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Leon Ehrenpreis at Stockholm



Preface

Like many other mathematicians around the world, we were saddened and shocked
when news reached us that Leon Ehrenpreis had passed away on 16 August 2010.
Our first instinct was to collect a volume of mathematical contributions by his many
friends and collaborators as well as by many mathematicians whose mathematical
career has been influenced by Leon’s work. We are very appreciative for the imme-
diate support that Springer and Dr. Francesca Bonadei have given to our idea and
for the enthusiastic response of the many authors who have agreed to participate in
what we consider as an act of respect, friendship, and affection for Leon. We are
also indebted to Leon’s daugther, Yael Ehrenpreis Meyer, who has shared with us
the beautiful picture of Leon in Stockholm, a picture that so perfectly reflects Leon’s
zest for life. Finally, we are grateful to Professor Malgrange for sharing with us a
personal letter that Leon wrote to him in June 1960 and which is appended to this
volume.

As a way of introduction to the volume, we include, in the next few pages, three
short essays that focus on three different periods of Leon Ehrenpreis’ mathematical
life.

Irene Sabadini
Daniele C. Struppa

Milan, Italy
Orange, USA
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Leon Ehrenpreis: Some Old Souvenirs

Bernard Malgrange

In the years 1952–1953, I had finished my studies at École Normale Supérieure, and
I had a position of research in CNRS, under the supervision of Laurent Schwartz.
His book on the theory of distributions had been recently published; this book and
his paper on mean periodic functions were full of open problems on linear differ-
ential equations, especially with constant coefficients and convolution equations.
I was mainly interested in the problem of “elementary solutions”: given a differen-
tial polynomial P with constant coefficients, does there exist a distribution f on R

n

verifying Pf = δ, δ the Dirac measure?
Schwartz suggested to solve this problem by finding a “tempered” f : by Fourier

transform, this is equivalent to the problem of “division of a distribution” by a poly-
nomial. I tried this method, but unsuccessfully (the problem was solved several
years later, independently by Hörmander and Łojasiewicz). But I found that one
can bypass the division of distributions: by duality, one is reduced to the following
problem: if a family {Pϕα} (ϕα , functions C∞ with compact support) tend to zero
in a suitable sense, then the {ϕα} tend also to zero. Now, by Fourier transform P

is transformed into a polynomial, and ϕα into an entire function with some growth
conditions at infinity described by the Paley–Wiener theorem. And a simple argu-
ment of maximum modulus gave the required result.

There are a lot of convergence conditions which can be chosen. The simplest is
perhaps the following one: if the ϕα’s have a bounded support and if the Pϕα tend
to zero in L2, then the ϕα tend also to zero in L2.

The same method, with a little more work, gives also the following results:

(i) Let f be a C∞ function (resp. a distribution of finite order) in R
n; then there

exists another one g with Pg = f .
(ii) The exponential-polynomial solutions of Pf = 0 are dense in the C∞, or in the

distributions solutions.

B. Malgrange (�)
Institut Fourier, BP 74, 38402 Saint Martin d’Hères, France
e-mail: bernard.malgrange@ujf-grenoble.fr

I. Sabadini, D.C. Struppa (eds.), The Mathematical Legacy of Leon Ehrenpreis,
Springer Proceedings in Mathematics 16,
DOI 10.1007/978-88-470-1947-8_1, © Springer-Verlag Italia 2012
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4 B. Malgrange

Furthermore, the same results are true for Rn replaced by an open convex set.
I published notes in Comptes Rendus de l’Académie des Sciences on these results.

A short time later somebody, I think J. Dieudonné, told me that a young American
mathematician, named Leon Ehrenpreis, had obtained also the same results. They
were published in American Journal in 1954 under the title “Solution of some prob-
lems of division I”.

This was the beginning of a kind of emulation, although this was essentially
the only one time where we obtained independently similar results. To this emu-
lation, I can perhaps add the name of Lars Hörmander, who namely reproved the
existence theorem in his thesis by proving the required L2 inequality directly with
energy integrals, without Fourier transform; this permitted to him to get by the same
method existence theorems for some equations with variable coefficients (“equa-
tions of principal type”), which could not be obtained by our complex methods.

Concerning the next period, I will mention mainly the series of papers by Ehren-
preis “Solution of some problem of division”, especially the numbers III and IV. Let
me indicate briefly the main results of these papers.

In III, he solves a problem left open by the preceding works: given a differential
polynomial P with constant coefficients, and a distribution f in R

n (not necessarily
of finite order), there exists another one g with Pg = f . The proof consists in a
very precise analysis in terms of Fourier transform of the topology of the space D of
Schwartz (i.e. the space of C∞ functions with compact support). Later, I interpreted
this analysis as giving a theorem of propagation of regularity for the solutions of
equations with constant coefficients. For a more systematic study of this point of
view, I refer to the book “Linear partial differential operators” by Hörmander.

I was much impressed by this paper. But I was even more impressed by the next
one, number IV. This paper is devoted to convolutions equations μ ∗ f = g, μ a
given distribution with compact support, f and g C∞ functions or distributions.
The main results are the following:

(i) A necessary and sufficient condition for μ∗ to be surjective in the space of C∞
functions, or distributions, in R

n. The condition, called by Ehrenpreis “slowly
decreasing”, is as follows:

If μ̂ is the Fourier transform of μ (which is an entire function in C
n), there

exists a > 0 such that for each real z, there exists another z′ with |z′ − z| ≤
a log(1 + |z|) and |μ̂(z′)| ≥ (a + |z|)−a (here |z| is any norm in C

n).
If we replace “distribution” by “distribution of finite order”, one needs a

stronger condition: the first inequality should be replaced by |z′ − z| ≤ a.
(ii) A necessary and sufficient condition for “hypoellipticity” (called “ellipticity”

after Schwartz): all distributions f verifying μ ∗ f = 0 are C∞ functions.
The condition generalizes the one obtained for differential polynomials by

Hörmander in his thesis; but Ehrenpreis says that his own result was obtained
independently.

The condition is the following: first, μ̂ should be slowly decreasing; further-
more, on the variety of zeros of μ̂, one has an inequality | Im z| ≥ a log(1+|z|).
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But Ehrenpreis was soon after that work interested by a much more general sit-
uation: the overdetermined linear systems with constant coefficients. In 1960, he
announces general results in this context.

For simplicity, I limit myself to systems with one unknown (the general case
is similar). Also, I consider only the case of C∞ functions in R

n; in the case of
distributions and convex open sets, the results are similar.

We give P1, . . . ,Pm, linear differential operators with constant coefficients. Then
the results are as follows:

(i) Given functions f1, . . . , fm C∞, there exists a g C∞ verifying Pig = fi if and
only if the fi ’s verify the “trivial compatibility conditions”: if Q1, . . . ,Qm are
differential polynomials with constant coefficients satisfying ΣQiPi = 0, then
one has ΣQifi = 0

(ii) The exponential-polynomial solutions of P1g = · · · = Pmg = 0 are dense in all
solutions.

Actually, Ehrenpreis gives a much more precise statement, called “fundamental
principle”: roughly speaking, the C∞ solutions of the system are Fourier transforms
or “integrals” (in a suitable sense) of measures with support the complex variety of
zeros of ̂P1(z) = · · · = ̂Pm(z) = 0, ̂Pi the polynomial associated to Pi .

I will just explain roughly how one can get (i) and (ii) (the fundamental principle
requires some more work). By duality and Fourier transform, the problem is reduced
to the following:

Let μ be a distribution with compact support, and μ̂ its Fourier transform. Ac-
cording to Paley–Wiener theorem, μ̂ is an entire function of exponential type with
polynomial growth in any strip | Im z| ≤ a, a ∈R, and conversely.

Now, suppose that, at every point z0 ∈ C
n, μ̂ is in the ideal of formal series in

(z − z0) generated by ̂P1, . . . , ̂Pm. Then, one has μ̂ = Σ ̂Piν̂i , where νi are Fourier
transforms of distributions with compact support (or, to abbreviate, entire functions
with Paley–Wiener growth).

It is classical that, with these hypotheses, one has locally in C
n, μ̂ = Σ ̂Pifi , fi

germs of holomorphic functions. Now the theory of Cartan–Oka proves that, in fact,
one has a global result, i.e. μ̂ = Σ ̂Pifi , fi entire. The problem is to prove that one
can choose the fi with Paley–Wiener growth.

The idea is to copy more or less the method of Cartan: first, get local bounds.
Then, to globalize the result, use a theorem of vanishing of cohomology “with
Paley–Wiener bounds”. Note that, at this time, the idea of cohomology with bound
was absolutely new.

As I said, these results were announced in 1960, in the paper “The fundamental
principle for linear constant coefficients partial differential equations”. A little more
details were given in some monographed notes of lectures at Stanford. But it takes
about 3 years to have a complete manuscript; and the final book “Fourier analysis
in several complex variables” was not published before 1970. Needless to say that
the book contains many more results on ellipticity, Cauchy problem, quasi-analytic
classes, etc.

The 1960 announcement interested very much the (few) experts of the subject. At
the first time, I was extremely surprised, may be a little bit sceptical. But, after two
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years, in the absence of complete proofs, I tried to give my own version. It differs
from that of Ehrenpreis in two points:

First, I use a Dolbeault cohomology with bounds, instead of Čech cohomology as
Ehrenpreis. In fact, a theorem of vanishing of Dolbeault cohomology “with Paley–
Wiener growth” is surprisingly simple, much more that Čech cohomology with the
same bound. Some time later, Hörmander got practically definitive results on Dol-
beault cohomology with growth condition given by any plurisubharmonic function;
he gave also an exposition of Ehrenpreis theory using this theorem.

The second difference, less important, is that I used (local) estimates on C∞ func-
tions, instead of holomorphic ones (the use of Dolbeault cohomology permits it).
These estimates come from a development of the theory of division of distributions.

I note also that Palamodov gave also a version of the theory (his version is more
close to that of Ehrenpreis).

These works finish essentially the subject. One could think of an extension to
general systems of convolution equations, but this seems very difficult, or even al-
most impossible. The only one reasonable result to be expected was the density of
exponential polynomials for general systems of homogeneous equations, a result
obtained for one variable by Schwartz in his theory of mean periodic functions. But,
in 1974 Gurevitch proved that the result is not true for several variables.

Let me finish by a few words about our personal relations. Actually, we met for
the first time in Paris, in 1958 (if my memory is correct); this was a rather long time
after our first works. Before that meeting, I thought of Ehrenpreis, with a little bit of
tension, as a rather abstract person with whom I was more one less in competition.
But, at our first meeting, he was so open and friendly that all tension disappeared
totally. We became friends, although we did not meet so often. I remember espe-
cially a visit he made in Tunis, in 1970, where I stayed for one year. I think he was
very pleased with this visit, except that the Jewish Tunisian food seemed not to fit
him. Later, I met him several times in New-York, where I come often for familial
reasons. He came to some lectures I gave to Courant Institute.

More recently, not a long time before his death, I had the surprise and pleasure
to see him at a lecture I gave at Kolchin Seminar, in CUNY. I was especially happy,
since I had not seen him since a rather long time, and we took the opportunity to
remember old souvenirs. When leaving him, I could not imagine that it was our last
meeting.



Leon Ehrenpreis, a Unique Mathematician

Daniele C. Struppa

1 Introduction

What made Ehrenpreis’ mathematics so unique was his bold approach to classical
problems, and his interest in finding an overarching and unifying framework for a
variety of apparently unrelated problems. In this note I will try to highlight this char-
acteristic, by looking at some of Ehrenpreis’ papers which are not, strictly speaking,
connected with either the Fundamental Principle or the Radon Transform.

Malgrange’s section on the work that he, Hörmander, and Ehrenpreis accom-
plished in the context of systems of linear constant coefficient partial differential
operators has illuminated a particularly intense period in the history of modern anal-
ysis: in this context, the contribution of Ehrenpreis is almost completely summarized
in his first full length book [8].

The section authored by Kuchment, on the other hand, gives a beautiful picture
of Ehrenpreis’ involvement with integral geometry and its far reaching work on the
Radon transform, as described in his pioneering work [15].1

My own involvement with Ehrenpreis stemmed from me being (from 1978 to
1981) a doctoral student of Carlos Berenstein, who himself was a former student
of Leon. As such I came to meet Ehrenpreis many times during his frequent vis-
its to College Park, Maryland. What I remember most from our conversations, and
from his talks, was his overarching belief that one should consider the theory of
holomorphic functions (in several complex variables) as a special case of a more

1As a somewhat amusing and personal note, I should mention that in the late 1980s I had founded
a small publishing company in southern Italy, Mediterranean Press was its name; at that time
Ehrenpreis was visiting my department, and he had accepted my invitation to write a book on the
Radon transform for my company. During the next several years, I therefore saw several prelim-
inary versions of the book, but by the mid-1990s I had left Italy, sold my equity in the company,
and Ehrenpreis had found a much more appropriate outlet for his work.

D.C. Struppa (�)
Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
e-mail: struppa@chapman.edu

I. Sabadini, D.C. Struppa (eds.), The Mathematical Legacy of Leon Ehrenpreis,
Springer Proceedings in Mathematics 16,
DOI 10.1007/978-88-470-1947-8_2, © Springer-Verlag Italia 2012
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general theory of overdetermined systems. As for the theory of holomorphic func-
tions in one variable, one should be trying to think of it as a special case of a more
general theory of mean-periodic functions. His belief in this general approach was
illustrated by some of his most original and beautiful work. In this short note, I
would like to focus on three specific instances in which his worldview allowed him
to recreate classical theorems in a much more general setting, thus opening the way
to fruitful and unexpected generalizations.

2 The Hartogs’ Theorem

I will begin with the beautiful proof that Ehrenpreis gave in 1961 for the well-
known Hartogs’ theorem on the removability of compact singularities for holomor-
phic functions of more than one complex variable. The theorem states that if K

is a compact set in C
n, with n ≥ 2, every holomorphic function outside of K can

be extended (in a unique way) to a holomorphic function inside of K . This result,
which was originally proved by Hartogs [17] in 1906 and was probably the first
to demonstrate the unique flavor of complex analysis in several variables, has been
given many different proofs and has been generalized to many settings [26, 28]. But
it was only with Ehrenpreis’ surprising [7] that it became clear that the result has
little to do with holomorphic functions, but it is rather a consequence of an essen-
tially algebraic property of the Cauchy–Riemann system. The actual statement of
Ehrenpreis is as follows:

Theorem 1 Let K be a compact set in R
n, and let P1, . . . ,Pr be r polynomials

in n complex variables with no common factors. Denote by Pi(D) the differential
operator that is obtained by replacing the complex variable z = (z1, . . . , zn) in P
by the formal differential operator D = (−i∂/∂x1, . . . ,−i∂/∂xn). Then every in-
finitely differentiable function on R

n \ K which is a solution, in R
n \ K , of the sys-

tem P(D)f = 0, namely P1(D)f = · · · = Pr(D)f = 0, can be extended uniquely
to an infinitely differentiable function on R

n, solution everywhere of the same sys-
tem. The new solution coincides with f on R

n \ Kε , where Kε indicates a small ε

neighborhood of K .

The proof of the result is a brilliant (and early) example of the use of cohomol-
ogy vanishing arguments. Essentially, one extends f in some arbitrary way to an
infinitely differentiable function g and then notices that the collection {Pi(D)g} is
a compactly supported 1-cocycle with coefficients in the sheaf R of solutions of
the system P(D)f = 0. Using the Ehrenpreis–Malgrange division theorem [6, 23]
(which essentially states that an entire quotient between a holomorphic function
and a polynomial has the same growth order as the original holomorphic function),
Ehrenpreis shows that the first cohomology group with compact support and with
coefficients in the sheaf R vanishes, and therefore the 1-cocycle is a 1-coboundary,
and the correction that this provides is sufficient to modify the original extension g

into a global solution of the system.
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This proof is beautiful on several counts: it is very simple (in fact, it can be
given in full detail in just a few lines), it takes advantage of the equally beautiful
Ehrenpreis–Malgrange lemma (in itself a powerful statement on the nature of poly-
nomials), and finally it uncovers the fundamentally algebraic nature of the problem.
The extension to the case of a rectangular system is technically more complicated
and was given in detail, for example, in [25], as well as sketched in Ehrenpreis’
own [8]. But the structure of the proof is so easy that it is in fact possible to gener-
alize it further to infinite-order differential operators (see, for example, [20]) as well
as to convolution equations as in [24]. We refer the reader to [26, 28] for a rather
complete history of the various developments surrounding the various proofs of the
Hartogs’ theorem, and where more complete references (including the works of
Kawai concerning the case of systems of variable coefficient differential equations)
are given.

3 The Edge-of-the-Wedge Theorem

A second instance in which the theory of several complex variables is reinterpreted
in a larger context is offered by Ehrenpreis’ interest in a general approach to the
question of extension of holomorphic functions. Clearly Hartogs’ theorem is an
example of such an interest, but Ehrenpreis was interested in a more general issue,
in which the extension was not necessarily across a compact set. To this problem
Ehrenpreis devoted a series of papers, [9–11, 13, 14, 16], whose focus, in a sense, is
on the extension of the edge-of-the-wedge theorem, from the case of holomorphic
functions to the case of more general solutions to overdetermined systems of linear
constant coefficient differential equations.

This is not the place for a full discussion of the problem, but it is probably worth
sketching at least the fundamental setting, which Ehrenpreis considered in his papers
beginning with [9], but whose intellectual origins can once again be traced back
to [8]. Consider s (not necessarily) different open sets Ω1, . . . ,Ωs in R

n and r

differential operators (once again not necessarily different) Dj = (Dj1, . . . ,Djs)

with constant coefficients. Suppose, furthermore, that there is a set X contained
in every closed set Ωj , which can be used to parameterize the solutions (in some
suitable Analytically Uniform space) of Dj fj = 0 on each Ωj . We use this term
to indicate, in accordance with Chap. IX of [8], that a suitable Cauchy problem
(determined by the operators Dj and initial values on X) is well posed. Suppose
now that the solutions fj satisfy on X some differential relations

∑

ij

aij ∂ifj = 0

generated by suitable constant coefficient differential operators ∂i . Then one may
ask what kind of consequences can be derived regarding the fj . In particular, is it
possible to extend them to being solutions of those same operators Dj on larger sets
(this is a removability of singularities problem, of a very different nature from the
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one we examined in the section on the Hartogs’ theorem, since the singularities are
not confined, in this case, to compact sets)?

The study of such general Cauchy problems, and more precisely the conditions
under which the problem is well posed (conditions on the spaces of functions in-
volved, on the geometrical properties of the varieties associated to the operators,
and on the specific geometry of X) are discussed in [8], but while the results of
Ehrenpreis are extremely general, they are somewhat difficult to apply to specific
conditions.

In the papers that begin with [9], however, Ehrenpreis fixes his attention on the
way in which these results are far reaching generalizations of well-known function
theory theorems. For example, if s = 1, Ω = {(x1, . . . , xn) ∈ R

n : x1 > 0}, and if
r = 1, with D being now the Laplacian, then one can consider a very special differ-
ential relation, say

∂f

∂x1
= 0,

and then any general theorem will end up being a generalization of what is known as
the reflection theorem, namely the theorem that states that harmonic functions in the
half-space {(x1, . . . , xn) ∈ R

n : x1 > 0}, which satisfy ∂f/∂x1 = 0, can be extended
to harmonic functions on all of Rn.

By the same token, the edge-of-the-wedge theorem can be seen in this context.
Take all the differential operators to be the Cauchy–Riemann systems in n variables,
and take two open sets Ω1,Ω2 to be complex tubes over two convex cones in the
real space. Then the differential relation is actually the request that the two functions
f1, f2, holomorphic respectively on Ω1 and Ω2, coincide on the real boundary of
the two tubes. The conclusion of the edge-of-the-wedge theorem then is that there
is a holomorphic function f which extends the f ′

j s to the convex hull of Ω1
⋃

Ω2.
Once again, Ehrenpreis shows us here a very general approach to a variety of

different problems in which holomorphicity (or harmonicity) are just special cases
of functions which are solutions to more general systems of differential equations.
I can only leave it to the reader to further explore these ideas in the articles cited in
the references.

4 Infinite-Order Differential Operators and the Fabry Gap
Theorem

Finally, I want to go back to the interest of Ehrenpreis in convolution equations, and
in the role they could play in understanding some classical properties of holomor-
phic functions in one complex variable. As Malgrange has observed in his note, a
full extension of the Ehrenpreis–Palamodov Fundamental Principle to (systems of)
convolution equations is not possible, essentially because of the example of Gure-
vich to which Malgrange makes reference. This said, Ehrenpreis never abandoned
the possibility that at least for some classes of convolutors, it may be possible to
prove what is essentially a version of the Fundamental Principle. He first showed
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how to obtain a weak version of the Fundamental Principle in Chap. 11 of [8], but
his result was somewhat hard to apply, and the restrictions on the convolutors are
hard to decipher. But his intuition was in fact correct. That this was the case was
shown first by Berenstein and Dostal [1] in a very special case, and later on by
Berenstein and Taylor [5], at least for the case of systems of convolution equations
with one unknown function. What Berenstein and Taylor show in [5] is that it is
possible to construct a class of convolutors (which they call slowly decreasing, fol-
lowing a terminology already used by Ehrenpreis to indicate the condition that is
necessary to establish surjectivity in suitable spaces) for which a reasonable ana-
logue of the Fundamental Principle holds. Their theory was further extended to the
case of rectangular systems of convolution equations in all LAU spaces in my dis-
sertation [27]. It is worth pointing out (and in fact it is necessary in view of what
will follow) that infinite-order differential operators on the space of holomorphic
functions offer an example of slowly decreasing convolutors, and therefore the the-
ory developed in [5, 27] can be applied to solutions of (systems of) such operators.
One of the consequences of these extensions of the Fundamental Principle consists
in the fact that convergent exponential sums, both in one and in several variables,
can be considered as solutions to systems of slowly decreasing convolution equa-
tions and in particular (when holomorphic functions are considered) to systems of
infinite-order differential equations.

This leads us to one of the most intriguing contributions of Ehrenpreis to classical
complex analysis. In Chap. 12 of his monograph [8], as well as in [12], Ehrenpreis
reconsiders the classical Fabry gap theorem. In brief, the theorem can be stated as
follows: let z denote the complex variable, and, for complex numbers cj and real
numbers aj , consider the series

+∞∑

j=1

cj e
iaj z.

Assume that, in the strip |Im z < 1|, the series converges, uniformly on compact sets,
to a function f (z) which can be analytically continued to a neighborhood of some
point z0 on the boundary of the strip itself. Then, if the sequence {aj } is lacunary in
the sense that

n

an

→ 0 as n → ∞
and there exists a positive constant c such that

|an − am| ≥ c|n − m|,
the function f can actually be continued analytically to an entire strip containing z0,
and, on the compact subsets of this new strip, the series

∑+∞
j=1 cj e

iaj z converges to
the continuation of f (z). There are several ways to look at this theorem, and maybe
the most important classical reference is Levinson’s important [22]. But Ehrenpreis
offers in Chap. 12 of [8] two very unconventional approaches. One consists in notic-
ing that every exponential eiaj z is itself a solution of the particular differential equa-
tion

df

dz
− iaj f = 0,
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and therefore it is not unreasonable to think of the series
∑+∞

j=1 cj e
iaj z as a series of

solutions to different differential equations. Since exponentials, in several variables,
appear as solutions to overdetermined systems of differential equations, this offers
Ehrenpreis a way toward a very powerful generalization. More precisely, Ehrenpreis
considers a sequence {Dj } of differential operators, with Dj = (Dj1, . . . ,Djn), and
then seeks conditions on such operators that allow us to study overconvergence
properties of the series

∑
fj , where the summands in the series are solutions to

Dj fj = 0. The results that Ehrenpreis obtained in this direction are somewhat tech-
nical and probably ripe for further analysis. As far as I know, they have not yet been
explored with the depth they seem to deserve.

But Ehrenpreis also offers another way of interpreting the series
∑+∞

j=1 cj e
iaj z;

specifically he points out that if f (z) = ∑+∞
j=1 cj e

iaj z, then f can be thought of as
a solution of the convolution equation S ∗ f = 0, where S is the convolutor whose
Fourier transform is, up to some converging factor, the entire function Π(1 − z/aj ).
It was this beautiful intuition that proved to be most fruitful and opened the way
for a variety of interesting generalization. Most notable is probably Kawai’s work
[18, 19] on what he called the Fabry–Ehrenpreis gap theorem, and which stemmed
from the interpretation of S as an infinite-order differential operator. Kawai’s work
is also extremely beautiful and brings into the picture the theory of hyperfunctions,
as the natural environment for the study of infinite-order differential operators. As
it often happens, new results open new doors, and Berenstein and the author pushed
further some of these ideas and applied them to what they called now the Fabry–
Ehrenpreis–Kawai gap theorem in a series of papers, which exploited the original
intuition of Ehrenpreis and found its most general formulation in [2, 3, 21] and
finally in [4]. In those papers, we believe that the original vision of Ehrenpreis on
the role that convolution equations can play in understanding the overconvergence
behavior of Dirichlet series (and generalized Dirichlet series) is carried out to a great
extent.
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Leon Ehrenpreis, Recollections from the Recent
Decades

Peter Kuchment

Leon Ehrenpreis was an outstanding world-class mathematician and a wonderful,
warm person. I had a privilege to consider myself his friend for the last two decades.
It is hard to do justice to his manifold mathematics and personality, but I will try to
at least add some recollections to this tribute volume.1

Leon Ehrenpreis has been one of my mathematical heroes for about 40 years.
I first encountered his, Lars Hörmander’s, Bernard Malgrange’s, and Victor Palam-
odov’s fundamental and beautiful works on systems of linear constant coefficient
PDEs in early 1970s, when I was an undergraduate student and then a PhD candi-
date. They have had a profound impact on me, in particular when working on the
Floquet theory of periodic PDEs, which we with Leonid Zelenko started developing
in a few years. I am sure that Bernard Malgrange and Daniele Struppa have de-
scribed this part of Leon’s legacy much better than I ever could. I will only address
some of the research Leon pursued in the last two decades of his life, which I was
lucky to witness.

Some time around 1988, a medical industry contract forced me to learn the ba-
sics of a fascinating topic that I had never heard of before, the so-called computed
tomography. This turned out to be fateful. Our research group in Voronezh found
the mathematics of tomography so challenging and exciting that in the following
decades several of us have being devoting a significant part of time working on
tomographic problems. Appearance in the 1980s of the Russian translation of the
cornerstone book on this topic by Frank Natterer [52] also helped. Interestingly
enough, I discovered that several mathematicians whom I admired for their work
in completely different areas (e.g., Carlos Berenstein, Simon Gindikin, and Victor
Palamodov) had already been working on tomography-related issues. This is an in-
stance of a strange effect that I have observed several times in my life, when several

1One can also read the AMS Notices article [30] for recollections of several Leon’s friends and
colleagues. A volume on tomography [10] is also dedicated to Leon’s memory.
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people working in closely related areas suddenly and independently make a sharp
turn to the same new direction.

The end of the 1980s was a fascinating time in the former Soviet Union, when
contacts with the West have started to become somewhat possible. In particular,
the existence of some of famous mathematicians could be checked experimentally
(before that, the names like L. Ehrenpreis, L. Hörmander, P. Lax, L. Nierenberg,
and many others seemed to me to belong to some deities rather than real people).
In 1989 I had my first chance to travel abroad, and I spent about a month in the
USA going to various universities and to an AMS tomography conference in Arcata,
California. This is where I saw for the first time some of my scientific heroes (e.g.,
L. Ehrenpreis, S. Helgason, F. Natterer) in flesh.2

Meeting Leon in Arcata was a big surprise to me, since I had no clue that he had
become interested in integral geometry or tomography. This was another instance
of the simultaneous change of direction. He showed a polite interest in what I told
him about my PDE work related to his, but it was clear that he was thinking in
somewhat different (although not orthogonal) direction now. This was the first time
when I heard Leon mentioning his book on Radon transform, which was “nearly
finished.” It did appear . . . in 2003 [28]. In the 13–14 years in between, Leon had
been sending generously the nth versions of his manuscript to anyone interested,
and the ideas and problems contained in these texts have influenced many of us.

After emigrating later in 1989 to the USA, I found employment at the Wichita
State University in Kansas. The year 1990 was a tough time for finding employ-
ment for a middle-age emigree mathematician with mediocre, at best, command of
English. Having recommendation letters from colleagues such as L. Ehrenpreis was
crucial, and I am indebted forever to them and many other mathematicians who
supported me in various ways in these difficult times.

Settling down in Wichita was rather pleasant. My family loved the city. The math-
ematics department was quite good, including several prominent people in the areas
of my interest, in particular in inverse problems (Victor Isakov and Ziqi Sun). When
I started bringing in speakers and collaborators, Leon Ehrenpreis was one of the first
invitees, and since then he had become a constant visitor of our department and then
of the Mathematics department of Texas A&M, where I moved in 2001. His lec-
tures and discussions that I and my graduate students had with him were extremely
interesting, scientifically rewarding, and personally enjoyable.

I will skip some personal recollections, which one can find in [30] and concen-
trate rather on mathematics. One of the first topics that we discussed was a strange
byproduct of the papers [48, 49] published a couple of years before. There we with
S. Lvin described the range of the so-called exponential Radon transform, which

2The Arcata meeting was also the place where I met for the first time other colleagues, whom
I now consider as long-time friends (J. Boman, D. Finch, A. Markoe, E. T. Quinto, G. Uhlmann,
and many others). I could not even imagine that twelve years later I would have a privilege to work
at the same department at Texas A&M with another group of researchers whose work I studied and
admired as a young mathematician in Russia, such as Ron Douglas, Ciprian Foias, Carl Pearcy,
and Gilles Pisier.
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arises in the Single Photon Emission Computed Tomography (SPECT), an impor-
tant medical imaging method [52]. I will not burden the reader with technicalities
and just describe the result on a hand-waving level. It is known [34–36, 42, 43, 52]
that the ranges of Radon-type transforms are usually of infinite codimension in nat-
ural function spaces. Knowing the description of the range plays an important role
in integral geometry and tomography. After range conditions are found, it is usu-
ally straightforward to go back and check their necessity,3 while a proof of their
completeness is usually technical. Thus, when the conditions of [48] were found,
we expected that reproving their necessity should be a piece of cake: just plug the
transform of a function into these conditions and see immediately that they are sat-
isfied. However, when we did this, we discovered an infinite and totally nonobvious
to us set of nonlinear differential identities for the standard sine function: for any
odd natural n,

n∑

k=0

(
n

k

)(
d

dx
− sinx

)
◦

(
d

dx
− sinx + i

)
◦ · · · ◦

(
d

dx
− sinx + (k − 1)i

)

× (
(sinx)n−k

) = 0, (1)

where i is the imaginary unit, and ◦ denotes the composition of differential opera-
tors. The attempt to prove these identities directly (i.e., without any integral geom-
etry and Fourier analysis) succeeded [49] but took a significant time. We are still
puzzled by the meaning of these identities [50]. Several integral geometry and to-
mography experts devoted their time and effort to trying to understand better the
meaning of these range conditions. This is also what we set out to do with my
PhD student Valentina Aguilar and Leon Ehrenpreis. We succeeded in the following
sense: we showed, in particular, that these identities are equivalent to an interesting
theorem of separate analyticity type.

Theorem 1 ([8]) Let D be a disk in R
2, and f be a function in the exterior of D.

Suppose that when restricted to any tangent line L to D, the function f |L, as a
function of one real variable, extends to an entire function on the complexification
of L. Then f , as a function on R

2 \ D, extends to an entire function on C
2.

Well, this fact also did not look obvious to us. Analyticity of f in a complex
neighborhood of R2 \ D follows from the old (and not that well-known) separate
analyticity theorem by S. Bernstein (see [9]); however this theorem cannot produce
statement about f being an entire function. Thus, since proving the above theorem,
a couple of things about it kept bothering us for several years. First of all, this is
a fact of several complex variables, while our proof did not look like an SCV ar-
gument at all. Is there a truly complex analysis proof? Another, related, question
is whether such a theorem can be proven for a different convex body instead of a

3For instance, when the so-called moment conditions [35, 42] for the standard Radon transform
are written, checking their necessity boils down to noticing that the kth power (x · ω)k of the inner
product of two vectors is a homogeneous polynomial of degree k with respect to each of them.
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disk D? An SCV proof was later provided in [54], although it was rather compli-
cated and was not generalizable (at least, easily) to other convex curves. Leon has
worked out some other examples of convex algebraic curves (unpublished), but gen-
eral picture remained unclear to us. Finally, A. Tumanov presented recently [59] a
beautiful short proof based on attachment of analytic disks (where Tumanov is a
great expert), which works for any strictly convex body D with a mild condition on
the smoothness of its boundary.

Another issue that we addressed with Leon and my Master student Alex Panchen-
ko also originated from emission tomography. The exponential Radon transform in
SPECT depends upon an “attenuation” parameter μ ≥ 0. In [29], we introduced and
studied a “mother” exponential Radon transform, which had no free parameters, but
by different restrictions of which one can obtain the exponential Radon transforms
corresponding to all possible values of the attenuation. We also obtained the range
description there, which was based upon the F. John’s differential equations. In this
particular case, the (ultrahyperbolic) John’s equation could be recast as a boundary
Cauchy–Riemann equation.

Although we have not done any joint research since 2000, we kept discussing
(in person and by e-mail) various integral-geometric and PDE issues. One was the
fascinating and surprisingly hard “strip problem” [1, 2, 4, 6, 37, 38, 57, 58], to
which Leon has contributed [27, 28] and which he extended to a more general PDE
setting (see, e.g., [6, 27, 28]). It was eventually resolved due to efforts of several
mathematicians, including M. Agranovsky, J. Globevnik, and A. Tumanov (see the
reference above).

Leon was also very much interested in the activity concerning the “restricted
spherical means” operator, i.e., a version of Radon transform that integrates a given
function over spheres of arbitrary radii, but with the centers restricted to a hyper-
surface S. The study of such operators was very active since the beginning of the
1990s, due first to needs of approximation theory , then self-sustained just due to the
beauty and complexity of arising problems (see [3, 7] and references therein), and
finally it received a huge boost in the last decade, due to the discovered relations to a
newly developing method of medical imaging, the so-called thermo-/photo-acoustic
tomography (see the surveys [5, 31–33, 47, 60] and references there).

The restricted spherical mean problem happens to be a very particular case of one
of the questions raised by Leon in his book [28]. This brings us from the “small”
problems discussed above to the much more general thinking Leon has been doing
on transforms of Radon type and their very wide generalizations. This was reflected
in his papers of the period and in the monograph [28]. The title of this book,“The
Universality of the Radon Transform,” and the wealth of topics and ideas covered
and variety of open problems suggested shows how deeply Leon believed in wide
range importance of this approach. He was not the first to realize such widespread
applicability of transforms of Radon type, although probably the first to give such
a bold name to a book. Fritz John in his book [46] showed how important this
circle of ideas is for PDEs. Israel Gelfand, Simon Gindikin, Sigurdur Helgason,
Victor Palamodov, and many other mathematicians studied in detail applications
to PDEs, harmonic analysis, group representation theory, special functions, mathe-
matical physics, etc. (e.g., [34–36, 42–45, 55]). Still, Leon’s book is rather unique



Leon Ehrenpreis, Recollections from the Recent Decades 19

in terms of many nonstandard issues raised there. Leon also was unique in his writ-
ing style, introducing new notations and names for well-known objects, which does
not help a reader. However, after getting through these hurdles, one opens a treasure
chest of ideas.

The variety of things that Leon addressed in the book [28] and his other pub-
lications of the time [11–27], and which he considered inter-related, is enormous:
“exotic” boundary-value problems for PDEs, Poisson summation formulas, Eisen-
stein and Poincare series on SL(2,R) and SL(3,R), various number-theoretic prob-
lems, Hartogs–Lewy extension, FBI transform (although it carries an unrecogniz-
able name in [28], being an instance of what he called “nonlinear Fourier trans-
form”), edge-of-the-wedge theorems, Phragmén–Lindelöf type theorems for PDEs,
special functions, among others.

Notwithstanding the overarching title, a wide variety of topics covered, and large
volume, [28] is neither a textbook on the “usual” Radon transform nor a compre-
hensive historical survey or reference manual; it is not designed for reading by an
uninitiated; it does not cover many important developments, techniques, and re-
sults that one can find in [34–36, 39–45, 55, 56], such as curved manifolds case,
κ-operator approach, Radon transforms of differential forms and tensors, projective
geometry setting, most of the group representation relations, etc. At Leon’s request,
Todd Quinto and I contributed the appendix [51] to [28] devoted to a brief survey
of some tomographic applications. Due to the natural size limitations, it also cannot
be considered comprehensive. One can find a thorough discussion of tomographic
issues in [52, 53].

In spite of all these omissions, this unique book [28] should occupy a space
on the bookshelf of anyone working on PDEs, Fourier analysis, several complex
variables, and integral geometry. I am sure it will be a source of inspiration for
many mathematicians, who will take their time to get through the text.

The memory of Leon Ehrenpreis will stay with all who encountered his amazing
mathematics and experienced his friendship. I am grateful to the fate for giving me
the chance and privilege to meet Leon and to collaborate with him.
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Analyticity on Curves

Mark Agranovsky and Lawrence Zalcman

Abstract Under what conditions can one conclude that a continuous function on a
plane domain Ω is holomorphic, given that its restrictions to a collection of Jordan
curves in Ω which cover Ω admit holomorphic extensions? We survey progress on
this problem over the past 40 years, with an emphasis on recent results.

1 Introduction

The circle of ideas discussed in this paper originates with the following:

Question Let f ∈ C(R2) and suppose that for each circle γ of (fixed) radius r > 0
in the plane, the restriction of f to γ has a continuous extension to the closed
disc Dγ bounded by γ which is analytic in the open disc Dγ . Must f be an entire
function?

It is well known (and easy to see) that f extends from γr(w) = {z : |z − w| = r}
continuously to a function analytic on Dγr(w) if and only if

∫
γr (w)

f (z)zn dz = 0, n = 0,1,2, . . . , (1)

We dedicate this paper to the memory of our friend Leon Ehrenpreis. Leon was fascinated by the
strip problem, contributed to its solution [13], and led the way in generalizing it from a result
concerning analytic functions to solutions of elliptic equations [14]. Indeed, one of his last major
addresses, the opening lecture of the conference Integral Geometry and Tomography, delivered at
Stockholm University on August 12, 2008, was entitled “The Strip Theorem for PDE”; see [15,
II–IV].
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or, equivalently,

∫ 2π

0
f

(
w + reiθ

)
einθ dθ, n = 1,2, . . . . (1′)

Thus, the question may be formulated as asking whether condition (1) or (1′) for all
w ∈C implies that f is entire.

Some forty years ago, this question was shown to have an affirmative answer [8,
Proposition 1].

It is natural to ask how conditions (1) and (1′) might be weakened while still
preserving the conclusion that f is globally analytic. Remarkably, it turns out that
if f ∈ C(R2) satisfies ∫

γr (w)

f (z) dz = 0

for all w ∈ C and two fixed values r1 and r2 of r , then f is an entire function—so
long as r1/r2 does not belong to the (countable) set of quotients of positive zeros
of the Bessel function J1 [27, Theorem 2]. It is not difficult to see that f need not
be holomorphic anywhere if the integral condition holds only for circles of a single
radius or if r1/r2 is a quotient of zeros of J1 [27, p. 244].

Similarly, if f ∈ C(R2) satisfies

∫ 2π

0
f

(
w + reiθ

)
eiθ dθ = 0

and ∫ 2π

0
f

(
w + reiθ

)
einθ dθ = 0

for some fixed r and fixed n ≥ 2 and all w ∈ C, then f must be entire [28, Theo-
rem 6]; cf. [12, Theorem 3.1].

Analogous results hold for analytic functions on the hyperbolic plane, i.e., the
unit disc with the Poincaré metric [10, pp. 125–126] (cf. [11, Sect. 6] and [1, Theo-
rem 2]).

These results, whose proofs involve the theory of mean-periodic functions, are
cited principally to provide background. Our main concern in this paper is with
conditions like (1), and it is to these matters that we now turn.

2 The Strip Problem and the Argument Principle

The results stated for circles in the previous section actually have generalizations to
Jordan curves. In this paper, we are concerned with developments arising from the
general version of the result of Agranovsky and Valsky cited above. This may be
stated as follows.
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Theorem 1 ([8, Proposition 1]) Let ∈ C(R2), and let γ ⊂ R
2 be a smooth Jordan

curve bounding the Jordan region D. Suppose that for any rigid motion ω of the
plane, the restriction of f to ω(γ ) extends continuously to a holomorphic function
on ω(D). Then f is an entire function.

Remark 1 Throughout, we take “smooth” to mean piecewise continuously differ-
entiable, i.e., we assume that the contours considered are piecewise C1, so that the
existence of an analytic extension is equivalent to the analogue of (1) with γr(w)

replaced by ω(γ ). The case of arbitrary Jordan curves (which might, for instance,
have positive Lebesgue area) remains uninvestigated so far as we know and may yet
yield some surprises.

The proof of Theorem 1 uses the following lemma, which can be regarded as a
weak version of the argument principle.

Lemma 1 Let D be a Jordan domain in the plane with piecewise C1 boundary
γ = ∂D. If f ∈ C1(γ ) extends continuously into D as a holomorphic function and
the mapping f : γ �→ f (γ ) has topological degree 0, then f is constant.

Proof We claim that f (D) = f (γ ). This implies that f is constant, since otherwise
the left-hand side would have nonempty interior, while the right-hand side evidently
has measure zero. Suppose then that f (D) �= f (γ ), so there exists w0 ∈ f (D) \
f (γ ). Thus, the holomorphic function f (z) − w0 does not vanish on γ but has
zeros on D; so, by the argument principle,

1

2πi

∫
γ

f ′(z)
f (z) − w0

dz > 0.

On the other hand, since degf = 0, the change of variables w = f (z) shows that
the integral above equals

(degf ) · 1

2πi

∫
f (γ )

1

w − w0
dw = 0.

This contradiction completes the proof. �

The proof of Theorem 1 follows easily from Lemma 1. Indeed, fix z0 ∈ C and con-
sider the averaged function

f̂ (z) = 1

2π

∫ 2π

0
f

(
z0 + eiϕ(z − z0)

)
dϕ.

It satisfies the same condition of analytic extendibility inside the contours ω(γ )

as f . However, f̂ depends only on |z − z0| and hence has topological degree 0 on
any closed curve ω(γ ). By Lemma 1, f is constant on each such curve, which im-
plies that f̂ is identically constant. But this means that f satisfies the mean-value
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property at z0. Since z0 was arbitrary, f is harmonic. Since the function zf obvi-
ously satisfies the same extendibility condition as f , it too is harmonic. A simple

computation, based on the identity Δ = 4 ∂2

∂z∂z
, then shows that f is holomorphic.

Theorem 1 asserts that if
∫

ω(γ )

f (z)zndz = 0, n = 0,1,2, . . . , (2)

for every rigid motion ω, then f is analytic on
⋃

ω ω(γ ) = C. If γ is a smooth
Jordan curve other than a circle and condition (2) is weakened to

∫
ω(γ )

f (z) dz = 0

for every rigid motion ω of C, i.e., if γ has the Morera property [29, p. 186], then
it is very often the case that one can conclude that f is analytic in C. In fact, not
a single example to the contrary is known! This is closely related to the celebrated
Pompeiu property, for which see [12, 25–27, 29, 30].

The averaging technique used in the proof of Theorem 1 suggests investigating
what may be learned from considering the condition (2) when ω is restricted to
belong to the compact group S1 of rotations of the plane. This line of inquiry was
initiated by Josip Globevnik in [17] and pursued by him in a number of subsequent
publications. For instance, in [17] (see also [18, 19]), he takes γ to be a Jordan curve
not surrounding the origin and allows ω to range over the group S1 of all rotations
about the origin, so that ωt(γ ) = eit γ . The region Ω = ⋃

t ωt (γ ) is then an annulus
about 0, and (2) for all ω ∈ S1 implies that f ∈ C(Ω) is analytic in the interior of Ω .

It is natural to replace the group S1 of rotations by the (noncompact) translation
group R1. Given a Jordan curve γ in the plane, consider the collection {γt : t ∈ R}
of all translates γt = t + γ of γ . Then the region covered by {γt } is the strip

Ω =
⋃
t∈R

(t + γ ) = {z : α ≤ Im z ≤ β},

where α = min{Im z : z ∈ γ } and β = max{Im z : z ∈ γ }. Denoting by Dt the Jordan
domain bounded by γt and by Ω◦ the interior of Ω , we may consider the following
question. �

Strip problem Let γ be a Jordan curve in C and set Ω = {z + t : z ∈ γ, t ∈ R}.
Let f ∈ C(Ω) and suppose that for each t ∈ R, the restriction of f to γt extends
continuously to Dt as a holomorphic function. Must f be holomorphic on Ω◦?

