f(x) dx, n → ∞. (3.13)

Relations (3.12) and (3.13) imply the equality (3.2).
Let us prove the concluding part of the theorem. First, note that the fact that the function f is

decreasing and condition (3.3) implyˆ 2δ

δ
f(x) dx ≤ δf(δ) = o

(ˆ 1

δ
f(x) dx

)
. (3.14)

Again, using the fact that the function f is decreasing and the property of the distribution of the sequence
{iθ}, i = 1, . . . , qk, for n = 1/qk, we can write

1

n

n∑

i=1

f({iθ}) = 1

n
f({nθ}) + 1

n

n−1∑

i=1

f({iθ}) ≥ 1

n
f({nθ}) +

ˆ 1

2/n
f(x) dx
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=
1

n
f({nθ}) +

ˆ 1

1/n
f(x) dx−

ˆ 2/n

1/n
f(x) dx.

Hence, from (3.2) and (3.14), we obtain (3.1). The theorem is proved.

Remark. It follows from Khintchin’s theorem [5, Sec. 14, Theorem 32] that relation (3.1) holds for
almost all θ if and only if the integral

´ 1
0 f(x) dx converges (see also [3]) and holds only for the numbers θ

of measure zero when the integral diverges.

In the last case, using the theorem proved above, we can obtain asymptotically sharp estimates for
averaged sums in terms of the universally accepted classification of irrational numbers. Let us do this
for the sums of the inverses (and more general sums) of the fractional parts {iθ}, following the definition
given in [4, Chap. III, Sec. 2].

Let g = g(t) be a function increasing on [1,+∞), g(t) ≥ 1, and let B0 be a natural number, B0 ≥ 10.
We shall say that θ is a number of main subtype ≤ g for all numbers ≥ B0 if, for a given number B ≥ B0,
there exists a convergent pi/qi to θ, such that B < qi ≤ Bg(B). In particular, if pk/qk and pk+1/qk+1

are two successive convergents to θ and qk ≥ B0, then

qk+1 ≤ qkg(qk).

Note that if θ is a number of main subtype ≤ g, then

‖qkθ‖ >
1

2qk+1
≥ 1

2qkg(qk)
.

If θ is a number of main subtype ≤ αg, where α = α(t) = o(1) as t → ∞, then, in addition to the
notation used in [4], we shall stipulate that θ is a number of main subtype ≤ o(g). As usual, the
expression a ∼ b and α/β → 1 are equivalent.

Corollary 1. If θ is a number of main subtype ≤ o(log t), then, for any p ≥ 0,

1

n

n∑

i=1

1

{iθ}

(
log

1

{iθ}

)p

∼ 1

p+ 1
(log n)p+1, n → ∞. (3.15)

Conversely, if for any p ≥ 0, relation (3.15) holds, then θ is a number of main subtype ≤ o(log t).
In particular, the equality

lim
n→∞

1

n log n

n∑

i=1

1

{iθ} = 1

holds if and only if θ is a number of main subtype ≤ o(log t).

Turning to the history of this question, we formulate the following result from [4, Chap. III, Sec. 2,
Theorem 2].

Theorem A (S. Lang). Let θ be a number of main subtype ≤ g for all numbers ≥ B0. Then, for all
integers n ≥ B0, we have

n∑

i=1

1

{iθ} ≤ 2n log n+ 20ng(n) +K0, where K0 ≤
B0g(B0)∑

i=1

1

{iθ} .

It was also noted in [4] (see Chap. III, Sec. 2, Remark 1) that, for numbers θ of constant type, i.e.,
such that, for all natural numbers q,

‖qθ‖ >
a

q
, a = const > 0,

the sum under consideration is greater than or equal to cn log n for some constant c > 0 and all
sufficiently large n.
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Proof of Corollary 1. For

f(x) =
1

x

(
log

1

x

)p

,

relation (3.2) takes the form (3.15) relation (3.3) also holds.
Condition (3.1) takes the form

A(logA)p = B, where A =
1

‖qkθ‖
, B = o(qk(log qk)

p+1).

Since A ∼ B/(logB)p as A → ∞, it follows that

1

‖qkθ‖
= o(qk log qk), k → ∞.

But since qk+1 < 1/‖qkθ‖ < 2qk+1, we have

qk+1 = o(qk log qk), k → ∞.

Thus, θ is a number of main subtype ≤ o(log t); in view of the given arguments (for the function f(x)),
this is equivalent to condition (3.1) and, in view of the theorem, to equality (3.15). The corollary is proved.

Similarly, we can establish the following corollary.

Corollary 2. If θ is a number of main subtype ≤ o((log log t) log t), then

1

n

n∑

i=1

1

{iθ} log(e/{iθ}) ∼ log log n, n → ∞. (3.16)

Conversely, if the asymptotics (3.16) is valid, then the number θ is a number of main subtype
≤ o((log log t) log t).

Results for functions of class A (see the introduction) are illustrated by the following statement.

Corollary 3. If θ is a number of main subtype ≤ o(log t), then

1

n

n∑

i=1

1

|sin(πiθ)| ∼
2

π
log n, n → ∞. (3.17)

Conversely, if (3.17) is valid, then θ is a number of main subtype ≤ o(log t).

Note that the following theorem was established in [4] (see Chap. III, Sec. 2, Theorem 3).

Theorem B (S. Lang). Under the assumptions of Theorem A and of condition n ≥ B0, the
following inequality holds:

n∑

i=1

1

|sin(πiθ)| ≤ 4n log n+ 40ng(n) + 2K0.

In conclusion, it should be noted that if condition (3.3) is weakened to the condition

δf(δ) = O

(ˆ 1

δ
f(x) dx

)
, δ → 0,

we can obtain order-sharp upper and lower bounds for the averaged sums of the fractional parts {iθ} of
irrational numbers θ of constant type involving functions of the form f(x) = 1/xp, p > 1.
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