Of particular interest is the case in which γ = {z : |z| = 1} is the unit circle and
Ω = {z : −1 ≤ Im z ≤ 1} is the strip of width 2 about the real axis. In this form, the
strip problem seems first to have been proposed by Globevnik in a lecture entitled
“Analyticity on families of curves,” delivered at Bar-Ilan University in November,
1987; see [20, p. 1921]. The designation “strip problem” is due to Agranovsky.
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As noted previously, the condition of analytic extendibility in the strip problem
is equivalent to the vanishing of all analytic moments

∫
γt

f (z)zn dz, n = 0,1,2, . . . ,

for all t ∈ R. In striking contrast to the results discussed earlier, here we cannot
drop even a single moment. For instance, if γ is the unit circle, so that Ω is the strip
{z : −1 ≤ Im z ≤ 1}, and m ≥ 1 is odd, then f (t + eiθ ) = sinmθ is well defined on
Ω and satisfies (2) for all n ≥ 0, n �= m, but is holomorphic nowhere in Ω◦. (For m

even, one takes instead cosmθ.)

In certain circumstances, the strip problem can be given an elementary solution.
Such is the case, for instance, where γ = ∂Q, where Q is the square with vertices
(1,1), (−1,1), (−1,−1), and (1,−1). In this instance, the difference between the
extensions of f to Qt and Qs vanishes on an interval in γt ∩γs when |s − t | < 2 and
so must vanish identically on Qt ∩Qs . Thus, these extensions define a single-valued
holomorphic function in {z : −1 < Im z < 1}. Unfortunately, this simple argument
is no longer available when the curves of the family {γt } meet one another in only a
finite set.

For functions that do not grow too rapidly, it is possible to resolve the strip prob-
lem using the Fourier transform. Indeed, suppose that f ∈ C(Ω) satisfies the hy-
potheses of the strip problem and that

∫
R

∣∣f (x, y)
∣∣dx < ∞

for each α < y < β . Then f is holomorphic in Ω◦.
For the proof, set

f̂ (x, y,λ) =
∫
R

f (x + t, y)e−iλt dt.

Clearly,

f̂ (x, y,λ) = eiλx

∫
R

f (x + t, y)e−iλ(x+t) dt = eiλxf̂ (λ, y),

where

f̂ (λ, y) =
∫
R

f (x, y)e−iλx dx

is the Fourier transform of f with respect to the x-variable. Since the property of
holomorphic extendibility is invariant under translations x �→ x + t , the function
(x, y) �→ f̂ (x, y,λ) possesses the same property for each fixed λ ∈ R. Multiplica-
tion by a holomorphic function obviously preserves the property; therefore,

g(x, y,λ) := f (x, y,λ)e−iλ(x+iy) = f̂ (λ, y)eλy
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also has the property. However, this last function evidently does not depend on x,
so the mapping gλ(x, y) := g(x, y,λ) has topological degree 0. By Lemma 1, gλ =
c(λ), and hence,

f̂ (λ, y) = g(x, y,λ)e−λy = c(λ)e−λy.

Thus, by Fourier inversion,

f (x, y) = 1

2π

∫
R

f̂ (λ, y)eiλxdx = 1

2π

∫
R

c(λ)eiλ(x+iy) dx,

which is clearly holomorphic in z = x + iy.
When f is not integrable on lines parallel to the x-axis, this approach fails (but

see [13]). In any case, Fourier analysis does not seem to help in finite versions of
the strip problem, in which the growth of f plays no role at all. Specifically, one can
restrict the parameter t in the strip problem to some finite interval [a, b]. In this case,
as already observed by Globevnik, the strip must not be too short if the problem is
to have an affirmative solution. As an example, take γ = {z : |z| = 1} and let t ∈
[−1,1]. Then the function f (z) = z2/z (understood to be 0 at z = 0) is continuous
on Ω = ⋃

t∈[−1,1](t + γ ) and admits analytic extension to each domain Dt , but
obviously fails to be analytic on Ω◦; see [17, Example 1].

The problems discussed in this section are particular cases of the following gen-
eral problem.

Generalized strip problem Let {γt , t ∈ [a, b]} be a continuous or smooth one-
parameter family of Jordan curves in the complex plane. Set Ω = ⋃

t γt . Suppose
f ∈ C(Ω) and that for each t ∈ [a, b], the restriction of f to γt extends continuously
as a holomorphic function on the region Dt bounded by γt . Under what conditions
can we conclude that f is holomorphic on Ω◦?

The rest of this paper is devoted to a discussion of various aspects of this problem
and progress toward its solution.

3 Generic Families of Circles and Rational Functions: Lifting
the Problem in C

2

It was observed in [6] that the strip problem can be viewed as a problem in the
space C

2 of two complex variables. Actually, this is evident from the presence of
the additional parameter t . Indeed, one can define the function

F(ζ, t) = Ft(t + ζ ),

where Ft (ζ ) is the holomorphic extension of f in the domain Dt := t + D. The
function F(ζ, t) is then defined on the solid cylinder D × R and is holomorphic
in ζ . If ζ ∈ γ = ∂D, then t + ζ ∈ Ω , and we have F(ζ, t) = f (ζ + t). Therefore,
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the function F(ζ, t) takes the same values at the points of intersection of the straight
line ζ + t = c with the cylinder ∂D ×R.

Now the question is whether this identification continues to hold on the seg-
ment between the points of intersection, i.e., whether F(ζ, t) = c on the segments
{ζ + t = c} ∩ (D ×R). Indeed, if this is the case, then F(ζ, t) = g(ζ + t) for some
function g, which is holomorphic since F is holomorphic in ζ . Moreover, when
ζ ∈ γ , g(ζ + t) = F(ζ, t) = f (ζ + t), and we conclude that f is holomorphic in
Ω = ⋃

γt . Unfortunately, it was not clear how to make use of the above model.
A different higher-dimensional model of the strip problem appeared in [6]. This

model is based on an embedding into C
2 and leads to a solution of the strip problem

for rational functions of two real variables. Specifically, a test of holomorphy is
obtained for generic one-parameter families of circles and for functions of the form
f (x, y) = P(x, y)/Q(x, y), where P and Q are polynomials in two variables.

To formulate the result from [6], we require some notation. Let I = [t0, t1], and
let c : I → C and r : I → (0,∞) be continuous mappings, where c is not constant.
Denote by C(t) the circle {z ∈ C : |z − c(t)| = r(t)} and by Ω the union

Ω =
⋃
t∈I

C(t).

For a, b ∈C, a �= b, define the special family of circles:

Ra,b =
{
C(t) : c(t) = a + t (b − a), r(t) = |b − a|√t (t + 1), t ∈ [0,∞)

}
.

Theorem 2 ([6]) Let

f (x, y) = P(x, y)

Q(x, y)

be a rational function (of the real variables x and y) such that Q(x,y) �= 0
for (x, y) ∈ Ω . Suppose that f |C(t) extends analytically into the disc D(t) :=
{|z − c(t)| < r(t)} for every t ∈ I . Then f is holomorphic in Ω , i.e., f is a ra-
tional function of z = x + iy with poles outside Ω , unless the family {C(t) : t ∈ I }
is contained in an exceptional family Ra,b for some a, b ∈ C.

Sketch of Proof First, we can assume that the polynomials P and Q are coprime
(have no common polynomial factors) and also rewrite P and Q as polynomials in
z and z, writing again P and Q for the new polynomials P(z, z), Q(z, z).

Observe that the function f (z, z) := P(z, z)/Q(z, z) always admits continuous
extension into the disc D(t) as a rational function of z. This extension is obtained
by substituting the expression z = c(t) + r2(t)/(z − c(t)) into P and Q, as follows
from the equation of the circle. Thus, the assumption on f means that this rational
function has no poles in D(t).

Now we lift the whole construction to C
2 by embedding C 
 z �→ (z, z) ∈ C

2.
The complexification of the circle C(t) is the quadric (z − c(t))(w − c(t)) = r2(t)

in C
2. The circle C(t) itself becomes the boundary of the semiquadric

Λt = {
(z,w) ∈ C

2 : (z − c(t)
)(

w − c(t)
) = r2(t),

∣∣z − c(t)
∣∣ < r(t)

}
.

The center z = c(t) of the disc D(t) corresponds to w = ∞.
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The assumption on f now translates to the condition that for each fixed t , the
rational function

h(z) = P
(
z, c + r2

z−c

)
Q

(
z, c + r2

z−c

) , c = c(t),

has no poles on the disc D(t).
These poles come from zeros of Q(z,w), and there are only two possibilities:

Case 1. Q(z,w) has at least one zero on each semiquadric Λt , t ∈ I ;
Case 2. Q(z,w) has no zeros on each semiquadric Λt , t ∈ I .

Indeed, to say that Q(z,w) vanishes on some Λt means that the extension of
the polynomial Q(z, z) into the disc {|z − c(t)| < r(t)} as a rational function of z

has a zero different from zt = c(t). The above analytic extension can be represented
as Qt(z)

(z−c(t))m
, where Qt(z) is a polynomial and m is the degree of Q with respect

to z. Therefore, Qt(z) has a zero in the disc |z − c(t)| < r(t). By assumption, Q

does not vanish on the boundary |z− c(t)| = r(t) of the disc; hence neither does the
polynomial Qt(z). The dependence on t of the circles C(t) and the polynomials Qt

is continuous, so by the argument principle, the number of zeros of Qt inside the
disc D(t) is the same for all t . Therefore, Q vanishes on each Λt once it vanishes
on one of them.

If Case 1 holds, then the algebraic curve Q−1(0) meets each Λt in at least one
point (zt ,wt ). However, the rational function P/Q has no poles on Λt , and hence
the zero of the denominator Q must cancel a zero of the numerator P , which means
that the algebraic curve P −1(0) passes through the same point (zt ,wt ).

The polynomials P and Q are coprime; hence, by Bezout’s theorem, the set
P −1(0) ∩ Q−1(0) is finite. Using this fact, it is not hard to prove that all Λt must
pass through the same point (zt ,wt ) = (a, b). A simple calculation then shows that
the family {C(t) : t ∈ I } is included in the exceptional family Ra,b .

Now suppose that Case 2 holds. Fix the parameter t . We know that Q does not
vanish on Λt . Consider the family of semiquadrics

Λ′
s := {

(z,w) ∈ C2 : (z − c(t)
)(

w − c(t)
) = s2r2(t),

∣∣z − c(t)
∣∣ < sr(t)

}
,

s ∈ (0,1],
shrinking, as s → 0, to the complex line {c(t)} × C. Using the argument principle,
one shows that Q has no zeros on any Λ′

s and hence does not vanish on the limit
complex line. The important point here is that the zeros do not go to the boundary
of Λ′

s , because this boundary belongs to Ω ⊂ {(z, z)}, where Q is free of zeros by
the assumption.

Since Q(c(t),w) is a polynomial in w, this means that Q(c(t),w) is constant in
w. Because this is true for all t , it follows that Q(z,w) = Q(z) is a holomorphic
polynomial (i.e., does not contain w = z).

It is now easy to finish the proof. Since Q is holomorphic, the original condition
is true also for the polynomial P = f Q. The holomorphic extension Pt (z) of the
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polynomial P(z, z) = p0(z) + p1(z)z + · · · + pm(z)zm from the circle |z − c(t)| =
r(t) can be written in the form

Pt (z) = am(z)(z − c(t))m + · · · + a0(z)

(z − c(t))m
,

where aj (z) are polynomials and a0(z) = pm(z). If m > 0, then a(c(t)) =
pm(c(t)) = 0 because Pt has no pole at z = c(t). This is true for all t , so by the
uniqueness theorem, pm = 0. Thus P(z) = p0(z) is a holomorphic polynomial, and
f = P/Q is a holomorphic rational function.

To show that the theorem fails for the exceptional families, it suffices to consider
R0,1 = {C(t) : t ∈ [0,∞)}, where C(t) = {z : |z − t | = √

t (t + 1)}. The domain Ω

covered by the circles is the half-plane Re z > − 1
2 . The function z

z+1 satisfies the
conditions of the theorem and, in particular, extends analytically without poles from
any circle C(t); however, it is not holomorphic. �

Remark 2 The example f (z) = z2/z and circles enclosing 0 cited in Sect. 2 does
not contradict Theorem 2, since the denominator Q(x,y) = x − iy vanishes at 0 and
hence does not satisfy the condition Q �= 0 in Ω .

An analogue of Theorem 2 for real-analytic functions was also proved in [6].

Theorem 3 ([6]) Let c : (0,1) → C be a C1-function such that c′(t) �= 0, t ∈ (0,1),
and r : (0,1) → [0,∞) be a positive C1 function. Suppose that |r ′(t)| < |c′(t)|,
t ∈ (0,1). Let f be a real-analytic function in the neighborhood of the union Ω of
the circles C(t) = {z : |z − c(t)| = r(t)}. If, for all t ∈ (0,1), the restriction f |C(t)

extends holomorphically into the disc bounded by C(t), then f is holomorphic in Ω .

Using different methods, based on the Fourier transform, Ehrenpreis [13] also
solved the strip problem for real analytic functions when γ is a circle.

4 Generic Families of Circles, Continuous Functions

Shortly after the work described in the previous section was completed,
Tumanov [23] obtained a solution to the strip problem for the case of circles in
which no additional conditions (beyond continuity) are made on the functions un-
der consideration. In [23] the case of circles centered on a line was considered,
and in [24] generic families of circles were treated. Here we formulate (with slight
editorial changes) the more general result from the article [24].

Theorem 4 ([24]) Let {C(t) : t ∈ [0,1]} be a family of circles whose centers c(t)

and radii r(t) are continuous functions on [0,1] and piecewise C3 smooth functions
on (0,1). Assume that c′(t) �= 0 and |r ′(t)| < |c′(t)|, t ∈ (0,1). Denote by D(t) the
disc bounded by C(t). Suppose that
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(a) D(0) ∩ D(1) = ∅, and
(b) no circle C(t) encloses another circle C(s).

Let Ω = ⋃
t∈[0,1] D(t) and f ∈ C(Ω). If, for every t ∈ [0,1], the restricted function

f |C(t) extends holomorphically into D(t), then f is holomorphic in Ω .

As in [6], the proof is based on viewing the problem in C
2 via the em-

bedding C 
 z �→ (z, z) ∈ C
2. In [6], the function f is assumed rational, i.e.,

of the form P(z, z)/Q(z, z). This function naturally defines a rational function
P(z,w)/Q(z,w) in C

2, and the proof in [6] is based on studying the location of
the zero sets of the polynomials P and Q with respect to the semiquadrics Λt ob-
tained by the complexification of the circles C(t). However, when the function f is
merely continuous, there is no natural global extension to C

2. Nevertheless, f ex-
tends to a certain three-dimensional CR-manifold in C

2 as a CR-function. Namely,
f possesses a holomorphic extension from each circle C(t) to a complexified circle,
the semi-quadric Λt . These extensions define a CR-function F(z,w) on the union
Λ = ∪Λt of the semi-quadrics, which is a CR-manifold.

At this point, CR theory comes in. The main part of the proof in [24] is to show
that the function F(z,w) does not depend on w, which then implies that f is holo-
morphic. The main tool comes from Hans Lewy’s proof of an extension theorem
and uses Cauchy-type integration over loops belonging to the CR-manifold Λ.

5 Generic Families of Jordan Curves. The Argument Principle
is Back

Soon after the case of circles was finally resolved in [23, 24], the problem was solved
for generic families of Jordan curves [2, 3] under the condition that the functions
tested are real-analytic.

Of particular interest is the fact that the argument principle, which appeared in the
earlier works [8, 17] as a technical tool, returns now to the stage as a main player. It
turns out that the strip problem itself has a topological meaning and can be regarded
as a parametric version of the argument principle.

Let us first formulate the result in question and then explain how it is related to
the argument principle. We consider one-parameter families {γt }, t ∈ [0,1], of real-
analytic Jordan curves in the complex plane. The dependence on the parameter t is
assumed to be real-analytic as well, i.e., the Riemann mappings

G(·, t) : Δ → Dt

of the unit disc onto the domain Dt bounded by γt can be chosen to depend real-
analytically on t .

Write Ω = ⋃
t∈[0,1] γt . We call the family γt regular if

∂(G,G)

∂(ψ, t)
(ψ, t) �= 0

for all (ψ, t) such that G(eiψ , t) /∈ ∂Ω .
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Example In the strip problem, one has G(ζ, t) = ζ + t and ∂(G,G)/∂(ψ, t) =
2i cosψ . The boundary ∂Ω of the strip corresponds to ψ = ±π/2; at all other
points, the Jacobian is different from zero.

Theorem 5 ([2]) Let γt = ∂Dt , t ∈ [0,1], be a real-analytic family of real-analytic
Jordan curves in C. Suppose that

⋂
t∈[0,1] Dt = ∅. Let Ω = ⋃

t∈[0,1] γt , and let f

be a real-analytic function in a neighborhood of Ω . If for each t ∈ [0,1], f extends
continuously from γt to a holomorphic function in Dt , then f is holomorphic on Ω◦.

Remark 3 The condition of empty intersection of the closed domains Dt is weaker
than the condition in Theorem 4. On the other hand, Theorem 5 fails without the
condition of empty intersection, as is shown, for example, by f (z) = z2/z. While
this function is obviously not holomorphic, it extends holomorphically from any
circle enclosing the origin. The closed discs bounded by these circles all have the
point 0 in common.

Sketch of Proof For simplicity, we illustrate the idea of the proof for the case where
the family of curves is closed, that is, γ0 = γ1. In that case, the parameterizing
manifold can be taken to be the circle S1. The curves γt sweep out an annulus-like
domain in the complex plane.

Suppose that f is not holomorphic on Ω◦. Choose a real-analytic parametriza-
tion G(ζ, t) of the family γt . For each t , the mapping ζ �→ G(ζ, t) is a conformal
mapping of the unit disc Δ onto the domain Dt bounded by γt , and G(ζ, t) is real-
analytic in (ζ, t) ∈ Δ × S1.

We have G(∂Δ × {t}) = γt , and hence Ω = G(∂Δ × S1). The first important
observation is that the topological degree of the mapping G : ∂Δ×S1 → Ω is zero,
because G maps the manifold without boundary (the 2-torus ∂Δ × S1) onto the
domain Ω ⊂ C having nonempty boundary.

Let Ft ∈ H(Dt) be the holomorphic extension of f from the curve γt = ∂Dt . Set
F(ζ, t) = Ft(G(ζ, t)), ζ ∈ Δ. Then we can construct the real-analytic mapping

Φ = (F,G) : Δ × S1 → C
2

of the solid torus Δ × S1 into C
2.

Since Ft = f on γt , we have F(ζ, t) = f (G(ζ, t)) when ζ ∈ ∂Δ. Therefore,
Φ(u) = (f (G(u)),G(u)) for u = (ζ, t), |ζ | = 1, and Φ maps ∂Δ × S1 onto the
graph of f over Ω :

Φ : ∂Δ × S1 �→ GraphΩ f.

Since for u ∈ ∂Δ × S1, Φ = π ◦ G, where π(z) = (f (z), z), we have for the topo-
logical degree degΦ = (degπ)(degG) = 0.

Step 1 (cocycle L). It is proved in [2] that the condition of empty intersection is
equivalent to the curve C := Φ({0} × S1) being homologically nontrivial in X :=
Φ(Δ × S1) This means that C is not the boundary of any 2-chain lying in X.

The proof is based on the covering homotopy theorem [22, pp. 61–66]. If C = ∂Z

for some 2-chain Z ⊂ X, then C can be homotopically deformed to a point z0 within
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X. Using the covering homotopy theorem, one shows that there is a homotopy of
the curve (circle) of centers A := {0} × S1 to a closed curve B ⊂ Δ × {0}. Like A,
the curve B is homotopically nontrivial in Δ × S1. The mapping Φ maps B to a
point z0. But the curve B intersects each disc Δt := Δ × {t}, which implies that the
image Φ(B) = {z0} belongs to each closed domain Dt = Φ(Δt). Contradiction.

By Poincaré duality, the homological nontriviality of the curve C is equivalent
to the condition that there exists a (smooth) curve L ⊂ C

2, whose endpoints lie out-
side Φ(Δ × S1), which intersects C transversally with positive intersection index,
Ind(L ∩ C) > 0.

Step 2 (the function J (ζ, t)). The next step is to construct a nonzero function
J (ζ, t) in the cylinder Δ × [0,1] with the following properties:

(i) J (ζ, t) is holomorphic in ζ ∈ Δ;
(ii) J (0, t) = 0;

(iii) J 2(u1)

|J (u1)|2 = J 2(u2)

|J (u2)|2 for any points uj = (ζj , tj ), j = 1,2, such that J (u1) �= 0 �=
J (u2), |ζj | = 1, and G(u1) = G(u2).

To construct such a function, observe that

F
(
eiψ , t

) = f
(
G

(
eiψ , t

))
.

Differentiating both sides of this identity with respect to the angle ψ and the param-
eter t , one obtains by Cramer’s rule, a representation of the z-derivative of f as the
ratio of two Jacobians:

∂f

∂z

(
G(u)

) =
∂(G,F )
∂(ψ,t)

(u)

∂(G,G)
∂(ψ,t)

(u)
, u = G

(
eiψ , t

)
. (3)

Since F and G are holomorphic in ζ , we have

∂F

∂ψ
(ζ, t) = iζ

∂F

∂ζ
(ζ, t), ζ = reiψ .

Define

J (ζ, t) := ζ
∂(G,F )

∂(ζ, t)
(u).

Then conditions (i) and (ii) are obvious. Condition (iii) follows from formula (3),
which says that

J (ζ, t) = ∂(G,G)

∂(ψ, t)
(u)

∂f

∂z

(
G(u)

)
, u = (ζ, t) ∈ ∂Δ × S1. (4)

It follows from our assumptions that J �≡ 0. Then since i
∂(G,G)
∂(ψ,t)

is real-valued, we
have

J 2(u)

|J (u)|2 = −
∂f
∂z

(G(u))

∂f
∂z

(G(u))
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whenever J (u) �= 0, and (iii) follows.
Using real-analyticity, one shows that (iii) implies that J 2/|J |2 can be repre-

sented on ∂Δ × S1 as a composition

J 2

|J |2 (u) = (σ ◦ G)(u), u ∈ ∂Δ × S1, (5)

where σ is a smooth function.
Concluding step (topological). Let L be the dual 1-cocycle constructed in

Step 1. Consider its preimage S := Φ−1(L), which is a two-dimensional chain. The
curves L and C = Φ({0} × S1) have positive intersection index, which implies that
Ind(S ∩ ({0}×S1)) > 0. We have {0}×S1 ⊂ J−1(0); and, using the fact that J (ζ, t)

is holomorphic in ζ , one shows that Ind(S ∩ J−1(0)) ≥ Ind(S ∩ ({0} × S1)) > 0.
The latter inequality means that the sum of indices of the vector field J at the

zeros on S is positive:

N =
∑

k

indu=bk
J (u) > 0,

where bk are zeros of J on S. We recall that indbk
J is defined as the winding number

of the normalized function J/|J | : ck → S1, where ck is a small topological circle
on S surrounding bk .

On the other hand, the doubled sum 2I of the indices of J (u) inside S equals the
winding number WJ of J 2/|J |2 on the boundary ∂S ⊂ ∂Δ×S1; hence WJ > 0. But
the representation (5) and degG = 0 imply WJ = 0. We are led to this contradiction
by the assumption that J is not identically 0. Therefore, J ≡ 0; hence ∂f

∂z
≡ 0 by (4).

This completes the proof. �

Comment on the proof. Essentially, what was used in the proof is that the holo-
morphic extensions Ft(ζ ) = F(t, ζ ) identify the points from the same fiber G−1(z)

on |ζ | = 1. This fiber appears since the point z can belong to different curves γt ,
and the holomorphic extensions inside these curves take the same value f (z) at the
point z.

In the case in which the family of curves is invariant under a group (translations
or rotations), the use of Fourier series or the Fourier transform, which is an averag-
ing of the holomorphic extensions Ft with respect to the parameter t with certain
weight, allows us to project the family of extensions to a single function in the disc
{ζ : |ζ | < 1}. The constancy of the function F(ζ, t) on the G-fibers turns for the
projected functions into a condition of the identification of points on the unit circle.
Then one is led to the situation described by Lemma 1.

In the general situation, one does not have a group available to define, by av-
eraging over t , a projection of the function f to functions depending only on the
variable ζ . This leads to the necessity of developing an analogue of Lemma 1 in the
parameter space (ζ, t).

The conclusion of the theorem is that the holomorphic extensions Ft coincide on
intersections of the interiors of the curves γt . This is equivalent to the degeneracy
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of the mapping Ψ = (G,F ) constructed from the parameterization G of the family
and the holomorphic extensions F . Thus, the aim is to check that the Jacobian J

of Ψ is zero. It is observed that the constancy of F on the G-fibers is inherited
not by the function J , but rather by its squared angular part J 2/|J |2. Then the
parametric analogue of Lemma 1, applied to J 2/|J |2, leads to a contradiction with
the assumption that J is not identically zero. Therefore, J vanishes identically, and
then (4) implies ∂f

∂z
= 0 in Ω . These are the principal ingredients and main idea of

the proof in [3, 5].

6 The Strip Problem for Meromorphic Extensions.
Back to Circles

Complex moment conditions can be used to characterize not only holomorphic func-
tions, but also more general classes. Consider, for example, the collection of poly-
analytic functions of order (at most) m on C, i.e., solutions of the equation

∂mf

∂zm = 0.

These functions can be written in the form

f (z) = h1(z) + zh2(z) + · · · + zm−1hm(z), (6)

where the hj are entire functions.
Now, in close analogy with the case of analytic functions discussed in the Intro-

duction, polyanalytic functions can be characterized in terms of appropriate moment
conditions. Indeed, suppose f ∈ C(R2) and that there exist r1, r2 > 0 such that

∫
|z|=rj

f (w + z)zm−1 dz = 0, j = 1,2,

for all w ∈ C. Then f is polyanalytic on C of order m, unless r1/r2 is a quotient
of positive zeros of the Bessel function Jm [27, Theorem 4]. Note that when m = 1,
this reduces to the two-circle version of Morera’s theorem cited in the Introduction.
For an analogue on the disc, see [9, Corollary 1].

Similarly, if there exist positive integers 1 ≤ m < n such that for some fixed
r > 0, the restriction of f ∈ C(R2) to each circle of radius r has vanishing Fourier
coefficients of order −m and −n, i.e.,

1

2π

∫ 2π

0
f

(
w + reiθ

)
eiθk dθ = 0, k = m,n,

for all w ∈C, f is polyanalytic of order m [28, Theorem 6].
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In analogy with (1), let us consider for fixed r and m ≥ 1 the family of moment
conditions ∫

|z−c|=r

f (z)zk−1 dz = 0 for all k ≥ m. (7)

Condition (7) means that f can be extended continuously to {z : |z − c| ≤ r} as a
meromorphic function F whose only singularity is a pole of order at most m at the
center z = c.

In this section, we present some recent results concerning meromorphic exten-
sions into families of circles.

It is easy to see that a polyanalytic function (6) extends into any circle C =
{z : |z− c| = r} as a meromorphic function with a pole at c of order at most m, since

z = c + r2

z−c
on the circle C.

Now we want to characterize those one-parameter families of circles that are
sufficient to test polyanalytic functions via moment conditions (7).

We consider a one-parameter C1 family of circles C = {Ct : t ∈ [0,1]}, where
Ct = {z : |z − c(t)| = r(t)}. Here c : [0,1] → C and r : [0,1] �→ [0,∞) belong to
C1[0,1]. We also assume that |c′(t)|2 + |r ′(t)|2 �= 0 for t ∈ (0,1).

We call the quadratic polynomial

d(t,w) = c′(t)w2 + 2r ′(t)w + c′(t)

the discriminant polynomial of the family {Ct }.
There are three possibilities for the roots w1,w2 of this polynomial: (1) if c′(t) =

0, then w1 = w2 = 0; while if c′(t) �= 0, one must have either (2) |w1| = |w2| = 1 or
(3) |w1| < 1, |w2| > 1 since |w1w2| = | c′(t)

c′(t) | = 1.

Definition 1 The discriminant curve S(C ) of the family of circles C = {Ct , t ∈
[0,1]} is the closure of the set {c(t) + r(t)w(t) : t ∈ [0,1]}, where w(t) is the root
of the discriminant equation d(t,w) = 0 with |w(t)| < 1 if such a root exists.

Definition 2 We call the family {Ct : t ∈ [0,1]} a chain of circles with initial point a

and endpoint b if C0 = {a} and C1 = {b}.

Theorem 6 ([4]) Let C = {Ct : t ∈ [0,1]} be a C1-chain of circles in C, starting at
a and ending at b, where a �= b, and set Ω = ⋃

t∈[0,1] Ct . Suppose that

(∗) the discriminant curve S(C ) contains no continuous curve joining
the point a and b.

Let f be real-analytic on Ω and satisfying condition (7) for a fixed nonnegative
integer m. Then f is a polyanalytic function of order at most m, i.e., f has the
form (6).
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Remark 4 The discriminant of the polynomial d(t,w) equals 4(|r ′(t)|2 −|c′(t)|2). If
|c′(t)| ≥ |r ′(t)|, then both roots of d(t,w) satisfy |w1(t)| = |w2(t)| = 1, and there-
fore S(C ) = ∅. Thus, the condition for the derivatives of c(t) and r(t) in Theorems 3
and 4 imply condition (*).

For real-analytic functions, the special case m = 0 of Theorem 6 implies a
stronger test of analyticity than Theorem 4, since it avoids the condition of no en-
closed circles required by Theorem 4.

The condition of shrinking the chain of circles to points a and b can be replaced
by the weaker condition of the homological nontriviality of the family, which ap-
pears in the proof of Theorem 5; we omit the details.

Sketch of Proof The proof is based on an approach similar to that in Theorem 5 and
again exploits the argument principle. The key idea is to study the dynamics of zeros
zj (t) and poles pj (t) of the meromorphic extensions Ft into the discs bounded by
the circles Ct . These zeros and poles can reach the boundary circle Ct and disappear,
or they can remain inside the circle for all t . In the latter case, we call a curve of
zeros Zj := {z = z(t)} a travelling zero. Analogously, one defines travelling poles.

Using the argument principle, it is shown in [3] that the number N(f ) of trav-
elling zeros, counting multiplicities, coincides with the number P(f ) of travelling
poles.

The next step is computing the numbers N and P for the derivative ∂f
∂z

. The
computation shows that the number of travelling poles at the center w = 0 of the
circle Ct : c(t) + r(t)w, |w| = 1, decreases by one, but new poles can appear at
zeros w(t) of the discriminant polynomial D(t,w), i.e., on the discriminant curve.
However, condition (∗) prevents these new poles from forming a travelling pole, and
hence P(

∂f
∂z

) = P(f ) − 1.
Thus, differentiating m− 1 times in z, where m is the maximal order of the poles

at w = 0, and assuming that at no step is the derivative identically zero (in which
case f is polyanalytic of order at most m, and we are done), one eliminates all

travelling poles. Therefore, the meromorphic extensions of the function g := ∂m−1f

∂zm−1

from the circles Ct are free of travelling poles.
However, the same computation shows that upon differentiating in z the holo-

morphic extension develops a zero at the center w = 0. Therefore, the number of
travelling zeros N(

∂g
∂z

) > 0. The travelling zeros must be compensated by travelling

poles, as noted above. However, the only poles the extensions of the derivative ∂g
∂z

develop are those on the discriminant curve. By assumption, these poles are not trav-
elling. Thus, N(

∂g
∂z

) > 0 = P(
∂g
∂z

). This contradiction implies that ∂g
∂z

= ∂mf

∂zm = 0 for
all z ∈ Ω . �

Recently, Globevnik [21] proved Theorem 6 under milder conditions of continu-
ity for the tested functions f , but for the specific family of concentric hyperbolic
circles in the unit disc. His method uses the approach from [23, 24], mentioned in
Sect. 4.
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7 The Strip Problem for Elliptic PDE

Leon Ehrenpreis learned of the strip problem in 2000 from a talk given by Zalcman
at the AMS–IMS–SIAM Joint Summer Research Conference on Radon Transforms
and Tomography held at Mount Holyoke. Soon afterwards, he came up with the
following nice “harmonic” version of the strip problem.

Theorem 7 ([13]) Denote by B the open unit ball in R
n and consider the cylinder

Ω = ∂B + Re1, where e1 = (1,0, . . . ,0). Let f be a C2-function in Ω . Suppose
that for each t ∈ R, there exists a harmonic function Ft in the ball Bt := B + te1
such that Ft = f on ∂Bt to first order, i.e., Ft(z) = f (z), ∂νt Ft (z) = ∂νt f (z) for all
z ∈ ∂Bt . (Here νt is the normal derivative to ∂Bt .) Then f is harmonic in Ω .

Ehrenpreis’ original proof required certain additional technical assumptions. The
short proof given below, based solely on Stokes’ formula, is adapted from [7].

Proof Pick any function h ∈ C(B) which is harmonic in B . (It suffices to take an
arbitrary harmonic polynomial.) From the assumption and Stokes’ formula, we have

0 =
∫

B

(
�Ft(x + te1)h(x) − Ft(x + te1)�h(x)

)
dV (x) (8)

=
∫

∂B

(
∂νf (x + te1)h(x) − f (x + te1)∂νh(x)

)
dA, (9)

where ν is the exterior unit normal to the unit sphere ∂B .
Again by Stokes’ formula, the surface integral on the right-hand side can be

rewritten as a volume integral, and, since �h = 0, we obtain
∫

B

�f (x + te1)h(x) dV (x) = 0.

Differentiating in t and repeatedly using Stokes’ formula yields
∫

B

∂x1�f (x + te1)h(x) dV =
∫

∂B

x1�f (x + te1)h(x) dA(x) = 0.

Since h|∂B are dense in C(∂B), one concludes that x1�f (x + te1) = 0 for x ∈ ∂B .
Therefore, �f vanishes on all the boundaries ∂Bt = ∂B + te1 and hence on Ω . The
proof is complete. �

Observe that this argument also works for truncated solid cylinders of the form
Ω = ⋃

t∈[a,b](B + te1), where [a, b] is an arbitrary segment of the real line.
Shortly thereafter, Ehrenpreis generalized the result from the Laplace operator to

any elliptic operator with sufficiently smooth coefficients, again for the translations
of a ball. This result is presented in his fundamental monograph [14, 9.5]. It says
that if the boundary values on the translations ∂B + te1 of a function f coincide, to
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order m, with a solution Ft in B + te1 of a given elliptic equation LFt = 0, then f

itself is a solution, Lf = 0 in the union of the spheres ∂B + te1.
In [14], the problem of generalizing such results from Laplace’s equation to more

general PDE was posed. The following theorem presents a reasonably general result
for elliptic equations. Before formulating this result, we need to introduce some
notation. Consider a C1-isotopy of domains in R

n. This is a family Dt = ωt(D), t ∈
I = [0,1], where D = D0 is the initial domain and ωt : D → Dt is a family of
diffeomorphisms, continuously differentiable with respect to the parameter t ∈ [0,1]
and such that ω0 = id.

We say that the family Dt is transversal if for each t ∈ I ,

ρt (u) := 〈
∂tωt (u), νt

(
ωt(u)

)〉 �= 0

for a dense set of u ∈ ∂D, where 〈 , 〉 is the inner product in R
n. Transversality of the

isotopy means that the set of points where the direction of the transformation ωt is
tangent to the boundary ∂Dt is nowhere dense. A simple example of a nontransver-
sal isotopy is a rotation of a ball; in this case, the vector of the motion is tangent to
the boundary sphere at each point.

The following theorem was obtained (under some additional technical assump-
tions) in [14] for the case of translations of a ball D = B , ωt(u) = u+ te1, and in [7]
for the general case.

Theorem 8 ([7]) Let Ωt , t ∈ I , be a C1-transversal isotopy of domains in R
n. Set

Ω = ⋃
t∈I ∂Ωt , and let

L = P(x,D) =
∑

|α|≤2m

aα(x)Dα

be an elliptic partial differential operator of order 2m with smooth coefficients de-
fined in the domain Ωt . Suppose that if the function f ∈ C2m(Ω) coincides on each
boundary ∂Ωt , to order at least m with a solution in the domain Ωt , i.e., that for
each t ∈ I , the Cauchy boundary problem

LFt = 0, x ∈ Ωt,

with boundary conditions

∂j
νt

Ft (x) = ∂j
νt

f (x), x ∈ ∂Ωt , j = 0,1, . . . ,m,

has a solution Ft ∈ Cm(Ωt). Then f is a global solution, i.e., Lf (x) = 0, x ∈ Ω◦.

The proof is similar to that described above for the case of the Laplace operator.

8 Conclusions, Further Generalizations

• The problem of characterizing holomorphic functions in plane domains by holo-
morphic extendibility from closed curves is, in fact, part of a more general prob-
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lem formulated for manifolds. Namely, the holomorphy of a function is equiva-
lent to its graph, which is a real two-dimensional manifold in C

2, being a com-
plex (holomorphic) manifold. The condition of holomorphic extendibility inside
a closed curve means that the graph of the extensions is attached by its boundary
to the graph of the function. The graphs of the holomorphic extensions are ana-
lytic discs in C

2. Therefore, the question may be reformulated as follows: which
families of analytic discs attached to a two-dimensional real manifold in C

2 im-
ply that the manifold is complex? In turn, this question reduces to the problem
of estimating the CR-dimension of a real manifold in C

n in terms of attached
analytic discs, which is studied in [5].

• The question about analytic extensions from curves can also be asked for non-
closed curves. Recently, Fridman and Ma [16] have proved that given a domain
D in C

n, there exists a continuous foliation of D into real curves such that any
C1-function which can be extended holomorphically into some neighborhood of
each curve in the foliation is holomorphic on D [16].
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On Local Injectivity for Generalized Radon
Transforms

Jan Boman

Abstract We consider a class of weighted plane generalized Radon transforms
Rf (γ ) = ∫

f (x,u(ξ, η, x))m(ξ, η, x) dx, where the curve γ = γ(ξ,η) is defined by
y = u(ξ, η, x), and m(ξ,η, x) is a given positive weight function. We prove local
injectivity for this transform across a given curve γ 0 near a given point (x0, y0)

on γ 0 for classes of curves and weight functions that are invariant under arbitrary
smooth coordinate transformations in the plane.

1 Introduction

I met Leon Ehrenpreis already in 1961, when he presented his celebrated “Fun-
damental Principle” at a summer school at Stanford University. Much later I was
fortunate to meet Leon again at many Radon transform meetings and during several
visits to Temple University. Leon’s enthusiasm and generosity in sharing mathemat-
ical ideas, his broad outlook, and his original way of looking at problems was a great
source of inspiration for many of us.

It was shown by Strichartz [15] that the classical Radon transform is locally
injective in the following sense, here for simplicity formulated for the case of R2. If
the continuous function f (x, y) is supported in y ≥ x2 and

∫
f (x, ξx + η)dx = 0 (1)

for all (ξ, η) in a neighborhood of (0,0), then f must vanish in some neighborhood
of the origin. It is known [2] that the corresponding statement is not always true if a
smooth positive weight function m(ξ,η, x) is introduced, so that (1) is replaced by

∫
f (x, ξx + η)m(ξ, η, x) dx = 0. (2)
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On the other hand, if m(ξ,η, x) is positive and real analytic, then local injectiv-
ity again holds [5]. Thus the set of weight functions m(ξ,η, x) for which local
injectivity holds is dense in the space of smooth weight functions. In [4] we re-
cently extended the construction in [2] by showing that the set of smooth positive
weight functions for which local injectivity does not hold is also dense. In [3] we
proved local injectivity for a class of smooth weight functions that was introduced
by Gindikin [12]. In this note we shall extend the result from [3] by replacing the
family of straight lines by a two-dimensional family of curves satisfying a certain
condition, thus obtaining a statement that is invariant under local diffeomorphisms
in the xy space and in the ξη space of curves.

On the surface our Radon transform (2) looks like a parametric Radon transform
in the sense of Ehrenpreis [7]. However, replacing dx by ds/

√
1 + ξ2, where ds

denotes arc length measure on the line, we can of course just as well regard our
transform as a restriction of a nonparametric Radon transform, expressed in affine
coordinates.

With a suitable choice of coordinates in xy space and ξη space, an arbitrary curve
family in a neighborhood of the origin in x y space can be written y = u(ξ, η, x) for
(ξ, η) near (0,0), where

u(ξ, η, x) = η + ξx + O
(
x2) as x → 0.

The dual curve family is the family of curves in ξη space that is defined by the
equation y − u(x, ξ, η) = 0 with x and y playing the role of parameters. The condi-
tion on the curve family in our main theorem (Theorem 2) is somewhat implicit and
reads as follows: the curves in the dual family are solution curves to a second-order
differential equation of the form

η′′ = Ψ
(
ξ, η, η′),

where Ψ (ξ, η,p) is a polynomial of degree at most 3 in p. This condition is known
to be independent of the choice of coordinates in the ξη plane (Proposition 2). These
curve families have been known for a long time. In fact, Eli Cartan showed in 1924
that those curves are the geodesics of torsion-free projective connections. But the
condition has also played a role in integral geometry. I.M. Gelfand and his collabo-
rators studied what they called admissible families of lines or curves, in some cases
curve families with densities, in real or complex spaces in a long series of papers
(see [8, 10, 11], and references given there). In the case of curve families in R2 it
was found that a curve family with densities was admissible precisely when both
curve family and densities satisfied the conditions considered here [10]. It would
be interesting to understand why our local injectivity problem leads to the same
conditions on curve families and densities as the admissibility property of Gelfand,
Gindikin, and Shapiro.

In Sect. 2 we introduce the double fibration defined by a hypersurface Z in the
product of two two-dimensional manifolds, we define a weighted Radon transform
on the two-dimensional manifold of curves defined by this fibration, and we for-
mulate the problem of local injectivity for this transform. In Sect. 3 we state and
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prove a local injectivity theorem (Theorem 1) under assumptions that are expressed
in local coordinate systems in X and Γ . In Sect. 4 we prove that our condition on
the weight function (actually a density on Z) is independent of the chosen coordi-
nate systems by expressing it in coordinate-free terms. In Sect. 5 we give a couple
of auxiliary results on curve families defined by an ordinary differential equation of
the second order, and in Sect. 6 we extend Theorem 1 by replacing the condition
on Z there by a weaker condition that is invariant under coordinate changes in X

and Γ (Theorem 2).

2 A Weighted Radon Transform Associated to Z ⊂ X × Γ

To define our Radon transform in an invariant way we shall use the double fibra-
tion setup introduced by Helgason and Gelfand [9], [14]. Let X and Γ be two-
dimensional manifolds, and let Z ⊂ X × Γ be a smooth hypersurface in X × Γ

such that both projections

πX : Z → X, πΓ : Z → Γ

have surjective differential at a point (x0, γ 0) ∈ Z. Using local coordinate systems
in X and Γ , we can define Z near (x0, γ 0) by

F(x, y, ξ, η) = 0, (3)

where x = (x, y) denotes points of X, γ = (ξ, η) denotes points of Γ , and F is a
smooth function satisfying

d(x,y)F �= 0 and d(ξ,η)F �= 0 at
(
x0, γ 0). (4)

Furthermore we assume that the natural projections from the conormal

N∗(Z) → T ∗(X) and N∗(Z) → T ∗(Γ ) are local diffeomorphisms

near the point
(
x0, γ 0;dF

(
x0, γ 0)) ∈ N∗(Z). (5)

We may assume that x0 = (x0, y0) = (0,0) and γ 0 = (ξ0, η0) = (0,0). We can
also rotate the coordinate systems in X and Γ so that

F ′
x = 0, F ′

y �= 0, F ′
ξ = 0, F ′

η �= 0 at the origin. (6)

Then we can solve y or η from (3) and obtain respectively

y = u(ξ, η, x), η = ρ(x, y, ξ) . (7)

Differentiating the identity F(x,u(ξ, η, x), ξ, η) = 0, we obtain

F ′
x + F ′

yu
′
x = 0, F ′

ξ + F ′
yu

′
ξ = 0, F ′

η + F ′
yu

′
η = 0 (8)
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in a neighborhood of the origin. From here and from (6) we obtain

u′
x = u′

ξ = 0 and u′
η �= 0 at the origin, (9)

and similarly,

ρ′
x = ρ′

ξ = 0 and ρ′
y �= 0 at the origin.

If we choose (x, y, ξ) as coordinates on Z and (x, y, ξ, λ) as coordinates on N∗(Z)

and denote the conormal by λdF , then the projection N∗(Z) → T ∗(X) can be
represented as

(x, y, ξ, λ) 	→ (x, y, θx, θy) = (
x, y,λF ′

x, λF ′
y

)
.

This map has a nonsingular differential if and only if the map

(ξ, λ) 	→ (θx, θy) = (
λF ′

x, λF ′
y

)

has a nonsingular differential, which is the case if and only if

det

∣
∣
∣
∣
λF ′′

xξ F ′
x

λF ′′
yξ F ′

y

∣
∣
∣
∣ = λdet

∣
∣
∣
∣
F ′′

xξ F ′
x

F ′′
yξ F ′

y

∣
∣
∣
∣ �= 0.

Hence the assumption that the projection N∗(Z) → T ∗(X) has a nonsingular dif-
ferential is equivalent to

F ′′
xξ �= 0 at the origin. (10)

The fact that condition (10) is symmetric with respect to interchange of the spaces
X and Γ shows that both projections (5) have nonsingular differentials if one of
them does and (4) holds.

Differentiating the second equation of (8) with respect to x and using (9) and
(10), we find that

u′′
xξ �= 0 at the origin. (11)

This shows that the maps

(ξ, η) 	→ (
u(ξ, η,0), u′

x(ξ, η,0)
)

and

(x, ξ, η) 	→ (
x,u(ξ, η, x), u′

x(ξ, η, x)
) (12)

are local diffeomorphisms near the origin.
Let μ be a given positive, smooth density on Z. For instance, in the (ξ, η, x)

coordinates on Z, let the density μ be given as

μ = m(ξ,η, x) dξ dη dx.

If f is a continuous function on X, then f ◦πX is a function on Z, so (f ◦πX)μ is a
density on Z. If ϕ is a compactly supported continuous function on Γ , then ϕ ◦ πΓ
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is a compactly supported continuous function on Z, so we can form

〈
(f ◦ πX)μ,ϕ ◦ πΓ

〉 =
∫∫∫

f
(
x,u(ξ, η, x)

)
m(ξ,η, x)ϕ(ξ, η) dx dξ dη,

and we can define Rf on Γ as the measure

ϕ 	→ 〈
(f ◦ πX)μ,ϕ ◦ πΓ

〉 = 〈
μ, (f ◦ πX)(ϕ ◦ πΓ )

〉
. (13)

The situation is symmetric in f and ϕ, so if we define R∗ϕ as the measure on X

f 	→ 〈
μ, (f ◦ πX)(ϕ ◦ πΓ )

〉
, (14)

we have 〈Rf,ϕ〉 = 〈f,R∗ϕ〉. To obtain an explicit expression for R∗ϕ, we express
the density μ and the function ϕ ◦ πΓ in terms of the (x, y, ξ) coordinates on Z,

μ = n(x, y, ξ) dx dy dξ, (ϕ ◦ πΓ )(x, y, ξ) = ϕ
(
ξ, ρ(x, y, ξ)

)
.

This gives

〈Rf,ϕ〉 = 〈
f,R∗ϕ

〉 = 〈
μ, (f ◦ πX)(ϕ ◦ πΓ )

〉

=
∫∫∫

f (x, y)ϕ
(
ξ, ρ(x, y, ξ)

)
n(x, y, ξ) dx dy dξ.

Since the Jacobian of the transformation x = x′, ξ = ξ ′, η = ρ(x′, y, ξ ′) is ρ′
y , we

have

n(x, y, ξ) = m
(
ξ, ρ(x, y, ξ), x

)
ρ′

y(x, y, ξ), (15)

so

R∗ϕ(x, y) =
∫

ϕ
(
ξ, ρ(x, y, ξ)

)
n(x, y, ξ) dξ.

It will be convenient to extend the definition of R and R∗ as follows. If u is
a continuous function on Z, then we define R(uf ) and R∗(uϕ) by replacing the
right-hand sides of (13) and (14) by

〈
μ, (f ◦ πX)(ϕ ◦ πΓ )u

〉
.

Then we have
〈
R(uf ),ϕ

〉 = 〈
f,R∗(uϕ)

〉
. (16)

In geometric terms the transform R integrates over the fibers πX(π−1
Γ (γ )) ⊂ X,

which we will sometimes (by abuse of language) denote by γ or γ(ξ,η). The adjoint
R∗ integrates over the fibers πΓ (π−1

X (x)) ⊂ Γ .
Our problem can now be formulated in invariant terms as follows. Let (x0, γ 0) ∈

Z ⊂ X × Γ , and let f be a continuous function defined in an open neighborhood
U of x0. After shrinking U , if needed, we may assume that U \ γ 0 has precisely
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two components, which we denote by U+ and U−. Assume that f is supported in
U+ ∪ {x0} and that Rf = 0 in some neighborhood of γ 0. We want to conclude that
f = 0 in some neighborhood of x0 (under suitable conditions on μ and Z).

3 Local Injectivity

We now formulate our assumptions on the density μ and the manifold Z (which
determines the curve family) in terms of the coordinates (x, y, ξ) on Z. We assume
as always that the manifold Z is defined by an equation F(x, y, ξ, η) = 0 for which
(4) and (5) hold and that coordinates are chosen so that (6) holds.

The assumption on the density μ = n(x, y, ξ) dx dy dξ will be as follows:

there exist two functions a1 and b1 that are constant on the fibers π−1
Γ (γ ),

such that n′
ξ = (

a1ρ
′
ξ + b1

)
n. (17)

Recall that a function a(ξ, η, x) on Z expressed in terms of the coordinates (ξ, η, x)

is constant on the fibers π−1
Γ (γ ) if it is independent of x. If the function is expressed

in terms of the coordinates (x, y, ξ), then it is constant on the fibers π−1
Γ (γ ) if it is

of the form a(x, y, ξ) = a0(ξ, y − ξx) for some function a0(ξ, η). The assumption
on Z will be that Z is given by an equation η = ρ(x, y, ξ), where ρ satisfies the
differential equation

ρ′′
ξξ = a2

(
ρ′

ξ

)2 + b2ρ
′
ξ + c2 (18)

for some functions a2, b2, and c2 that are constant on the fibers π−1
Γ (γ ).

As usual, we shall assume that coordinates in X and Γ are chosen such that
x0 = (0,0) and γ 0 = (0,0). In this section we shall also assume that coordinates in
X are chosen so that γ 0 is equal to the x-axis, in other words,

u(0,0, x) = 0, or equivalently ρ(x,0,0) = 0, (19)

in some neighborhood of x = 0.

Theorem 1 Assume that Z is defined by η = ρ(x, y, ξ), where ρ satisfies (18) and
(19), and that the positive measure μ on Z satisfies (17). Let f be a continuous
function defined in some neighborhood of (0,0) ∈ X and supported in a compact
set contained in {(x, y); y > 0} ∪ {(0,0)}, and assume that Rf (ξ, η) = 0 in some
neighborhood of (0,0). Then f = 0 in some neighborhood of (0,0).

In the special case considered in [3] the manifold Z is defined by y = ξx + η,
so ρ(x, y, ξ) = y − ξx, which gives ρ′

ξ = −x and ρ′′
ξξ = 0, so (18) holds with a2 =

b2 = c2 = 0. The weight function m(ξ,η, x) in [3] was assumed to satisfy

m′
ξ (ξ, η, x) − x m′

η(ξ, η, x) = (
x a(ξ, η) − b(ξ, η)

)
m(ξ,η, x) (20)
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for some a(ξ, η) and b(ξ, η) that are independent of x. By (15) we have in this case
n(x, y, ξ) = m(ξ, y − ξx, x); hence n′

ξ = m′
ξ − x m′

η , which shows that for this Z,
(17) is equivalent to (20).

Using the coordinates (ξ, η, x) on Z, we introduce the function q(ξ, η, x) by

q(ξ, η, x) = u′
ξ (ξ, η, x)

u′
η(ξ, η, x)

. (21)

Since u′
η(0,0,0) �= 0, the function q is well defined and smooth in some neighbor-

hood of (0,0,0) ∈ Z. Choose a neighborhood U of (0,0) ∈ X and a neighborhood
V of (0,0) ∈ Γ such that u′

η �= 0 in (U × V ) ∩ Z. Let f be a continuous function
supported in U and set

Gk(ξ, η) = (−1)k
∫

q(ξ, η, x)kf
(
x,u(ξ, η, x)

)
m(ξ,η, x) dx, k = 0,1, . . . .

(22)
Note that all Gk(ξ, η) are well defined in V and that G0(ξ, η) = Rf (ξ, η). The idea
of the proof of Theorem 1 is to show that all Gk vanish in a fixed neighborhood of
the origin. We shall see that this easily implies that f = 0 in some neighborhood of
the origin. In the special case where u(ξ, η, x) = ξx + η, we have q = −ρ′

ξ = x.
The main ingredient in the proof of Theorem 1 is the following fact.

Proposition 1 Let f be a continuous function supported in U , and let the functions
Gk(ξ, η) be defined in V by (22) as described above. Assume that the density μ and
the hypersurface Z satisfy (17) and (18). Then there exist functions a(ξ, η), b(ξ, η),
c(ξ, η) such that the following differential equations are satisfied in distribution
sense in V :

(∂η − a)G1 + (∂ξ − b)G0 = 0, and

(∂η − a)Gk+1 + (∂ξ − b)Gk − cGk−1 = 0, k ≥ 1.
(23)

Proof If ϕ is an arbitrary smooth function on Γ that is supported in V and n(x, y, ξ)

is the density on Z as above, we have for every k ≥ 0, the trivial identity

∫
∂ξ

((
ρ′

ξ (x, y, ξ)
)k

ϕ
(
ξ, ρ(x, y, ξ)

)
n(x, y, ξ)

)
dξ = 0. (24)

If k ≥ 1, the integrand can be written

k
(
ρ′

ξ

)k−1
ρ′′

ξξ ϕ n + (
ρ′

ξ

)k(
ϕ′

ξ + ϕ′
ηρ

′
ξ

)
n + (

ρ′
ξ

)k
ϕ n′

ξ .

Inserting the expressions for ρ′′
ξξ and n′

ξ from (17) and (18) and rearranging terms,
we obtain

(
ϕ′

ξ + ϕ′
ηρ

′
ξ

)(
ρ′

ξ

)k
n + (

ρ′
ξ

)k
ϕn

(
aρ′

ξ + b
) + c

(
ρ′

ξ

)k−1
ϕn,
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where a = ka2 + a1, b = kb2 + b1, and c = kc2. Note that this expression for the
integrand is also valid for k = 0, since c = 0 then. Thus (24) can be written

R∗((ρ′
ξ

)k
ϕ′

ξ + (
ρ′

ξ

)k+1
ϕ′

η + (
ρ′

ξ

)k+1
aϕ + (

ρ′
ξ

)k
bϕ + (

ρ′
ξ

)k−1
cϕ

) = 0.

Multiplying by f (x, y), integrating, and using (16) with u = (ρ′
ξ )

j = (−q)j , we
obtain

〈
R

(
(−q)kf

)
, ϕ′

ξ

〉 + 〈
R

(
(−q)k+1f

)
, ϕ′

η

〉 + 〈
R

(
(−q)k+1f

)
, aϕ

〉

+ 〈
R

(
(−q)kf

)
, bϕ

〉 + 〈
R

(
(−q)k−1f

)
, cϕ

〉 = 0.

By virtue of the definition of Gk , this means the same as (23). �

The following simple observation will also be needed in the proof of Theorem 1.

Lemma 1 If coordinate systems in X and Γ are chosen so that (6) holds, then

∂x

(
u′

ξ /u
′
η

) �= 0 at the origin.

Proof Since u′
η �= 0, it is sufficient to observe that

u′
ηu

′′
xξ − u′

ξ u
′′
xη �= 0,

which follows from (11) and the fact that u′
ξ = 0 at the origin. �

Proof of Theorem 1 We are going to prove that all the functions Gk(ξ, η) vanish
in a fixed neighborhood of the origin. To do this, we first need to fix a region in
(ξ, η)-space for which the curve γ(ξ,η) does not meet the support of f .

Choose ε > 0 such that (23) holds in

Ωε = {
(ξ, η); |ξ | < ε, |η| < ε

}
.

By (6) we know that u′
η(0,0,0) �= 0, and we may assume that u′

η(0,0,0) > 0. Hence
we can choose δ > 0 and κ such that u′

η(0,0, x) ≥ κ > 0 for |x| ≤ δ. By possibly
replacing ε by a smaller number and recalling assumption (19), we can then achieve
that

u(ξ, η, x) ≤ −d < 0, for − ε/2 < η < −ε, |ξ | < ε, |x| < δ.

Set K = suppf . Since γ(0,0) ∩ K = {(0,0)}, it is clear that

γ(ξ,η) ∩ K ∩ {
(x, y); |x| > δ

} = ∅
if |ξ | and |η| are sufficiently small. Hence, by possibly choosing ε still smaller we
can achieve that

γ(ξ,η) ∩ K = ∅ if − ε/2 < η < −ε and |ξ | < ε.
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We now prove that all Gk vanish in Ωε . By the assumption G0 = 0 in Ωε . By Propo-
sition 1 this implies that the function η 	→ G1(ξ, η) satisfies the ordinary differential
equation

∂ηG1(ξ, η) − a(ξ, η)G1(ξ, η) = 0

for |ξ | < ε. But G1(ξ, η) is obviously equal to zero whenever the curve y =
u(ξ, η, x) does not meet the support of f , which as we have just seen is certainly
the case if (ξ, η) ∈ Ωε and η < −ε/2. Hence G1 = 0 in Ωε .

To proceed, we shall use induction over k. Assume that Gk = 0 in Ωε for all k ≤
p, where p ≥ 1. By Proposition 1 the function η 	→ Gp+1(ξ, η) must then satisfy
the differential equation

∂ηGp+1(ξ, η) − a(ξ, η)Gp+1(ξ, η) = 0

in Ωε . Reasoning as before, we can conclude that Gp+1 = 0 in Ωε , which proves
the assertion.

To complete the proof of Theorem 1, we note that in particular

Gk(0, η) = (−1)k
∫

q(0, η, x)kf
(
x,u(0, η, x)

)
m(0, η, x) dx = 0 (25)

for all k and all η < ε. Since q ′
x �= 0 by Lemma 1, we can make the change of

variable q(0, η, x) = t in the integral (25) for an arbitrary fixed η with η < ε. It
follows that (with obvious notation)

∫
tkf

(
x(t, η), u

(
0, η, x(t, η)

))
m

(
0, η, x(t, η)

)dx

dt
dt = 0

for all k and for all η with η < ε. Since m > 0 and dx/dt �= 0, it follows that
f vanishes on the curve y = u(0, η, x), and since those curves certainly cover a
neighborhood of the origin in the (x, y) plane, we can conclude that f = 0 in a
neighborhood of the origin. This completes the proof of Theorem 1. �

4 The Condition on the Density μ

We now describe condition (17) on the density μ in intrinsic terms. Let V be a
vector field on Z that is everywhere tangent to the fibers π−1

X (x). In the coordinates
(ξ, η, x) this vector field can be written V = V1∂ξ + V2∂η , where V1 and V2 are
functions on Z. In fact, since the equation for the fiber π−1

X (x0, y0) is

y0 = u
(
ξ, η, x0),

we see that the condition for v1∂ξ +v2∂η +v3∂x to be tangent to this curve is v3 = 0
and v1u

′
ξ + v2u

′
η = 0. A vector field V on Z can be invariantly defined as a linear

map from C∞(Z) into itself such that V (ϕψ) = ϕV (ψ) + ψV (ϕ). The operation
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of V on the density μ will be defined by 〈V (μ),ϕ〉 = −〈μ,V (ϕ)〉. If σ = σ1 dξ +
σ2 dη + σ3 dx is a 1-form on Z and V = V1∂ξ + V2∂η + V3∂x is a vector field, then
the “contraction” σ � V = σ1V1 + σ2V2 + σ3V3 is a function on Z. If σ is a 1-form
on Γ , then we denote by π∗

Γ (σ ) the pullback of σ to Z under the projection πΓ .
Consider the following condition on μ:

there exists a 1-form σ on Γ such that V (μ) = (
π∗

Γ (σ ) � V
)
μ (26)

for all vector fields V that are tangent to the fibers π−1
X (x).

If condition (26) holds for one nonvanishing vector field V that is everywhere
tangent to the fibers π−1

X (x), then it holds for all such vector fields. In fact, if Ṽ

is another vector field that is everywhere tangent to those fibers, then Ṽ = φV for
some function φ on Z, so multiplying (26) by φ, we obtain Ṽ (μ) = (π∗

Γ (σ ) � Ṽ )μ.
In this way we also see that the 1-form σ is independent of the vector field V .

We now show that (17) is the same as (26). In the (x, y, ξ) coordinates V = ∂ξ is
tangent to the fibers π−1

X (x). Thus,

〈
V (μ),ϕ

〉 = −〈
μ,V (ϕ)

〉 = −
∫∫∫

n(x, y, ξ)∂ξϕ(x, y, ξ) dx dy dξ

=
∫∫∫

n′
ξ (x, y, ξ)ϕ(x, y, ξ) dx dy dξ. (27)

Let σ = a(ξ, η) dξ + b(ξ, η) dη be a 1-form on Γ . To compute π∗
Γ (σ ) on Z, we

note that

πΓ : (x, y, ξ) 	→ (ξ, η),

where η = ρ(x, y, ξ). Thus,

π∗
Γ (σ ) = a dξ + b dρ = a dξ + b

(
ρ′

x dx + ρ′
y dy + ρ′

ξ dξ
)
.

With V = ∂ξ this gives

π∗
Γ (σ ) � V = a + bρ′

ξ .

Hence,

〈(
π∗

Γ (σ ) � V
)
μ,ϕ

〉 =
∫∫∫

(
a + b ρ′

ξ

)
n(x, y, ξ)ϕ(x, y, ξ) dx dy dξ. (28)

Combining (27) and (28), we now see that (26) is equivalent to (17).
It is possible to prove Theorem 1 using the coordinates (ξ, η, x) instead of the

(x, y, ξ) coordinates. Recall that the function q(ξ, η, x) is defined by (21). The as-
sumptions on μ = m(ξ,η, x) dξ dη dx and Z then read as follows. The function
m(ξ,η, x) must satisfy

∂η(qm) − ∂ξm = (a1q + b1)m, (29)
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where a1 and b1 are functions that depend only on (ξ, η). The condition on Z is
expressed by the following condition on the function q: there exist functions a2, b2,
and c2 that depend only on (ξ, η) such that

q∂ηq − ∂ξ q = a2q
2 + b2q + c2. (30)

The proof of Theorem 1 using those assumptions is quite parallel to the proof of
Theorem 1 in [3], the factor q playing the role of the factor x in [3]. Recall that
q(ξ, η, x) = x if u(ξ, η, x) = ξx + η.

It is instructive to verify that (29) is also the same as (26). Choose V = ∂ξ − q∂η,
where q = u′

ξ /u
′
η as above. Then

〈
V (μ),ϕ

〉 = −〈
μ,V (ϕ)

〉 = −〈
μ, (∂ξ − q∂η)ϕ

〉

= −
∫∫∫

(
(∂ξ − q∂η)ϕ(ξ, η, x)

)
m(ξ,η, x) dξ dη dx

=
∫∫∫

(
∂ξm − ∂η(qm)

)
ϕ dξ dη dx.

Assume that σ = a(ξ, η) dξ + b(ξ, η) dη. Then

π∗
Γ (σ ) � V = aV1 + bV2 = a − bq.

Thus condition (26) means that

∫∫∫
(
∂ξm − ∂η(qm)

)
ϕ dξ dη dx =

∫∫∫
(a − bq)mϕ dξ dη dx

for all ϕ, or

∂ξm − ∂η(qm) = (a − bq)m

for some a and b, which is condition (29).

5 Curve Families and Ordinary Differential Equations

In the next section we shall see that condition (18) on Z is not invariant with respect
to smooth coordinate transformations in Γ , and we shall replace it by an invariant
condition. To do this, we shall use two well-known results from the geometric theory
of ordinary differential equations.

Proposition 2 Consider an ordinary differential equation of the second order

y′′ = Φ(x,y,p), p = dy/dx, (31)
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where Φ(x,y,p) is a polynomial in p of degree ≤ 3 with coefficients that are
smooth functions of x and y. Under an arbitrary smooth variable transformation
in the plane

x = F(X,Y ), y = G(X,Y ), (32)

(31) is transformed into an equation of the same form, that is,

Y ′′ = Ψ (X,Y,P ), P = dY/dX, (33)

where Ψ (X,Y,P ) is a polynomial in P of degree at most 3.

This is Theorem 2 of Chap. 1 §6 E in [1].

Corollary 1 Let a two-parameter family of curves in a neighborhood of (0,0) in
xy space be given by F(x, y, ξ, η) = y − u(ξ, η, x) = 0 for parameters in a neigh-
borhood of (0,0) in ξ η space, and assume that F satisfies (4) and (5). Assume that
there exist coordinates in x y space in which the curves are represented as straight
lines. Then the curves of the given family and its dual family both have the property
that the curves of the family are solution curves of some differential equation (31)
where Φ(x,y,p) is a polynomial in p of degree at most 3.

Proof The assumption means that we can choose coordinates in x y space such that
u(ξ, η, x) = A(ξ,η)x + B(ξ, η) for all (ξ, η) in some neighborhood of (0,0). Since
the map (12) is a local diffeomorphism, we can choose coordinates in a neighbor-
hood of the origin in ξ η space such that A(ξ,η) = ξ and B(ξ, η) = η, and hence in
the new coordinates u(ξ, η, x) = ξx + η. Thus we can find coordinates so that both
the given family and its dual are solution curves of the differential equation y′′ = 0.
The zero function is a polynomial of degree at most 3, so the statement now follows
from Proposition 2. �

Remark The converse of the statement in the corollary is also true. In other words,
the condition that both the curves of the given family and its dual family are solution
curves of a differential equation (31), where Φ(x,y,p) is a polynomial in p of
degree at most 3, is a necessary and sufficient condition for the given curve family
to be diffeomorphic to a family of straight lines. See [1], Chap. 1 §6 G.

Proposition 3 Assume that Φ(x,y,p) is a polynomial in p of degree ≤ 3 as in
Proposition 2. Then there exists a smooth variable transformation

x = F(X,Y ), y = Y, (34)

in some neighborhood of the origin, F(0,0) = 0, F ′
X(0,0) �= 0, such that the differ-

ential equation (31) is transformed to (33) where Ψ (X,Y,P ) is a polynomial in P

of degree at most 2.

For the proof, we shall use the following lemma from [1], Chap. 1 §6 B.
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Lemma 2 The substitution (34) transforms (31) into the equation

Y ′′ = Φ̂(X,Y,P ), P = dY/dX, (35)

where

Φ̂(X,Y,P ) = Δ3

F ′
X

Φ(X,Y,P/Δ) + P

F ′
X

(
F ′′

XX + 2PF ′′
XY + P 2F ′′

YY

)
, (36)

and Δ = F ′
X + PF ′

Y .

Proof of Proposition 3 By Proposition 2 we know that Ψ will be a polynomial in
P of degree at most 3, so it will be enough to show that we can choose F(X,Y ) so
that the coefficient of P 3 in (36) vanishes. Assume that

Φ = Φ0 + pΦ1 + p2Φ2 + p3Φ3,

where Φj are functions of (x, y). Third-degree terms in P will only occur in the
terms

1

F ′
X

(
Δ3Φ0 + PΔ2Φ1 + P 2ΔΦ2 + P 3Φ3

) + P 3 F ′′
YY

F ′
X

.

The coefficient of P 3 will therefore be

1

F ′
X

(
Φ0

(
F ′

Y

)3 + Φ1
(
F ′

Y

)2 + Φ2F
′
Y + Φ3

) + F ′′
YY

F ′
X

,

which can be written
1

F ′
X

(
Λ

(
X,Y,F ′

Y

) + F ′′
YY

)
,

where we have denoted the polynomial P 3Φ(X,Y,1/P ) by Λ(X,Y,P ). Note that
F ′

X �= 0, since the Jacobian of the transformation is F ′
X . Now choose H(X,Y ) in a

neighborhood of the origin as a solution of the ordinary differential equation

H ′
Y (X,Y ) = −Λ

(
X,Y,H(X,Y )

)
, H(X,0) = 0,

and then choose

F(X,Y ) = X +
∫ Y

0
H(X, t) dt.

Then the coefficient of P 3 will vanish identically, and the proposition is proved. �

6 Local Injectivity: Invariant Statement

We can now formulate a statement that is invariant under separate coordinate trans-
formations in X and Γ .
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As always, the manifold Z is defined by F(x, y, ξ, η) = 0 and is assumed to
satisfy (4) and (5), and the coordinates are assumed to be chosen so that (6) holds.

Theorem 2 Let Z ⊂ X × Γ be defined by F(x, y, ξ, η) = η − ρ(x, y, ξ) = 0 in a
neighborhood V of a point (x0, γ 0) = (0,0,0,0) ∈ X×Γ . Assume that the function
ξ 	→ ρ(x, y, ξ) for all (x, y) in a neighborhood of (0,0) ∈ X satisfies a differential
equation

ρ′′
ξξ = Φ

(
ξ, η,ρ′

ξ

)

in some neighborhood of (ξ0, η0) = (0,0) ∈ Γ , where Φ(ξ,η,p) is a polynomial
of degree ≤ 3 in p with coefficients that are smooth functions of (ξ, η), and that
the density μ on Z satisfies (17) in V . Let U be a neighborhood of x0 in X such
that U \ γ 0 has just two components that we denote by U+ and U−. Let f be a
continuous function on U such that suppf is contained in U+ ∪ {x0}. Assume that
Rf = 0 in some neighborhood of γ 0 ∈ Γ . Then f = 0 in some neighborhood x0.

Proof Choose a coordinate system in X such that (19) holds. Since this coordinate
change obviously preserves the condition on ρ(x, y, ξ) in the theorem, we can then
use Proposition 3 to choose coordinates in Γ such that ρ(x, y, ξ) satisfies (18).
Those coordinate changes preserve the validity of (17), since we have proved that
this condition is invariant under coordinate changes in X and Γ . The assertion now
follows from Theorem 1. �

We remark that Proposition 2 shows that the condition on ρ(x, y, ξ) in Theorem 2
is invariant under coordinate changes in Γ , and we have already observed that it is
trivially invariant under coordinate changes in X.

Finally, we give an example of a curve family satisfying the condition in Theo-
rem 2, which cannot be transformed to a family of straight lines. Following Gindikin
[13], we consider for this purpose the set of horocycles in the hyperbolic plane with
the right half-plane as a model for the latter. Then the horocycles are the circles that
are tangent to the y-axis

F(x, y, ξ, η) = (x − ξ)2 + (y − η)2 − ξ2 = 0. (37)

The full set of horocycles is unsuitable for us, since there are in general two
horocycles with the same tangent direction through a given point. But if we re-
strict (x, y, ξ, η) to a neighborhood of, for instance, the point (x0, y0) = (1,0),
(ξ0, η0) = (1,1), we get rid of this ambiguity, and F will satisfy (4) and (5). Differ-
entiating (37) twice with respect to ξ and eliminating x and y leads to the differential
equation

η′′ = (
1 + η′2)/2η,

which shows that the condition of Theorem 2 is satisfied. On the other hand, a
similar computation with (x, y) and (ξ, η) interchanged shows that the curve family
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in the x y plane satisfies the differential equation

y′′ = 1

x

(
1 + y′2)(y′ +

√
1 + y′2

)
.

The last expression is not a polynomial in y′, so by the Corollary our curve family
cannot be transformed to straight lines.

For further information on the geometric theory of differential equations, we refer
to [6] and references given there.
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Deconvolution for the Pompeiu Problem
on the Heisenberg Group, I

Der-Chen Chang, Wayne Eby, and Eric Grinberg

Abstract We consider variations on the Pompeiu transform for the Heisenberg
group Hn and focus on cases where the transform is known to be injective; in par-
ticular the cases of averages over a sphere and a ball, or two balls of appropriate
radii. In these cases we develop a method which provides for the reconstruction of
the function f from its integrals.

In addition, we consider these issues in connection with the Weyl calculus and
group Fourier transform. We furthermore explore issues of convergence for this
method of deconvolution and related issues of size of the Gelfand transform near
the zero sets. Finally, given a set of deconvolvers which work for Euclidean space
Cn, we consider the problem of how to extend the deconvolution to the Heisenberg
group, and we provide the extension in special cases.

1 Introduction

Dedication and a Mathematical Moment

This paper is dedicated to the memory of Leon Ehrenpreis. His insight, enthusi-
asm, and energy will continue to inspire us for many years to come. We take this
opportunity to recall a brief mathematical moment with Leon. In one of countless
sessions at the blackboard, someone commented that, while a real hypersurface al-
lows for the concept of a side, and often inside and outside, the same does not hold
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for a complex hypersurface, but it would be nice if the concept could be extended.
Leon thought about it a bit and said that this may be possible, “probably by extend-
ing the notion of the Cauchy Problem.”

The interplay between real and complex analysis was of great interest to Leon.
This paper focuses on analysis on the Heisenberg group, which is a fertile group for
this interplay.

The Pompeiu problem asks for conditions which guarantee the uniqueness of a
function in terms of its integral averages. This problem may also be expressed as
a question of injectivity of a certain integral transformation. In particular, given a
function f ∈ C(Rn) and for a specified set S � Rn, consider the integral averages

∫
σS

f (x) dμσ (x)

for all rigid motions σ of Rn, where μσ is the area measure on the set σS. The
Pompeiu problem asks whether the vanishing of all of these integrals is sufficient to
conclude f ≡ 0. The same question may also be asked in the context of an integral
transform. Define the Pompeiu transform as

Pf (σ ) =
∫

σS

f (x) dμσ (x)

for each σ ∈ M (n), the Euclidean motion group. The Pompeiu problem may then be
considered as the issue of injectivity for the Pompeiu transform. When the transform
is injective, it is then possible to consider the problem of inversion.

We consider the problem of inversion of the Pompeiu transform at the level of
establishing a method to recover the original function f from the transformed func-
tion Pf . Note that we do not give an explicit inverse to the operator P , but we do
establish a limiting procedure that allows the recovery of f from a given Pf . The
problem of deconvolution is then the reconstruction of the function f from these in-
tegral averages. In the paper [7], Berenstein and Yger addressed this problem in the
setting of the Euclidean space Rn. They form explicit formulas to determine the de-
convolvers ν1, . . . , νn from the bounded measures μ1, . . . ,μn using the operations
of derivation, integration, convolution, and summation. In this paper we address the
problem of deconvolution for the Pompeiu problem in the setting of the Heisenberg
group. We consider the Pompeiu problem for functions in C ∩ L∞(Hn) and con-
sider integration over a set S � Cn × {0} ⊂ Hn, such as described in [1]. Although
the issue of deconvolution can be considered for any set S, or collection of sets, for
which the Pompeiu transform is injective, we focus on two cases for which the zeros
of the associated transforms are well known. The first case considers the set S as a
ball and a sphere of the same radius, while the second considers S as two balls of
appropriate radii. The general approach established in this paper provides a method
to construct sequences of deconvolvers which allows reconstruction of f through a
limiting process. In addition we address the issue of when these deconvolving se-
quences will converge to individual deconvolvers, defined as tempered distributions.
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This issue of convergence relates directly to the location of the zeros of μ̂1, . . . , μ̂n

and the issues discussed below.
In Euclidean space, a large part of the problem of deconvolution is directly related

to a condition known as Hörmander’s strongly coprime condition [17]. Consider the
integral conditions as a set of convolution equations. In the case of two balls of radii
r1, r2 the integral conditions may be written as

f ∗ Tr1 = 0, f ∗ Tr2 = 0,

where Trj are defined by

〈φ,Trj 〉 =
∫

|x|<rj

φ(x) dμj (x)

for j = 1,2, where μj is the area measure on the ball of radius rj . Now observe that
the problem of deconvolution can be solved by finding ν1, ν2 ∈ E which satisfy the
analytic Bezout equality

T̂r1 ν̂1 + T̂r2 ν̂2 ≡ 1. (1)

Hörmander’s strongly coprime condition tells us that such ν1, ν2 exist as compactly
supported distributions if and only if T̂r1 and T̂r2 satisfy the following estimate,
related to Paley–Weiner estimates,

∣∣T̂r1(ζ )
∣∣+ ∣∣T̂r2(ζ )

∣∣≥ C
1

(1 + |ζ |)N e−B|Im ζ | (2)

for some C,N,B > 0. In addition to T̂r1 and T̂r2 not having common zeros, this
condition describes a maximum rate of decay for a combination of T̂r1 and T̂r2 ,
ensuring that where one of these becomes zero, the other must not become too small
too quickly.

In the specific case of the Pompeiu problem for two balls of distinct radii, the
issue of injectivity is determined by an arithmetic condition on the radii. In this case,
the transform for balls Br1 and Br2 will be injective when the following condition
on quotients of zeros of Bessel functions J holds:

r1

r2
/∈ Q(J n

2
) =
{

γ x

γy
: γ ∈ R∗, J n

2
(x) = Jn

2
(y) = 0

}
.

When, in addition, the quotient of radii r1
r2

is poorly approximated by quotients of
zeros of Jn

2
, then Hörmander’s strongly coprime condition can be shown to be sat-

isfied. It then follows that the deconvolution problem for Tr1 and Tr2 can be solved
with compactly supported distributions ν1 and ν2.

When such ν1 and ν2 can be found, this provides a solution to the problem of
deconvolution as follows. First note that Tr1 ∗ ν1 + Tr2 ∗ ν2 = δ. Then convolve the
convolution expressions f ∗ Tr1 and f ∗ Tr2 with ν1 and ν2 to obtain
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f ∗ Tr1 ∗ ν1 + f ∗ Tr2 ∗ ν2 = f ∗ (Tr1 ∗ ν1 + Tr2 ∗ ν2)

= f ∗ δ = f.

One of the goals of this paper is to establish a similar approach to deconvolution
that works in the Heisenberg setting. We develop a method that works for the two
specific cases considered in Sect. 3, the first case of a ball and sphere of the same
radius and the second case of two balls of distinct radii. In both cases a sequence
of deconvolvers is presented which in the limit accomplishes the deconvolution to
return the original function f . Section 4 considers these issues in the context of the
Weyl calculus. Issues of convergence for the deconvolving sequences are consid-
ered in Sect. 5. In the case of two balls of distinct radii, these considerations lead
to an interesting interaction between Hörmander’s strongly coprime condition, the
issue of N -well approximation of the radii, and the space in which the sequences of
deconvolvers will converge. Section 6 deals with the extension of a given deconvo-
lution for the space Cn to the space Hn. We plan to pursue these issues further in a
later paper.

The inspiration for this paper comes from the desire to find deconvolvers ν1
and ν2 that satisfy the analytic Bezout equation (1). When considering this issue
in the setting of the Gelfand transform for the Heisenberg group, we realized that
the method of proving the Tauberian theorem can be adapted to construct ν1 and ν2
as needed. Note that the construction given in this paper involves a “local inversion”
of μ̃1 and μ̃2 away from their zero sets and thus relates to the problem of division
considered in the pioneering works of Ehrenpreis [12–14].

2 Heisenberg Group, Problem of Deconvolution

The Heisenberg group Hn can be given by coordinates [z, t] ∈ Cn × R with group
law defined by

[z, t] · [w, s] = [z + w, t + s + 2Im z · w̄].
This group can be realized as the boundary of the Siegel upper half-space Un+1 in
Cn+1

∂Un+1 = {(z, zn+1) ∈ Cn+1 : Im zn+1 = |z|2},
where the group law gives a group action on the hypersurface. As usual, |z|2 =∑n

k=1 |zk|2. The left-invariant vector fields associated to Hn are spanned by the
basis

Zj = ∂

∂zj

+ iz̄j

∂

∂t
,

Z̄j = ∂

∂z̄j

− izj

∂

∂t
,
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for j = 1, . . . , n, and

T = ∂

∂t
.

The only nonzero brackets are given by [Zj , Z̄j ] = −2iT for j = 1, . . . , n. The
sub-Laplacian is given by

L =
n∑

j=1

Z̄jZj + Zj Z̄j .

Harmonic analysis on Hn for radial functions f ∈ L∞
0 (Hn) utilizes the Gelfand

transform defined using the bounded U(n)-spherical functions. These can be defined
as joint eigenfunctions of L and iT and are given by

ψλ
k (z, t) = ce2πiλt e−2π |λ||z|2L(n−1)

k

(
4π |λ||z|2) for (k, λ) ∈ Z+ × R∗

and

Jρ(z) = c
Jn−1(ρ|z|)
(ρ|z|)n−1

for ρ ∈ R+.

These bounded spherical functions are used to form the Gelfand transform for
L1

0(H
n), defined for f ∈ L1

0(H
n) as f̃ (p) for p ∈ H by

f̃ (λ, k) =
∫

Hn

f (z, t)ψλ
k (z, t) dm(z, t)

and

f̃ (0;ρ) =
∫

Hn

f (z, t)Jρ(z) dm(z, t).

The spectrum is given by the Heisenberg fan H composed of a central Bessel ray
Hρ and infinitely many Laguerre rays Hk,± converging to the central Bessel ray.
Denote H , Hρ , and Hk,± as follows:

H = Hρ ∪
( ∞⋃

k=1

Hk,+ ∪ Hk,−

)

= {(0, ρ) : ρ ≥ 0
}∪
( ∞⋃

k=1

{(
λ,4|λ|

(
k + n

2

))
: λ ∈ R∗

})
. (3)

In application of the Gelfand transform, we will need to define Ψ
(n−1)
k (x) as

Ψ
(n−1)
k (x) =

∫ x

0
e−t/2L

(n−1)
k (t)tn−1 dt.

In addition, we use the notation jn to represent the function jn(x) = Jn(x)
xn .
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Part of our analysis of this problem will include the perspective of the Weyl cal-
culus and the group Fourier transform. We first define the position and momentum
operators P = (P1, . . . ,Pn) and Q = (Q1, . . . ,Qn), given by Pju(x) = xju(x) and
Qju(x) = 1

i
∂u
∂xj

(x). As stated in [16], the group of unitary operators on L2 are de-
fined by

ρ(p,q, t) = e2πi(pD+qX+tI ) = e2πit e2πi(pD+qX),

which act on f ∈ L2 as

ρ(p,q, t)f (x) = e2πit+2πiqx+πipqf (x + p),

forming the Schrödinger representation of Hn. Through the nonisotropic Heisen-
berg dilation by λ1/2, we obtain the representations used in the Weyl transform,
which is then based on the infinite-dimensional representations

π±λ = e2πi(±λt±λ1/2x·P+λ1/2y·Q) for λ ∈ R+ \ {0}

and the one-dimensional representations

π(ξ,η) = e2πi(x·ξ+y·η) for (ξ, η) ∈ Rn × Rn

that can be attained in the limit as λ → 0. The group Fourier transform on Hn is
then given by

π±λ(f ) =
∫

R2n+1
f (x,y, t)π±λ(x,y, t) dxdydt

and

π(ξ,η)(f ) =
∫

R2n+1
f (x,y, t)π(ξ,η) dxdydt.

Both of these can be attained from F2n+1 by the following

π(ξ,η)(f ) = F2n+1(f )(−η,−ξ,0)

and

π±λ(f ) = F2n+1(f )
(∓λ1/2P,−λ1/2Q,∓λ

)
.

For additional details on this material, please see [1, 5], where this theory is applied
for the Pompeiu transform on spheres in Hn.

In Euclidean space Rn, deconvolution takes place on the side of the Fourier trans-
form, either in the explicit construction of deconvolvers ν1, . . . , νn satisfying the
analytic Bezout equation

μ̂1ν̂1 + · · · + μ̂nν̂n ≡ 1
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or in verification of existence of such ν1, . . . , νn through verification of the Hörman-
der strongly coprime condition

∣∣μ̂1(ζ )
∣∣+ · · · + ∣∣μ̂n(ζ )

∣∣≥ C
1

(1 + |ζ |)N e−B|Im ζ |

for some C,N,B > 0. Observe that the process of deconvolution takes place on the
Fourier transform side; the same will be true for deconvolution on the Heisenberg
group, Hn. When the measures μ1, . . . ,μn are U(n)-radial, it is possible to con-
sider Gelfand transforms μ̃1, . . . , μ̃n, directly related to Fourier–Bessel transforms
μ̂1(ρ), . . . , μ̂n(ρ) with the radial variable ρ =√|ζ1|2 + · · · + |ζn|2. In both of the
cases appearing in Sect. 3, which involve U(n)-radial spaces, the construction of
deconvolvers is completed on the Gelfand transform side. As part of this study, we
will also consider the connection to the group Fourier transform through the Weyl
calculus in Sect. 4. We focus primarily on two specific cases where the measures
are U(n)-radial in this paper and will consider more general cases in a later work.

We do not yet have a version of Hörmander’s strongly coprime condition for
the Gelfand transform on Hn. However, given radial measures μ1,μ2 ∈ L1

0(Hn),
deconvolution is still possible through explicit construction of ν1, ν2 satisfying

μ̃1(p)̃ν1(p) + μ̃2(p)̃ν2(p) ≡ 1 (4)

for every p ∈ H , i.e., for every p = (λ, k) ∈ R∗×Z+ or p = (0, ρ) ∈ R+. Although
we cannot accomplish this in one step for the entire Heisenberg brush H , we do
accomplish this in the limit through use of a compact exhaustion {Kj } of H . That
is to say, we construct sequences {ν1,j } and {ν2,j } satisfying (4) for all p ∈ Kj for
each j . The process of deconvolution is then accomplished in passing to the limit.

Once this process of deconvolution is accomplished, we also consider the relation
to the group Fourier transform using the Weyl calculus.

3 Procedure for Deconvolution: Two Specific Cases

Here we consider deconvolution of the Pompeiu transform for the function space
C ∩ L∞(Hn) as described in previous papers [1, 5]. It is at this level where two sets
are required, and we first consider the case of a ball and sphere of the same radius in
Sect. 3.1, followed by the case of two balls of appropriate radii in Sect. 3.2. Although
both cases follow the same general procedure, the first is somewhat more direct
because we can find a uniform separation of the zeros of the Gelfand transforms
for the two sets. In each case we consider a limiting procedure, which allows us to
construct a sequence of functions converging to the original function f . To do this,
we will construct a sequence of deconvolvers {ν1,j } and {ν2,j } such that

T̃1ν̃1,j + T̃2ν̃2,j → 1,
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in the sense that

T̃1ν̃1,j + T̃2ν̃2,j ≡ 1

on some compact set Kj , where the sequence {Kj } forms a compact exhaustion of
the Heisenberg fan.

3.1 Ball and Sphere

Here we consider the Pompeiu transform defined in terms of the integral averages
∫

|z|=r

Lgf (z,0) dσr(z) for all g ∈ Hn

and ∫
|z|<r

Lgf (z,0) dμr(z) for all g ∈ Hn.

These may also be written as convolution equations f ∗ Sr and f ∗ Tr , where

〈φ,Sr〉 =
∫

|z|=r

φ(z,0) dσr(z) and 〈φ,Tr 〉 =
∫

|z|<r

φ(z,0) dμr(z).

To define sequences of sets {Kj } and {Vj }, we first list the zeros of Jn(rx) sequen-
tially as {λ1, λ2, . . . , λn, . . .} as well as the zeros of Jn−1(rx), listed sequentially as

{λ0
1, λ

0
2, . . . , λ

0
n, . . .}. Then, letting Nj = 3λj +λ0

j+1
4 and N+

j = λj +λ0
j+1

2 , we form

Kj = {p = (x, y) ∈ H : x2 + y2 ≤ N2
j

}
,

where (x, y) = (λ, |λ|(4k + 2)) or (x, y) = (0, ρ2), and

Vj = {p = (x, y) ∈ H : x2 + y2 <
(
N+

j

)2}
,

where (x, y) = (λ, |λ|(4k + 2)) or (x, y) = (0, ρ2).
We claim the following.

Theorem 1 Let Sr and Tr be the distributions defined above. Consider the sequence
of compact sets {Kj } ⊂ H , which forms a compact exhaustion of the Heisenberg
fan H , as given above. There exist sequences of functions {ν1,j } and {ν2,j } with the
property that

S̃r ν̃1,j + T̃r ν̃2,j ≡ 1 on Kj .

It is also true that

S̃r ν̃1,j + T̃r ν̃2,j ≡ 0 on V c
j ,

where each Vj is an open set defined above such that Kj ⊂ Vj ⊂ Kj+1.
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In the following proof, we furthermore give a method for constructing these se-
quences of functions {ν1,j } and {ν2,j }. In Sect. 5 we further illustrate how these
sequences are used in the problem of deconvolution and address convergence is-
sues.

Proof Recall that for f ∈ L1
0(Hn), the Gelfand transform f̃ is defined on the

Heisenberg fan H which was defined in (3). This is realized as a subset of the upper
half-plane of R2. We use the compact exhaustion {Kj } given before the statement
of this theorem. Note that each Kj is compact and ∪jKj = H . We will construct
the sequences {ν1,j } and {ν2,j } so that ν1,j and ν2,j satisfy the needed relation

S̃r ν̃1,j + T̃r ν̃2,j = 1

on Kj for j = 1, . . . , n. Let us recall the values of S̃r and T̃r . First,

S̃r (λ, k) = ce−2π |λ|r2
L

(n−1)
k

(
4π |λ|r2),

and

S̃r (0, ρ) = c
Jn−1(rρ)

(rρ)n−1
.

Likewise,

T̃r (λ, k) = c

∫ r

0
e−2π |λ|s2

L
(n−1)
k

(
4π |λ|s2)s2n−1 ds = c′Ψ (n−1)

k

(
4π |λ|r2),

and

T̃r (0, ρ) = c
Jn(rρ)

(rρ)n
.

We consider the two sets V1 = {zeros of S̃r} and V2 = {zeros of T̃r}. At times it
will be necessary to focus on the zeros in the Bessel part of the spectrum. For this
purpose, we define U1 = V1 ∩ Hρ and U2 = V2 ∩ Hρ . In order to focus on those
zeros of V1 and V2 which are contained in the set Kj of the compact exhaustion
{Kj }, we define the sequences {V1,j } and {V2,j } by V1,j = V1 ∩ Kj and V2,j =
V2 ∩ Kj . Similarly, we may want to focus on the zeros inside of Kj which are in
Bessel part of the spectrum and thus form the sequences {U1,j } and {U2,j }, defined
as U1,j = U1 ∩ Kj and U2,j = U2 ∩ Kj .

The next goal is to construct appropriate neighborhoods of the elements of V1
and V2. These neighborhoods will be used together with “local identities” on each
of the neighborhoods in the deconvolution procedure. We work outward from the
central Bessel ray Hρ , containing the zeros U1 and U2, since each neighborhood of
one of these zeros will contain an infinite number of zeros in the Laguerre rays. We
index the sets of Bessel zeros

U1 = {M1,M2, . . . ,Mn, . . .}
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and

U2 = {N1,N2, . . . ,Nn, . . .}.
We know, because of the relation of zeros of Bessel functions of consecutive indices,
that these zeros are interlacing, i.e.,

M1 < N1 < M2 < N2 < · · · .

We form sequences of neighborhoods {Ci} and {C′
i}, where

Ci = [(Ni−1 + Mi)/2, (Mi + Ni)/2
]

is a neighborhood of Mi , and

C′
i = [(Ni + Mi)/2, (Ni + Mi+1)/2

]

is a neighborhood of Ni . For C1, use C1 = [0, (M1 + N1)/2]. We next list some
important properties of these sequences. First, they cover the central Bessel ray,
Hρ : ( ∞⋃

i=1

Ci

)
∪
( ∞⋃

i=1

C′
i

)
⊃ Hρ.

Next, they are nearly disjoint, with consecutive neighborhoods intersecting only at
the endpoints:

Ci ∩ C′
i = {(Mi + Ni)/2

}
and C′

i ∩ Ci+1 = {(Ni + Mi+1)/2
}
.

Finally, they separate the zero sets of S̃r and T̃r . In particular, for all j ,

Nj ∩
( ∞⋃

i=1

Ci

)
= ∅ and Mj ∩

( ∞⋃
i=1

C′
i

)
= ∅.

Letting δi = (Ni − Mi)/2 and δ′
i = (Mi+1 − Ni)/2, where for δ′

0 we use N0 = 0,
we also form the smaller neighborhoods Bi = [Mi − δ′

i−1/2,Mi + δi/2] of Mi , and
similarly, B ′

i = [Ni −δi/2,Ni +δ′
i/2] of Ni . This gives sequences of neighborhoods

{Bi} and {B ′
i} satisfying Bi ⊂ Ci and B ′

i ⊂ C′
i . We furthermore claim that there exist

sequences of slightly larger neighborhoods {Vi} and {V ′
i } where Vi satisfy Ci ⊂ Vi

and Vi ∩ (B ′
i−1 ∪ B ′

i ) = ∅. Likewise, V ′
i satisfy C′

i ⊂ V ′
i and V ′

i ∩ (Bi−1 ∪ Bi) = ∅.
The next step is to extend the neighborhoods from the Bessel ray Hρ to all of the

Heisenberg fan H . Recall that, as k → ∞, the Laguerre rays Hk,± converge to Hρ .
For any given i, we expand the neighborhood Bi in Hρ to a wider neighborhood
Bi,j in the Heisenberg fan H such that Bi,j ∩ Hρ = Bi . Note that in H , {Bi} can
be written as {{0} × [Mi − δ−

i /2,Mi + δ+
i /2]} and that the Laguerre rays Hk,± can

be expressed as

Hk,± = {(λ,4|λ|(k + n/2)
) : λ ∈ R∗}.
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We then define Bi,j by

Bi,j =
{
(x, y) : (Mi − δ−

i /2
)2 ≤ x2 + y2 ≤ (Mi + δ+

i /2
)2 and

∣∣∣∣yx
∣∣∣∣≥ 4(j + n/2)

}
.

We then want to choose ji ∈ Z+ with the property that, for each j ≥ ji , exactly one
of the Laguerre zeros on the ray Hj,± is inside of Bi,j ∩Hj,±. We will also choose
ji to minimize all possible ji satisfying this property and consider the neighborhood
Bi,ji

. Using the same choice for ji , we also consider the larger neighborhoods Ci,ji

and Vi,ji
. These yield sequences of neighborhoods {Bi,ji

}, {Ci,ji
}, and {Vi,ji

}. We
use the identical construction for sequences of neighborhoods {B ′

i,j ′
i

}, {C′
i,j ′

i

}, and

{V ′
i,j ′

i

}.
Considering the sequences {Ci,ji

} and {C′
i,j ′

i

}, it remains true that

Hρ ⊂
( ∞⋃

i=1

Ci,ji

)
∪
( ∞⋃

i=1

C′
i,j ′

i

)
.

However, in general, the above union will not cover all of the Heisenberg fan H ,
and furthermore, there will be some of the zeros in the sets V1 and V2 which are not
covered. However there can only be a finite number of such zeros on each Laguerre
ray. Furthermore these remaining zeros will be locally finite. In order to cover these
zeros, we first denote them as

{P1,P2, . . . ,Pn, . . .} and
{
P ′

1,P
′
2, . . . ,P

′
n, . . .

}
.

There exist neighborhoods {D1,D2, . . . ,Dn, . . . } and {D′
1,D

′
2 . . . ,D′

n, . . .}, as well
as neighborhoods {W1,W2 . . . ,Wn, . . .} and {W ′

1,W
′
2, . . . ,W

′
n, . . .} satisfying

( ∞⋃
i=1

Di

)
∪
( ∞⋃

i=1

D′
i

)
⊃ H \

[( ∞⋃
i=1

Ci,ji

)
∪
( ∞⋃

i=1

C′
i,j ′

i

)]
,

where

1. Di ⊂ Wi and D′
i ⊂ W ′

i ,
2. Pi ∩ (∪∞

i=1W
′
i ) = ∅ and P ′

i ∩ (∪∞
i=1Wi) = ∅,

3. Pi /∈ Wj for i �= j and P ′
i /∈ W ′

j for i �= j .

We have found neighborhoods {Ci,ji
} and {Di}∞i=1 of V1, the zeros of S̃r , as well

as neighborhoods {C′
i,j ′

i

} and {D′
i}∞i=1 of V2, the zeros of T̃r , such that

H ⊂ (∪Ci,ji
) ∪
( ∞⋃

i=1

Di

)
∪ (∪C′

i,j ′
i

)∪
( ∞⋃

i=1

D′
i

)

and such that there is separation between V1 and (∪C′
i,j ′

i

) ∪ (∪∞
i=1D

′
i ), as well as

between V2 and (∪Ci,ji
) ∪ (∪∞

i=1Di). We next find sequences of “local identities”
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which equal 1 on these neighborhoods. These are used to “invert” S̃r on neighbor-
hoods of V2 and T̃r on neighborhoods of V1, away from their zero sets. These are
combined to “invert” the transform on all of H .

We use the result on “local identities” that for K a compact subset of H and F an
open subset of H such that K ∩ F = ∅, there exists ρ ∈ L1

0(H
n) such that ρ̃|K ≡ 1

and ρ̃|F ≡ 0. We also require that 0 ≤ ρ̃ ≤ 1. We thus find the sequences of functions
{ρ1,i} and {π1,i}∞i=1 which satisfy

ρ̃1,i =
⎧⎨
⎩

1 on C′
i,j ′

i

,

0 on F ′
i,j ′

i

,

where F ′
i,j ′

i

= (V ′
i,j ′

i

)c , and, in addition,

π̃1,i =
{

1 on D′
i ,

0 on (W ′
i )

c.

Similarly, we will need the sequences {ρ0,i} and {π0,i}ti=1 satisfying

ρ̃0,i =
{

1 on Ci,ji
,

0 on Fi,ji
,

where Fi,ji
= (Vi,ji

)c , and, in addition, let

π̃0,i =
{

1 on Di,

0 on (Wi)
c.

We begin with ρ̃0,1, which is identically 1 on C1,j1 , a set which includes the
neighborhood along the Bessel ray Hρ containing the origin, i.e.,

(
0,
[
0, (M1 + N1)/2

])⊂ Hρ.

Next, we extend to a function whose transform is identically 1 on C1,j1 ∪C′
1,j ′

1
using

the construction ρ1 = ρ1,j + ρ0,j − ρ1,j ∗ ρ0,j . Then

ρ̃1 = ρ̃1,1 + ρ̃0,1 − ρ̃1,1ρ̃0,1 =
⎧⎨
⎩

1 on C1,j1 ∪ C′
1,j ′

1
,

0 on F1,j1 ∩ F ′
1,j ′

1
.

The above procedure demonstrates how “local identities” for the sets C1,j1 and C′
1,j ′

1
are joined to form a “local identity” on their union. Note also that these cover the
Bessel zeros, as well as an infinite number of the Laguerre zeros. Thus only a fi-
nite number of Laguerre zeros are left, and these can be covered by neighborhoods
{D1, . . . ,Ds1} and {D′

1, . . . ,D
′
t1
}.
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Next expand to form a “local identity” for K1 by adjoining the “local identities”
π0,1, . . . , π0,s1 of D1, . . . ,Ds1 and π1,1, . . . , π1,t1 of D′

1, . . . ,D
′
t1

, respectively. Then

π1
0 =∑s1

i=1 π0,i is an identity for D1 = ∪s1
i=1Di , while π1

1 =∑t1
i=1 π1,i is an identity

for D1′ = ∪t1
i=1D

′
i . First, let π1 = π1

0 + π1
1 − π1

0 ∗ π1
1 , and note that this will satisfy

π̃1 = π̃1
0 + π̃1

1 − π̃1
0 π̃1

1 =
{

1 on D1 ∪ D1′
,

0 on (W 1)c ∩ (W 1′
)c,

where (W 1)c = ∩s1
i=1(Wi)

c and (W 1′
)c = ∩t1

i=1(W
′
i )

c . Noting that

K1 ⊂ (C1,j1 ∪ C′
1,j ′

1

)∪ (D1 ∪ D1′)
,

we then expand the “identity” to K1 by forming ρ1∗ = ρ1 + π1 − ρ1 ∗ π1. The
Gelfand transform of ρ1∗ will satisfy

ρ̃1∗ = ρ̃1 + π̃1 − ρ̃1π̃1 =
⎧⎨
⎩

1 on (C1,j1 ∪ C′
1,j ′

1
) ∪ (D1 ∪ D1′

),

0 on (F1,j1 ∩ F ′
1,j ′

1
) ∩ ((W 1)c ∩ (W 1′

)c),

thus forming an “identity” for K1. Finally note that ρ1∗
1 = ρ1,1 +π1

1 is an “identity”
on C′

1,j ′
1
∪ D1′

, a neighborhood of all the zeros of S̃r in K1, that is also separated

from the zeros of T̃r . We can form ρ1∗
2 = ρ1∗ −ρ1∗

1 ; note this function will similarly
give an “identity” on A1 = (C1,j1 ∪D1) \ (V ′

1,j ′
1
∪D1′

), a neighborhood of all zeros

of T̃r in K1, also separated from the zeros of S̃r .
This construction is next extended to form “identities” for the Kj in the compact

exhaustion of H . Form neighborhoods Cm = ∪m
i=1Ci,ji

and C′
m = ∪m

i=1C
′
i,j ′

i

for

the zeros of T̃r and S̃r , respectively, inside of Km and near the Bessel ray Hρ . Note
that “identities” for Cm and C′

m are given by ρm
0 =∑m

i=1 ρ0,i and ρm
1 =∑m

i=1 ρ1,i .
Letting ρm = ρm

0 + ρm
1 − ρm

0 ∗ ρm
1 , we have that

ρ̃m = ρ̃m
0 + ρ̃m

1 − ρ̃m
0 ρ̃m

1 =
{

1 on Cm ∪ Cm′,

0 on Fm ∩ Fm′
,

where Fm = ∩m
i=1Fi,ji

and Fm′ = ∩m
i=1F

′
i,j ′

i

. Then let Dm = ∪sm
i=1Di and Dm′ =

∪tm
i=1D

′
i . We also define (Wm)c = ∩sm

i=1(Wi)
c and (Wm′

)c = ∩tm
i=1(W

′
i )

c. Expanding
to pick up the remaining Laguerre zeros in Km, we let πm

0 =∑sm
i=1 π0,i , πm

1 =∑tm
i=1 π1,i , and

πm = πm
0 + πm

1 − πm
0 ∗ πm

1 .

Thus,

π̃m = π̃m
0 + π̃m

1 − π̃m
0 π̃m

1 =
{

1 on Dm ∪ Dm′
,

0 on (Wm)c ∩ (Wm′
)c.
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Finally, we can expand to all of Km by forming ρm∗ = ρm + πm − ρm ∗ πm, where

ρ̃m∗ = ρ̃m + π̃m − ρ̃mπ̃m =
{

1 on Cm ∪ C′
m ∪ (Dm ∪ Dm′

),

0 on (Fm ∩ Fm′
) ∩ ((Wm)c ∩ (Wm′

)c).

Noting that Km ⊂ (Cm ∪ C′
m) ∪ (Dm ∪ Dm′

), we see that ρm∗ forms an “identity”
for Km. As above, we split ρm∗ into two “identities” ρm∗

1 and ρm∗
2 which are “identi-

ties” on neighborhoods of the zeros of S̃r and T̃r , respectively. First, ρm∗
1 = ρm

1 +πm
1

is an “identity” on Cm′ ∪ Dm′
, a neighborhood of all the zeros of S̃r in Km, that is

also separated from the zeros of T̃r . We can form ρm∗
2 = ρm∗ − ρm∗

1 and note that
this function will similarly give an “identity” on Am = (Cm ∪ Dm) \ (V m′ ∪ Dm′

),
a neighborhood of all zeros of T̃r in Km, also separated from the zeros of S̃r .

We next form the deconvolving sequences {ν1,j } and {ν2,j }. Here we will rely on
the separation of the zeros of S̃r from those of T̃r , and we utilize the neighborhoods
and “local identities” formed above in the process of inversion. In particular, S̃r

does not vanish on V̄ ′ = (∪∞
i=1V

′
i,j ′

i

) ∪ (∪∞
i=1D

′
i ), and similarly T̃r does not vanish

on V̄ = (∪∞
i=1Vi,ji

) ∪ (∪∞
i=1Di). We first invert these on the set Kj , and for this

purpose, we form V̄ ′
j = V̄ ′ ∩ Kj and V̄j = V̄ ∩ Kj . Let Mj,s = minx∈V̄ ′

j
|S̃r (x)|

and Mj,t = minx∈V̄j
|T̃r (x)|. Then let Mj = min{Mj,s,Mj,t }. There exists φj ∈ C∞

such that φj (t) = 1
t

for |t | ≥ Mj , while φ(t) = 0 for |t | ≤ Mj/2. Then form φj ◦ Sr

and φj ◦ Tr , and we rely on Lemma 6.4.4 of [5] to describe the Gelfand transforms
(φj ◦ Sr )̃ and (φj ◦ Tr )̃ . Notice that these invert S̃r on the set V̄ ′

j and T̃r on the set

V̄j , away from their zero sets, as follows:

(φj ◦ Sr )̃ |V̄ ′
j
= φj (S̃r )|V̄ ′

j
= 1/S̃r ,

and

(φj ◦ Tr )̃ |V̄j
= φj (T̃r )|V̄j

= 1/T̃r .

The deconvolving sequences {ν1,j } and {ν2,j } are now formed by ν1,j = ρ1,j ∗ (φj ◦
Sr) and ν2,j = ρ2,j ∗ (φj ◦ Tr). We claim that these sequences satisfy the properties
claimed in the theorem. Considering {Sr ∗ ν1,j + Tr ∗ ν2,j }, we form the Gelfand
transforms

(Sr ∗ ν1,j + Tr ∗ ν2,j )̃ = S̃r ν̃1,j + T̃r ν̃2,j

= S̃rφj (S̃r )ρ̃1,j + T̃rφj (T̃r )ρ̃2,j .

Since φj (S̃r )|supp(ρ̃1,j )∩Kj
≡ 1/S̃r and φ(T̃r )|supp(ρ̃2,j )∩Kj

≡ 1/T̃r , we have

(Sr ∗ ν1,j + Tr ∗ ν2,j )̃ |Kj
= ρ̃1,j |Kj

· S̃r · (1/S̃r ) + ρ̃2,j |Kj
· T̃r · (1/T̃r )

= ρ̃1,j |Kj
+ ρ̃2,j |Kj

.
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Thus by design of {ρ1,j } and {ρ2,j }, we have that

(Sr ∗ ν1,j + Tr ∗ ν2,j )̃ |Kj
= (ρ̃1,j + ρ̃2,j )|Kj

≡ 1

and

(Sr ∗ ν1,j + Tr ∗ ν2,j )̃ |(Uj )c = (ρ̃1,j + ρ̃2,j )|(Uj )c ≡ 0.

Thus the claim of the theorem has been verified. �

This case yields a nice representative example on which we have demonstrated
the more general method. Although there was a uniform separation of zeros of S̃r

and T̃r in the above case, more generally, these zero sets may coalesce. In the case
of two balls of appropriate radii considered in the next example, the zeros of T̃r1

and T̃r2 will coalesce. However, we will be able to extend the above method by
taking enough care with the neighborhoods around these coalescing zeros.

3.2 Two Balls of Appropriate Radii

We now consider the Pompeiu transform defined in terms of the integral averages
∫

|z|<r1

Lgf (z,0) dμr1(z) for all g ∈ Hn

and ∫
|z|<r2

Lgf (z,0) dμr2(z) for all g ∈ Hn.

These may also be written as convolutions f ∗ T1 and f ∗ T2, where 〈φ,T1〉 =∫
|z|<r1

φ(z,0) dμr(z) and 〈φ,T2〉 = ∫|z|<r2
φ(z,0) dμr(z). We consider the case

where r1 and r2 are such that the transform is injective. We claim the following.

Theorem 2 We assume that r1 and r2 satisfy the conditions

1. (
r1
r2

) /∈ Q(Jn) = { γ x
γy

: Jn(x) = Jn(y) = 0, γ ∈ R∗},
2. ( r1

r2
)2 /∈ Q(Ψ

(n−1)
k ) = { γ x

γy
: Ψ (n−1)

k (x) = Ψ
(n−1)
k (y) = 0, γ ∈ R∗} for all k ∈ Z+.

Then T̃1 and T̃2 do not have any common zeros. Consider the sequence of compact
sets {Kj } ⊂ H given below which forms a compact exhaustion of the Heisenberg
fan H . There exist sequences of functions {ν1,j } and {ν2,j } with the property that

T̃1ν̃1,j + T̃2ν̃2,j ≡ 1 on Kj

and

T̃1ν̃1,j + T̃2ν̃2,j ≡ 0 on V c
j ,

where each Vj is an open set such that Kj ⊂ Vj ⊂ Kj+1.
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Recall that Ψ
(n−1)
k (x) was defined above by

Ψ
(n−1)
k (x) =

∫ x

0
e−t/2L

(n−1)
k (t)tn−1 dt.

In this case the {Kj } and {Vj } will be given in the proof of the theorem. It is more
convenient to make their definition after the zeros have been grouped appropriately.

Proof We first recall the values of the Gelfand transforms of T1 and T2:

T̃1(λ, k) = c

∫ r1

0
e−2π |λ|s2

s2n−1L
(n−1)
k

(
4π |λ|s2)ds = c′Ψ (n−1)

k

(
4π |λ|r2

1

)
,

T̃1(0, ρ) = c
Jn(ρr1)

(ρr1)n
,

and

T̃2(λ, k) = c

∫ r2

0
e−2π |λ|s2

s2n−1L
(n−1)
k

(
4π |λ|s2)ds = c′Ψ (n−1)

k

(
4π |λ|r2

2

)
,

T̃2(0, ρ) = c
Jn(ρr2)

(ρr2)n
.

The procedure is close to that of the previous theorem; however there are some
additional complications we will address. The interaction between zero sets of T̃1
and T̃2 plays a larger role. In general, the zeros will not alternate, and furthermore
there is not a uniform separation between the zeros of T̃1 and the zeros of T̃2. Due to
the coalescing zeros of these sets, the values of T̃1 can be very small near the zeros
of T̃2. However, by being careful with the size of the sets enclosing the zeros, we can
still construct the appropriate sequences {ν1,j } and {ν2,j }. Nevertheless, the size of
T̃1 near the zeros of T̃2 can still be an issue in the larger problem of deconvolution,
as addressed in Sect. 5.

The procedure is just like the above case, and we begin by forming appro-
priate neighborhoods of the zeros of T̃1 and T̃2 along the Bessel ray. Letting
V1 = {zeros of T̃1} and V2 = {zeros of T̃2}, we have the Bessel zeros U1 = V1 ∩ Hρ

and U2 = V2 ∩ Hρ . Setting U1 = {M1,M2, . . .} and U2 = {N1,N2, . . .}, we then
let U = U1 ∪ U2 = {Z1,Z2, . . .}, where, in each case, these are listed in increas-
ing order. We next form sequences of neighborhoods {Ck} and {C′

k} such that
∪∞

k=1(C
′
k ∪ Ck) = Hρ and such that ∪∞

k=1C
′
k covers U1, while ∪∞

k=1Ck covers U2.
Beginning with the first zero Z1 = M1 ∈ U1, we find the next Zj1 equal to N1 ∈ U2.

Then Z1, . . . ,Zj1−1 are grouped as zeros of T̃1, and C1 = [0,
Zj1−1+Zj1

2 ] is a neigh-
borhood of these zeros of T̃1 that does not contain any zeros of T̃2. Since Zj1 ∈ U2

and we know that Zj1+1 = Mj1 ∈ U1, we also form C′
1 = [Zj1−1+Zj1

2 ,
Zj1+Zj1+1

2 ] as
a neighborhood of N1 ∈ U2 not containing any zeros of T̃1. Using Zj1+1 = Mj1 ,
we then find the next Zj2 that equals N2 ∈ U2. Then the zeros Zj1+1, . . . ,Zj2−1
are grouped as zeros of T̃1 not separated by any zeros of T̃2, and we may form a
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neighborhood C2 = [Zj1+Zj1+1

2 ,
Zj2−1+Zj2

2 ]. Then let C′
2 = [Zj2−1+Zj2

2 ,
Zj2+Zj2+1

2 ]
to give a neighborhood of N2 = Zj2 . Extending this procedure to all integers yields
the desired collection of neighborhoods {Ck} covering U1 and {C′

k} covering U2
such that Hρ = ∪∞

k=1(Ck ∪ C′
k). Similarly to the above proof, these neighborhoods

also separate the zero sets of T̃1 and T̃2. In particular, for all j ,

Nj ∩
( ∞⋃

i=1

Ci

)
= ∅ and Mj ∩

( ∞⋃
i=1

C′
i

)
= ∅.

These collections of neighborhoods are also nearly disjoint, intersecting only at the
endpoints, as above. This point in the discussion will also be convenient to define

the sequences of sets {Kj } and {Vj }. Let Ni = 3Zji
+Zji+1

4 and N+
i = Zji

+Zji+1

2 . We
then let

Kj = {p = (x, y) ∈ H : x2 + y2 ≤ N2
j

}
,

where (x, y) = (λ, |λ|(4k + 2)) or (x, y) = (0, ρ2), and

Vj = {p = (x, y) ∈ H : x2 + y2 <
(
N+

j

)2}
,

where (x, y) = (λ, |λ|(4k + 2)) or (x, y) = (0, ρ2)}, as above.
For an additional distance in the separation, we also form smaller neighborhoods

{Bi} and {B ′
i}, satisfying Bi ⊂ Ci and B ′

i ⊂ C′
i , and also such that Bi is a neigh-

borhood of zeros {Zji−1+1, . . . ,Zji−1} ∈ U1, where j0 = 0, while B ′
i is a neighbor-

hood of the zeros Zji
∈ U2. This can be accomplished by letting δi = Zji

−Zji−1

2 and

δ′
i = Zji+1−Zji

2 . Then form neighborhoods Bi = [Zji−1+1 − δ′
i−1/2,Zji−1 + δi/2]

and B ′
i = [Zji

− δi/2,Zji
+ δ′

i/2]. These neighborhoods have the desired proper-
ties, and they further guarantee that dist(U1,B

′
i ) = εi and dist(U2,Bi) = ε′

i , where
εi = min(δi/2, δ′

i/2) and ε′
i = min(δi/2, δ′

i−1/2), giving a local separation of zeros.
Although this local separation of zeros is not as strong as the uniform separation of
zeros, we find above in Sect. 3.1, it is good enough for the purpose of forming the
desired deconvolving sequences. In particular, the distance in the local separation
of the zeros allows us to extend these neighborhoods beyond the Bessel ray into
the Heisenberg fan, as above. But first we observe the existence of the collections
of larger neighborhoods {Vi} and {V ′

i }. The Vi satisfy the properties Ci ⊂ Vi and
Vi ∩ (B ′

i−1 ∪ B ′
i ) = ∅. Likewise, the V ′

i satisfy C′
i ⊂ V ′

i and V ′
i ∩ (Bi−1 ∪ Bi) = ∅.

Using the collection of neighborhoods {Bi}, {Ci}, and {Vi} of the zeros U1 ∈ Hρ

and the collection of neighborhoods {B ′
i}, {C′

i}, and {V ′
i } of the zeros U2 ∈ Hρ , it

is possible to complete the process of forming the deconvolving sequence by a se-
quence of steps beginning with extension from the Bessel ray, Hρ . The key point
in making the extension from the Bessel ray is the local separation by a set εi be-
tween the zeros U1 and neighborhoods B ′

i , as well as between the zeros U2 and
neighborhoods Bi . We note that it is straightforward to see how the neighborhoods
for this specific case could be extended to a more general case in which the zero
sets are more irregularly distributed. Once the appropriate neighborhoods have been
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established, the remainder of the formation of the deconvolting sequences proceeds
directly as described.

From here we complete the process of forming the deconvolving sequences using
the same method as given in Sect. 3.1 for Theorem 1. It consists of extension of the
above neighborhoods from the Bessel ray to cover an infinite number of Laguerre
zeros, followed by formation of additional neighborhoods to cover the remaining
Laguerre zeros and any remaining regions in the Heisenberg fan H . From here,
inversion of T̃1 and T̃2 are completed by use of “local identities” and a process of
“local inversion.” The local separation between the zeros U1,U2 and the neighbor-
hoods Bi and B ′

i described in the preceding paragraph extends to the entire Heisen-
berg fan H . This is used to form the φi which locally invert T̃1 and T̃2. In addition
the system of neighborhoods are used to form the sequences {ρ1,j } and {ρ2,j } with
the property that ρ̃1,j + ρ̃2,j |Kj

≡ 1. Putting these together will yield the desired
deconvolving sequences {ν1,j } and {ν2,j }.

The method for extending the neighborhoods {Bi,ki
} and {B ′

i,k′
i

}, as well as {Ci,ki
}

and {C′
i,k′

i

} plus {Vi,ki
} and {V ′

i,k′
i

}, is identical to that given above for Theorem 1.

We outline this procedure again here. Recall the definition of Bi,j , now expanded to
enclose the group of zeros Zji−1+1, . . . ,Zji−1:

Bi,k =
{
(x, y) ∈ H :
(

Zji−1+1 − δ′
i−1

2

)2

≤ x2 + y2 ≤
(

Zji−1 + δi

2

)2

and

∣∣∣∣yx
∣∣∣∣≥ 4(k + n/2)

}
,

while B ′
i,k′ is defined by

B ′
i,k′ =

{
(x, y) ∈ H :
(

Zji
− δi

2

)2

≤ x2 + y2 ≤
(

Zji
+ δ′

i

2

)2

and

∣∣∣∣yx
∣∣∣∣≥ 4

(
k′ + n/2

)}
.

In expanding the neighborhood Bi of the ni zeros along the Bessel ray Hρ to the
larger neighborhood Bi,ki

within the Heisenberg fan Hn, we use the form just given.
First select k = ki ∈ Z+ with the property that, for each k ≥ ki , exactly ni of La-
guerre zeros on the ray Hk,± are inside of Bi,k ∩ Hk,±. We also choose ki to mini-
mize all possible ki satisfying the previous property and use this to form the neigh-
borhood Bi,ki

. Similarly, B ′
i is expanded to form B ′

i,k′
i

by choosing k′
i ∈ Z+ with the

property that, for each k′ ≥ ki′ , exactly one of the Laguerre zeros on the ray Hk′,±
is inside of B ′

i,k′
i

∩ Hk′,±. Using these same values of ki and k′
i , for each i ∈ Z+,

we also expand from {Ci} to {Ci,ki
} and from {C′

i} to {C′
i,k′

i

}. In the same manner

we expand from {Vi} to {Vi,ki
} and from {V ′

i } to {V ′
i,k′

i

}. Finally pick up remainder

of Laguerre zeros and cover the rest of H by adding neighborhoods {Di} and {D′
i}
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as well as neighborhoods {Wi} and {W ′
i } that separate the previous neighborhoods,

using the same method as given in the proof of Theorem 1.
Now that all the neighborhood systems are in place, the formation of the de-

convolving sequences is identical to that given in Theorem 1. Sequences of “local
identities” {ρ1,i} and {ρ0,i} are formed, such that

ρ̃1,i =
⎧⎨
⎩

1 on C′
i,j ′

i

,

0 on F ′
i,j ′

i

,

and

ρ̃0,i =
{

1 on Ci,ji
,

0 on Fi,ji
.

Similarly we form sequences of “local identities” {π1,i} and {π0,i} such that

π̃1,i =
{

1 on D′
i ,

0 on (W ′
i )

c,

and

π̃0,i =
{

1 on Di,

0 on (Wi)
c.

These are put together in the same manner as in the proof of Theorem 1, forming
ρ∗

m which is an “identity” for Km. This further splits into the two “identities” ρm∗
1

and ρm∗
2 such that ρ∗

m = ρm∗
1 + ρm∗

2 , while ρm∗
1 and ρm∗

2 are “identities” on the
neighborhoods of the zeros of T̃1 and T̃2, respectively.

All that remains is the “local inversion” of T̃1 and T̃2 away from their zeros,
found by applying the inverses φj ∈ C∞ satisfying φj (t) = 1/t for |t | ≥ Mj while
φj (t) = 0 for |t | ≤ Mj/2, where the Mj are determined according to the size of
T̃1 and T̃2 on the appropriate neighborhood systems within Kj . Note that T̃1 does
not vanish on V̄ ′ = (∪∞

i=1V
′
i,j ′

i

) ∪ (∪∞
i=1D

′
i ), and similarly T̃2 does not vanish on

V̄ = (∪∞
i=1Vi,ji

) ∪ (∪∞
i=1D

′
i ). For inversion on Kj , we divide into neighborhoods

of the zero sets V̄ ′
j = Kj ∩ V̄ ′ and V̄j = Kj ∩ V̄ . Then Mj = min{Mj,1,Mj,2},

where Mj,1 = minx∈V̄ ′
j
|T̃1(x)| and Mj,2 = minx∈V̄j

|T̃2(x)|. Note that (φj ◦ T1) and

(φj ◦ T2) invert T̃1 and T̃2 on V̄ ′
j and V̄j , respectively, away from their zero sets, as

follows:

(φj ◦ T1)̃ |V̄ ′
j
= φj (T̃1)|V̄ ′

j
= 1/T̃1,

and

(φj ◦ T2)̃ |V̄j
= φj (T̃2)|V̄j

= 1/T̃2.
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Note that the main difference between this case and that of Theorem 1 is the ex-
istence of coalescing zeros in this case. To deal with the locations these zeros coa-
lesce, we have more variation in the width of the neighborhoods B ′

i , extending to the
neighborhoods B ′

i,j ′
i

, which separate the zeros of T̃2 from those of T̃1. The neighbor-

hood systems hold up so that the deconvolving sequences can be formed. However,
the rate at which the zeros coalesce can effect the rate at which Mj approaches 0
as well as the corresponding rate at which the (φj ◦ T1)̃ grows near the zero set of
T̃2. These issues and other related issues will be considered in Sect. 5 dealing with
issues of convergence related to the sequences of deconvolvers.

The deconvolving sequences {ν1,j } and {ν2,j } are now formed by defining

ν1,j = ρ1,j ∗ (φj ◦ T1) and ν2,j = ρ2,j ∗ (φj ◦ T2).

As previously, this gives the transforms

(T1 ∗ ν1,j + T2 ∗ ν2,j )̃ |Kj
= ρ̃1,j |Kj

· T̃1 · 1/T̃1 + ρ̃2,j |Kj
· T̃2 · 1/T̃2

= ρ̃1,j |Kj
+ ρ̃2,j |Kj

≡ 1.

We can also easily see that (T1 ∗ ν1,j +T2 ∗ ν2,j )̃ |(Vj )c = 0. This verifies the claims
in the theorem, and the proof is complete. �

As noted above, the difference in these cases of the sphere and ball in Sect. 3.1
and the two balls of appropriate radii in Sect. 3.2 is the issue of distance of separation
of the zeros for μ̃1 and μ̃2, which carries over to the rates of growth of the sequences
{̃ν1,j } and {̃ν2,j } near these zero sets as j becomes infinite. This issue and related
issues of convergence will be revisited in Sect. 5, where we also address how the
deconvolving sequences {̃ν1,j } and {̃ν2,j } may be applied to recover the function f .

4 Using Weyl Calculus and the Group Fourier Transform

Observe how in the proof of the results Theorem 1 and Theorem 2 above, the con-
struction of the “local inverses” ρ1 and ρ2 was based on analysis of the Bessel
zeros, sets U1 and U2. The neighborhoods of each of these zeros naturally extended
to Laguerre zeros along an infinite number of Laguerre rays, based on the subspace
topology. The remaining Laguerre zeros are finite along each of the Laguerre rays
and are also locally finite. Since these zeros are easily incorporated using a finite
number of appropriate neighborhoods, they do not affect the process. Thus, the con-
struction of the “local inverses” in Sect. 3 above is based upon the construction for
the Bessel ray. It appears that the distribution of the zeros along the Bessel ray deter-
mines the potential for deconvolution, provided that there are no common Laguerre
zeros. In the context of the Weyl calculus, the Laguerre spectrum is a quantization
of the Bessel part, and the behavior of the Laguerre part, in the limit as k → ∞ and
λ → 0, determines the behavior of the Bessel part.
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Recall the suggestion [10] that use of the Weyl calculus can establish connec-
tions between Pompeiu type results in Euclidean space and the Heisenberg group.
Furthermore in [11] there was also the suggestion that the cases of the Pompeiu
problem for the Heisenberg group and Euclidean space are actually very close, and
in particular deconvolution should extend to the Heisenberg case. In this section we
investigate specific points regarding how the deconvolution results of Theorem 1 and
Theorem 2 can be viewed primarily from the perspective of the “Euclidean part” of
the zero set, along the Bessel ray.

In this section we discuss the relations between these two avenues of investiga-
tion. The Weyl representation reduces to this central Bessel ray for the represen-
tations π(ξ,η). The issue of extending the deconvolution process from the Bessel
ray Hρ to the Laguerre rays ∪k∈Z+Hk,± has parallels to the passage between the
operator-valued Weyl representation π±λ on the entire spectrum and the Euclidean
part π(ξ,η) on the central Bessel ray. We focus on the operator-valued Weyl repre-
sentations π±λ and π(ξ,η) of the distributions T1 and T2, representing the sets over
which the average is taken. Through use of the Weyl calculus we relate T̃j (0;ρ),
the Bessel part of the Gelfand transform, to π(ξ,η)Tj , the Euclidean part of the Weyl
representation. This corresponds to analysis of the Bessel zeros Uj for j = 1,2,
mentioned above. In fact the conclusion of the existence of deconvolving sequences
in Theorem 1 and Theorem 2 can be based on two points, the behavior of the Bessel
zeros and nonoverlapping of the zeros of the Laguerre part.

The Weyl calculus for the Pompeiu problem on Hn allows a unification of both
Laguerre and Bessel parts of the zero sets U1 and U2 into the kernels of two
operator-valued functions. Furthermore, in the case where λ → 0, this carries over to
the representation π(ξ,η), the Euclidean transform on Cn. In this limit, the operator-
valued functions become identical to functions used in the analysis of the Pompeiu
problem on Cn. This is a nice bridge from Heisenberg to Euclidean and from Eu-
clidean to Heisenberg, and we will utilize it. In the case of Theorem 1, there are
no conditions needed for the common radius of the sphere and ball. In fact, these
two sets were selected to provide a representative example for the nice cases where
there exists a uniform separation between the zero sets. As such, these sets are in a
category comparable to the moment type results of [6, 9, 18] and do not require sets
of exceptional radii. This corresponds to the fact that

ker
{
jn−1

(
r

√
|λ|(P 2 + Q2

))}∩ ker
{
jn

(
r

√
|λ|(P 2 + Q2

))}= {0},

a fact which is true for any radius r . However, in many cases exceptional radii
are required, such as Theorem 2, corresponding to results such as those in [1, 5,
10]. In the context of the two-radius theorem for the Pompeiu problem on Hn, the
conditions for existence of the deconvolving sequences of Theorem 2 are expressed
as follows.

Theorem 3 Let r1 and r2 be two radii satisfying the condition

ker
{
jn

(
r1

√
|λ|(P 2 + Q2

))}∩ ker
{
jn

(
r2

√
|λ|(P 2 + Q2

))}= {0},
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so that T̃1 and T̃2 do not have any common zeros. Then there exist sequences of
functions {ν1,j } and {ν2,j } with the property that

T̃1ν̃1,j + T̃2ν̃2,j ≡ 1 on Kj

and

T̃1ν̃1,j + T̃2ν̃2,j ≡ 0 on V c
j ,

where each Vj is an open set such that Kj ⊂ Vj ⊂ Kj+1.

Note that in the case of the n-ball and (n−1)-sphere of Theorem 1, the condition
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{
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r

√
|λ|(P 2 + Q2

))}∩ ker
{
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r

√
|λ|(P 2 + Q2

))}= {0}

is automatic due to results of zeros of Bessel functions of consecutive indices and
does not relate to the radius r . Similarly there is no condition for exceptional radii
needed in Theorem 1.

Here we describe the transforms associated to the measures used in Theorem 1
and Theorem 2 using the operator-valued Fourier transform on Hn. As described in
Sect. 2, the group Fourier transform for the measure μ with respect to the repre-
sentation π±λ can be determined from the standard Euclidean Fourier transform on
R2n+1, F2n+1(μ)(x,y, t), by substituting the operators P and Q to give

π±λ(μr) = F2n+1(μr)
(∓λ1/2P,−λ1/2,∓λ

)
for λ ∈ R+ \ {0}.

The case of the one-dimensional measures π(ξ,η), corresponding directly to the Eu-
clidean case, can be attained as a limit as λ → 0 or by substitution of (ξ, η) in the
form

π(ξ,η)(μr) = F2n+1(μr)(−ξ,−η,0) for (ξ, η) ∈ Rn × Rn.

Since the issue of deconvolution on the associated Euclidean spaces is already set-
tled, we may look here first. We first address the issue of common zeros required for
injectivity of the Pompeiu transform and inherent to Hörmander’s strongly coprime
condition. In the case of the sphere and ball of Theorem 1, we have

π(ξ,η)(Sr) = c
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and
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π(ξ,η)(Tr) = c
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These have no common zeros as a consequence of the well-known result for Bessel
functions of separate integer indices. In fact, there is a uniform separation among
the zeros, which are interlaced. Note that in moving to the infinite-dimensional rep-
resentations and using the series [15]

jn−1(ts) = Jn−1(ts)
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= 2
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j
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s2) (5)

to express the Laguerre part of the spectrum for these operators, we may write
π±λ(μr) in the form

π±λ(Sr) = c

∞∑
j=0

Fλ(2j + 1)(−1)j e−|λ|(P 2+Q2)L
(n−1)
j

(
2|λ|(P 2 + Q2)),

which can be represented using H = P 2 +Q2, the harmonic oscillator Hamiltonian.
Thus we have

π±λ(Sr) = c

∞∑
j=0

Fλ(2j + 1)(−1)j e−|λ|H L
(n−1)
j

(
2|λ|H ).

Noting that H has the Hermite functions Eα as eigenfunctions with eigenvalues
2α + 1, we see that Ej is also an eigenfunction for the operator e−H L

(n−1)
j (2H).

This implies that each (λ, k) ∈ R∗ × Z+ such that L
(n−1)
k (|λ|r2/2) = 0 yields a

function Ek in the kernel of π±λ(Sr). The kernel of the operator-valued function
jn−1(r

√|λ|(P 2 + Q2)) is then given by (ξ, η) ∈ Rn × Rn such that
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and (λ, k) ∈ R∗ × Z+ such that L
(n−1)
k (|λ|r2/2) = 0. We observed above that the

zeros of Jn and Jn−1 have a uniform separation, due to the indices. To consider
the other part of the common kernel, we consider also π±λ(Tr), similarly computed
through the use of (5) to be
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which similarly has the Hermite functions Eα as eigenfunctions. In this case the
operator π±λ(Tr) has a the eigenfunction Ek in its kernel for any (λ, k) ∈ R∗ × Z+
such that

∫ r

0
e−|λ|ρ2/4L

(n−1)
k

(|λ|ρ2/2
)
ρ2n−1 dρ = 0.

Then recognize that
∫ r2|λ|/2

0 e−x/2xnL
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j (x) dx and e−r2|λ|/4L

(n−1)
j (|λ|r2/2) will

also have a uniform separation between their zero sets, as was observed previously,
in Sect. 3.1. Thus in this case the entire issue of injectivity, required as a prerequi-
site for deconvolution, is automatic. Furthermore the uniform separation within the
Bessel part of the transform extends to the whole spectrum H . This uniform sepa-
ration makes the larger problem of deconvolution easier, and this case allows for the
most direct application of these methods. We will have more to say later about the
role of the zero sets in the larger deconvolution problem.

The more general case is sometimes more akin to the case of the balls of separate
radii r1 and r2, as found in Theorem 2. In this case the zero sets may coalesce, and
furthermore there may be issues related to the size of the functions at the zero sets.
We investigate this case by forming the operator-valued transforms
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and
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Condition 1 of Theorem 2 is equivalent to the lack of a common kernel for these
two representations. For the operator-valued functions jn(ri

√|λ|(P 2 + Q2)), we
still need to expand to the representations π±λ(Tri ) using the series (5) above. As in
the above case of the group Fourier transform of Tr , we compute
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which similarly has the Hermite functions Eα as eigenfunctions. Thus the operator
π±λ(Tri ) has the eigenfunction Ek in its kernel for any (λ, k) ∈ R∗ × Z+ such that
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Thus we see that condition 2 of Theorem 2 corresponds to no common kernel of
π±λ(Tr1) and π±λ(Tr2) for λ ∈ R∗. Now
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implies that conditions 1 and 2 of Theorem 2 are met, which in turn implies the
existence of the sequences of deconvolvers. This completes the proof of the theorem.

Note, however, that the lack of common zeros provided by the unified condi-
tion on the operator-valued Bessel functions of Theorem 3 address only part of the
larger problem of deconvolution. This point can be seen from the analogous results
for Euclidean spaces where the issue for deconvolution of the Pompeiu problem for
two balls of appropriate radii divides into two separate cases, based on arithmetic
conditions associated to the radii. As observed in [1], the separate conditions for the
Bessel and Laguerre parts of the spectrum are unified by addressing the common
kernel of the operator-valued transforms. However, at the level of the transform of
the associated Euclidean space, the results of [4, 7, 8] demonstrate that for the prob-
lem of deconvolution and application of Hörmander’s strongly coprime condition,
it is necessary to divide into two cases related to the separation of these zeros and
how rapidly they can coalesce. The condition dividing these cases is how well the
quotient of radii r1

r2
can be approximated by quotients of zeros p/q of the Bessel

function Bn found in these transforms. We require the following definition for N -
well approximation. First, let En be an infinite set with elements ordered by

En = {λ1, λ2, . . . , λn, . . .}, where λj < λj+1.

Definition 1 For N > 0, a positive number α is called N -well approximated by
ratios of En if, for every � > 1, there exist indices j, k such that

|α − λk/λj | ≤ 1/
(
�jN
)
.
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If for every N > 0, the number α is not N -well approximated by ratios of En,
then α is called poorly approximated by ratios of En. We mention a result of Beren-
stein and Gay [3, Proposition 6] demonstrating that when r1

r2
is not N -well approxi-

mated by ratios of En, then μ̂r2 satisfies the estimate

∣∣μ̂r2(λk)
∣∣≥ C/kN+(n−1)/2

at λk , the zeros of μ̂r1 . From this result it is easy to see that if radii r1 and r2 are
poorly approximated by zeros of Jn, it can be shown that Hörmander’s strongly
coprime condition holds, implying the existence of compactly supported decon-
volvers. When the radii r1 and r2 are N -well approximated, Hörmander’s strongly
coprime condition is not met, implying that any deconvolvers cannot be compactly
supported. Thus the distribution of these zero sets is integrally related to the issues
of Hörmander’s strongly coprime condition and the issue of deconvolution.

Note also that the procedure we have used in the above two results strongly sug-
gests that the Bessel zeros are where the issue lies. When we can describe these
zeros and find suitable neighborhoods to separate them, then it appears we can ex-
tend to a full neighborhood of the Bessel ray. What remains would then be only a
finite number of Laguerre zeros, and a finite number of zeros should not introduce
difficulties. Note that this assumes no common zeros, which assumption must be
made in order to have injectivity. However, as we observe in the next section, this
set of requirements refers to the type of deconvolution in the sense of limits as given
in Sect. 3. Somewhat more will be required for the stronger form of deconvolution,
in the sense of [4, 7], where a set of deconvolvers ν1, . . . , νn that are compactly sup-
ported distributions are shown to exist. We address these issues in the next section.

5 Convergence of Deconvolving Sequences

In this section we address the issue of applying the sequences of deconvolvers
formed in Sect. 3 to perform the deconvolution. The problem of deconvolution for
the Pompeiu problem can be interpreted to mean the reconstruction of a given func-
tion f from the integral information given in the Pompeiu problem, in this case
representable using the convolutions f ∗ T1 and f ∗ T2. We observe in this sec-
tion how the sequences {̂ν1,j } and {̂ν2,j } can be used to reconstruct the function f .
We also address related issues including the appropriate spaces for the functions
and distributions we are working with as well as issues of convergence. Finally we
will relate these issues to fundamental issues used in understanding deconvolution
for Euclidean space, the Paley–Weiner theorem and Hörmander’s strongly coprime
condition.

We will utilize a theorem of Benson, Jenkins, and Ratcliff [2, Theorem 6.1] to
describe the range of S (Hn) under the spherical function transform. In the notation
of this theorem, the Heisenberg fan H is represented by �(K,Hn), where K =
U(n). The space Ŝ (K,Hn) consists of functions that are rapidly decreasing on
�(K,Hn). The space SK corresponds to radial functions in Schwartz space.
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Theorem 4 ([2]) If f ∈ S (Hn), then f̂ ∈ Ŝ (K,H n). Conversely, if F ∈
Ŝ (K,Hn), then F = f̂ for some f ∈ S (Hn). Moreover, the map̂ : Ŝ (Hn) →
Ŝ (K,H n) is a bijection.

First notice that in the limit, our deconvolving sequences {̃ν1,j } and {̃ν2,j } allow
us to construct the sequence of functions {f̃j } defined by

f̃j ≡ (f ∗ T1)̃ · ν̃1,j + (f ∗ T2)̃ · ν̃2,j

≡ f̃ · T̃1 · ν̃1,j + f̃ · T̃2 · ν̃2,j .

Noting that each f̃j has the property that f̃j |Kj
= f̃ |Kj

and f̃j |Fj
= 0, as con-

structed above in Sect. 3, we easily pass to the limit to attain the deconvolution

f̃ ≡ lim
j→∞(f ∗ T1)̃ · ν̃1,j + (f ∗ T2)̃ · ν̃2,j .

This solves the problem of deconvolution, as f can be reconstructed from its “aver-
ages” f ∗ μ1 and f ∗ μ2. It is not as strong as the usual method of deconvolution,
as we have here used a limiting procedure. It now remains to discuss the conver-
gence and to address the appropriate function spaces for both the deconvolving se-
quences and the associated sequences of functions. We further discuss the existence
of limits ν1 = limν1,j and ν2 = limν2,j , forming individual deconvolvers from the
sequences.

Before passing to the limit, we consider the issue of the spherical function trans-
form, showing the existence of sequences {ν1,j } and {ν2,j } whose spherical trans-
forms yield the deconvolving sequences we have constructed. The above theorem
of [2] characterizing the image of S (Hn) under the spherical function transform
will be used. At the level of the sequence of functions {f̃j }, as constructed above,
we recognize that since f̃j |Kj

≡ 1 while f̃j |Fj
≡ 0, f̃j is rapidly decreasing on

�(K,Hn), and thus f̃j ∈ Ŝ (K,Hn). By the theorem there exists Fj ∈ S (Hn)

such that F̃j ≡ f̃j . Furthermore note that these Fj in the sequence can be explicitly
constructed from the convolutions f ∗ T1 and f ∗ T2 using sequences of Schwartz
functions {ν1,j } and {ν2,j } as follows. We observe that ν̃1,j |Fj

≡ 0 and ν̃2,j |Fj
≡ 0

imply that ν̃1,j , ν̃2,j ∈ Ŝ (K,Hn). This in turn implies the existence of the desired
sequences of ν1,j , ν2,j ∈ S (Hn). Forming (f ∗ T1) ∗ ν1,j + (f ∗ T2) ∗ ν2,j , we see
that

[
(f ∗ T1) ∗ ν1,j + (f ∗ T2) ∗ ν2,j

]̃ = f̃ · T̃1 · ν̃1,j + f̃ · T̃2 · ν̃2,j

= f̃j .

Thus (f ∗ T1) ∗ ν1,j + (f ∗ T2) ∗ ν2,j = Fj ∈ S (Hn). We will demonstrate below
that the sequence {Fj } approaches f in the limit.

Noting that Fj = f ∗ (T1 ∗ ν1,j + T2 ∗ ν2,j ), we now describe the appropriate
space for the elements ν̃1,j , ν̃2,j as well as T1 ∗ ν1,j , T2 ∗ ν2,j . Each

(T1 ∗ ν1,j + T2 ∗ ν2,j )̃ ∈ Ŝ (K,Hn)
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since these were constructed to satisfy

(T1 ∗ ν1,j + T2 ∗ ν2,j )̃ ≡ (T̃1 · ν̃1,j + T̃2 · ν̃2,j

)|Kj
≡
{

1 on Kj ,

0 on Fj ,

and thus clearly are rapidly decreasing on �(K,Hn). It follows from the theorem
of [2] that T1 ∗ ν1,j + T2 ∗ ν2,j ∈ S (Hn). A similar argument shows that each T1 ∗
ν1,j , T2 ∗ ν2,j ∈ S (Hn).

On the side of the spherical transform we have constructed the ν̃1,j , ν̃2,j in order
to deconvolve f ∗ T1 and f ∗ T2 on Kj . Letting φj = T1 ∗ ν1,j + T2 ∗ ν2,j , for each
j , we have

φ̃j |Kj
= (T1 ∗ ν1,j + T2 ∗ ν2,j )̃ |Kj

= (T̃1 · ν̃1,j + T̃2 · ν̃2,j

)|Kj
≡ 1,

so that in the limit

φ̃j = (T1 ∗ ν1,j + T2 ∗ ν2,j )̃ → 1�(K,Hn).

We then recognize that 1�(K,Hn) is a tempered distribution on �(K,Hn). Fur-
thermore, this is the spherical function transform of the Dirac delta function δ ∈
S ′(Hn). Since we know that δ̃(λ, k) = ψλ

k (0) = 1 and δ̃(0;ρ) = Jρ(0) = 1, we
may write δ̃ = 1�(K,Hn). Thus the limit

(T1 ∗ ν1,j + T2 ∗ ν2,j )̃ → 1�(K,Hn) = δ̃

tells us that limj→∞ φj = limj→∞ T1 ∗ ν1,j + T2 ∗ ν2,j = δ, by uniqueness of the
Gelfand transform. Also not that each φj ∈ S and that these converge to the tem-
pered distribution δ ∈ S ′.

In the approach to deconvolution outlined in [8] the Hörmander strongly coprime
condition is used to demonstrate existence of deconvolvers ν1, . . . , νn as compactly
supported distributions. The arithmetic condition for the radii of the disks not to be
N -well approximated by the zeros of the Bessel function J1 is used to give the re-
quired estimates for the strongly coprime condition (2) near the Bessel zeros. The
explicit construction of deconvolvers given in [4, 7] utilize a different set of condi-
tions, closely related to these. Our approach is different from these in that we have
produced sequences of deconvolvers {ν1,j } and {ν2,j } in S (Hn). Since the trans-
formations ν̃1,j and ν̃2,j are compactly supported for each j , we were able to use
results on Schwartz space rather than Hörmander’s strongly coprime condition. In
this section we have been considering how to utilize these deconvolving sequences
to form the deconvolution through a limiting process. When we also address the
issue of the limits of the sequences of deconvolvers themselves, ν1 = limν1,j and
ν2 = limν2,j , then the Paley–Weiner theorem and the strongly coprime condition of
Hörmander again become relevant. Considering the limit in the sense of distribu-
tions, we need to describe lim〈f, ν1,j 〉 for every f ∈ S (Hn). Due to the definition
of ν1,j in terms of its Gelfand transform ν̃1,j , we consider the limits 〈f̃ , ν̃1,j 〉 for
f̃ ∈ Ŝ , where the inner products 〈f̃ , ν̃1,j 〉 on the space Hn are to be interpreted
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using Godement’s Plancherel measure, as given in [2]. For convergence, it is nec-
essary that ν̃1,j does not grow too rapidly. Due to the manner in which these were
constructed, this issue is directly related to the proximity of the zero sets of T̃1
and T̃2, and their rates of decay near these zero sets. After setting up the limits and
the issue of their convergence, we will briefly address three separate cases.

To discuss the limits of the deconvolving sequences {ν1,j } and {ν2,j }, we must
consider the limits in the sense of distributions. Since the deconvolving sequences
have been defined in terms of the transforms ν̃1,j and ν̃2,j , we consider the limits of
these sequences as tempered distributions. Tempered distributions use the space of
Schwartz functions as test functions, and this allows results to be transferred to ν1,j

and ν2,j through the above result of [2]. Since ν̂1,j ∈ Ŝ ⊂ Ŝ ′, we have that

〈f, ν1,j 〉 = 〈f̃ , ν̃1,j 〉 for all f̃ ∈ Ŝ ,

and we want to investigate the behavior in the limit as j → ∞. If we can show that
the limit converges for each f̂ ∈ Ŝ , this will imply the existence of ν̂1 = lim ν̂1,j

and ν1 = limν1,j as tempered distributions, in Ŝ ′ and S ′, respectively. However,
this condition depends on the rate of decay, or growth, of ν̃1,j . Recall that the defini-
tion of ν̃1,j and ν̃2,j requires inversion of T̃1 and T̃2 away from their zeros. Although
ν̃1,j , ν̃2,j ∈ Ŝ for each j , depending on the proximity of the zeros of T̃1 and T̃2 and
the growth of ν̃1,j and ν̃2,j near these zeros, the limit of ν̃1,j and ν̃2,j may not remain
in Schwartz space. Even if the ν̃1,j grow rapidly near the zero sets as j increases,
the limit still exists in the space D ′ since we know that for each f ∈ D , there exists
k such that

lim〈f, ν̃1,j 〉 = 〈f, ν̃1,k〉,
where supp(f ) ⊂ Kk . Thus the rate of growth of the ν1,j and the space in which
this convergence occurs are directly related to the distribution of the zeros of T̃1
and T̃2, and these issues also relate directly to the Paley–Weiner theorem. In Eu-
clidean space Cn the strongly coprime condition of Hörmander gives a condition for
the existence of ν̂1, ν̂2 as Fourier transforms of compactly supported distributions,
or equivalently for the existence of ν1, ν2 as compactly supported distributions. In
the case of Sect. 3.1 the zeros have uniform separation, and it is easy to show Hör-
mander’s strongly condition is satisfied. However in the case of Sect. 3.2, whether
or not Hörmander’s condition is satisfied is determined by whether the ratio of radii
r1
r2

is N -well approximated or is poorly approximated by ratios of Bessel zeros En,
where

En = {x ∈ R : Jn(x) = 0
}= {λ1, λ2, . . . , λn, . . .}, where λj < λj+1.

In the first two cases, where the zeros have a uniform separation for the ball and
sphere of Sect. 3.1 or the radii of the two balls of Sect. 3.2 where the radii are poorly
approximated by ratios of En, it is possible to show that the convergence exists in the
space of tempered distributions. However in the third case in which the ratio of the
radii of the two balls of Sect. 3.2 are N -well approximated, the convergence is more
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delicate, and we can only guarantee lim ν̃1,j = ν̃1 ∈ D ′. Nevertheless the results of
the deconvolving sequences are still valid in the space of tempered distributions,
as discussed above. Note that the above conclusions were based on application of
the results of [2] for Schwartz space and did not require stronger Paley–Weiner-
type results. Ideally we would like to be able find methods to show the existence
of deconvolvers as compactly supported distributions, or even to extend methods
of [4, 7] to make an explicit construction of such compactly supported deconvolvers
using methods of summation, differentiation, integration, and convolution.

In the sequel to this paper we plan to revisit this issue and to deal more directly
with the issue of Hörmander’s strongly coprime condition in the Heisenberg group
setting.

6 Extending Deconvolution from the Bessel Ray

Consider the case of radial distributions T1, . . . , Tn compactly supported satisfying
Hörmander’s strongly coprime condition for Cn, implying the existence of distribu-
tions ν1, . . . , νn radial and compactly supported such that

T̂1(ξ )̂ν1(ξ) + · · · + T̂n(ξ )̂νn(ξ) ≡ 1,

which can be written as

T̂1(r)̂ν1(r) + · · · + T̂n(r)̂νn(r) ≡ 1,

where r = |ξ |. Noting that T̂j (|ξ |) = T̂j (r) = T̃j (0;ρ) and likewise ν̂j (|ξ |) =
ν̂j (r) = ν̃j (0;ρ), this is equivalent to a deconvolution of T1, . . . , Tn on the Bessel
ray Hρ ,

T̃1(0;ρ)̃ν1(0;ρ) + · · · + T̃n(0;ρ)̃νn(0;ρ) ≡ 1. (6)

It is important to ask whether such a deconvolution can be extended to the Gelfand
transforms T̃1, . . . , T̃n on all of the Heisenberg brush H . It is not guaranteed that
the deconvolvers on Euclidean space will extend to work for the Heisenberg group.
Considering the Gelfand transform of the same sum, T̃1ν̃1 + · · · + T̃nν̃n, the goal is
to make this expression uniformly equal to 1 for all (λ, k) ∈ R∗ × Z+,

T̃1(λ, k)̃ν1(λ, k) + · · · + T̃n(λ, k)̃νn(λ, k) ≡ 1. (7)

The existence of ν1, . . . , νn satisfying (6) and (7) would solve the problem of de-
convolution for Hn; however a solution of (6) has not been shown to extend to (7).

Our general goal for a set of radial distributions T1, . . . , Tn is to extend the Eu-
clidean deconvolution

T̂1(ξ )̂ν1(ξ) + · · · + T̂n(ξ )̂νn(ξ) ≡ 1

to all of the Heisenberg brush H by expanding upon the method developed in
Sect. 3. In this section, we develop a method for extending the deconvolution from
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the central Bessel ray Hβ to all of the Heisenberg fan H for any Tr and Sr sat-
isfying Hörmander’s strongly coprime condition, or equivalently, satisfying condi-
tion (6). That is to say, given ν1 and ν2 satisfying

T̂r (ξ) · ν̂1(ξ) + Ŝr (ξ) · ν̂2(ξ) ≡ 1 for all ξ ∈ Cn,

we want to find μ1 and μ2 satisfying

T̃r (p) · μ̃1(p) + S̃r (p) · μ̃2(p) ≡ 1 for all p ∈ H ,

equivalent to conditions (6) and (7), and furthermore μ̃j (0;ρ) = μ̂j (r), where
r = |ξ |. Note that the constructions in Sect. 3 do not quite solve this problem, since
the ν1 and ν2 produced do not necessarily agree on Hρ with a given Euclidean
deconvolution. However, in this section we will demonstrate the existence of the
desired μ1 and μ2, and part of the construction is based on the methods of Sect. 3.

The idea is to use the existing Euclidean deconvolution T̂r ν̂1 + Ŝr ν̂2 ≡ 1 on the
Bessel ray Hρ while using the construction of Sect. 3 on a neighborhood R away
from the Bessel ray. Note that this methods of Sect. 3 essentially amounts to past-
ing together the inverse 1

T̃1
away from the zeros set of T̃1 with the inverse 1

T̃2
away

from the zeros set of T̃2. The two main points are then first to extend the Euclidean
deconvolution ≡ 1 to a neighborhood Vρ of the Bessel ray Hρ and second to or-
chestrate the overlapping of these two methods on the space in between the two
neighborhoods Vρ and R, through a construction comparable to a partition of unity.
We begin with the determination of the open set Vρ for which we extend the decon-
volution to ≡ 1 for all p ∈ Vρ . Here we will rely on the continuity of the transforms
T̃1, T̃2, ν̃1, ν̃2 in the relative subspace topology to yield existence of a neighborhood
Vρ where ∣∣T̃1(p)̃ν1(p) + T̃2(p)̃ν2(p) − 1

∣∣< ε for all p ∈ Vρ,

where ε > 0 is a sufficiently small number. For the neighborhood R, we want to
be sure that all the zeros of φ(p) = ν̃1(p)T̃r (p) + ν̃2(p)S̃r (p) are contained inside
of R. Also, R should be of the form R = ∪α

k=1Hk,±. We simply choose the min-
imum value of α that will satisfy the property of R containing all the zeros of φ.
Then auxiliary distributions Ψ1 and Ψ2 will be constructed such that Ψ̃1|R ≡ 1 and
Ψ̃2|R ≡ 0.

We also choose to make Vε of a similar form, i.e., Vε = ∪∞
k=βHk,±, where β is

chosen to be a minimum so that Vε still satisfies the inequality |φ(p)−1| < ε on Vε .
This will also provide the condition R ∩ Vε = ∅.

Theorem 5 Consider Sr and Tr radial distributions satisfying Hörmander’s
strongly coprime condition on Cn, i.e., such that there exist ν1 and ν2, radial,
compactly supported distributions satisfying T̂r (ξ )̂ν1(ξ) + Ŝr (ξ )̂ν2(ξ) ≡ 1 for
all ξ ∈ Cn. Also assume that for all (λ, k) ∈ R∗ × Z+, either S̃r (λ, k) �= 0 or
T̃r (λ, k) �= 0. Then there exist μ1,μ2 such that

S̃r μ̃1(p) + T̃r μ̃2(p) ≡ 1 for all p ∈ H



92 D.-C. Chang et al.

and such that μ̃1(0;ρ) = ν̃1(ξ) and μ̃2(0;ρ) = ν̃2(ξ) for all ρ ∈ R+ and all ξ ∈ Cn,
where |ξ | = ρ.

Proof First construct the regions R and Vε , as described above, according to the
magnitude of |T̃r (λ, k)̃ν1(λ, k) + S̃r (λ, k)̃ν2(λ, k)|, and the location of any zeros.
If this expression has no zeros, it is possible to then define R by minimizing α to
instead satisfy the property that R contains all p such that φ(p) = γ , where γ is a
real number near 0 appropriately chosen so the set of such p is nonempty.

Then construct Ψ1 as follows:

Ψ̃1 =
{

1
k−α

k > α,

1 k ≤ α,

yielding limk→∞ Ψ̃1(pk) = 0 for pk ∈ Hk,±, and furthermore Ψ̃1|Hρ
≡ 0.

Then we can construct Ψ2 as follows:

Ψ̃2 =
⎧⎨
⎩

1−Ψ̃1
T̃r ν̃1+S̃r ν̃2

on H \ R,

0 on R.

It is possible to make this inversion since T̃r ν̃1 + S̃r ν̃2 is bounded away from 0 on
H \ R.

Then using μ̃1 = Ψ̃1(
1
T̃r

)ρ̃1 + Ψ̃2ν̃1 and μ̃2 = Ψ̃1(
1
S̃r

)ρ̃2 + Ψ̃2ν̃2, we have the

desired relation T̃r μ̃1 + S̃r μ̃2 for all of H , as follows:

T̃r μ̃1 + S̃r μ̃2 = T̃r Ψ̃1

(
1

T̃r

)
ρ̃1 + T̃r Ψ̃2ν̃1 + S̃r Ψ̃1

(
1

S̃r

)
ρ̃2 + S̃r Ψ̃2ν̃2

= Ψ̃1ρ̃1 + T̃r Ψ̃2ν̃1 + Ψ̃1ρ̃2 + S̃r Ψ̃2ν̃2

= Ψ̃1(ρ̃1 + ρ̃2) + Ψ̃2
(
T̃r ν̃1 + S̃r ν̃2

)
= Ψ̃1 + Ψ̃2

(
T̃r ν̃1 + S̃r ν̃2

)
.

Clearly on R this reduces to Ψ̃1 = 1, while on H \ R it reduces to

Ψ̃1 + 1 − Ψ̃1

T̃r ν̃1 + S̃r ν̃2

(
T̃r ν̃1 + S̃r ν̃2

)= Ψ̃1 + (1 − Ψ̃1
)= 1.

Thus we have constructed μ1 and μ2 with the property that S̃r μ̃1 + T̃r μ̃2 ≡ 1 on all
of H , as required. This completes the proof of this theorem. �

In summary, we have constructed μ1 and μ2 such that μ̃1|Hρ
≡ ν̂1(|ξ |) and

μ̃2|Hρ
≡ ν̂2(|ξ |), thus extending the deconvolvers ν1, ν2, compactly supported in

Cn, as guaranteed by Hörmander’s result, to μ1 and μ2 defined on Hn with trans-
forms μ̂1, μ̂2 defined on all of H . Using the additional assumption of no common
zeros for S̃r and T̃r on all of H , it is possible to form a deconvolving sequence by
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the method of Sect. 3.2. The ρ1,j and ρ2,j used as the “platform” for the decon-
volving sequences were used above to interpolate between the “local inverses” 1/S̃r

and 1/T̃r , away from the zero sets, and the deconvolvers ν̃1 and ν̃2 along the central
Bessel ray, corresponding to Ĉn.

Note that for radial distributions, Theorem 5 guarantees the existence of decon-
volvers Ψ1 and Ψ2 for Hn when Hörmander’s strongly coprime condition is satisfied
in the Euclidean setting and in addition the conditions for no common Laguerre ze-
ros are met. This essentially validates the claim in Sect. 4 that deconvolution for Hn

depends essentially on what happens for the central Bessel ray, provided that there
are no common Laguerre zeros. The use of the type of deconvolving sequences
constructed in Sect. 3 further illustrates the importance of the methods developed
therein. These results also suggest that there should be a suitable version of Hör-
mander’s strongly coprime condition that will also apply to Hn. We plan to explore
this and the related issues discussed in Sects. 4 and 5 in the sequel.
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Theta Functions Wronskians and Weierstrass
Points for Linear Spaces of Meromorphic
Functions

Hershel M. Farkas

Abstract In this note we consider the Weierstrass points for the linear space of
meromorphic functions on a compact Riemann surface whose divisors are multiples
of 1

Pα
0 P1···Pg−1

, where Pi are points of the surface, and α is a positive integer for

which there is no holomorphic differential on the surface whose divisor is a multiple
of P α

0 P1 · · ·Pg−1. Thus the dimension of our linear space is precisely α.
The Weierstrass points for our space are those points Q �= Pi for which there

is a function in the space which vanishes to order at least α at the point Q. Thus
the Weierstrass points are all zeros of the Wronskian determinant of a basis for our
space, and the weight of the Weierstrass point is the order of the zero.

We show that all the Weierstrass points are zeros of the Riemann theta function
θ(αΦP0(P ) − e) on the surface where e = ΦP0(P1 · · ·Pg−1) + KP0 . The question
we investigate is whether the order of the zero of the theta function agrees with the
order of the zero of the Wronskian. We prove that this is so at least in the case of
zeros of order k = 1,2.

1 Introduction

The work exposed here should be viewed as a continuation of the material presented
in [1–3], and the reader should look at those papers and the references therein cited
for motivation and background. This was a topic that I often discussed with Leon
Ehrenpreis and therefore feel that it is appropriate for this volume dedicated to his
memory.

The motivation for the present discussion is the following: We consider a
compact Riemann surface of genus g at least 2 with canonical homology basis
(γ1, . . . , γg ; δ1, . . . , δg). We let (θ1, . . . , θg) be the basis, dual to the canonical ho-
mology basis, of the linear space of holomorphic differentials on the surface. This
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gives rise to a complex symmetric matrix Π = πij , i, j = 1, . . . , g, with Im(Π)

positive definite. We can then construct the associated Riemann theta function

θ(Z,Π) =
∑

N∈Zg

exp(2πi)[1/2NΠN + NZ]

where N = (n1, . . . , ng) and Z = (z1, . . . , zg). It is easy to see that the theta function
is an even function of Z.

Following Riemann, choosing a base point P0 on the surface, we define a map
ΦP0 of the surface into its Jacobi variety, J(S), where J(S) is the quotient space Cg

modulo the group of translations

Z �→ Z + ei i = 1, . . . , g, Z �→ Z + Πi i = 1, . . . , g,

where ei, Πi , are the ith columns of the identity matrix I and the matrix Π , respec-
tively. We then consider the locally defined holomorphic function

f (P ) = θ
(
ΦP0(P ),Π

)
.

f (p) is not a single-valued function on the surface, but its zeroes are well defined.
More generally, we can consider for each α ∈ Z+ and e ∈ Cg the multivalued func-
tion

f (p) = θ
(
αΦP0(P ) − e,Π

)
.

The properties of this function are given in [4], Chap. 6, and are summarized in the
following proposition.

Proposition 1 The multivalued function f (P ) either vanishes identically on the
Riemann surface (in which case it is single valued), or it vanishes at α2g points
on the surface (counting multiplicities). In the latter case the zeroes R1, . . . ,Rα2g

satisfy

αe = ΦP0(R1 · · ·Rα2g) + α2KP0 ,

where KP0 is the vector of Riemann constants with base point P0. If θ(e) �= 0, then
surely f (P0) �= 0. If θ(e) = 0, then by Riemann’s vanishing theorem

e = ΦP0(P1 · · ·Pg−1) + KP0 .

In the latter case, f(P) vanishes identically if and only if i(P α
0 P1 · · ·Pg−1) ≥ 1.

This proposition is proven in [4], p. 312.
Let e ≡ ΦP0(P1 · · ·Pg) + KP0 , assume that P0 �= Pi for all i and that

i(P α
0 P1 · · ·Pg) = 0. This is of course automatic whenever i(P1 · · ·Pg) = 0. If

i(P1 · · ·Pg) > 0, then we have the equivalence

ΦP0(P1 · · ·Pg) ≡ ΦP0

(
P0P

′
1 · · ·P ′

g−1

)

for a divisor P0P
′
1 · · ·P ′

g−1 equivalent to P1 · · ·Pg . Hence in the latter case we shall
consider e ≡ ΦP0(P1 · · ·Pg−1) + KP0 . The function f (P ) = θ(αΦP0(P ) − e) in
both cases is a nonidentically vanishing multivalued function on the associated
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Riemann surface with well-defined zeros. The difference between the two cases is
whether Q = P0 is a zero of f (P ) or not. We shall also always assume that α ≥ 2.

Recalling the Riemann vanishing theorem [4], a point Q is a zero of f (P ) iff
there exists an integral divisor of degree g − 1, T1 · · ·Tg−1, with the property that

αΦP0(Q) − e ≡ −ΦP0(T1 · · ·Tg−1) − KP0 .

In the case that e ≡ ΦP0(P1 · · ·Pg) + KP0 with i(P1 · · ·Pg) = 0, this translates to
the condition that

φP0

(
QαT1 · · ·Tg−1

P α−1
0 P1 · · ·Pg

)
≡ 0,

while in the case e ≡ ΦP0(P1 · · ·Pg−1) + KP0 the meaning is that

φP0

(
QαT1 · · ·Tg−1

P α
0 P1 · · ·Pg−1

)
≡ 0.

In either case however we have r[ 1
P α−1

0 P1···Pg

] = r[ 1
Pα

0 P1···Pg−1
] = α, so that in

both cases Q is a zero of the Wronskian of a basis for the linear space L[ 1
P α−1

0 P1···Pg

]
or the linear space L[ 1

Pα
0 P1···Pg−1

]. For what we are going to show here, there is no

difference between the cases; so rather than having to specify which space we are
dealing with, we will choose to use only the latter space where e ≡ ΦP0(P1..Pg−1)+
KP0 . Let us further observe that the zeroes of the function f (P ), R1, . . . ,Rα2g ,
satisfy

Lemma 1

ΦP0

(
R1 · · ·Rα2g

P α
1 · · ·P α

g−1

)
≡ α2 − α

2
(−2kP0).

Proof The nonidentical vanishing of θ(αΦP0(P ) − e) gives that

αe ≡ ΦP0(R1 · · ·Rα2g) + α2KP0 .

Since we chose e such that e ≡ ΦP0(P1 · · ·Pg−1) + KP0 , it follows that

ΦP0

(
R1 · · ·Rα2g

P α
1 · · ·P α

g−1

)
≡ α2 − α

2
(−2KP0). �

We now recall that Δq is the divisor of a meromorphic q-differential if and only if

degree Δq = q(2g − 2) and φP0(Δq) ≡ q(−2KP0). Let q = α2−α
2 . Then the divisor

R1···Rα2g

P α2
0 Pα

1 ···Pα
g−1

has degree α2g −αg −α2 +α and thus has the degree of a q-canonical

divisor. Moreover our lemma has shown that its image in J (S) is α2−α
2 (−2KP0),

so that the divisor is the divisor of a meromorphic q-differential with q = α2−α
2 . In

particular this shows us that the divisor of zeroes of f (P ) is related strongly to the
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zeroes of a meromorphic q-differential. In fact if we assume that r[ 1
P

j
0 P1···Pg−1

] =
j + 1 for j = 0, . . . , α − 1, we find that P α2−α

0 P α
1 · · ·P α

g−1 is the divisor of poles of

the Wronskian determinant of a basis for L[ 1
P α

0 P1···Pg−1
].

The issue we wish to raise here is the following: The above discussion has shown
us that Q �= Pi is a zero of f (P ) if and only if Q is a zero of the Wronskian of a
basis for the linear space L[ 1

Pα
0 P1···Pg−1

]. The issue is whether the multiplicities of

the zeros are also equal.
We do not give a complete answer to this question but will at least prove the

following theorem:

Theorem 1 For k = 1,2, Q �= Pi is a kth-order zero of the Wronskian of a basis
for L[ 1

Pα
0 P1···Pg−1

] if and only if Q is a kth-order zero of f (P ) = θ(αΦP0(P ) − e).

2 Weierstrass Points for L[ 1
P α

0 P1···Pg−1
]

Definition 1 For Q �= P0, consider the sequence

r

[
Qm

P α
0 P1 · · ·Pg−1

]
, m = 0, . . . , α + g.

m = n will be called a “drop” for the linear space L[ 1
Pα

0 P1···Pg−1
], provided that

r

[
Qn−1

P α
0 P1 · · ·Pg−1

]
= r

[
Qn

P α
0 P1 · · ·Pg−1

]
+ 1.

It is clear that there are precisely α “drops” at any point Q. If we denote the drops
by di , then the order of the Wronskian at the point Q is equal to

∑α
i=1 di − α(α+1)

2 .
The reason this is true is the fact that if the drops are di , then there is always a
function in L[ 1

P α
0 P1···Pg−1

] with a zero of order di −1 at the point Q. We shall denote

the Wronskian determinant by W .

Definition 2 For Q �= P0, a basis f1, . . . , fα for L[ 1
P α

0 P1···Pg−1
] will be called a basis

adapted to Q, provided that ordQfi = di − 1.

Definition 3 A point Q �= Pi will be called a Weierstrass point for the linear space
L[ 1

Pα
0 P1···Pg−1

], provided that there is a function in the space with a zero of order at

least α at Q.

Lemma 2 If Q �= Pi , then 1 is always a “drop” at Q.

Proof Q is a non-“drop” if and only if r[ Q
Pα

0 P1···Pg−1
] = α, which is true if and only

if i(
P α

0 P1···Pg−1
Q

) = 1. This contradicts i(P α
0 P1 · · ·Pg−1) = 0. �
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Remark If we assume that for each point Pi , i = 1, . . . , g, there is at least one func-
tion in the space L[ 1

P α
0 P1···Pg−1

] with a pole at Pi , then the assumption Q �= P0 would

suffice in the above lemma.

It is clear that a point Q is a Weierstrass point if and only if there is a “drop” at
Q of size at least α + 1, or stated otherwise that there is a non-“drop” of size less
than or equal to α. Thus if the “drops” are the positive integers 1,2, . . . , α, the point
is not a Weierstrass point. The point is a simple Weierstrass point (a simple zero of
the Wronskian), provided that the sequence of “drops” is 1,2, . . . , α − 1, α + 1. In
fact, the following lemma is fairly obvious.

Lemma 3 Assume that there are m non-“drops” in the set 1,2, . . . , α. Denote these
non-“drops” by α − li , i = 1, . . . ,m, with l1 ≥ 0 so that there are also m “drops”
which are at least α + 1. Denote these “drops” by α + ki, i = 1, . . . ,m, with
k1 ≥ 1. Then ordQW = ∑

i ki + ∑
i li , where W is the Wronskian of a basis for

L[ 1
Pα

0 P1···Pg−1
].

Proof It is clear that

ordQW =
α∑

i=1

di − α(α + 1)

2
=

m∑

i=1

α + ki −
m∑

i=1

α − li =
∑

i

ki +
∑

i

li . �

We now will require the following (well-known) properties of theta functions on
Riemann surfaces. These all follow from the Riemann vanishing theorem [4, 5].

Proposition 2 If f ≡ ΦP0(R1 · · ·Rg−1) + KP0 and if i(R1 · · ·Rg−1) = 1, then

g∑

i

∂θ(−f )

∂zi

θi(P )

vanishes at the points R1, . . . ,Rg−1, S1, . . . , Sg−1, where the divisor
R1 · · ·Rg−1S1 · · ·Sg−1 is a canonical divisor.

Proposition 3 If f ≡ ΦP0(R1 · · ·Rg−1) + KP0 , then θ(ΦQ(P ) − f ) vanishes iden-
tically on the surface whenever i(QR1 · · ·Rg−1) > 0.

Proposition 4 If f ≡ ΦP0(R1 · · ·Rg−1) + KP0 and i(R1 · · ·Rg−1) ≥ 2, then
θ(ΦQ(P ) − f ) vanishes identically on the surface for any choice of base point Q.
Furthermore, ∂θ(±f )

∂zi
= 0 for each i = 1, . . . , g.

3 Multiple Zeros of θ(αΦP0(P ) − e)

Theorem 2 Let e ≡ ΦP0(P1 · · ·Pg−1) + KP0 with Pi �= P0. Assume that
i(P α

0 P1 · · ·Pg−1) = 0. Then θ(αΦP0(P ) − e) is nonidentically vanishing. Let
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Q �= P0 be a Weierstrass point for the linear space L[ 1
Pα

0 P1···Pg−1
] and assume that

Q is a simple Weierstrass point. Then Q is also a simple zero of θ(αΦP0(P ) − e).
Conversely, if Q is a simple zero of θ(αΦP0(P ) − e), then Q is also a simple Weier-
strass point of L[ 1

P α
0 P1···Pg−1

].

Proof Recall that P0 is always a zero of θ(αΦP0(P ) − e) independently of being a
Weierstrass point of L[ 1

P α
0 P1···Pg−1

]. Q �= P0 a simple Weierstrass point means that

the “drops” at Q are 1,2, . . . , α−1, α+1, so that the basis adapted to Q, f1, . . . , fα

has the property that ordQfi = i − 1 for i = 1, . . . , α − 1 and ordQfα = α. In other
words, we have the divisor of fi ,

(fi) = Qi−1Δi

P α
0 P1 · · ·Pg−1

, i = 1, . . . , α − 1,

and

(fα) = QαΔα

P α
0 P1 · · ·Pg−1

.

The divisor Δα will play a special role, so we write

Δα = T1 · · ·Tg−1

and observe that by construction Q is not in the support of any Δi . In particular,
Q �= Ti for any i. Consider now gi = fi

fα
. This is clearly a basis for the space

L[ 1
QαΔα

]. Moreover we have

(gi) = Δi

Qα−i+1Δα

, i = 1, . . . , α − 1,

and gα ≡ 1.
Our objective now is to show that i(QT1 · · ·Tg−1) = i(QΔα) = 0. Recall

that we already know that Q �= Ti for any i. To this end, let us assume that
i(QT1 · · ·Tg−1) > 0. Then we would have a holomorphic differential whose divisor
is a multiple of QΔα . Call this differential ω and consider the meromorphic differ-
entials ωgi . Clearly the divisor of ωgα is just the divisor of the holomorphic differen-
tial ω, but note that the meromorphic differential ωgi for i = 1, . . . , α−1 has at most
only a singularity at Q, and it is a pole of order precisely α − i for i = 1, . . . , α − 1.
In particular, when i = α − 1, we get a simple pole. This is impossible, so it means
that, in fact, the holomorphic differential ω has a higher-order zero at Q. Recall
however that QαΔα ≡ P α

0 P1 · · ·Pg−1 so that i(QαΔα) = i(P α
0 P1 · · ·Pg−1) = 0.

Thus the highest power possible is α − 1, which will give a contradiction from ωg1.
It thus follows that i(QΔα) = 0.

The above is the key ingredient needed to show that Q is only a simple zero of
θ(αΦP0(P ) − e). We repeat the argument showing that Q is a zero of
θ(αΦP0(P ) − e). Since Q is a Weierstrass point for our space, we know that there

is an integral divisor of degree g − 1, T1 · · ·Tg−1, such that
QαT1···Tg−1
P α

0 P1···Pg−1
is a principal

divisor. It follows that

αΦP0(Q) + ΦP0(T1 · · ·Tg−1) − ΦP0

(
P α

0 P1 · · ·Pg−1
) ≡ 0.
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Thus we have

αΦP0(Q) − e ≡ αΦP0(Q) − ΦP0

(
P α

0 P1 · · ·Pg−1
) − KP0

≡ −ΦP0(T1 · · ·Tg−1) − KP0 .

Denoting ΦP0(T1 · · ·Tg−1) + KP0 by f , we have

θ
(
αΦ(Q) − e

) = θ(−f ),

and this vanishes by the Riemann vanishing theorem and the fact that the theta
function is even. The condition that Q be a simple zero is now the condition that

d

dz
θ
(
αΦP0(Q) − e

) �= 0,

where z is a local coordinate at Q. A simple computation shows that

d

dz
θ
(
αΦP0(Q) − e

) = α

g∑

i=1

∂θ(−f )

∂zi

θi(Q),

where θi(P ) is the normalized basis of the holomorphic differentials dual to the
canonical homology basis which gave rise to the theta function.

Our propositions above tell us that

g∑

i=1

∂θ(−f )

∂zi

θi(P )

is either identically zero in the case that i(T1 · · ·Tg−1) ≥ 2, which is not the case here
since it would imply that one could find a representative of T1 · · ·Tg−1 with a Q in its
support which is ruled out by the fact that the Weierstrass point was simple, or that it
vanishes only at the points T1, . . . , Tg−1,R1, . . . ,Rg−1 with T1 · · ·Tg−1R1 · · ·Rg−1

canonical. We showed however that i(QT1 · · ·Tg−1) = 0, so this is also ruled out.
This shows that the zero of at the point Q of θ(αΦP0(P ) − e) is simple.

We now treat the converse and shall assume that Q is a simple zero of
θ(αΦP0(P )−e). This already implies that

∑g

i=1
∂θ(−f )

∂zi
θi(Q) �= 0, so that it is clear

that Q �= Ti, i(QT1 · · ·Tg−1) = 0, and i(T1 · · ·Tg−1) = 1. It thus follows that the
largest “drop” is α +1 and thus that there is precisely one non-“drop” in 1,2, . . . , α.
If the non-“drop” is α, then the Weierstrass point is simple, and we are done. If
the non-“drop” is any positive integer less than α, then we have that α and α + 1
are both “drops”. This implies that there are functions in the space with zero divi-
sors Qα−1S1 · · ·Sg and QαT1 · · ·Tg−1. The equivalence of these divisors yield that
S1 · · ·Sg ≡ QT1 · · ·Tg−1, and since Q �= Si , this yields that i(QT1 · · ·Tg−1) ≥ 1,
which is a contradiction. It thus follows that indeed Q is a simple Weierstrass point
for L[ 1

Pα
0 P1···Pg−1

]. This concludes the proof of our result for k = 1. �

We now turn to the case k = 2 and divide it up into a series of lemmas.
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Lemma 4 Let Q �= P0 be a Weierstrass point for L[ 1
Pα

0 P1···Pg−1
] such that

∑α
i=1 di − α(α+1)

2 = 2. Then there are only two possibilities for the sequence of
“drops”:

(1) 1,2, . . . , α − 1, α + 2;
(2) 1,2, . . . , α − 2, α,α + 1.

These correspond to the choices of the largest “drop” being α + 2 or α + 1.

Proof This follows from the formula written for ordQW previously. The only pos-
sible solutions are k1 = 2, l1 = 0 or k1 = 1, l1 = 1. �

Lemma 5 If the drops are 1,2, . . . , α − 1, α + 2, then ordQθ(αΦP0(P ) − e) = 2.

Proof We begin by constructing the basis for the space adapted to Q, f1, . . . , fα

and observe that

(fα) = Qα+1T2 · · ·Tg−1

P α
0 P1 · · ·Pg−1

,

which we shall write as
QαQT2···Tg−1
Pα

0 P1···Pg−1
, thus having Q = T1 in our previous notation.

This already shows that ordQθ(αΦP0(P )−e) ≥ 2, something we already knew from
the k = 1 case that we have already proven. This also shows that no other Ti = Q.
We wish to show in addition that if we write Δα = QT2 · · ·Tg−1, then i(QjΔα) = 0
for all j . We already know this for j ≥ α. The purpose of this is to show that while
indeed in this case

g∑

i=1

∂θ(−f )

∂zi

θi(Q) = 0

since in this case Q = T1 or stated otherwise Q is in the support of Δα , it is also the
case that when i(QT2 · · ·Tg−1) = 1 (which we continue assuming now), then

g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) �= 0,

which says that Q is a simple zero of the differential
∑g

i=1
∂θ(−f )

∂zi
θi(P ).

We now look again at the basis adapted to Q for our space f1, . . . , fα and observe
that just as before we have

ordQfi = i − 1, i = 1, . . . , α − 1,

but now we have ordQfα = α + 1.
We, as before, construct gi = fi

fα
and observe as before that

(gi) = Δi

Qα−i+1QT2 · · ·Tg−1
, i = 1, . . . , α − 1,
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so that if i(Qj (QT2 · · ·Tg−1)) were positive for any j ≤ α − 1, we would find a
meromorphic differential with a simple pole at Q, which is of course impossible.
Hence the conclusion is

i(QΔα) = i
(
Q(QT2 · · ·Tg−1)

) = 0,

which means that
g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) �= 0,

as we wished to show. The conclusion i(QΔα) = i(Q(QT2 · · ·Tg−1)) = 0 also
shows that i(QT2 · · ·Tg−1) cannot exceed 1. Hence the assumption above that
i(QT2 · · ·Tg−1) = 1 was the only possibility.

The next ingredient that we require is that θ(ΦQ(P ) + f ) vanishes identically
on the surface. This is so because

f ≡ ΦP0(QT2 · · ·Tg−1) + KP0 ,

so that

−f ≡ ΦP0(R1 · · ·Rg−1) + KP0 ,

where QT2 · · ·Tg−1R1 · · ·Rg−1 is a canonical divisor. The result therefore is a con-
sequence of the propositions above.

The identical vanishing of θ(ΦQ(P ) + f ) on the surface gives us that

θ(f ) = 0,

g∑

i=1

∂θ(f )

∂zi

θi(Q) = 0,

g∑

i,j=1

∂2θ(f )

∂zi∂zj

θi(Q)θj (Q) +
g∑

i=1

∂θ(f )

∂zi

θ ′
i (Q) = 0.

The first equality follows from the vanishing at Q, and the second and third equali-
ties from the vanishing of the first and second derivatives at Q.

In particular, we have
g∑

i,j=1

∂2θ(f )

∂zi∂zj

θi(Q)θj (Q) = −
g∑

i=1

∂θ(f )

∂zi

θ ′
i (Q) =

g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q).

Suppose now that ordQθ(αΦP0(P ) − e) > 2. Then the second derivative with
respect to a local coordinate at Q of the function would have to vanish. This would
give that

α2
g∑

i,j=1

∂2θ(−f )

∂zi∂zj

θi(Q)θj (Q) + α

g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) = 0.

These equalities, together with the fact that θ is an even function of z, give that
g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) = 0,
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which we have seen is a contradiction to our initial assumption on the sequence
of “drops”. Hence we have shown that ordQθ(αΦP0(P ) − e) = 2 as we wished to
show. This completes the proof of the lemma. �

The second case with the drops being 1,2, . . . , α − 2, α,α + 1 is much eas-
ier. Here it is automatically the case that i(Δα) = 1 since there can be no
representative with a Q in its support. We begin again constructing the basis
for the space adapted to Q, and we see from the functions fα−1 and fα that
Qα−1R1 · · ·Rg ≡ QαT1 · · ·Tg−1 obtaining the result that i(QT1 · · ·Tg−1) ≥ 1. The
conclusion is that

g∑

i=1

∂θ(−f )

∂zi

θi(Q) = 0, θ
(
ΦQ(P ) − f

) ≡ 0.

Furthermore we see from the associated functions gα−1, gα−2 that i(QjΔα) = 0 for
all j ≥ 2. This means that the zero of the differential

∑g

i=1
∂θ(f )
∂zi

θi(P ) at Q is nec-
essarily simple. Using the argument given above, we see that the second condition,
together with ordQθ(αΦP0(P ) − e) > 2, will lead to

g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) = 0,

which is a contradiction. Hence we have in this case as well the conclusion that
ordQθ(αΦP0(P ) − e) = 2.

We have therefore shown that if the order of the zero of the Wronskian is two,
then the order of the associated theta function at the point is two as well.

We now turn to the converse; so we assume that ordQθ(αΦP0(P ) − e) = 2. The
question is what can we say about

∑α
i=1 di − α(α+1)

2 . The condition we are assuming
here yields that

θ(−f ) = 0,

g∑

i=1

∂θ(−f )

∂zi

θi(Q) = 0,

but that

α2
g∑

i,j=1

∂2θ(−f )

∂zi∂zj

θi(Q)θj (Q) + α

g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) �= 0.

We must show that if
∑α

i=1 di − α(α+1)
2 ≥ 3, then

α2
g∑

i,j=1

∂2θ(−f )

∂zi∂zj

θi(Q)θj (Q) + α

g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) = 0.

This contradiction will yield the result.
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We shall first establish the contradiction when
∑α

i=1 di − α(α+1)
2 = 3. In this case

there are three possibilities for the “drops”:

(1) 1,2, . . . , α − 1, α + 3;
(2) 1,2, . . . , α − 2, α,α + 2;
(3) 1,2, . . . , α − 3, α − 1, α,α + 1.

These correspond to the cases k1 = 3, l1 = 0; k1 = 2, l1 = 1; k1 = 1, l1 = 2.
Case (1) is the easiest one to deal with. Constructing the basis of L[ 1

P α
0 P1···Pg−1

]
adapted to Q, we find that the divisor of zeros of fα is given by

(fα) = QαT1 · · ·Tg−1

P α
0 P1 · · ·Pg−1

= QαQ2T3 · · ·Tg−1

P α
0 P1 · · ·Pg−1

.

Hence, if we let f ≡ ΦP0(Q
2T3 · · ·Tg−1) + KP0 , we find that

g∑

i=1

∂θ(−f )

∂zi

θi(Q) = 0,

g∑

i=1

∂θ(−f )

∂zi

θ ′
i (Q) = 0.

This is true (trivially) also when i(Q2T3 · · ·Tg−1) ≥ 2. Letting now R1 · · ·Rg−1
be the complement of T1 · · ·Tg−1 = Q2T3 · · ·Tg−1 with respect to the canon-
ical class, we have −f ≡ ΦP0(R1 · · ·Rg−1) + KP0 , and therefore we obtain
i(QR1 · · ·Rg−1) > 0. This implies that θ(ΦQ(P ) + f ) ≡ 0 on the surface, and
therefore, as we have seen above, the vanishing of the second derivative, to-
gether with the condition

∑g

i=1
∂θ(−f )

∂zi
θ ′
i (Q) = 0, leads to the conclusion that

ordQθ(αΦP0(P ) − e) ≥ 3, which is a contradiction.
Case (2) is similar, but here we need look at the divisors of zero of the two

functions fα−1, fα . Here we find

(fα−1) = Qα−1S1 · · ·Sg

P α
0 P1 · · ·Pg−1

, (fα) = QαT1 · · ·Tg−1

P α
0 P1 · · ·Pg−1

= Qα(QT2 · · ·Tg−1)

P α
0 P1 · · ·Pg−1

.

It thus follows from the fact that these divisors are equivalent that

S1 · · ·Sg ≡ Q2T2 · · ·Tg−1,

from which we can conclude that i(Q2T2 · · ·Tg−1) ≥ 1 and can proceed as we did
in case (1).

Case (3) will require a bit more in that not only will we have to look at the
divisors of the functions fj but will also have to look at the divisors of the functions

gj = fj

fα
. We have in this case

(fα−3) = Qα−4U1 · · ·Ug+3

P α
0 P1 · · ·Pg−1

, (fα−2) = Qα−2S1 · · ·Sg+1

P α
0 P1 · · ·Pg−1

,

(fα−1) = Qα−1R1 · · ·Rg

P α
0 P1 · · ·Pg−1

, (fα) = QαT1 · · ·Tg−1

P α
0 P1 · · ·Pg−1

,
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from which we can easily see that

R1 · · ·Rg ≡ QT1 · · ·Tg−1,

so that i(QT1 · · ·Tg−1) ≥ 1. This will not be enough to obtain a contradiction, so
we look and find that

(gα−3) = U1 · · ·Ug+3

Q4T1 · · ·Tg−1
, (gα−2) = S1 · · ·Sg+1

Q2T1 · · ·Tg−1
,

(gα−1) = R1 · · ·Rg

QT1 · · ·Tg−1
, gα ≡ 1.

Let ω be a holomorphic differential in Ω(QT1 · · ·Tg−1) whose existence is guar-
anteed by i(QT1 · · ·Tg−1) ≥ 1. Let us assume however that i(Q2T1 · · ·Tg−1) = 0.
If we now multiply the functions gi by the holomorphic differential ω, we obtain
meromorphic differentials with the property that

ordQωgα−3 = −3, ordQωgα−2 = −1

and that ωgα−1,ωgα are holomorphic. This is however impossible since one cannot
have a meromorphic differential with a simple pole at Q. Hence it must be the case
that i(Q2T1 · · ·Tg−1) ≥ 1. This will once again give

∑g

i=1
∂θ(−f )

∂zi
θ ′
i (Q) = 0, which

again gives us a contradiction to ordQθ(αΦP0(P ) − e) = 2.
We have actually shown here in the proof that if

∑α
i=1 di − α(α+1)

2 = 3, then
ordQθ(αΦP0(P ) − e) ≥ 3. We believe that this true in general, but have not written
down a proof. It is however clear from the above that the same proof will work when-
ever there is only one “drop” greater than α. However, when

∑α
i=1 di − α(α+1)

2 ≥ 4,
there can be sequences when there will be more than one “drop” greater than α. For
example, when we have equality, we have the sequence of “drops”

1,2, . . . , α − 2, α + 1, α + 2,

where in our previous notation we have k1 = 1, k2 = 2, l1 = 0, l2 = 1. In such a
situation we have

(fα−1) = QαR1 · · ·Rg−1

P α
0 P1 · · ·Pg−1

, (fα) = QαQT2 · · ·Tg−1

P α
0 P1 · · ·Pg−1

,

so that i(T1 · · ·Tg−1) = i(QT2 · · ·Tg−1) ≥ 2. In this case the Riemann vanishing

theorem says that ∂θ(f )
∂zi

= 0 for all i, so that one gets the usual contradiction
to ordQθ(αΦP0(P ) − e) = 2. Another way of saying this perhaps is that since∑α

i=1 di − α(α+1)
2 is simply the order of the zero of the Wronskian at Q, raising

the order simply puts on “more” conditions and does not remove any prior ones.
We have therefore concluded the proof of the following:

Theorem 3 For k = 1,2, we have that
∑α

i=1 di − α(α+1)
2 = k is equivalent to

ordQθ(αΦP0(P ) − e) = k.
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4 Classical Weierstrass Points

We would like to show that our ideas above are indeed generalizations of the clas-
sical situation or, in other words, that an appropriate choice of e and α gives rise to
the classical Weierstrass points on the surface. Let us consider

e ≡ ΦP0(P1 · · ·Pg−1) + KP0 ,

where the points P1, . . . ,Pg−1 satisfy the condition that i(P
g−1
0 P1 · · ·Pg−1) = 1. In

this case α ≥ g, and let us consider θ(gΦP0(P )−e). Here the space L[ 1
P

g
0 P1···Pg−1

] is

g-dimensional, and Q �= P0 is a zero of θ(gΦP0(P )− e) and a Weierstrass point for

the space if and only if there is a function f ∈ L[ 1
P

g
0 P1···Pg−1

] with (f ) = QgT1···Tg−1

P
g
0 P1···Pg−1

.

We claim that in this case, Q must be a classical Weierstrass point. The proof is
immediate. By hypothesis i(P

g−1
0 P1 · · ·Pg−1) = 1, so that there is a holomorphic

differential ω with (ω) = P
g−1
0 P1 · · ·Pg−1. Hence, ωf is a (meromorphic) differen-

tial with (ωf ) = QgT1···Tg−1
P0

. This is of course not possible, so it is necessarily the
case that some point Ti = P0. Without loss of generality, let T1 = P0. It then fol-
lows that (ωf ) = QgT2 · · ·Tg−1 and indeed Q is a classical Weierstrass point. If we
were to write a basis for L[ 1

P
g
0 P1···Pg−1

] adapted to Q, we would find that what we

called a “drop” in this case is in fact what classically one calls a “gap”. The astute
reader will of course see that in fact the function we have constructed here is re-
ally θ(gΦP0(P ) + KP0), from which one can readily see that the zeros are classical
Weierstrass points.

5 Multiplicity at P0

In this section we say something about the order of vanishing at the base point P0.
To this end, let e ≡ ΦP0(P1 · · ·Pg−1) + KP0 , and let α0 be the least value of α for
which i(P α

0 P1 · · ·Pg−1) = 0. Furthermore, let us assume that Pi �= Pj for i �= j and
that for each point Pi , i = 1, . . . , g − 1, there is a function in L[ 1

Pα
0 P1···Pg−1

] with a

simple pole at Pi . Finally, let us also assume that i(P1 · · ·Pg−1) = 1. It follows that
for any α ≥ α0, we have that θ(αΦP0(P ) − e) is nonidentically vanishing on the
surface, and we would like to know its order of vanishing at P = P0.

If α0 = 1, then we clearly have r[ 1
P

j
0 P1···Pg−1

] = j for all positive j , which implies

that we can find a basis f1, . . . , fα of L[ 1
Pα

0 P1···Pg−1
] with the property that f1 ≡

1,−ordP0fi = i for i = 2, . . . , α, so that

−ordP0W(f1, . . . , fα) = −ordP0W(df2, . . . , dfα) = (α + 1)(α − 1) = α2 − 1.

If α0 ≥ 2, then we have r[ 1
P

j
0 P1···Pg−1

] = j +1 for j = 1, . . . , α0 −1, r[ 1
P

j
0 P1···Pg−1

] =
j for j = α0, . . . , α. This implies that we can find a basis f1, . . . , fα of L[ 1

Pα
0 P1···Pg−1

]
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with the property that f1 ≡ 1,−ordP0fi = i − 1 for i = 2, . . . , α0, −ordP0fi = i for
i = α0 + 1, . . . , α. From this it follows that

−ordP0W(f1, . . . , fα) = −ordP0W(df2, . . . , dfα)

= (α0 − 1)α + (α + 1)(α − α0) = α2 − α0.

The condition assumed above that for each point Pi , i = 1, . . . , g − 1, there is a
function in L[ 1

Pα
0 P1···Pg−1

] with a simple pole at Pi implies that we can find a ba-

sis for the space f1, . . . , fα with the property that f1 has a simple pole at Pi and
that fi, i = 2, . . . , α, are all holomorphic at Pi . From here it is clear that the or-
der of the Wronskian determinant of this basis for the space, W(f1, . . . , fα), has
a pole of order at most α at each such point Pi . If we assume that the order at
each point Pi is actually equal to α, then the polar divisor of this Wronskian is

P
α2−α0
0 P α

1 · · ·P α
g−1. This Wronskian is a q-differential with q = α(α−1)

2 , so that its

degree is α(α −1)(g −1). Its divisor of zeros must have degree α2g −α0. Each zero
of this Wronskian is, as we have already seen, a zero of f (P ) = θ(αΦP0(P ) − e),
and hence we have proven the following:

Theorem 4 Let f (P ) = θ(ΦP0(P ) − e), where e ≡ ΦP0(P1 · · ·Pg−1) + KP0 ,
Pi �= PO for any i, and i(P1 · · ·Pg−1) = 1. Let α0 be the least positive integer
such that i(P

α0
0 P1 · · ·Pg−1) = 0 and assume that for each Pi in the support of

P1 · · ·Pg−1, there is a function in L[ 1
P α

0 P1···Pg−1
] with a simple pole at Pi , and that

the order of the pole of the Wronskian determinant at Pi is α. Then the α2g zeroes
of f (P ) are the zeroes of the Wronskian determinant of a basis for L[ 1

P α
0 P1···Pg−1

]
with an additional zero of order α0 at P = P0.

Let us now take an example with α = 2 and α0 = 1. In this case there is a non-
constant function f in L[ 1

P 2
0 P1···Pg−1

] with a double pole at P0. There are thus g + 1

poles and hence a total of 4g branch points. There is one branch point over the point
at ∞, so that the Wronskian (differential in this case) has 4g − 1 zeros in agree-
ment with our result. If however α0 = 2, then there is a nonconstant function f in
L( 1

P 2
0 P1···Pg−1

) with a simple pole at P0. Hence the total number of branch points is

2(2g − 1) = 4g − 2, again in agreement with our result.
In the discussion above we assumed that i(P1 · · ·Pg−1) = 1. Now we shall re-

move that assumption and assume that i(P1 · · ·Pg−1) = r ≥ 2. This implies that
α0 ≥ r . We shall assume that α0 = r . This clearly implies that

r

(
1

P1 · · ·Pg−1

)
= r, r

(
1

P0P1 · · ·Pg−1

)
= r, . . . , r

(
1

P r
0 P1 · · ·Pg−1

)
= r,

r

(
1

P r+1
0 P1 · · ·Pg−1

)
= r + 1, . . . , r

(
1

P α
0 P1 · · ·Pg−1

)
= α.

It thus follows that we can find a basis for this space f0, f1, . . . , fr−1, fr , . . . , fα−1
with the property that f0 ≡ 1, f2, . . . , fr−1 are all holomorphic at P0 and such that
for all j , r ≤ j ≤ α − 1, we have ordP0fj = j + 1. It is then clear that
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−ordP0W(f0, . . . , fα−1) = −ordP0W(df1, . . . , dfα−1) = (α + r)(α − r)

= α2 − r2.

At each point Pi as before assume that −ordPi
W(df1, . . . , dfα−1) = α. It thus fol-

lows as before that the divisor of zeros of the Wronskian must be of degree

α(α − 1)(g − 1) + α(g − 1) + α2 − r2 = α2g − r2.

It thus follows that we have proven the following theorem.

Theorem 5 Let f (P ) = θ(αΦP0(P ) − e), where e ≡ ΦP0(P1 · · ·Pg−1) + KP0 ,
Pi �= PO for any i, and i(P1 · · ·Pg−1) = r . Let α0 be the least positive integer
such that i(P

α0
0 P1 · · ·Pg−1) = 0 and assume that for each Pi in the support of

P1 · · ·Pg−1, there is a function in L[ 1
Pα

0 P1···Pg−1
] with a simple pole at Pi . Assume

that α0 = r . Then the α2g zeroes of f (P ) are the zeroes of the Wronskian determi-
nant of a basis for L[ 1

P α
0 P1···Pg−1

] and an additional zero of order r2 at P0.

There is an additional interesting fact that we can obtain in the case where e ≡
ΦP0(P

α0
0 P1 · · ·Pg−1)+KP0 and i(P1 · · ·Pg−1) = r = α0. Since by the definition of

α0,

i
(
P

α0−1
0 P1 · · ·Pg−1

) = 1, i
(
P

α0
0 P1 · · ·Pg−1

) = 0,

there is no function in L[ 1
Pα

0 P1···Pg−1
] with a pole of order α0 at P0. This allows us

to do the following: For each function f ∈ L[ 1
Pα−1

0 P1···Pg−1
], ωf is a holomorphic

differential where div(ω) is a multiple of P
α0−1
0 P1 · · ·Pg−1. This means that if f0 ≡

1, f1, . . . , fα0−1 is a basis of L[ 1
Pα

0 P1···Pg−1
], then ω,ωf1, . . . ,ωfα0−1 is a basis for

a linear space of holomorphic differentials. Recalling that

W(ω,ωf1, . . . ,ωfα0−1) = ωα0W(1, f1, . . . , fα0−1) = ωα0W(df1, . . . , dfα0−1),

we see that when α = α0, the Wronskian of a basis for the space of meromorphic
functions can be computed in terms of the Wronskian of a basis of a linear space of
holomorphic differentials.

Explicitly, the space of holomorphic differentials is the space Ω(Q1 · · ·Qg−α0),
i.e., the space of holomorphic differentials whose divisors are multiples of the divi-
sor ζ = Q1 · · ·Qg−α0 , where the integral divisor ζ is the complement of the integral

divisor P
α0−1
0 P1 · · ·Pg−1 with respect to the canonical class. The Weierstrass points

for this space are the points P such that i(P α0Q1 · · ·Qg−α0) > 0. This also explains
the phenomenon of the previous section, where we showed how the classical Weier-
strass points enter the discussion.
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The Admissibility Theorem for the Spatial
X-Ray Transform over the Two-Element Field

Eric L. Grinberg

Abstract We consider the Radon transform along lines in an n-dimensional vector
space over the two-element field. It is well known that this transform is injective and
highly overdetermined. We classify the minimal collections of lines for which the
restricted Radon transform is also injective. This is an instance of I.M. Gelfand’s ad-
missibility problem. The solution is in stark contrast to the more uniform cases of the
affine hyperplane transform and the projective line transform, which are addressed
in other papers (Feldman and Grinberg in Admissible Complexes for the Projective
X-Ray Transform over a Finite Field, preprint, 2012; Grinberg in J. Comb. Theory,
Ser. A 53:316–320, 1990). The presentation here is intended to be widely accessible,
requiring minimum background.

1 Introduction

Dedication and two Mathematical Moments

This paper is dedicated to the memory of Leon Ehrenpreis. His colleagues were
fortunate to have countlessly many discussions with him, after seminars (and dur-
ing), in offices, hallways, and at the lounge blackboard. These served to inspire,
energize, and generate many new ideas. The subject of this essay may well have
come up in one of these chats.

During graduate school, I learned about the role of spreads in integral geome-
try from Ethan Bolker, via an early, handwritten version of [2], and when I joined
Temple University, the concept of linear spreads followed and came up in early
conversations with Leon. He found spreads to be useful in his approach to integral
geometry, and he formulated a nonlinear variant which he employed in framing his
notion of the nonlinear Radon transform. See the major work [5] and the review [1]
by Carlos Berenstein.

I recall vividly a two-panel chalk board with the level sets of a homogeneous
polynomial drawn on one panel, and the heat equation displayed on the other. I also
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recall sharing a car ride with Ethan and Leon, from San Francisco to Arcata, CA, on
the way to the 1989 AMS summer conference on integral geometry and tomography,
which led to [10] and [3]. It is safe to say that the majority of the travel time was
devoted to an intensive discussion of Radon transforms (and I hope that this did not
impair the safety of the ride). The beautiful California coastline was superceded by
admissible line complexes.

The structure of spreads (discussed concretely below) is particularly simple in
the case of the hyperplane Radon transform over finite fields, and this can be used to
solve the admissibility problem in that context. In contrast, the structure of spreads
is not as simple for transforms that integrate over planes of larger codimension, and
thus we expect the admissibility problem to have a more complicated solution. Here
we investigate the simplest higher-codimension case.

2 The Radon Transform in a Finite Geometry

The theme of integral geometry, in the style introduced by P. Funk and J. Radon and
prominent in the work of Leon Ehrenpreis, involves the recovery of functions (or
data) from integrals. In applications one might imagine recovering the density distri-
bution of biological tissue from X-ray data. If “all” integrals (X-ray) measurements
are available, then the problem is overdetermined. It is natural to look for minimal
sets of data (X-rays) with which complete recovery is still possible (even though in
applications such minimal measurements may present stability problems). Finding
and classifying such minimal families is an instance of I.M. Gelfand’s admissibility
problem [8], which initially occurred in the context of the Plancherel formula for
semi-simple Lie groups. In the continuous category, the problem depends in part on
the choice of function spaces, mapping properties of integral operators, and smooth-
ness properties of collections of lines. Here we focus on a finite model of integral
geometry in which analytic considerations are removed and sets of lines take center
stage. In the admissibility theory work of Gelfand and collaborators within the con-
tinuous category (R3 or C3 and their projective and higher-dimensional analogs) the
family of lines meeting a curve (the Chow variety) and the family of lines tangent
to a surface occur as admissible complexes [7, 12]. Here we will search for finite
analogs of these. For discussions of Radon transforms in finite geometries, see, e.g.,
[13, 15]. Recent results on admissibility in the context of finite projective spaces
may be found in [6].

Starting with the q-element field Fq , one can build lines, planes, vector spaces of
dimension n, projective spaces, Grassmannians, and more. It is easy to use counting
measure to define the Radon transform taking functions on F

n
q to functions on the

set of k-planes in F
n
q :

Rkf (H) =
∑

{x∈H }
f (x),
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where H is a k-dimensional affine plane in F
n
q . Informally we write

Rk : {point functions} −→ {k plane functions}.
It is natural to ask: is the transform Rk invertible? Rather than answer the question in
this specific case, we consider a more general context, informally borrowing from
S.S. Chern’s (1942) formulation of integral geometry [4]. Consider the following
double fibration diagram:

Z

π ρ

X Y

Chern’s formulation was presented in the continuous category; here X,Y , and
Z are finite sets. We think of X as our space of points, Y as the family of lines or,
more generally, submanifolds of X, and we think of Z as the incidence manifold of
point-line (or point-generalized line) pairs, so that the point belongs to the line

{
(x, y)|x ∈ y

}
.

The maps π and ρ are projection functions, e.g., π(x, y) = x, so that π × ρ is one
to one. Thus thinking of X as a set of points and Y as a family of subsets of X is
manifested by [11]:

Fy = π ◦ ρ−1{y}.
When y is a line, Fy is the set of points on the line. Dually, for every point x, we
have the set of all subsets y passing through x:

Gx = ρ ◦ π−1{x}.
With the definitions of Fy and Gx , it is possible to relax the condition that π,ρ

be projections and consider more general diagrams, though we will not need these
here. The double fibration diagram has been used extensively as a paradigm for
Radon transforms and their generalizations by Gelfand and collaborators, S. Helga-
son, V. Guillemin and S. Sternberg, and many many others.

A double fibration diagram together with a choice of measures leads to an integral
transform. In the finite category we will use counting measure and define the notion
of Radon transform without making any additional choices.

Let C(X),C(Y ) denote (R- or C-valued) functions on sets X,Y , respectively,
and let f (x), g(y) be functions in the appropriate spaces; then we define the Radon
transform from point functions to line functions by “integrating” over points in a
line and the dual Radon transform by reversing the role of points and lines:

R : C(X) −→ C(Y ), Rt : C(Y ) −→ C(X),
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Rf (y) ≡
∑

{x|x∈y}
f (x), Rtg(x) ≡

∑

{y|x∈y}
g(y).

With X,Y,Z and the double fibration diagram so general, can anything be said about
invertibility of the induced Radon transform? Surprisingly, the answer is affirmative:

Theorem (Bolker [2]) Assume that the double fibration diagram satisfies the fol-
lowing two conditions:

• #Gx = α ∀x ∈ X (uniform count of lines through each point),
• #Gx1 ∩ Gx2 = β ∀x1 �= x2 (uniform count of lines through each point pair),

for constants α,β with 0 �= α �= β . Then the Radon transform associated with the
diagram is invertible, with an explicit inversion formula.

The conditions above, bundled together, are now known as the Bolker condition,
which is used extensively. The proof of the theorem is straightforward.

Proof We first construct a basis for C(X). Let δp be the function on X with value 1
at p ∈ X and 0 elsewhere. Let n be the cardinality of X. Then {δx}x∈X is a basis for
C(X), which has dimension n. There is a similar basis for C(Y ). The matrix of the
composed transform Rt ◦ R in this basis is

⎛

⎜⎝
α · · · β
...

. . .
...

β · · · α

⎞

⎟⎠ = (α − β)I + β1,

where I, 1 denote the n × n identity matrix, and the n × n matrix with 1s in every
entry, respectively. To invert, note that (aI + b1) · (cI + d1) = (ac)I + (ad + bc +
nbd)1. �

The Bolker condition is satisfied by many geometric double fibrations but does
not hold for many others, even when the Radon transform is injective. The Radon
transform on a triangle, rectangle, and pentagon can be represented by the graphs
and matrices in Fig. 1. It is easy to verify the properties in Table 1 for the Radon
transform on these geometries.

The k-plane transform in F
n
q satisfies the Bolker condition, since given points

x1, x2, there is an affine map T that carries x1 to x2 and the set of lines through x1
to the set of lines through x2, and given two pairs of points, there is an affine map

Table 1 Bolker conditions
for finite geometries # sides Bolker C. Satisfied? R injective?

3 Yes Yes

4 No No

5 No Yes
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⎛

⎝
1 1 0
0 1 1
1 0 1

⎞

⎠

⎛

⎜⎜⎝

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1

⎞

⎟⎟⎟⎟⎠

Fig. 1 Some finite geometries with and without the Bolker condition, and corresponding matrices

that carries one pair to the other and the lines through one pair to the lines through
the other pair. More generally, the Bolker condition holds whenever there is a dou-
bly transitive group action that preserves the appropriate incidence relations. When
group symmetry is available, it is natural consider the use of group representations.
Interestingly, representation theory can be used to understand Radon transforms on
the one hand, e.g., [16], and Radon transforms can be used to understand represen-
tation theory, e.g., [11, 14].

We may also inquire about a range characterization: when is a function of k-
planes the Radon transform of a function of points? We first look at the hyperplane
case, k = n − 1.

Definition A spread of hyperplanes in F
n
q is a presentation of Fn

q as a disjoint union
of hyperplanes.

Fact A function g(H) of hyperplanes H in F
n
q is the Radon transform of a function

of points x ∈ F
n
q only if the average of g(H) over any spread is the same as the

average over any other spread:

∑

{H∈Ω1}
g(H) =

∑

{H∈Ω2}
g(H) (for any two spreads Ω1,Ω2).

These are called the Cavalieri conditions. By way of illustration, in the diagram
in Fig. 2, they state that the sum over lines with positive slope equals the sum over
lines with negative slope.

Theorem (Bolker) The Cavalieri conditions characterize the range of the hyper-
plane Radon transform over a finite field.

The proof is based on a counting argument. This range condition yields an ad-
missibility theorem.
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Fig. 2 Two spreads leading
to a Cavalieri condition

3 Admissible Complexes

Definition Recall that a complex of hyperplanes C is a collection of hyperplanes
{H |H ∈ C } so that #C = #Fn

q = qn (there are as many hyperplanes as points). We
shall also use “complex” to denote the appropriate number of lines, curves, etc.

Definition The complex C is said to be admissible if the Radon transform opera-
tion, restricted to planes belonging to C is still injective:

RC : C(Fn
q) −→ C(C ).

Theorem ([9]) A complex C of hyperplanes in F
n
q is admissible if and only if it

omits precisely one plane from each spread, except for one spread, which belongs
to C in its entirety.

To prove “if”, it suffices to show that RC f determines Rf . A counting argument
shows that every complex contains an entire spread. To evaluate Rf on a plane H

which C omits, simply use the total mass of f encoded in a spread that belongs to
C in its entirety. To prove “only if”, take two parallel hyperplanes and construct a
“capacitor” charge distribution: +1 on plane, −1 on the other, and zero elsewhere.
Only the two chosen planes can “see” this distribution via the Radon transform. The
rest have vanishing Radon transform because of cancellation.

Thus the hyperplane case turns out to be the easy case. We now explore the next
simplest, the line transform in Z

3
2. The three-dimensional vector space over Z2 has

8 points, 7 lines through a given point, 28 lines in all (see Fig. 3).
Here are some ways to construct admissible complexes:

• Write Z
3
2 as a union of two parallel planes (a spread of planes) and choose an

admissible set of lines on each plane (four lines chosen in each plane).
• Choose one plane P ⊂ Z

3
2, choose an admissible set of (four) lines within P ,

then extend four “legs” perpendicular to P .
• Construct, if possible, admissible complexes in Z

3
2 without using planar relatively

admissible complexes.

The first two methods are illustrated in Fig. 4.
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Fig. 3 Lines in Z
3
2

The Radon transform for lines in Z
3
2 can be represented by the following 28 × 8

matrix:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 1 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Fig. 4 Some ways to
construct admissible
complexes

Fig. 5 A brute force program
to count admissible
complexes

The admissibility problems asks:

What are the nonsingular 8 × 8 minors of this matrix?

We would like an answer that is geometrically motivated. The linear algebra com-
puter environment Octave can be used to locate all admissible complexes for this
transform, as illustrated in Fig. 5.
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Fig. 6 Some inadmissible configurations

The program results give:

• 3,108,105 line complexes,
• 2,170,667 inadmissible complexes,
• 937,438 admissible complexes.

Can we describe the moduli space of admissible complexes? Can we enumerate
them without using brute force?

There are some clear obstructions to admissibility. In particular, a complex C is
inadmissible if it has any of the following features.

• An omitted point.
• An isolated tree.
• An even cycle.

Clearly, a line complex that does not pass through a particular point cannot recover
data at that point. Similarly, complexes with even cycles or with isolated trees are
rank-deficient, as manifested by a +1,−1 data pattern. These contexts are illustrated
in Fig. 6.

It turns out that these are the only obstructions to admissibility.
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Theorem (Admissibility for Zn
2) Let C be a line complex in Z

n
2. Assume that C

omits no point, has no isolated trees, and does not contain an even cycle. Then C is
admissible.

Proof Take a point p ∈ Z
n
2. There is a line � ∈ C containing P . Expand � to a

maximal connected set of lines, M . Then M cannot be a tree, so M contains
cycles, hence odd cycles. Each odd cycle is “self inverting”. Every point in M is
linked to an odd cycle by a contiguous path of lines, hence is solvable. �

Note Added in Proof The program was mildly corrected, yielding 937,440 admissibles; these
have been explicitly enumerated by Mehmet Orhon and the author in a forthcoming preprint.

Acknowledgement The author thanks the referee for helpful comments and suggestions.

Appendix: Counting a Majority of Inadmissible Complexes

Here we will count two basic archetypes of inadmissible complexes, along with their
intersection. This will serve to illustrate the combinatorics of the complete count.

A.1 Complexes that Omit One or More Points

First we enumerate complexes that are “missing points”, that is, complexes C so
that there exist points p ∈ F

3
2 so that no line � ∈ C passes through p. It turns out

that there are many of these. There are seven lines through p, so the complexes that
miss p have 8 lines chosen from the 28−7 = 21. Now

(21
8

) = 203,440. Multiplying
this by the number of points, 8, and accounting for double counting (because there
are complexes that omit more than one point) we obtain:

Lemma 1 There are
(21

8

) × 8 = 1,627,920 complexes that omit points. Here, each
complex is counted with multiplicity equal to the number of points in F

3
2 which it

misses.

A.1.1 Complexes that Omit Two or More Points

How many complexes miss two points? There are 7 + 7 − 1 = 13 lines through one
or the other or both points. So a complex that misses both points has 8 lines chosen
from among 28 − 13 = 15 lines. There are 28 pairs of points, so we have double
counted 28 × (15

8

) = 28 × 6,435 = 180,180 complexes. (Note that we have double
counted the double counting, because there are complexes that miss three points.)

Lemma 2 The number of complexes that omit a pair of points is 28 × (15
8

) =
28 × 6,435 = 180,180. Here each complex is counted with multiplicity equal to
the number of pairs of points that it misses.



The Admissibility Theorem for the Spatial X-Ray Transform 121

A.1.2 Complexes that Omit Three or More Points

How many lines pass through one or more of three given points? All but the 10 that
form the complete graph on the remaining 5 points. Thus, to exhibit all complexes
omitting three or more points, choose three points from 8 and then choose 8 lines
from among 10. Thus we have:

Lemma 3 The number of complexes that omit precisely three points is
(10

8

) × (8
3

) =
2,520. There are no line complexes that miss four or more points.

Putting the above lemmas together we have:

Lemma 4 The number of complexes that avoid one or more points is 1,627,920 −
180,180 + 2,520 = 1,450,260. This count is without multiplicity.

A.2 Complexes with Isolated Lines

A.2.1 Complexes with One or More Isolated Lines

Another type of nonadmissible complex is one where a single line � is “isolated”,
i.e., meets no other line in the complex. (This is the simplest case of an isolated
tree.) How many of these are there? Well, how many lines meet �? 7 + 7 − 1 =
13 = 28 − 15. So the number of complexes having � as an isolated line is

(15
7

) =
6,435. Accounting for each of 28 lines, with the usual double counting reminder,
we have:

Lemma 5 There are 6,435 × 28 = 180,180 complexes with one or more isolated
lines. Each complex is counted with multiplicity equal to the number of isolated
lines it has.

A.2.2 Complexes with Two or More Disjoint Isolated Lines

If � is a line, there are 13 lines meeting � and 15 lines disjoint from l. Thus there
are (28)(15)/2 = 210 pairs of disjoint lines. Given a complex with a pair of disjoint
lines, the other 6 lines of the complex must form the complete graph on the remain-
ing four points. Thus there are 210 complexes with precisely two disjoint isolated
lines. Clearly a complex cannot have three disjoint isolated lines.

Lemma 6 There are (28)(15)/2 = 210 complexes with precisely two isolated lines,
and there are no complexes with three or more isolated lines.

Lemma 7 There are 180,180−210 = 179,970 complexes with one or more isolated
lines. These complexes are counted without multiplicity.
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A.3 Complexes with Both Omitted Points and Isolated Lines

A.3.1 Complexes with One or More Isolated Lines and One or More Omitted
Points

There are five points disjoint from the designated omitted point and the isolated line,
hence there are

(5
2

) = 10 permissibile lines. We must choose 7 lines among these to
form a complex, and there are 8 × 28 point, line pairs.

Lemma 8 There are no complexes with one isolated line and two omitted points.

Proof The complement of the union of the omitted points and the isolated line has
4 points, and these form 6 lines, not enough to form a line complex. �

Lemma 9 There are no complexes with two disjoint isolated lines and an omitted
point.

Proof There are five points in the union of the two lines and point, hence three
points left, not enough to span a line complex. �

Lemma 10 The number of complexes with one isolated line and one omitted point
is (8 × 21)

(10
7

) = 20,160. The count is multiplicity free.

Proof There are 8 × 21 = 168 disjoint point-line pairs (or 28 × 6 = 168 disjoint
line-point pairs). Given a disjoint point-line pair, there are 5 remaining points and(5

2

) = 10 lines in their complete graph. Of these we must choose 7 to obtain a line
complex. Because of the preceding lemmas, there are no multiplicities. Hence the
claimed count is verified. �

We have counted a majority of inadmissible complexes and illustrated the com-
binatorics of intersections of archetypes. If sufficient interest develops, we will post
a completion of this analysis.
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Microlocal Analysis of Fixed Singularities
of WKB Solutions of a Schrödinger Equation
with a Merging Triplet of Two Simple Poles
and a Simple Turning Point

Shingo Kamimoto, Takahiro Kawai, and Yoshitsugu Takei

Abstract We first show that the WKB-theoretic canonical form of an M2P1T
(merging two poles and one turning point) Schrödinger equation is given by the al-
gebraic Mathieu equation. We further show that, in analyzing the structure of WKB
solutions of a Mathieu equation near fixed singular points relevant to simple poles of
the equation, we can focus our attention on the pole part of the equation so that we
may reduce it to the Legendre equation. The Borel transformation of WKB-theoretic
transformations thus obtained gives rise to microdifferential relations, which lead to
the microlocal analysis of the Borel transformed WKB solutions of an M2P1T equa-
tion near their fixed singular points. The fully detailed account of the results will be
given in Kamimoto et al. (Exact WKB analysis of a Schrödinger equation with a
merging triplet of two simple poles and one simple turning point—its relevance to
the Mathieu equation and the Legendre equation, 2011).

1 Introduction

The purpose of this article is to announce the main results of [9] emphasizing the
atypical points in its reasoning which cannot be found in earlier papers dealing with
seemingly related problems, such as [3] and [8]. As the logical structure of the
argument in [9] is intricate, we try to explain the ideas that underlie its formulation
of the problem. The target of [9] is the exact WKB analysis of the Schrödinger
equation

(
d2

dx2
− η2Q(x,a)

)
ψ = 0, (1)
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where η is a large parameter, and the potential Q contains a triplet of two simple
poles and one simple turning point that merge as the parameter a tends to 0. Here
“exact WKB analysis” means WKB analysis based on the Borel transformation with
respect to the large parameter η; thus our principal aim is to analyze the singular-
ity structure of the Borel transformed WKB solution ψB(x, a, y), which solves the
Borel transformed Schrödinger equation

(
∂2

∂x2
− Q(x,a)

∂2

∂y2

)
ψB(x, a, y) = 0. (2)

Hence the exact WKB analysis belongs to the most favorite field of the late Pro-
fessor Ehrenpreis, Fourier analysis in the complex domain (see [6]). Our interest
in the class of Schrödinger equations with a merging triplet of poles and a turn-
ing point originates from our desire to understand the semi-global structure of a
Schrödinger equation with two simple poles in its potential. As is now well known
(see [12, 13]), a simple pole gives an effect to the Borel transformed WKB solutions
that is similar to the effect which a turning point gives. Thus the analysis of the
class of Schrödinger equations with two simple poles in their potentials is a natural
counterpart of the classes of equations studied in [3] (Schrödinger equations with
a merging pair of simple turning points) and in [8] (Schrödinger equations with
a merging pair of a simple pole and a simple turning point). One can then easily
guess that a WKB-theoretic canonical form of such a Schrödinger equation is the
Legendre equation with a large parameter, that is,

(
d2

dx2
− η2QLeg(x, a)

)
ψ = 0, (3)

where

Q Leg = λ

x2 − a2
+ η−2

(
γ+

(x − a)2
+ γ−

(x + a)2

)
(4)

with γ± being complex numbers and with λ being an infinite series in η−1 with con-
stant coefficients that satisfies an appropriate growth order condition to be discussed
later. To emphasize the fact that λ is not a genuine constant but an infinite series,
we sometimes call such an equation the ∞-Legendre equation. Parenthetically we
note that, in what follows, we basically concentrate our attention to the core part of
the potential, that is, λ/(x2 − a2) by mainly considering the situation where γ+ and
γ− are 0; this limitation is helpful in clarifying the logical structure of our reason-
ing by avoiding technical complexities. By the way, in the exact WKB analysis, an
important subject is the analytic structure of the Borel transformed WKB solutions
near their fixed singularities (see [11, pp. 112–113]; see also [4, 5], and [17]), that
is, singularities located at

y = −
∫ x

α

√
Q(x,a) dx + 2l

∫ α̃

α

√
Q(x,a) dx (l = ±1,±2, . . . ), (5)
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where α and α̃ are turning points (with a simple pole being regarded as a turning
point) of the equation. An important point in [3] and [8] is that the period integral

2
∫ α̃

α

√
Q(x,a) dx (6)

tends to 0 when we let a tend to 0; hence by showing that the domain of definition of
the transformation operator to the canonical form can be chosen to be independent
of a, we can analyze the analytic structure of the Borel transformed WKB solution
near a fixed singularity with |l| � 1. But this time we find that∫ a

−a

dx√
x2 − a2

= πi (7)

does not change even as a tends to 0. Thus the strategy in [3] and [8] is not effective
in this case. To circumvent the problem, we dismantle the potential of its homo-
geneity and seek for the class of Schrödinger equations which can be transformed
to (

d2

dx2
− η2 aA + xB

x2 − a2

)
ψ = 0 (8)

with A and B being infinite series in η−1 that are independent of x, that is, the
algebraic ∞-Mathieu equation (if we follow the usage of the terminology of [7,
p. 98]), which we call the ∞-Mathieu equation for short. In view of the explicit
form of the potential in (8), we imagine that the class which we now try to analyze
would consist of Schrödinger equations with two simple poles and one simple turn-
ing point. Fortunately, this guess turns out to be correct, as is explained in Sect. 2
below. Thus, widening the target class gives a clean result, but the problem is the
fact that the Mathieu equation is a notoriously difficult object to analyze. Hence
we next contrive to deduce the analytic properties of Borel transformed WKB so-
lutions near the fixed singularities relevant to the pair of simple poles, which was
our original target, by “driving off” the simple turning point. This contrivance will
be explained in Sect. 4, but here we note the following geometric fact that explains
why we introduce an auxiliary parameter ρ into our formulation (see Definition 1
below).

To describe the geometric situation, let A0 (resp., B0) denote the degree 0 (in η)
part of A (resp., B). Then we can confirm that

A0|a=0 �= 0 (see (50) and (15)) (9)

and

B0|a=0 = Z0ρ with Z0 = ±1 (see (51)). (10)

Now, keeping a/ρ =: κ(�= 0) fixed sufficiently small, we let ρ tend to 0. Then, since
the turning point t0 of (8) is given by

−aA0

B0
= − κA0(0)

Z0 + κβ
+ O(ρ) (11)
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with some constant β , it stays away from 0. On the other hand, the simple poles
t = ±a tend to 0. Thus one may expect that the singularity structure of Borel trans-
formed WKB solutions near the fixed singularities relevant to the simple poles can
be deduced from that of Borel transformed WKB solutions of the Schrödinger equa-
tion whose potential contains two simple poles only, i.e., without a turning point.
And this expectation is realized in Sect. 4. In ending Introduction we note that in
deducing the results in the final section (Sect. 5) from those in Sect. 2 and Sect. 4,
we make full use of microdifferential relations among objects on the Borel plane
which are discussed in Sect. 3.

2 Definition of an M2P1T Equation and Its Reduction to the
Mathieu Equation

In what follows, U (resp., V and O) denotes a sufficiently small open neighborhood
of the origin {t ∈C; t = 0} (resp., {a ∈C;a = 0} and {ρ ∈C;ρ = 0}), and f (t, a, ρ)

denotes a holomorphic function that has the following form (12) on U × V × O:

f (t, a, ρ) = tρg(t, ρ) +
∑
j≥1

ajf (j)(t, ρ) (12)

with

g(t, ρ) and f (j)(t, ρ) being holomorphic on U × O, (13)

g(0, ρ) = 1, (14)

f (1)(0,0) �= 0, (15)

ρ2 �= (
f (1)(0, ρ)

)2
for ρ in O. (16)

In what follows we use the symbols f (0)(t, ρ) and f̃ (0)(t, ρ) respectively, to denote
tρg(t, ρ) and ρg(t, ρ).

Definition 1 Let f (t, a, ρ) be as above, let g±(t) be holomorphic functions on U ,
and let Q denote the following potential:

f (t, a, ρ)

t2 − a2
+ η−2

(
g+(t)

(t − a)2
+ g−(t)

(t + a)2

)
(η: a large parameter). (17)

Then the Schrödinger operator

d2

dt2
− η2Q(t, a,ρ, η) (18)

is called an M2P1T (merging two poles and one turning point) operator.
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Remark 1 For the sake of simplicity, we assume the following condition (19) in
Sect. 2:

g+ = g− = 0. (19)

Remark 2 It immediately follows from (14) that (18) for ρ �= 0 has a simple turning
point when V is chosen sufficiently small.

Remark 3 It follows from the trivial relation

t f̃ (0) + af (1)

t2 − a2
= f̃ (0) + f (1)

2(t − a)
+ f̃ (0) − f (1)

2(t + a)
(20)

that we obtain a sum of simple poles at a = 0, not a double pole. Parenthetically we
note that assumption (16) guarantees that their residues are different from 0.

Remark 4 The reader might wonder why the assumption about the structure of
f̃ (0)(t, ρ) is so restrictive. But, since we want to uniformly deal with the problem
for an arbitrarily small parameter ρ(�= 0), some strict restriction on the structure of
f̃ (0)(t, ρ) is inevitable. Actually one will be able to find that the function x

(0)
0 (t, ρ)

given by (38) below cannot be holomorphic on a fixed neighborhood of the origin
{t = 0} if we choose, for example,

f̃ (0)(t, ρ) = t + ρ, (21)

although it satisfies

f̃ (0)(0, ρ) = ρ, (22)

the condition we frequently use in our computation.

The purpose of this section is to show that an M2P1T equation is WKB-
theoretically transformed to an ∞-Mathieu equation. We refer the reader to [11,
Sect. 2] for the basic properties of “WKB-theoretic transformations,” but we note
their heuristic explanation as follows: in an intuitive description its core is a formal
coordinate transformation from t to x = x(t, a, ρ, η) defined by an infinite series

x(t, a, ρ, η) =
∑
k≥0

x2k(t, a, ρ)η−2k (23)

which satisfies

Q(t, a,ρ, η) =
(

∂x

∂t

)2(
aA + xB

x2 − a2

)
− 1

2
η−2{x; t} (24)

for some infinite series

A =
∑
k≥0

A2k(a,ρ)η−2k (25)
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and

B =
∑
k≥0

B2k(a,ρ)η−2k, (26)

where {x; t} stands for the Schwarzian derivative

−2

(
∂x

∂t

)1/2
∂2

∂t2

(
∂x

∂t

)−1/2

. (27)

In what follows we call the Schrödinger operator

d2

dx2
− η2 aA + xB

x2 − a2
(28)

an ∞-Mathieu operator. Using appropriate growth order conditions that x2k(t, a, ρ),
A2k(a,ρ), and B2k(a,ρ) satisfy, we can construct microdifferential operators X
and Y so that they “intertwine” the Borel transformed M2P1T operator and the
Borel transformed ∞-Mathieu operator; we have (Theorem 2)

NX = Y M∞, (29)

where M∞ denotes the Borel transformed ∞-Mathieu operator, and N denotes the
Borel transformed M2P1T operator written in (x, y)-variable with the effect of the
coordinate change appropriately taken into account (cf. (122) for the concrete form
of N ). See Sect. 3 for the explicit description of X in terms of the infinite series x.

In constructing the infinite series x,A, and B , we further expand x2k(t, a, ρ) etc.
in powers of a; that is, we will seek for x,A, and B in the form of double series as
follows:

x =
∑

j,k≥0

x
(j)

2k (t, ρ)ajη−2k, (30)

A =
∑

j,k≥0

A
(j)

2k (ρ)ajη−2k, (31)

B =
∑

j,k≥0

B
(j)

2k (ρ)ajη−2k. (32)

Substituting these series into (24) and comparing the coefficient of η0, we find

f (t, a, ρ)

t2 − a2
=

(
∂x0

∂t

)2
aA0 + x0B0

x2
0 − a2

, (33)

where

x0(t, a, ρ) =
∑
j≥0

x
(j)

0 (t, ρ)aj , (34)
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A0(a,ρ) =
∑
j≥0

A
(j)

0 (ρ)aj , (35)

B0(a,ρ) =
∑
j≥0

B
(j)

0 (ρ)aj . (36)

After multiplying (33) by (t2 − a2)(x2
0 − a2) we compare the coefficient of ap to

find

− f (p−2) +
∑

j+k+l=p

x
(j)

0 x
(k)
0 f (l)

= t2
( ∑

j+k+l=p

∂x
(j)

0

∂t

∂x
(k)
0

∂t
A

(l−1)
0 +

∑
j+k+l+m=p

∂x
(j)

0

∂t

∂x
(k)
0

∂t
x

(l)
0 B

(m)
0

)

−
( ∑

j+k+l=p−2

∂x
(j)

0

∂t

∂x
(k)
0

∂t
A

(l−1)
0 +

∑
j+k+l+m=p−2

∂x
(j)

0

∂t

∂x
(k)
0

∂t
x

(l)
0 B

(m)
0

)
.

(37.p)

In (37.p) terms whose indices do not meet the requirements should be ignored,
as usual. With this convention, (37.p) with p = 0 or 1 is of a peculiar form. For
example, we find

tx
(0)2
0 f̃ (0) = t2x

(0)′2
0 x

(0)
0 B

(0)
0 . (37.0)

Here, and in what follows, x′ stands for ∂x/∂t . Hence we find

x
(0)
0 (t, ρ) = 1

4B
(0)
0

(∫ t

0

√
f̃ (0)(t, ρ)

t
dt

)2

, (38)

where B
(0)
0 is a nonzero constant to be fixed later. Then it follows from assumptions

(13) and (14) that there exists a holomorphic function x̃
(0)
0 (t, ρ) that satisfies

x
(0)
0 (t, ρ) = t x̃

(0)
0 (t, ρ) (39)

with

x̃
(0)
0 (0, ρ) = ρ

B
(0)
0

. (40)

Next we consider the case p = 1. Then, by using (39) we find

2t x̃
(0)
0 x

(1)
0 t f̃ (0) + t2x̃

(0)2
0 f (1)

= t2(x(0)′2
0 A

(0)
0 + 2x

(0)′
0 x

(1)′
0 x

(0)
0 B

(0)
0 + x

(0)′2
0 x

(1)
0 B

(0)
0 + x

(0)′2
0 x

(0)
0 B

(1)
0

)
. (37.1)
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Hence it suffices to solve

2x
(0)′
0 x

(1)′
0 x

(0)
0 B

(0)
0 + x

(0)′2
0 x

(1)
0 B

(0)
0 − 2x̃

(0)
0 x

(1)
0 f̃ (0)

= −x
(0)′2
0 A

(0)
0 − x

(0)′2
0 x

(0)
0 B

(1)
0 + x̃

(0)2
0 f (1). (41)

Here and in what follows, we use a new variable s given by

s = x
(0)
0 (t, ρ). (42)

Using the symbol ẋ to denote dx/ds, we then find the following equation (43) with
the help of (38):

B
(0)
0

(
2s

d

ds
− 1

)
x

(1)
0 (s, ρ)

= −A
(0)
0 − sB

(1)
0 + [(

x
(0)′
0

)−2
x̃

(0)2
0 f (1)

](
t (s, ρ), ρ

)
, (43)

where t (s, ρ) denotes the inverse function of s = x
(0)
0 (t, ρ). It is clear that (43)

admits a solution x
(1)
0 (s, ρ) that is holomorphic near s = 0 for arbitrary constants

A
(0)
0 and B

(1)
0 , which are to be fixed later. Furthermore we can immediately see that

x
(1)
0 (0, ρ) = 1

B
(0)
0

(
A

(0)
0 − f (1)(0, ρ)

)
, (44)

ẋ
(1)
0 (0, ρ) = 1

B
(0)
0

(−B
(1)
0 + Z−1

0

(
z′(0, ρ)f (1)(0, ρ) + f (1)′(0, ρ)

))
, (45)

where

Z0 = x
(0)′
0 (0, ρ) (46)

and

z(t, ρ) = (
x

(0)′
0 (t, ρ)

)−2
x̃

(0)
0 (t, ρ)2. (47)

For p ≥ 2, (37.p) assumes the following form:

C
(p)

0 (ρ) + D
(p)

0 (ρ)t + t2E
(p)

0 = 0, (48.p)

where C
(p)

0 and D
(p)

0 are free from t , and E
(p)

0 contains in it at least

∑
j+k+l=p

x
(j)′
0 x

(k)′
0 A

(l−1)
0 +

∑
j+k+l+m=p

x
(j)′
0 x

(k)′
0 x

(l)
0 B

(m)
0 . (49)

One can readily find that C
(2)
0 is absent in (48.2) and that D

(2)
0 = 0 gives a quadratic

constraint on (A
(0)
0 ,B

(0)
0 ) (see [9, (1.1.1.17)]). Hence, by assuming D

(2)
0 = 0, we
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can solve the equation E (2)
0 = 0 to find x

(2)
0 (t, ρ) that is holomorphic near t = 0.

As one of the most exciting points in our computation becomes visible at the next
stage, we hasten to study the situation where p = 3; we will come back to the ex-
plicit computation of x

(2)
0 (t, ρ) after the study of the case. For this purpose, we

assume that C
(3)
0 = 0. Then a straightforward computation shows that this gives

another quadratic constraint on (A
(0)
0 ,B

(0)
0 ) (see [9, (1.1.1.19)]). The equations

D
(2)
0 = C

(3)
0 = 0 lead to

A
(0)
0 = f (1)(0, ρ) (50)

and

B
(0)2
0 = ρ2. (51)

Thus it follows from (40) and (46) that

Z2
0 = 1. (52)

And, by (44) we find the following amazing result:

x
(1)
0 (0, ρ) = 0. (53)

Relation (53), together with (52), plays a crucially important role at several points
in the reasoning of [9]. As a typical example of such points, we show here how
(52) and (53) effect the computation of x

(2)
0 (0, ρ). To begin with, we rewrite (37.2)

explicitly in s(= x
(0)
0 (t, ρ))-variable:

B
(0)
0

(
2s

d

ds
− 1

)
x

(2)
0 (s, ρ)

= −A
(1)
0 − B

(2)
0 s − 2ẋ

(1)
0 (s, ρ)A

(0)
0

− 2ẋ
(1)
0 (s, ρ)x

(1)
0 (s, ρ)B

(0)
0 − 2ẋ

(1)
0 (s, ρ)sB

(1)
0

− x
(1)
0 (s, ρ)B

(1)
0 − ẋ

(1)
0 (s, ρ)2sB

(0)
0 + (

z(t, ρ)f (2)(t, ρ)

− [
t−1(x(0)′

0 (t, ρ)
)−2(

B(1)(t, ρ) − B(1)(0, ρ)
)])∣∣

t=t (s,ρ)
, (37′.2)

where z(t, ρ) is the function given by (47), and

B(1)(t, ρ) = f̃ (0) − x
(1)2
0 f̃ (0) − 2x̃

(0)
0 x

(1)
0 f (1) − x

(0)′2
0 x̃

(0)
0 B

(0)
0 . (54)

By way of parenthesis, we note that the condition D
(2)
0 = 0 is given by

B(1)(0, ρ) = 0. To evaluate the term in the brackets in (37′.2) at s = 0, we com-
pute ∂B(1)/∂t |t=0 to find

ρg′(0, ρ) − 2Z0f
(1)(0, ρ)x

(1)′
0 (0, ρ) − 2B

(0)
0 x

(0)′′
0 (0, ρ) − B

(0)
0 x̃

(0)′
0 (0, ρ). (55)
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In this computation we have repeatedly used (52) and (53); for example, we have
used (53) to claim

(
x

(1)2
0 f̃ (0)

)′∣∣
t=0 = x

(1)
0

(
x̃

(0)
0 f (1)

)′∣∣
t=0 = 0. (56)

Using (52), we further notice a remarkable cancellation of terms in the right-
hand side of (37′.2) when they are evaluated at s = 0; it follows from (50) that
−2ẋ

(1)
0 (0, ρ)A

(0)
0 is canceled by −(x

(0)′
0 (0, ρ))−2(−2Z0f

(1)(0, ρ)x
(1)′
0 (0, ρ)) in

(55), i.e.,

−2ẋ
(1)
0 (0, ρ)A

(0)
0 + 2Z−2

0

(
Z2

0A
(0)
0 ẋ

(1)
0 (0, ρ)

) = 0. (57)

An important implication of (57) is that the canceling terms originally depended on
B

(1)
0 through ẋ

(1)
0 (0, ρ) (see (45)). Furthermore, other B

(1)
0 -dependent terms in the

right-hand side of (37′.2), i.e.,

−2ẋ
(1)
0 (s, ρ)x

(1)
0 (s, ρ)B

(0)
0 − 2ẋ

(1)
0 (s, ρ)sB

(1)
0 − x

(1)
0 (s, ρ)B

(1)
0 − ẋ

(1)
0 (s, ρ)2sB

(0)
0 ,

(58)
also vanish when evaluated at s = 0, thanks to (53). It then follows from (37′.2) that

B
(0)
0 x

(2)
0 (0, ρ) = A

(1)
0 − f (2)(0, ρ) + χ

(0)
0 B

(0)
0 , (59)

where χ
(0)
0 is a constant fixed by g(t, ρ) (and Z0 = ±1). Thus x

(2)
0 (0, ρ) is free

from B
(1)
0 , and this fact, together with the explicit form of ẋ

(1)
0 (0, ρ) given by (45),

enables us to explicitly describe D
(3)
0 and C

(4)
0 . An important point is that these

“cancellations and vanishings” occur for every p ≥ 2 and that they make the con-
crete expression of the core parts of D

(p+1)

0 and C
(p+2)

0 to be “uniform,” as is shown
below:

C
(p+2)

0 − 2

(
A

(p−1)

0 − A
(0)
0

B
(0)
0

B
(p−1)

0

)
depends only on

(
A

(q)

0 ,B
(q)

0

)

(q ≤ p − 2) and given data such as f (q)(0, ρ)(q ≤ p − 1), (60)

and

D
(p+1)

0 − 2Z0

(
A

(0)
0

B
(0)
0

A
(p−1)

0 − B
(p−1)

0

)
depends only on

(
A

(q)

0 ,B
(q)

0

)

(q ≤ p − 2) and given data. (61)

As is clear from (60) and (61) we can determine (A
(p−1)

0 ,B
(p−1)

0 ) (p ≥ 2) recur-
sively by solving linear equations. (The solvability of the equations is guaranteed
by the assumption (16) together with the explicit computations (50) and (51) of
A

(0)
0 and B

(0)
0 .) Here we emphasize the importance of the point that the main parts

“2(A
(p−1)

0 − A
(0)
0 B

(p−1)

0 /B
(0)
0 )” and “2Z0(A

(0)
0 A

(p−1)

0 /B
(0)
0 − B

(p−1)

0 )” are of the
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same form for every p. Parenthetically we note that C
(p+2)

0 (resp., D
(p+1)

0 ) read off

from (37.p + 2) (resp., (37.p + 1)) at first contains x
(p)

0 (0, ρ) and x
(p−1)′
0 (0, ρ);

their “principal parts,” the parts which may be dependent on A
(p−1)

0 and B
(p−1)

0 , are
at first respectively given as follows (see [9, Lemma 1.1.2.1]):

[(
x

(0)′
0

)2
A

(p−1)

0 + 2x
(0)′
0 x

(p−1)′
0 A

(0)
0 + x

(0)′2
0 x

(p)

0 B
(0)
0

]∣∣
t=0, (62)

[
2x̃

(0)
0 x

(0)′
0 x

(p−1)′
0 B

(0)
0 + x̃

(0)
0 x

(0)′2
0 B

(p−1)

0 + 2x̃
(0)
0 f (1)x

(p)

0

+ (
x

(0)′
0

)2
x

(p−1)′
0 B

(0)
0

]∣∣
t=0. (63)

Thus the clean and uniform results (60) and (61) are almost miraculous, and at the
same time we believe that, without such uniform expressions, it should be impos-
sible to find conditions that would guarantee the recursive solvability of equations
C

(p+2)

0 = D
(p+1)

0 = 0.

Thus a naive way of inductively determining (x
(p)

0 ,A
(p)

0 ,B
(p)

0 ) (p ≥ 1) is as
follows:

In order to find a holomorphic (in t ) solution x
(p)

0 (t, ρ) of (37.p), one first re-

quires C
(p)

0 = D
(p)

0 = 0; then by rewriting (37.p) in s(= x
(0)
0 (t, ρ))-variable we

find

B
(0)
0

(
2s

d

ds
− 1

)
x

(p)

0 (s, ρ) = −A
(p−1)

0 − B
(p)

0 s + B
(0)
0 R

(p)

0 (s, ρ), (37′.p)

where

B
(0)
0 R

(p)

0 (s, ρ)

= −
∑

i+j+k=p−1
k≤p−2

ẋ
(i)
0 ẋ

(j)

0 A
(k)
0 −

∑
i+j+k+l=p
i,j,k,l≤p−1

ẋ
(i)
0 ẋ

(j)

0 x
(k)
0 B

(l)
0

+
[(

x
(0)′
0 (t, ρ)

)−2
t−2

( ∑
i+j+k=p−3

x
(i)′
0 x

(j)′
0 A

(k)
0

+
∑

i+j+k+l=p−2

x
(i)′
0 x

(j)′
0 x

(k)
0 B

(l)
0

+
∑

i+j+k=p
k≥1

x
(i)
0 x

(j)

0 f (k) +
∑

i+j=p
i,j≥1

x
(i)
0 x

(j)

0 f (0) − f (p−2)

)]∣∣∣∣
t=t (s,ρ)

. (64.p)

It is then clear that (37′.p) admits a holomorphic solution x
(p)

0 (s, ρ) for any com-

plex numbers A
(p−1)

0 and B
(p)

0 , as we have assumed C
(p)

0 = D
(p)

0 = 0. On the other

hand, if we admit (60) and (61), the equation C
(p)

0 = 0 combined with D
(p−1)

0 = 0,

a relation required in the preceding stage, will fix A
(p−3)

0 and B
(p−3)

0 (for p ≥ 4),
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which have not yet been completely fixed so far. At the same time, the condition
D

(p)

0 = 0 will be used at the next stage to fix A
(p−2)

0 and B
(p−2)

0 . Thus the reader
might find the reasoning to be somewhat clumsy, particularly because of the uneven-
ness of the indices in question. Hence we present here the core of the more refined
induction procedure with some comments on its background. We note that the in-
duction scheme we present below is also suited for the growth order estimation of
the functions constructed. See [9, Sects. 1.1.3 and 1.2] for the details.

Let us first prepare some notation. We denote a triplet {x(r)
0 (s, ρ),A

(r)
0 ,B

(r)
0 } by

T
(r)
0 and use the symbol A0(p) to mean the assertion that T

(r)
0 is given for 0 ≤ r ≤ p

so that each of them satisfies the following conditions (65.r)–(69.r):

x
(r)
0 (s, ρ) is a holomorphic solution of (37′.r) near s = 0, (65.r)

x
(r)
0 (s, ρ) depends on

(−→
A 0[r − 1],−→B 0[r]

)=
def

(
A

(0)
0 ,A

(1)
0 , . . . ,A

(r−1)
0 ,

B
(0)
0 ,B

(1)
0 , . . . ,B

(r)
0

)
, (66.r)

C
(r+3)
0 and D

(r+2)
0 depend on

(−→
A 0[r],−→B 0[r]

)
, and

(−→
A 0[r],−→B 0[r]

)
annihilates them, (67.r)

C
(r+3)
0 − 2

(
A

(r)
0 − A

(0)
0

B
(0)
0

B
(r)
0

)
is independent of

(
A

(r)
0 ,B

(r)
0

)
, (68.r)

D
(r+2)
0 − 2Z0

(
A

(0)
0

B
(0)
0

A
(r)
0 − B

(r)
0

)
is independent of

(
A

(r)
0 ,B

(r)
0

)
. (69.r)

Then we obtain the following:

Proposition 1 The assertion A0(p) is valid for every p ≥ 1.

The proof of this proposition is done in an inductive manner (cf. [9, Sect. 1.1.3]).
But we imagine that the first reactions to this proposition of the reader might be the
following:

[A] Is the claim logically self-contained? For example, the concrete expression (62)
(resp., (63)) of C

(p+2)

0 (resp., D
(p+1)

0 ) indicates that we need x
(p0+1)

0 (0, ρ) for

the description of C
(p0+3)

0 and D
(p0+2)

0 , but A0(p0) refers to T
(r)
0 (r ≤ p0)

only.
[B] Well, this may not be a logical question but a rather psychological one. Still,

I wonder why (67.p0) is valid despite the presence of x
(p0+1)

0 in C
(p0+3)

0 ; in

view of (66.p0 + 1), I think that
−→
B 0[r] in (67.r) might be

−→
B 0[r + 1].

So let us first dispel potential sources of such uneasiness. Actually both [A] and
[B] are reasonable concerns, and the core of the proof of Proposition 1 is closely
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related to them. The answer to [A] is rather easy: although x
(p0+1)

0 (s, ρ) is not re-

ferred to in A0(p0), the assertion A0(p0) trivially entails the vanishing of C
(p0+1)

0

and D
(p0+1)

0 , and hence the existence of a holomorphic solution x
(p0+1)

0 (s, ρ) of

(37′.p0 + 1) is guaranteed. Then it follows from (37′.p0 + 1) that x
(p0+1)

0 (0, ρ) is
given by

x
(p0+1)

0 (0, ρ) = (
B

(0)
0

)−1
A

(p0)

0 − R
(p0+1)

0 (0, ρ). (70)

Thus x
(p0+1)

0 (0, ρ) is described by T
(r)
0 (r ≤ p0). Note that R

(p0+1)

0 (s, ρ) is deter-

mined by T
(r)
0 (r ≤ p0) (cf. (64.p)). This concrete expression of x

(p0+1)

0 (0, ρ) will
also alleviate the anxiety [B]. Still, the reader might wonder:

[B′] How can we proceed with a seemingly rather vague expression like (70)? For
example, how can we find (68.p0 + 1) and (69.p0 + 1), which are needed
to proceed one step further, that is, to confirm A0(p0 + 1) using the data in
A0(p0)?

Well, then, we present the core of the proof of Proposition 1, which will clarify
all these.

Remark 5 Here we have tried to follow the late Professor Ehrenpreis in his style of
lecturing—how do you find it, Professor Ehrenpreis?

To perform the induction procedure, let us suppose that A0(p0) is validated.
Then, as we noted, to see (70), we have

C
(p0+1)

0 = D
(p0+1)

0 = 0, (71)

and hence we can find a holomorphic solution x
(p0+1)

0 (s, ρ) of (37′.p0 + 1) for

any complex number B
(p0+1)

0 , which meets the requirements (65.p0 + 1) and
(66.p0 + 1). Now, the intriguing part of the proof begins here. Since A0(p0) en-
tails

C
(p0+2)

0 = D
(p0+2)

0 = 0, (72)

we can further find a holomorphic solution x
(p0+2)

0 (s, ρ) of (37′.p0 + 2) for any

complex numbers A
(p0+1)

0 and B
(p0+2)

0 . To confirm A0(p0 + 1), we do not make

full use of x
(p0+2)

0 (s, ρ) but use only x
(p0+2)

0 (0, ρ) for the computation of C
(p0+4)

0

and D
(p0+3)

0 . Since it follows from (37′.p0 + 2) that

B
(0)
0 x

(p0+2)

0 (0, ρ) = A
(p0+1)

0 − B
(0)
0 R

(p0+2)

0 (0, ρ), (73)

the following Lemma 1 is the key to the proof.

Lemma 1 Let us suppose that A0(p0) is validated. Then we find

B
(0)
0 R

(p0+2)

0 (0, ρ) is free from B
(p0+1)

0 . (74)
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Before giving the proof of this lemma, we note the following three facts: first,
once the lemma is proved, the confirmation of A0(p0 + 1) is an easy task as we will
note later. Second, although this is a rather obvious comment, the complex number
B

(p0+2)

0 introduced to define x
(p0+2)

0 (s, ρ) is actually irrelevant to x
(p0+2)

0 (0, ρ) and
has no relevance to the later argument; in validating A0(p0 +2) we may use another
complex number B̃

(p0+2)

0 to construct x̃
(p0+2)

0 (s, ρ) needed there, which may be

different from x
(p0+2)

0 (s, ρ) constructed above for the auxiliary purpose of finding

the constant x
(p0+2)

0 (0, ρ), which is irrelevant to B
(p0+2)

0 . Third, the cancellation
among several terms to be observed in the proof of Lemma 1 also plays crucially
important roles in the estimation of growth orders of T

(p)

0 etc. (see [C1] and [C2]
after Remark 7).

Now we give:

Proof of Lemma 1 In view of (66.r) (r ≤ p0) we find that the terms in
B

(0)
0 R

(p0+2)

0 (0, ρ) which may contain B
(p0+1)

0 are those which contain x
(p0+1)

0 ,

ẋ
(p0+1)

0 , and B
(p0+1)

0 itself. Furthermore we note that x
(p0+1)

0 (0, ρ) is seen to be free

from B
(p0+1)

0 by (70) together with the fact that R
(p0+1)

0 (s, ρ) is determined by T
(r)
0

(r ≤ p0). Thus we do not worry about −(
∑

i+j+k=1 ẋ
(i)
0 (0, ρ)ẋ

(j)

0 (0, ρ)B
(k)
0 ) ×

x
(p0+1)

0 (0, ρ) in our computation. Hence it is enough to examine the contribution
from the following terms:

−
( ∑

i+j+k=1

ẋ
(i)
0 (0, ρ)ẋ

(j)

0 (0, ρ)x
(k)
0 (0, ρ)

)
B

(p0+1)

0 , (75)

−
( ∑

i+j=p0+2
i,j≤p0+1

ẋ
(i)
0 (0, ρ)ẋ

(j)

0 (0, ρ)

)
x

(0)
0 (0, ρ)B

(0)
0

−
( ∑

i+j=p0+1

ẋ
(i)
0 (0, ρ)ẋ

(j)

0 (0, ρ)

)( ∑
k+l=1

x
(k)
0 (0, ρ)B

(l)
0

)
, (76)

−2ẋ
(0)
0 (0, ρ)ẋ

(p0+1)

0 (0, ρ)A
(0)
0 , (77)

and

the terms that appear in the coefficients of the Taylor expansion in s of[(
x

(0)′
0

)−2
t−2(2x

(0)
0 x

(p0+1)

0 f (1) + 2x
(1)
0 x

(p0+1)

0 f (0)
)]∣∣

t=t (s,ρ)
. (78)

Here we observe the following two facts:

any term that may contain B
(p0+1)

0 in (75) and (76) vanishes because

of the vanishing of x
(i)
0 (0, ρ) (i = 0,1), (79)
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and

−2ẋ
(0)
0 (0, ρ)ẋ

(p0+1)

0 (0, ρ)A
(0)
0 + 2

(
x

(0)′
0

)−2
x̃

(0)
0 x

(p0+1)′
0 f (1)

∣∣
t=t (0,ρ)

= 0, (80)

where the second term in (80) is the unique relevant term in (78). (Cf. Remark 6
below.) It is then evident that (79) (resp., (80)) is a counterpart of (56) (resp., (57)),
which we encountered in the computation of x

(2)
0 (0, ρ). In any event, (79) and (80)

clearly prove the lemma. �

Remark 6 Since x
(p0+1)

0 (0, ρ) is free from B
(p0+1)

0 as noted above, B
(p0+1)

0 is not
contained in

2
(
x

(0)′
0 (0, ρ)

)−2
x̃

(1)
0 (0, ρ)f̃ (0)(0, ρ)x

(p0+1)

0 (0, ρ), (81)

despite the fact that (81) is resembling to the second term in (80) in the sense that
(81) originates from

[(
x

(0)′
0

)−2
t−2(2x

(1)
0 x

(p0+1)

0 f (0)
)]∣∣

t=t (s,ρ)
, (82)

which forms the pair to

[(
x

(0)′
0

)−2
t−2(2x

(0)
0 x

(p0+1)

0 f (1)
)]∣∣

t=t (s,ρ)
(83)

in (78), the term which generates the second term in (80).

Now Lemma 1 and (73) imply

x
(p0+2)

0 − A
(p0+1)

0 /B
(0)
0 depends on only

(−→
A 0[p0],−→B 0[p0]

)
. (84)

On the other hand, (37′.p0 + 1) entails

B
(0)
0 ẋ

(p0+1)

0 (0, ρ) + B
(p0+1)

0 = B
(0)
0 Ṙ

(p0+1)

0 (0, ρ), (85)

which also depends on only (
−→
A 0[p0],−→B 0[p0]).

Substituting those into (62) and (63) with p = p0 + 2, we can validate
(68.p0 + 1) and (69.p0 + 1). Then we can readily choose (A

(p0+1)

0 ,B
(p0+1)

0 ) so
that they satisfy

C
(p0+4)

0 = D
(p0+3)

0 = 0. (86)

Thus the induction proceeds. This completes the proof of Proposition 1.

Remark 7 As (84) and (85) show, expressions like (70) nicely fit in with our induc-
tion scheme. This is the answer to the query [B′], and the important point in the
answer is Lemma 1.
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Thus we have formally constructed T
(p)

0 = {x(p)

0 ,A
(p)

0 ,B
(p)

0 } for every p ≥ 0.
We can further confirm (see [9, Lemma 1.2.3]) that they actually define a function

x0(t, a, ρ) =
∑
p≥0

x
(p)

0 (t, ρ)ap, (87)

which is holomorphic on

{
(t, a, ρ) ∈ C

3; |t | < r0, ρ �= 0, |a|, |ρ| < M0, |a/ρ| < N0
}
, (88)

and constants

A0(a,ρ) =
∑
p≥0

A
(p)

0 (ρ)ap (89)

and

B0(a,ρ) =
∑
p≥0

B
(p)

0 (ρ)ap, (90)

which are convergent on

{
(a,ρ) ∈C

2;ρ �= 0, |a|, |ρ| < M0, |a/ρ| < N0
}

(91)

for some positive constants r0,M0, and N0. Although we do not give the details of
the proof here, we note the following core facts [C1] and [C2]. Here we use the
symbol (σ.j) (j = i, ii, and iii) to denote the following sums in R

(p0+1)

0 (s, ρ) (cf.
(64.p) with p = p0 + 1):

(σ.i) =
def

−
∑

i+j=p0

ẋ
(i)
0 (s, ρ)ẋ

(j)

0 (s, ρ)A
(0)
0 /B

(0)
0

(
cf. the first sum in (64.p0 + 1)

)
, (92)

(σ.ii) =
def

[(
x

(0)′
0 (t, ρ)

)−2
t−2

( ∑
i+j=p0

x
(i)
0 (s, ρ)x

(j)

0 (s, ρ)f (1)(t, ρ)/B
(0)
0

)]∣∣∣∣
t=t (s,ρ)

(
cf. the fifth sum in (64.p0 + 1)

)
, (93)

(σ.iii) =
def

[(
x

(0)′
0 (t, ρ)

)−2
t−1f̃ (0)(t)

( ∑
i+j=p0+1

i,j≥1

x
(i)
0 (s, ρ)x

(j)

0 (s, ρ)/B
(0)
0

)]∣∣∣∣
t=t (s,ρ)

(
cf. the sixth sum in (64.p0 + 1)

)
. (94)

Now in inductively showing the domination of {x(p)

0 ,A
(p)

0 ,B
(p)

0 } which guarantees
the domains of convergence (88) and (91) we at first find that each of these three
terms might block the induction reasoning from proceeding. But, fortunately we
observe:
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[C1] What we encounter in the induction process is the estimation of the integral of
the form, say,

I (iii) = 1

2πi

∮
(σ.iii)

s
ds; (95)

then by the Taylor expansion of

∑
i+j=p0+1

i,j≥1

x
(i)
0 (s, ρ)x

(j)

0 (s, ρ), (96)

we find the following from the relation f̃ (0) = ρg:

∣∣I (iii)
∣∣ =

∣∣∣∣ 1

2πi

∮ (
dt

ds

)2(
s

t

)
Z0 g(t, ρ)

{ ∑
i+j=p0+1

i,j≥1

x
(i)
0 (0, ρ)x

(j)

0 (0, ρ)

+ 2s

( ∑
i+j=p0+1

i,j≥1

x
(i)
0 (0, ρ)ẋ

(j)

0 (0, ρ)

)
+ O

(
s2)}ds

s2

∣∣∣∣. (97)

Then in order to make the induction reasoning run smoothly, we use (53); the
second sum in the integrand of the right-hand side gives the contribution of
the form

1

2πi

∮
2

( ∑
i+j=p0+1
i≥2, j≥1

x
(i)
0 (0, ρ)ẋ

(j)

0 (0, ρ)

)
ds

s
. (98)

See [9] for the details which show how this gain in the margin of indices is
important in the induction procedures.

[C2] The integral

I (i) = 1

2πi

∮
(σ.i)

s
ds (99)

is, notably enough, canceled by the contribution

I0 = 1

2πi

1

B
(0)
0

∮
s2

t2

(
dt

ds

)2( ∑
i+j=p0

ẋ
(i)
0 (0, ρ)ẋ

(j)

0 (0, ρ)

)
f (1)(t, ρ)

ds

s
,

(100)
which originates from

I (ii) = 1

2πi

∮
(σ.ii)

s
ds, (101)

and, furthermore, I (ii) − I0 is amenable to the induction procedure, as is
shown in [9].
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We readily find [C1] and [C2] are reasonable counterparts of (79) and (80), re-
spectively.

Thus we have succeeded in constructing {x0(t, a, ρ), A0(a.ρ), B0(a,ρ)} which
satisfies the highest degree (i.e., degree 0) part in η of the required relation (24);
hence the reasonable approach to the proof of (24) is to try to construct the pertur-
bation series {x = ∑

k≥0 x2kη
−2k , A = ∑

k≥0 A2kη
−2k , B = ∑

k≥0 B2kη
−2k} so that

they satisfy (24). As we mentioned earlier, we further expand {x2k,A2k,B2k} into
the power series of a (cf. (30), (31), and (32)), and by comparing the coefficients of
ap in the coefficients of η−2n (n ≥ 1) of (24) multiplied by (t2 − a2)(x2 − a2) we
obtain

∑
q+r+u=p

i+j=n

x
(q)

2i x
(r)
2j f (u) = t2

[ ∑
q+r+u=p−1

i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑
q+r+u+v=p
i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l

− 1

2

∑
q+r+u=p

i+j+k=n−1

x
(q)

2i x
(r)
2j {x; t}(u)

2k + 1

2
{x; t}(p−2)

2(n−1)

]

−
[ ∑

q+r+u=p−3
i+j+k=n

x
(q)′
2i x

(r)′
2j A

(u)
2k +

∑
q+r+u+v=p−2

i+j+k+l=n

x
(q)′
2i x

(r)′
2j x

(u)
2k B

(v)
2l

− 1

2

∑
q+r+u=p−2
i+j+k=n−1

x
(q)

2i x
(r)
2j {x; t}(u)

2k + 1

2
{x; t}(p−4)

2(n−1)

]
, (102)

where {x; t}(q)

2k designates the coefficient of aqη−2k of {x; t}, that is,

{x; t} =
∑

q,k≥0

{x; t}(q)

2k aqη−2k. (103)

In view of the resemblance between (37.p) and (102), one expects that the construc-
tion and domination of the triplet T

(r)
2n = {x(r)

2n (s, ρ), A
(r)
2n (ρ),B

(r)
2n (ρ)} (n ≥ 1) may

be performed in parallel with the construction and domination of T
(r)
0 , and actually

this is really the case. We only note the following facts:

in the recursive construction of x
(p)

2n (s, ρ) (p = 0,1,2, . . . ) the relation

x
(0)
2n (0, ρ) = 0 plays an important role, (104)

assertions similar to [C1] and [C2] (with the appropriate shift of indices)

also play important roles, (105)

and
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in dominating the growth order of T
(p)

2n we first dominate {x; t}(p)

2(n−1)

using the induction hypothesis and then employ the similar argument

used in dominating T
(p)

0 . (106)

We refer the reader to [9, Sect. 1.2] for the details. Here we content ourselves by
quoting the final result which will be used later.

Theorem 1 Let Q(t, a,ρ, η) be a potential of an M2P1T operator given by (17).
Then there exist positive constants r0,M0,N0,R0 and holomorphic functions
A2n(a,ρ), B2n(a,ρ), and x2n(t, a, ρ) (n ≥ 0) on

{
(t, a, ρ) ∈C

3; |t | < r0, ρ �= 0, |a|, |ρ| < M0, |a/ρ| < N0
}

(107)

for which the following conditions are satisfied there:

A(a,ρ,η), B(a,ρ, η), and x(t, a, ρ, η) satisfy (24), (108)

1

2

∣∣f (1)(0,0)
∣∣ ≤ ∣∣A0(a,ρ)

∣∣ ≤ 2
∣∣f (1)(0,0)

∣∣, (109)

∣∣B0(a,ρ)
∣∣ ≤ 2|ρ|, (110)

∂x0

∂t
(t, a, ρ) �= 0, (111)

x2
0(±a, a,ρ) = a2, (112)

if t = t0(a,ρ) satisfies f (t0, a, ρ) = 0, then aA0(a,ρ)

+ x0(t0, a, ρ)B0(a,ρ) = 0 holds, (113)

the following estimates hold for n ≥ 1:
∣∣A2n(a,ρ)

∣∣ ≤ (2n)!Rn
0 |ρ|1−n, (114)∣∣B2n(a,ρ)

∣∣ ≤ (2n)!Rn
0 |ρ|1−n, (115)∣∣x2n(t, a, ρ)

∣∣ ≤ (2n)!Rn
0 |ρ|−n, (116)∣∣∣∣dx2n

dt
(t, a, ρ)

∣∣∣∣ ≤ (2n)!Rn
0 |ρ|−n. (117)

Remark 8 Although we have presented the results assuming (19), the con-
struction and the domination of {x = ∑

k≥0 x2kη
−2k , A = ∑

k≥0 A2kη
−2k , B =∑

k≥0 B2kη
−2k} can be done without the assumption. In this case the potential of

the canonical form of an M2P1T equation is

aA + xB

x2 − a2
+ η−2

(
g+(a)

(x − a)2
+ g−(−a)

(x + a)2

)
. (118)



144 S. Kamimoto et al.

3 Intertwining the Borel Transformed Schrödinger Operators

As was first observed in [2], the analytic meaning of the formal coordinate trans-
formation becomes most transparent with the help of the Borel transformation. To
describe the situation concretely, let us first introduce the inverse function h(x, a,ρ)

of x = x0(t, a, ρ), that is,

x = x0
(
h(x, a,ρ), a,ρ

)
, t = h

(
x0(t, a, ρ), a,ρ

)
. (119)

Since we formally find

ψ
(
x0 + η−2x2 + η−4x4 + · · · , η

) =
∑
n≥0

1

n!
(∑

k≥1

x2kη
−2k

)n
∂n

∂xn
ψ(x,η)

∣∣∣∣
x=x0

,

(120)
its Borel transform has the form

(∑
n≥0

1

n!
(∑

k≥1

x2k

(
h(x, a,ρ), a,ρ

)( ∂

∂y

)−2k)n
∂n

∂xn

)
ψB(x, y)

=: exp

((∑
k≥1

x2k

(
h(x, a,ρ), a,ρ

)
η−2k

)
ξ

)
: ψB(x, y). (121)

In the right-hand side of (121), and also in what follows, we denote by ξ the symbol
of ∂/∂x and use the ideograms in the symbol calculus of microdifferential operators;
in particular the ideogram : σ : designates the normal ordered product determined by
a symbol σ . We note that : σ : makes sense as a microdifferential operator when the
formal series σ satisfies some growth order conditions like those we discussed in
Theorem 1. (Cf. Theorem 2 below.) See [1] for the details of the symbol calculus.
Relation (121) indicates that the structure of Schrödinger equations should be most
clearly understood when they are Borel transformed. Actually we find Theorem 2
below by making use of the formal series constructed in Sect. 2.

To state the theorem let us prepare some notations.
Let N denote the Borel transform of an M2P1T operator written in (x, y)-

coordinates, that is,

N =
(

∂h

∂x

)−2
∂2

∂x2
− ∂2h

∂x2

(
∂h

∂x

)−3
∂

∂x
− Q

(
h(x, a,ρ), a,ρ,

∂

∂y

)
∂2

∂y2
. (122)

We also denote the Borel transform of the ∞-Mathieu equation by M∞. Using
{x2n}n≥0 and the function h in (119), we define

r2k = x2k

(
h(x, a,ρ), a,ρ

)
, (123)

r =
∑
k≥1

r2kη
−2k, (124)

s = x + r, (125)
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X =:
(

∂h

∂x

)1/2(
∂s

∂x

)−1/2

exp(rξ) :, (126)

Y =:
(

∂h

∂x

)−3/2(
∂s

∂x

)3/2

exp(rξ) : . (127)

To describe the geometric situation we introduce the following set W where C0, δ0,
and δ1 are some positive constants:

W = {
(a,ρ) ∈ C

2; |a| ≤ C0|ρ|, 0 < |ρ| < δ0, |a| < δ1
}
. (128)

With these notations, we can deduce Theorem 2 below from the results in Sect. 2 by
using the same reasoning as in the proof of Theorem 2.6 of [8].

Theorem 2 Let U be a sufficiently small open neighborhood of the closed interval
[−a, a]. Then, for sufficiently small constants C0, δ0, and δ1, the microdifferential
operators X and Y intertwine N and M∞ on U × W0 with the exception of (x2 −
a2)η = 0, that is, we have

NX = Y M∞ (129)

with X and Y being invertible there.

Although the ∞-Mathieu equation contains infinite series A and B , they satisfy
the growth order conditions stated in Theorem 1. The growth order conditions en-
able us to relate, by microdifferential operators, the Borel transformed ∞-Mathieu
operator and the Borel transformed Mathieu operator M = M(A,B, c+, c−), that
is,

M(A,B, c+, c−) = ∂2

∂x2
− aA + xB

x2 − a2

∂2

∂y2
− c+

(x − a)2
− c−

(x + a)2
(130)

with A,B , and c± being genuine constants, as the following Theorem 3 shows.

Theorem 3 There exist microdifferential operators A and B for which the follow-
ing relation holds:

A BM = M∞A B. (131)

The proof is essentially the same as the proof of Theorem 4.1 of [10]; it suffices to
define

A =: exp

(∑
k≥1

A2kη
−2k

)
aα0 : (132)

and

B =: exp

(∑
d≥1

B2kη
−2k

)
β0 :, (133)
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where α0 (resp., β0) stands for the symbol of ∂/∂(aA0) (resp., ∂/∂B0).
These theorems assert that the microlocal structure of Borel transformed WKB

solutions of an M2P1T equation coincides with that of the Mathieu equation. By
appropriately representing the action of the microdifferential operator in question as
an integro-differential operator acting on multivalued analytic functions, we can de-
duce informations on the alien derivatives of WKB solutions of an M2P1T equation
from those of its canonical equation. To attain this goal, we first show the following:

Theorem 4 The action of the microdifferential operator X (given by (126)) upon
the Borel transformed WKB solution ψ+,B of the ∞-Mathieu equation is expressed
as an integro-differential operator of the form

X ψ+,B =
∫ y

−y+
K

(
x, a,ρ, y − y′, ∂/∂x

)
ψ+,B

(
x, a,ρ, y′)dy′, (134)

where

y+(x, a,ρ) =
∫ x

a

√
aA0(a,ρ) + xB0(a,ρ)

x2 − a2
dx, (135)

and K(x,a,ρ, y, ∂/∂x) is a differential operator of infinite order (in the sense
of [15]) which is defined on {(x, a,ρ, y) ∈ C

4; (x, a,ρ) ∈ U × W , |y| < C|ρ|1/2}
for some positive constant C. Similar expressions are also available for the action
of A and B on the Borel transformed WKB solutions of the Mathieu equation.

4 Can We Focus Our Attention on the Simple Poles of the
Mathieu Equation?

As we emphasized in Introduction, our original problem was to analyze the singu-
larity structure of Borel transformed WKB solutions near fixed singularities deter-
mined by a pair of simple poles contained in the potential. But the canonical equa-
tion of an M2P1T equation, i.e., the Mathieu equation, contains a simple turning
point besides two simple poles. Unfortunately no effective WKB-theoretic results
are known for the Mathieu equation, but T. Koike has succeeded in computing the
Voros coefficient for the Legendre equation (private communication; see also [14]).
Hence, if we can somehow focus our attention on the simple poles of the Math-
ieu equation, we will be able to make use of the results of Koike. Actually this
expectation is realized in Sect. 5. The problem is what we mean by saying “focus
our attention on the pole part.” The answer is given by Theorem 5 below. In what
follows, QL(z,C,γ+, γ−) denotes

aC

z2 − a2
+ η−2

(
γ+

(z − a)2
+ γ−

(z + a)2

)
, (136)
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and QM(x,A,B, c+, c−) denotes

aA + xB

x2 − a2
+ η−2

(
c+

(x − a)2
+ c−

(x + a)2

)
. (137)

Theorem 5 Let r1(> 1) and r2 be positive constants with r2 sufficiently small and
denote by Ωr1,r2 the following set:

{
(x, a,A,B) ∈ C

4; |x| < r1|a|, a �= 0,A �= 0, |B| < r2|A|}. (138)

Then we can construct infinite series

z(x, a,A,B,η) =
∑
k≥0

z2k(x, a,A,B)η−2k (139)

and

C(a,A,B,η) =
∑
k≥0

C2k(a,A,B)η−2k (140)

so that they satisfy the following conditions (141)–(145):

z2k and C2k are holomorphic on Ωr1,r2 , (141)

for each fixed constants a,A, and B, the function z0(x, a,A,B) of x is

injective on
{
x ∈ C; |x| < r1|a|}, (142)

(
z0(±a, a,A,B)

)2 = a2, (143)

∂z0

∂x
(x, a,A,B) �= 0 on Ωr1,r2 , (144)

QM(x,A,B, c+, c−) =
(

∂z

∂x

)2

QL

(
z(x, a,A,B,η),C, c+, c−

) − 1

2
η−2{z;x}.

(145)

Further the constructed series z and C satisfy the following estimates:

for any ε > 0, we can find sufficiently small r2 for which (146)

∣∣z2k(x, a,A,B)
∣∣ ≤ (2k)!εk|aA|−k (146.i)

and ∣∣C2k(a,A,B)
∣∣ ≤ (2k)!εk|aA|−k (146.ii)

hold on Ωr1,r2 for every k ≥ 1.

In parallel with the reasoning in Sect. 3, relation (145), together with estimates
(146.i) and (146.ii), entails that the Borel transformed Mathieu operator and the
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Borel transformed Legendre operator are intertwined on Ωr1,r2 by microdifferential
operators and that the microdifferential operators enjoy the integral representation
similar to (134). The point is that the simple turning point of the Mathieu equation,
i.e., −aA/B , is necessitated to be outside Ωr1,r2 for sufficiently small r2. We refer
the reader to [9] for the proof of Theorem 5; the formal construction of the series z

and C is rather straightforward, but their estimation is quite intricate.
As Koike has explicitly written down the Voros coefficient for the Legendre-type

equation with a large parameter that has the form

(
d2

dz2
− η2

(
aΛ2

z2 − a2
+ η−1

√
aΛ

z2 − a2
+ η−2 azν + a2(μ2 − 1)

(z2 − a2)2

))
φ = 0, (147)

we prepare Lemma 2 below so that we may make use of Koike’s results in Sect. 5.

Lemma 2 We can rewrite
(

d2

dz2
− η2QL(z,C, c+, c−)

)
ψ = 0 (148)

in the form (147) if we choose μ,ν, and

Λ(a,C,η) =
∑
k≥0

Λk(a,C)η−k (149)

as

μ2 = 1 + 2(c+ + c−), (150)

ν = 2(c+ − c−), (151)

Λ =
√

C − (
√

aη)−2

(
c+ + c− − 1

4

)
− (

√
aη)−1

2
. (152)

The proof is straightforward.

5 Singularity Structure of the Borel Transformed WKB
Solutions of an M2P1T Equation

As stated in Sect. 4, we can focus our attention on the pole part of the Mathieu equa-
tion so that the part may be analyzed with the help of the results for the Legendre
equation. Hence by the same reasoning as in [8, Sect. 5] (see [4] and [16] for the
basic properties of the alien derivative) we obtain the following:

Theorem 6 Let ψ̃+(t, a, ρ, η) be a WKB solution of a generic (i.e., a �= 0, ρ �= 0)
M2P1T equation that is normalized at a simple pole {t = a}. Then for every positive
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integer l, we can find positive constants δ1 and δ2 so that the following relation
(153) holds, where Δy=−y+(t,a,ρ)+l� designates the alien derivative at the fixed
singularity −y+(t, a, ρ) + l� , and the suffix B indicates the Borel transform in the
parentheses:

(Δy=−y+(t,a,ρ)+l� ψ̃+)B(t, a, ρ, y)

= (−1)l

l

{
1 + (−1)l − cosh

(
2πil

√
μ2 + √

μ4 − ν2

2

)

− cosh

(
2πil

√
μ2 − √

μ4 − ν2

2

)}

×
(

exp

(
−l

∮
γ

S̃odd dt

)
ψ̃+

)
B

(t, a, ρ, y), (153)

where S̃odd denotes the odd part of the solution S̃ of the Riccati equation associated
with the M2P1T equation, and γ is a closed curve that encircles two simple poles
counterclockwise, and

μ2 = 1 + 2
(
g+(a) + g−(−a)

)
, (154)

ν = 2
(
g+(a) − g−(−a)

)
, (155)

y+(t, a, ρ) =
∫ t

a

√
f (t, a, ρ)

t2 − a2
dt, (156)

�(a,ρ) =
∮

γ

√
f (t, a, ρ)

t2 − a2
dt. (157)

Remark 9 The highest degree part in η of
∮
γ

S̃odd dt is η�(a,ρ).
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Geometric Properties of Boundary Orbit
Accumulation Points

Steven G. Krantz

Abstract We study the automorphism group action on a bounded domain in C
n.

In particular, we consider boundary orbit accumulation points, and what geometric
properties they must have. These properties are formulated in the language of Levi
geometry.

1 Introduction

In this paper a domain Ω ⊆ C
n is a connected open set. We let O(Ω) denote the

algebra of holomorphic functions on Ω . Also we let Aut(Ω) be the group (under
composition of mappings) of biholomorphic self-maps of Ω . The standard topol-
ogy on Aut(Ω) is that of uniform convergence on compact sets (equivalently, the
compact-open topology).

We shall use the following notation: D denotes the unit disc in the complex plane.
We let D2 = D × D denote the bidisc, and Dn = D × D × · · · × D the polydisc
in C

n. The symbol B = Bn is the unit ball in C
n.

Certainly domains with transitive automorphism group are of some interest. But
they are relatively few in number (see the classification theory of Cartan, as de-
scribed in [11]). A very natural and compelling alternative is to study domains with
noncompact automorphism group. A bounded domain Ω has noncompact automor-
phism group if there is a sequence ϕj ∈ Aut(Ω) such that no subsequence converges
uniformly on compact sets to another automorphism. Obversely, the automorphism
group is compact if every sequence {ϕj } in Aut(Ω) has a subsequence that con-
verges uniformly on compact sets to another automorphism. In this regard, the fol-
lowing result of H. Cartan is central and useful (see [23]):

Theorem 1 Let Ω ⊆ C
n be a bounded domain. Then Ω has a noncompact auto-

morphism group if and only if there are a point P ∈ ∂Ω and a point X ∈ Ω and
automorphisms ϕj ∈ Aut(Ω) such that limj→∞ ϕj (X) = P .
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A point P ∈ ∂Ω is called a boundary orbit accumulation point if there are
a point X ∈ Ω and a sequence ϕj ∈ Aut(Ω) such that limj→∞ ϕj (X) = P . Of
special interest is the case where there is a single automorphism ψ such that
limj→∞ ψj(X) = P . (Here ψj denotes the composition of ψ with itself j times
when j = 0,1,2, . . . ; also, if j < 0, then ψj denotes the composition of ψ−1 with
itself |j | times.) In this latter circumstance we call P a special boundary orbit accu-
mulation point. It is not clear when an arbitrary boundary orbit accumulation point
is a special boundary orbit accumulation point.

In this paper, a point P in the boundary of a domain

Ω = {
z ∈C

n : ρ(z) < 0
}

(where ρ is a defining function for Ω) is Levi pseudoconvex if the Levi form

Lρ(z, λ) ≡
n∑

j,k=1

∂2ρ

∂zj ∂zk

(P )λjλk

is positive semi-definite for all complex tangent n-vectors λ such that∑
j λj (∂ρ/∂zj )(P ) = 0. The point P is strictly or strongly Levi pseudoconvex if

the Levi form is strictly positive definite on complex tangent vectors. Finally, the
point P is Levi pseudoconcave if the Levi form has a negative eigenvalue on some
complex tangent vector λ at P . It is strictly or strongly Levi pseudoconcave if all
eigenvalues are negative. The book [18] is a good reference for all these matters. The
notion of Hartogs pseudoconvexity is useful on domains with nonsmooth boundary.
It is equivalent to Levi pseudoconvexity on domains with C2 boundary. See [18] for
the details.

In this paper we concentrate on bounded domains, but add a few remarks about
unbounded domains.

We shall use Sect. 1 to collect some simple, preliminary results that have inde-
pendent interest. It is a pleasure to thank the referee for many helpful suggestions.

2 Background Results

The result that inspires the present work comes from [10]:

Theorem 2 Let Ω ⊆ C
n be a smoothly bounded domain. Suppose that P ∈ ∂Ω is

a boundary orbit accumulation point. Then P is a point of Levi pseudoconvexity.

There is an analogous result for domains without smooth boundary (and in which
the conclusion involves Hartogs pseudoconvexity). But we shall have no use for it
in the present paper. See [10] for the details.

For interest’s sake, we provide here an alternative formulation of Theorem 2:
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Theorem: If P ∈ ∂Ω is a boundary orbit accumulation point, then P does not belong to
the holomorphic envelope Ω̃ of Ω in the following sense: There is no neighborhood U of
P with a holomorphic mapping ψ : U → Ω̃ such that ψ = (id)−1 on U ∩ Ω .

We first give an example to emphasize that, even though the boundary orbit ac-
cumulation point is pseudoconvex, nearby points need not be.

Example 1 Let B ⊆ C
n be the unit ball with defining function ρ(z) = |z|2 − 1 (see

[18] for the concept of defining function). Let φ be a C∞
c function on C

n with these
properties:

(a) φ is real-valued, and 0 ≤ φ(z) ≤ 1/10 for all z ∈ C
n.

(b) φ is radial about the point (i,0).
(c) suppφ ⊆ B((i,0),1/10).
(d) φ(z) = 1/10 for |z − (i,0)| < 1/20.

Set

Ω ′ = {
z ∈C

2 : −1 + |z|2 + φ(z) < 0
}

and

Ω =
∞⋂

j=−∞
Φ

j

1/2

(
Ω ′),

where

Φa(z1, z2) =
(

z1 − a

1 − az1
,

√
1 − |a|2z2

1 − az1

)
(1)

for a ∈ C, |a| < 1. It is easy to check, by direct calculation, that Φa is an auto-
morphism of the unit ball B ⊆ C

n, and the domain Ω will be the unit ball with
countably many strongly pseudoconcave dents that accumulate at the points (1,0)

and (−1,0).
Now it is plain that the point (1,0) ∈ ∂Ω is a boundary orbit accumulation point.

In fact we may let X = (0,0) and ϕj (z) = Φ
−j

1/2(z) for j = 1,2, . . . . So (1,0) ∈ ∂Ω

is certainly pseudoconvex. Notice that, at points in B along the normal line through
(i,0), −1 +|z|2 +φ(z) is negative when z is at least 1/5 units from the boundary of
the ball B , and −1+|z|2 +φ(z) is positive at (i,0). So there must be an intermediate
point z̃ on this line segment—a point inside the unit ball B—where −1+|z|2 +φ(z)

vanishes. It follows that z̃ is a boundary point of Ω ′. Hence Φ
j

1/2(̃z) is a boundary

point for each j . The boundary points Φ
j

1/2(̃z) will be strictly pseudoconcave.

It must be noted that, in Example 1, Ω does not have smooth boundary. In fact,
at the boundary points (1,0), (−1,0), the boundary is only Lipschitz.

The following example is reasonably well known and gives a nice way to gener-
ate example of non-pseudoconvex domains with noncompact automorphism group.
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Example 2 Define

Ω = {
(w, z1, z2) ∈ C

3 : |w|2 + (|z1|2 − |z2|2
)2 + λ|z1|4 < 1

}
.

This domain is not pseudoconvex. Indeed, at the boundary point (0,1,0) the vector
〈1,0,0〉 is a tangent vector and is a negative direction for the Levi form. One can
see that the domain has noncompact automorphism group by mapping it to the un-
bounded domain Ω∗ ≡ {4Im (W) + (|Z1|2 − |Z2|2)2 + λ|Z1|4 < 0} by way of the
mapping

w = 1 − iW

1 + iW
,

z1 = Z1

(1 + iW)1/2
,

z2 = Z2

(1 + iW)1/2
.

The domain Ω∗ clearly has noncompact automorphism group because translations
in the Re W direction are automorphisms. Hence so does Ω .

More generally, one can consider a domain of the form

E = {
(w, z1, z2) : |w|2 + p(z1, z2) < 1

}
.

Here M1,M2, . . . ,Mn are positive integer weights, and we take p to be a polynomial
of the form

p(z, z) =
′∑

ai1,i2,...,in,j1,j2,...,jnz
i1
1 · zi2

2 · · · zin
n · zj1

1 · zj2
2 · · · zjn

n , (2)

where
∑′ indicates that the summation is taken over all multi-indices (i1, i2, . . . , in)

and (j1, j2, . . . , jn) such that i1/M1 + i2/M2 + · · · + in/Mn = 1 and j1/M1 +
j2/M2 + · · · jn/Mn = 1.

Then, as above, the mapping

w = 1 − iW

w + iW
,

z1 = Z1

(1 + iW)1/M
,

z2 = Z2

(1 + iW)1/M

sends E to an unbounded domain on which translations in the Re W variable act as
automorphisms. Whenever p is not plurisubharmonic, we obtain a non-pseudconvex
example.
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Of course the disc D ⊆ C has noncompact automorphism group. Let

ϕa(ζ ) = ζ − a

1 − aζ

for a ∈C, |a| < 1. Then the automorphisms

{
ζ − (1 − 1/j)

1 − (1 − 1/j)ζ
: j ∈ Z

}

are a sequence of automorphisms of D that have no subsequence converging to an
automorphism. Indeed, any subsequence either converges to the constant function 1
or the constant function −1. It is a fact—see [19]—that any domain in C having
C1 boundary and noncompact automorphism group must be conformally equiva-
lent to the disc. This is true without any topological hypotheses on the domain! In
C

n, the first result of this nature—due to Bun Wong [26] and Rosay [24]—is that
any C2 bounded domain in Cn with a boundary orbit accumulation point that is
strongly pseudoconvex must be biholomorphic to the unit ball B . It is not known in
general which smoothly bounded domains have noncompact automorphism group.
Certainly there are finite type domains with noncompact automorphism group—see
[2, 3]. More on this matter in what follows.

Example 3 In the complex plane C, there are unbounded domains with noncompact
automorphism group that are not the disc. The simplest example is when the domain
Ω is the entire complex plane C. The punctured plane also has this property.

3 New Results

The statement of Theorem 2 makes it desirable to have a formulation purely in terms
of the intrinsic, invariant geometry of the domain. For instance, one might hope to be
able to say something about the completeness of the Kobayashi metric at a boundary
orbit accumulation point. Unfortunately, the following example dashes that hope:

Example 4 Let B ⊆ C
2 be the unit ball with defining function ρ(z) = |z|2 − 1. Let

φ be a C∞
c function on Cn with these properties:

(a) φ is real-valued, and 0 ≤ φ(z) ≤ 1/10 for all z ∈ C
n.

(b) φ is radial about the point (i,0).
(c) suppφ ⊆ B((i,0),1/10).
(d) φ(z) = 1/10 for |z − (i,0)| < 1/20.

Set

Ω ′ = {
z ∈C

2 : −1 + |z|2 + φ(z) < 0
}
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and

Ω =
⋂

−1<a<1

Φa

(
Ω ′),

where

Φa(z1, z2) =
(

z1 − a

1 − az1
,

√
1 − |a|2z2

1 − az1

)
(3)

for a ∈ C, |a| < 1. Then Ω is the unit ball with a groove stretching from (−1,0)

to (1,0). This new domain is strongly pseudoconcave along an entire curve from
(−1,0) to (1,0). Of course the point (1,0) is still a boundary orbit accumulation
point. Indeed the automorphisms Φa , −1 < a < 0, send (0,0) to (1,0). And, along
the curve γ (t) = (t,0), 0 < t < 1, the Kobayashi distance to the boundary point is
infinite.

Now write Φa(z) = (ϕ1
a(z), ϕ2

a(z)). Let the point z̃ be as at the end of Example 1.
We consider, in the same domain Ω as above, the curve

λ : t 
−→ t · Φt (̃z), 0 ≤ t ≤ 1.

Then this curve terminates at (1,0) and is tangent to the boundary of Ω to order
1/2 at that point (as a calculation with the automorphisms in (3) shows). This last
means that |ρ(λ(t))| ≈ C · t1/2, where ρ is a defining function for Ω . For Q ∈ ∂Ω ,
let νQ denote the outward Euclidean unit normal vector at Q. Note that Ref. [20]
shows that, on the domain W = B(0,2) \ B(0,1), near the strongly pseudoconcave
boundary point Q = (−1,0), a point Q∗ = Q − δνQ satisfies the estimate

FΩ
K

(
Q∗, ν

) ≈ δ−3/4.

By scaling this estimate we see that, on the domain W̃ = B(0,2α) \ B(0, α), with
boundary point Q̃ = (−α,0) and interior point Q̃∗ = Q̃−δνQ̃, we have the estimate

FW̃
K

(
Q̃∗, ν

) ≈ α−1/4(αδ)−3/4. (4)

Moreover, in the tangential direction, we have

FΩ̃
K

(
Q̃∗, τ

) ≈ C . (5)

We may utilize these estimates as follows. At a point on the curve λ that is dis-
tance t from the point (1,0) in the normal direction z1, the curve λ is laterally distant
about

√
t from ∂Ω . Hence, by estimate (4), we have that the Kobayashi metric in

the normal direction has size
√

t
−1/4 · (√t · √t)−3/4 = t−7/8.

This, combined with (5), tells us that the curve λ has finite length as t → 1−.
Therefore, at least on a domain with Lipschitz boundary, it is not the case that a

boundary orbit accumulation point will be a point at which the Kobayashi metric is
complete.
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On the positive side, we can prove the following result:

Proposition 1 Let Ω ⊆ C
n be a smoothly bounded domain and P ∈ ∂Ω a boundary

orbit accumulation point that is holomorphically simple (i.e., there is no complex
variety through P that lies in the boundary). Assume that a boundary neighborhood
of P is pseudoconvex. Then it is not possible for Ω to have Levi pseudoconcave
boundary points in any part of ∂Ω .

Proof Let W denote the set of boundary points where the Levi form has a strictly
negative eigenvalue. Thus W ⊆ ∂Ω is a relatively open set. Letting Ω̂ denote the
envelope of holomorphy of Ω , we see that the identity map id extends holomor-
phically to a neighborhood of W . Thus W is naturally identified with a subset
id(W ) ≡ Ŵ ⊆ Ω̂ . If the boundary ∂Ω is holomorphically simple near P then,
for every compact K ⊆ Ω , there is a sequence of automorphisms ϕj such that
ϕj (K) → P uniformly as j → ∞ (this is a standard result, but see [8]). These
automorphisms extend to mappings π ◦ ϕ̃j : Ω̃ → C

n, where π is the projection of
the envelope into C

n. As j → ∞, we see that π ◦ ϕ̃j → P uniformly on compact
subsets of Ω̃ . In particular, for any point Q ∈ W , a sequence ϕj (Q) will approach
P as j → ∞. Since W is invariant under the ϕj , this gives the contradiction that
∂Ω is not pseudoconvex in a neighborhood of P . �

Remark 1 In [5], Bedford and Pinchuk proved the following elegant theorem:

Theorem: Let Ω ⊆ C2 be a domain with real analytic boundary. If there exists a boundary
orbit accumulation point for Ω , then Ω must be biholomorphic to a domain of the form

Em = {
(z1, z2) : |z1|2 + |z2|2m < 1

}

for some positive integer m.

It follows from the Bedford–Pinchuk theorem that the domain must be globally
pseudoconvex. Clearly our Proposition 1 is philosophically related to this result. [We
note that David Catlin has observed—unpublished—that the last theorem actually
holds in the generality of domains of finite type in C

2.] In later papers Bedford and
Pinchuk produced analogous results in C

n.

A well-known conjecture in the subject says this:

The Greene–Krantz Conjecture: Let Ω be a smoothly bounded domain in Cn. If P ∈ ∂Ω

is a boundary orbit accumulation point, then P is a point of finite type in the sense of
Kohn–D’Angelo–Catlin.

This conjecture has not been established in full generality. But results in [13] and
[14] support the conjecture. Now we have:

Proposition 2 Let Ω ⊆ C
2 be a smoothly bounded, pseudoconvex domain. Let

P ∈ ∂Ω be a boundary orbit accumulation point. Assume that the Greene–Krantz
conjecture is true. Then any path ending at P will have infinite length in the
Kobayashi metric.
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Proof This result is almost obvious for the hypothesis implies that P is of finite
type. And now the estimates on the Kobayashi metric in [6], together with the cal-
culations in [1], give the result about infinite length of paths. �

4 A Boundary Orbit Accumulation Point Characterization
of Domains

In [24] and [26], for instance, it is shown that, if a bounded domain has a strongly
pseudoconvex boundary orbit accumulation point, then that domain must be biholo-
morphic to the unit ball in C

n. Put in other words, if two distinct bounded domains
have boundary orbit accumulation points, and if those boundary orbit accumulation
points are both strongly pseudoconvex, then the two domains must be biholomor-
phic (since they are both biholomorphic to the ball).

One might more generally formulate this question as follows:

Suppose that Ω1 and Ω2 are two bounded domains in Cn. Assume that Ω1 has boundary
orbit accumulation point P1 and Ω2 has boundary orbit accumulation point P2. If P1 and
P2 have the same Levi geometry, may we conclude that Ω1 is biholomorphic to Ω2?

I do not know the full answer to this question at this time. However, the following
partial answer may be proved using known techniques:

Proposition 3 Let Ω1, Ω2 be bounded domains in C
n. Let P1 ∈ ∂Ω1 and P2 ∈ ∂Ω2

each be boundary orbit accumulation points. Assume that ∂Ωj is smooth near Pj ,
j = 1,2. Suppose that each Pj is of finite type in the sense of Kohn–Catlin–
D’Angelo and is also a peak point. Finally assume that there is a neighborhood
U1 of P1 and a neighborhood U2 of P2 and a biholomorphic mapping

Φ : U1 ∩ Ω1 → U2 ∩ Ω2

such that (i) Φ continues to a diffeomorphism of ∂Ω1 ∩ U1 to ∂Ω2 ∩ U2, (ii)
Φ(P1) = P2.

Then Ω1 is biholomorphic to Ω2.

Proof Choose a point X1 ∈ Ω1 and automorphisms ϕj of Ω1 so that
ϕj (X1) → P1. Likewise choose a point X2 ∈ Ω2 and automorphisms ψj of Ω2

such that ψj(X2) → P2. A standard argument (see [18], Chap. 11) shows that, for
any compact set K ⊆ Ω1, ϕj (z) converges to P1 uniformly for z ∈ K . A similar
statement holds for Ω2.

Let K be a large compact set inside Ω1. Choose j so large that ϕj (K) ⊆ U1 ∩Ω1.
Likewise let L be a large compact set inside Ω2. Choose k so large that ψk(L) ⊆
U2 ∩ Ω2. Let ε > 0 be small and set Uε

1 = {z ∈ U1 : dist(z, cU1 > ε)}. Similarly set
Uε

2 = {z ∈ U2 : dist(z, cU2 > ε)}. By shrinking ε if necessary, we may assume that
Φ(ϕj (K)) ⊆ Uε

2 . By enlarging L if necessary, we may suppose that ϕk(L) ⊇ Uε
2 .
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Now consider (ψk)
−1 ◦ Φ ◦ ϕj . This will be a univalent holomorphic mapping

that takes K ⊆ Ω1 to L, and the mapping is invertible. We may similarly assume
that the inverse mapping takes L to K . The set of all such mappings, as K exhausts
Ω1 and L exhausts Ω2, forms a normal family. And we may extract a convergent
subsequence that converges to a biholomorphic mapping of Ω1 to Ω2. That is the
result that we seek. �

There are a number of different approaches to the classical Bun Wong–Rosay
theorem. Useful references are [8, 9, 15–17, 24, 26].

5 Concluding Remarks

Recall that, in Remark 1, we discussed a result of Bedford and Pinchuk that charac-
terizes complex ellipsoids in terms of noncompact automorphism group actions.

But it must be pointed out that, in higher dimensions, we cannot hope for a con-
clusion as simple as “the domain must be a complex ellipsoid.” For consider the
domain

Ω∗ = {
(z1, z2, z3) ∈C

3 : |z1|2 + (|z2|2 + |z3|2
)2

< 1
}
.

It has automorphisms of the form

Φa(z1, z2, z3) =
(

z1 − a

1 − az1
,

4
√

1 − |a|2z2√
1 − az1

,

4
√

1 − |a|2z3√
1 − az1

)

for a ∈ C, |a| < 1. If we let a take the values 1 − 1/j for j = 1,2, . . . , then we
see immediately that Ω∗ has noncompact automorphism group. And Ω∗ is not an
ellipsoid, even biholomorphically (see [7]). It has been conjectured by Catlin and
others (see [21] for the details) that the correct conclusion in higher dimensions
is that the defining function of the domain should satisfy a certain homogeneity
condition. Results along these lines have been obtained in [4].

It has been noted that the Greene–Krantz conjecture asserts that a boundary orbit
accumulation point must be of finite type. There is some evidence to support the
conjecture—see, for instance, [13, 14]. If it turns out to be true, then the Bedford–
Pinchuk theorem cited above can probably be streamlined to say that a smoothly
bounded domain in C

2 with noncompact automorphism group must be an ellip-
soid. We note also that the results of the paper [25]—we mention particularly The-
orem 1.1—may be conceptually simplified with the Greene–Krantz conjecture.

It is certainly a matter of some interest to understand the nature of boundary orbit
accumulation points. We know that they must be pseudoconvex, and the Greene–
Krantz conjecture posits even more specific information about these points. Another
subject of some study is boundary orbit accumulation sets—see, for instance, [12]
and [22]. Much more can in principle be said about these sets.
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Automorphism groups are in some sense an invariant that is a substitute for the
lack in several complex variables of a uniformization theorem or a Riemann map-
ping theorem. It is in our best interest to develop their properties so that they can be
used effectively to study and classify domains up to biholomorphic equivalence.

We hope to study these matters further in future papers.
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Microlocal Analysis of Elliptical Radon
Transforms with Foci on a Line

Venkateswaran P. Krishnan, Howard Levinson, and Eric Todd Quinto

Abstract In this paper, we take a microlocal approach to the study of an integral ge-
ometric problem involving integrals of a function on the plane over two-dimensional
sets of ellipses on the plane. We focus on two cases: (a) the family of ellipses where
one focus is fixed at the origin and the other moves along the x-axis, and (b) the
family of ellipses having a common offset geometry.

For case (a), we characterize the Radon transform as a Fourier integral operator
associated to a fold and blowdown. This has implications on how the operator adds
singularities, how backprojection reconstructions will show those singularities, and
in comparison of the strengths of the original and added singularities in a Sobolev
sense.

For case (b), we show that this Radon transform has similar structure to case (a):
it is a Fourier integral operator associated to a fold and blowdown. This case is
related to previous results of authors one and three. We characterize singularities
that are added by the reconstruction operator, and we present reconstructions from
the authors’ algorithm that illustrate the microlocal properties.

1 Introduction

In Synthetic Aperture Radar (SAR) imaging, a region of interest on the surface of
the earth is illuminated by electromagnetic waves from a moving airborne platform.
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The goal is to reconstruct an image of the region based on the measurement of
scattered waves. For an in-depth treatment of SAR imaging, we refer the reader
to [6, 8]. SAR imaging is similar to other imaging problems such as Sonar where
acoustic waves are used to reconstruct the shape of objects on the ocean floor [3].

Depending on the acquisition geometry, the transmitter and the receiver can be
located on the same platform (monostatic SAR imaging) or different airborne plat-
forms (bistatic SAR imaging).

There are several advantages to considering bistatic data acquisition geometries.
The receivers, compared to the transmitters, are passive and hence are more diffi-
cult to detect. Hence, by separating their locations, the receivers alone can be in an
unsafe environment, while the transmitters are in a safe environment. Bistatic SAR
acquisition geometry arises naturally when imaging using a stationary transmitter
such as a television or radio broadcasting station. Finally, bistatic SAR systems are
more resistant to electronic countermeasures such as target shaping to reduce scat-
tering in the direction of incident waves [32].

Under certain simplifying assumptions, the scattered data can be viewed as inte-
grals of a function over a family of ellipses in the case of bistatic SAR, compared to
a family of circles for the case of monostatic SAR. Thus, imaging using a bistatic
SAR system leads to the question of recovering a function given its integrals over
a family of ellipses. With this as our motivation, we analyze two elliptical Radon
transforms in this paper. In Sect. 2 we give microlocal properties of the transform
that integrates over ellipses with one focus fixed at the origin and the other focus
moving on a line. We show using microlocal analysis why there are added singu-
larities in reconstructions. In Sect. 3 we consider the elliptical transform involving
a common offset geometry, where the foci are on a line at a fixed positive distance
apart and move along this line. In Sect. 4 we describe our algorithm and reconstruc-
tions from that algorithm. As before, we explain, using microlocal analysis, why
there are added singularities in the reconstructions.

Radon transforms over circles and spheres have a rich theory starting from the
early 1900s. In 1916, Funk inverted the transform integrating over great circles on
the sphere [22]. Then researchers such as John [33], Courant and Hilbert [9], Hel-
gason [30], and many others proved important results for spherical integrals in R

n

and manifolds. The article [58] gives a very readable summary of the large number
of themes in the field up to that point. In the article [1], microlocal and harmonic
analysis are used to characterize invertibility for the circular Radon transform with
centers on a curve.

Our elliptical transform in Sect. 2 integrates over ellipses that enclose the origin.
Helgason [30] proved a support theorem for the transform integrating over spheres
in R

n enclosing the origin under the assumption that the function is rapidly decaying
at infinity. Globevnik [23, Theorem 1] characterizes the null space of the Radon
transform integrating over circles enclosing the origin.

Leon Ehrenpreis considered spherical Radon transforms in several contexts. For
example, [12] is a lovely article involving integrals over spheres tangent to a set,
and he discussed spherical integrals in relation to Huygens Principle in his book
The Universality of the Radon Transform [13, p. 132 ff]. In the book, he applied



Microlocal Analysis of Elliptical Radon Transforms with Foci on a Line 165

Radon transforms to PDE, harmonic analysis, and Fourier analysis, as well as to-
mography and even topics related to number theory. He developed a theory of the
nonparametric Radon transform [13, p. 4 ff], and our two elliptic transforms can be
put in this framework. We work the details out for case (a) in Example 1.

Less is known about integrals over ellipses. Volchkov [56] and others considered
convolution integrals over sets such as ellipsoids. Elliptical integrals come up in
ultrasound [2, 54] as well. The sound source and receiver are at different locations,
and the sound wavefronts are elliptical giving rise to elliptical Radon transforms.

Microlocal analysis has a long history in integral geometry starting with [27–
29]. Then many other authors have applied microlocal analysis to integral geometric
problems. A very partial listing of the themes and a few papers in those areas include
microlocal properties of the operators and their compositions [25, 26, 46, 52, 53],
applications to support theorems and uniqueness [1, 4, 5, 35, 37, 48], applications
to SAR imaging [7, 16, 17, 36, 41, 43], and applications to other modalities in
tomography including X-ray CT [21, 34, 47], SPECT [50], electron microscopy
[51], and seismic imaging [10, 11, 18, 19, 40, 45].

2 Analysis of an Elliptical Radon Transform with One
Fixed Focus

In this section, we study the microlocal analysis of an elliptical Radon transform
integrating over ellipses in which one focus is fixed at the origin and the other is
free to move along the horizontal axis. As explained in the introduction, this ac-
quisition geometry is related to one in SAR imaging. The receiver is passive, often
smaller and less expensive to replace than the transmitter. Therefore, in dangerous
environments, it might be advantageous to let the transmitter and receiver move
independently. One useful case to study is where the receiver can use a radio or cell-
phone transmitter that is already in the environment. Thus, the radar problem has a
fixed transmitter location, and movable receiver becomes of interest. The transmitter
becomes one fixed focus of the ellipsoidal wavefronts, and the receiver becomes the
other focus.

The transform we now study is motivated by this SAR transform. It is an elliptical
Radon transform with one focus fixed on the ground and the other moving along the
horizontal axis. For the SAR transform, the transmitter and receiver would be above
the ground. From now on, we will let X = R

2 and denote points in X as (x1, x2).
We let

Yo = {
(s,L) : L > |s|}, (1)

where the subscript o refers to the fact that one focus is at the origin. We parameter-
ize the ellipse with foci (0,0) and (s,0) and major diameter L by

Eo(s,L) = {
x ∈R

2 : |x| + |x − (s,0)| = L
}

for (s,L) ∈ Yo.

The restriction L > |s| in the definition of Yo is required because the major diameter
must be longer than the distance between the foci.
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The integral geometry problem that we are interested in is recovery of f from

Rof (s,L) =
∫

|x|+|x−(s,0)|=L

f (x)dl(x) for (s,L) ∈ Yo.

Here dl is the arc-length measure. This transform is just the integral of f over the
ellipse Eo(s,L).

Example 1 Ehrenpreis’s nonparametric Radon transform is defined as integrals over
sets which are defined by spreads [13, p. 4ff]. Spreads are foliations of space that
depend on a parameter. For each fixed value of the parameter, the leaves of the
foliation define manifolds the Radon transform integrates over. For all parameters,
all the leaves of all the foliations are diffeomorphic copies of one manifold, such as a
line, plane, ellipse, or circle. The transform Ro is easily put into this framework. We
fix s, and then, for L > s, the map L �→ Eo(s,L) foliates the plane (except for the
segment between the origin and s) by ellipses. For any s, the leaves of the foliations
are ellipses, and so they are diffeomorphic.

Because of the nonuniqueness results for integrals over spheres enclosing the
origin [23], we expect that the transform Ro is not invertible. However, we might
still be able to reconstruct singularities, so we will now understand what this trans-
form and its adjoint do to singularities by analyzing the microlocal properties of the
transform Ro and the imaging operator R∗

oRo (see Remark 1).
Our first theorem is the following:

Theorem 1 Ro is a Fourier integral operator of order −1/2 with canonical rela-
tion Λo defined by

Λo =
{(

s,L,−ω
x1 − s

√
(x1 − s)2 + x2

2

,−ω;

x1, x2,−ω

(
x1√

x2
1 + x2

2

+ x1 − s
√

(x1 − s)2 + x2
2

)
,

− ω

(
x2√

x2
1 + x2

2

+ x2√
(x1 − s)2 + x2

2

))

: ω �= 0, (s,L) ∈ Yo, x ∈ Eo(s,L)

}

and with global parameterization (s, x1, x2,ω). The left projection πL : Λo →
T ∗Yo \ 0 has a fold singularity along Σ = {(s, x1,0,ω)}. The right projection
πR : Λo → T ∗X \ 0 has a blowdown singularity along Σ .

For the definitions of fold and blowdown singularities, we refer the reader to
[24] or [25]. While we do not show this here, knowing that πL is a fold and πR is a
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blowdown has implications for the comparison of the strengths (in a Sobolev sense)
of the original and added singularities discussed in Theorem 2.

Proof We use the framework of [27–29] and introduce the incidence relation of Ro.
This is the set

Zo = {
(s,L,x) : (s,L) ∈ Yo, x ∈ Eo(s,L)

}
.

Then by results in [27, 29] we know that Ro is an elliptic Fourier integral operator
of order −1/2 associated to the Lagrangian manifold N∗(Zo) \ 0 (since we will
show that neither πL nor πR maps to the zero section). Computing N∗Zo \ 0 and
twisting it gives the canonical relation Λo above. It is easy to see that (s, x1, x2,ω)

is a global parameterization of Λo.
We have

πL(s, x,ω) =
(

s, |x| + |x − (s,0)|,−ω
x1 − s

√
(x1 − s)2 + x2

2

,−ω

)
.

Since ω �= 0, we have that πL : Λo → T ∗Yo \ 0. Now

(πL)∗ =

⎛

⎜⎜⎜
⎝

1 0 0 0
∗ (

x1|x| + x1−s
|x−(s,0)| ) (

x2|x| + x2|x−(s,0)| ) ∗
∗ −ω

x2
2

|x−(s,0)|3 ω
(x1−s)x2
|x−(s,0)|3 ∗

0 0 0 −1

⎞

⎟⎟⎟
⎠

and

det
(
(πL)∗

) = ω
x2

|x − (s,0)|2
(

1 + x1(x1 − s) + x2
2

|x||x − (s,0)|
)

.

Lemma 1 Under the hypothesis of (1), 1 + x1(x1−s)+x2
2|x||x−(s,0)| > 0.

Proof It is easy to see that (x1(x1 − s) + x2
2)2 < |x|2|x − (s,0)|2 is equivalent to

x2
2s2 > 0. By the hypothesis that L > |s|, if x2 = 0, the term x1(x1−s)

|x1||x1−s| = 1 for all x1
and s, from which the lemma follows. �

Therefore det((πL)∗) = 0 if and only if x2 = 0. Also since d(det(πL)∗) on Σ is
nonvanishing, we have that πL drops rank by one simply on Σ .

Now it remains to show that T Σ ∩ Kernel(πL)∗ = {0}. This follows from the
fact that, above Σ , Kernel(πL)∗ = span( ∂

∂x2
) and T Σ = span( ∂

∂s
, ∂

∂x1
, ∂

∂ω
). This

concludes the proof that πL : Λo → T ∗Yo \ 0 has a fold singularity along Σ .
Next we consider πR : Λo → T ∗X:

πR(s, x,ω) =
(

x1, x2,−ω

(
x1

|x| + x1 − s

|x − (s,0)|
)

,−ω

(
x2

|x| + x2

|x − (s,0)|
))

.
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We now show that πR : Λo → T ∗X \ 0. For suppose πR maps to the zero section,
then x2 = 0. Now since L > |s|, we have that x1 and x1 − s have the same sign.
Therefore, x1|x1

+ x1−s
|x1−s| is never 0. Hence πR never maps to the zero section.

Now

(πR)∗ =

⎛

⎜⎜
⎜
⎝

0 1 0 0
0 0 1 0

ω
x2

2
|x−(s,0)|3 ∗ ∗ −(

x1|x| + x1−s
|x−(s,0)| )

−ω
(x1−s)x2
|x−(s,0)|3 ∗ ∗ ( x2|x| + x2|x−(s,0)| )

⎞

⎟⎟
⎟
⎠

.

Since det((πR)∗) = det((πL)∗), πR drops ranks by one simply along Σ . Further-
more above Σ , since Kernel(πR)∗ = span( ∂

∂s
) ⊂ T Σ , πR has a blowdown singular-

ity along Σ . �

Next we analyze the wavefront set of the imaging operator R∗
oRo.

Remark 1 For the composition of Ro with R∗
o to be well defined, we have to mod-

ify Ro by introducing an infinitely differentiable cut-off function χo defined on Yo

that is identically 1 on a compact subset of Yo and 0 outside a bigger compact sub-
set of Yo. In the next theorem, we assume that R∗

o is modified using this cut-off
function χo.

Theorem 2 The wavefront set of the imaging operator satisfies the following:

WF
(
R∗

oRo

) ⊂ Δ ∪ C1,

where

Δ := {
(x1, x2, ξ1, ξ2;x1, x2, ξ1, ξ2)

}
and

C1 := {
(x1, x2, ξ1, ξ2;x1,−x2, ξ1,−ξ2)

}
.

Here over the point x = (x1, x2), (ξ1, ξ2) consists of all nonzero multiples of the
vector

−∇x

(|x| + |x − (s,0)|)

for all s ∈ R.

Remark 2 Given a point x and a focus location (s,0), a vector (ξ1, ξ2) as in the
theorem above is a vector perpendicular to the ellipse Eo(s,L) (where L = |x| +
|x − (s,0)|) at the point x.

Note that Remark 4 in Sect. 3 applies to this transform and there is the left–right
ambiguity for R∗

oRo as in the common offset case discussed in that section. The
implications for imaging are the same as for Theorem 4 in the common offset case;
singularities of a function f on one side of the x1 axis can be reflected to the other
side in the reconstruction R∗

oRof .
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Proof Using the Hörmander–Sato Lemma, we have that WF(R∗
oR) ⊂ Λt

o ◦Λo. The
composition of these two canonical relations is given as follows:

Λt
o ◦ Λo =

{(
x1, x2,−ω

(
x1

|x| + x1 − s

|x − (s,0)|
)

,−ω

(
x2

|x| + x2

|x − (s,0)|
)

;

y1, y2,−ω

(
y1

|y| + y1 − s

|y − (s,0)|
)

,−ω

(
y2

|y| + y2

|y − (s,0)|
))

: |x| + |x − (s,0)| = |y| + |y − (s,0)| x1 − s

|x − (s,0)| = y1 − s

|y − (s,0)|
}
.

Lemma 2 For all s > 0, the set of all (x1, x2), (y1, y2) that satisfy

|x| + |x − (s,0)| = |y| + |y − (s,0)|, (2)

x1 − s

|x − (s,0)| = y1 − s

|y − (s,0)| (3)

necessarily satisfy the relations: x1 = y1 and x2 = ±y2.

Proof It is straightforward to verify for the case s = 0. For s �= 0, we use the fol-
lowing coordinate change to elliptical coordinates:

x1 = s

2
+ s

2
coshρ cos θ, y1 = s

2
+ s

2
coshρ′ cos θ ′,

x2 = s

2
sinhρ sin θ, y2 = s

2
sinhρ′ sin θ ′.

From the first equation in (2), we have s cosρ = s cosρ′, which then gives ρ = ρ′.
From the second equation in (2), we have

coshρ cos θ − 1

coshρ − cos θ
= coshρ′ cos θ ′ − 1

coshρ′ − cos θ ′ .

Using the fact that coshρ = coshρ′ and simplifying this, we obtain, cos θ = cos θ ′.
Therefore, θ = 2nπ ± θ ′. This then gives sin θ = ± sin θ ′. Now going back to
(x1, y1) and (x2, y2), we have x1 = y1 and x2 = ±y2. �

Now to finish the proof of the theorem, when x = y, Λt
o ◦ Λo ⊂ Δ =

{(x, ξ ;x, ξ)} and when x1 = y1 and x2 = −y2, Λt
o ◦ Λo ⊂ C1 = {(x1, x2, ξ1, ξ2;

x1,−x2, ξ1,−ξ2)}. �

3 Analysis of a Common Offset Elliptical Radon Transform

In this section, we consider an elliptical Radon transform over a family of ellipses
in which the foci move along the x1-axis and are spaced a constant distance apart.
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We parameterize the right and left foci, respectively, by

γT (s) = (s + α,0) and γR(s) = (s − α,0),

where α > 0 is fixed. If this were a radar problem, then γT would be the location of
the transmitter and γR would be the location of the receiver. In radar imaging, the
phrase “common offset” comes from the fact that the transmitter γT and receiver γR

are offset a fixed distance from each other. In the case of common offset SAR, the
transmitter and receiver (the foci of an ellipsoid) are on a line h > 0 units above the
plane to be reconstructed, and they travel along a line with one behind the other.

The transform we now study is motivated by this SAR transform. It is an elliptical
Radon transform in which the foci are a fixed distance apart as they move along the
x1 axis in the plane. Again, X = R

2, and we let

Yc = {
(s,L) : L > 2α

}
, (4)

where the subscript c refers to common offset. The ellipse with foci γT (s) and γR(s)

and major diameter L is denoted

Ec(s,L) = {
x ∈R

2 : ∣∣x − γT (s)
∣∣ + ∣∣x − γR(s)

∣∣ = L
}

for (s,L) ∈ Yc.

The restriction L > 2α is needed because the major diameter of the ellipse must be
longer than the distance between the foci.

In this section, we consider the integral geometry problem of recovery of f from

Rcf (s,L) =
∫

x∈Ec(s,L)

f (x)dl(x) for (s, t) ∈ Yc, (5)

which is the integral of f over the ellipse Ec(s,L) in arc-length measure. As we dis-
cussed for Ro in Example 1, Rc can be put into Ehrenpreis’s framework of spreads.

This case is very closely related to the results on common offset SAR in [36],
and we will state our theorems and then explain how they follow from the results
in [36].

Similar to Theorem 1, our first theorem in this section shows that Rc is an FIO,
gives its canonical relation, and the mapping properties of the left and right projec-
tions from this canonical relation.

Theorem 3 The common offset elliptical transform Rc is a Fourier integral opera-
tor of order −1/2 with canonical relation Λc defined by

Λc =
{(

s,L,−ω

(
x1 − s − α

|x − γT (s)| + x1 − s + α

|x − γR(s)|
)

,−ω

)
;

(
x1, x2,−ω

(
x1 − s − α

|x − γT (s)| + x1 − s + α

|x − γR(s)|
)

,
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− ω

(
x2

|x − γT (s)| + x2

|x − γR(s)|
))

: L =
√

(x1 − s − α)2 + x2
2 +

√
(x1 − s + α)2 + x2

2 , ω �= 0

}
. (6)

Furthermore the map λ taking (s, x1, x2,ω) to the point in Λ given above is a
global parameterization for Λ.

Finally, the projection πL : Λc → T ∗Yc \ 0 has a fold along Σ = {s, x1,0,ω}
and πR : Λc → T ∗X \ 0 has a blowdown along Σ .

Proof The assertion (6) can be proven as in [36], but here, as in Theorem 1, we
outline another proof using the framework of [27–29]. The incidence relation of Rc

is the set

Zc = {
(x, s,L) : (s,L) ∈ Yc, x ∈ Ec(s,L)

}
.

Then by results in [27, 29] we know Rc is an elliptic Fourier integral operator of
order −1/2 associated to Lagrangian manifold N∗(Zc) \ 0 (since we will show in
the course of the proof that neither πL nor πR maps to the zero section). Computing
N∗(Zc) and twisting it gives the canonical relation (6). This is the same as the
canonical relation in [36] for h = 0 where h is the elevation of the transmitter and
receiver above the reconstruction plane.

In the parameterization λ given in the theorem, the projection πL : Λc → T ∗Yc

is given by

πL(s, x1, x2,ω)

=
(

s,
(∣∣x − γT (s)

∣∣ + ∣∣x − γR(s)
∣∣),−ω

(
x1 − s − α

|x − γT (s)| + x1 − s + α

|x − γR(s)|
)

,−ω

)
.

(7)

It is clear that πL maps to T ∗Yc \ 0 since ω �= 0. Now from [36], by letting h = 0

there, we get det((πL)∗) = ωx2(
1

|x−γT (s)|2| + 1
|x−γR(s)|2 )(1 + (x1−s)2+x2

2−α2

|x−γT (s)||x−γR(s)| ). It is

easy to see that ((x1 − s)2 + x2
2 − α2)2 < (|x − γT (s)||x − γR(s)|)2 is equivalent to

4x2
2α2 > 0. Since L > 2α, if x2 = 0, (x1−s)2−α2

|x1−s−α||x1−s+α| = 1. Therefore, det((πL)∗) =
0 if and only if x2 = 0. Also since d(det(πL)∗) on Σ is nonvanishing, we have that
πL drops rank by one simply on Σ . Now as in the proof of Theorem 1, we have that
T Σ = span( ∂

∂s
, ∂

∂x1
, ∂

∂ω
) and Kernel((πL)∗) = span( ∂

∂x2
) above Σ . This shows that

πL : Λc → T ∗Yc \ 0 has a fold along Σ .
Next we consider πR : Λ → T ∗X. This is given by

πR(s, x1, x2,ω)

=
(

x1, x2,−ω

(
x1 − s − α

|x − γT (s)| + x1 − s − α

|x − γR(s)|
)

,

− ω

(
x2

|x − γT (s)| + x2

|x − γR(s)|
))

. (8)
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We now show that πR does not map to the zero section. For πR to map to the
zero section, we must have x2 = 0 and

x1 − s − α

|x − γT (s)| + x1 − s − α

|x − γR(s)| = 0. (9)

Using x2 = 0 in (9), we see that

x1 − s − α

|x1 − s − α| + x1 − s + α

|x1 − s + α| = 0. (10)

However, since (x1,0) is on an ellipse with foci (s − α,0) and (s + α,0), either
x1 < s − α or x1 > s + α. Therefore, both terms in (10) are nonzero and have the
same sign. This shows that πR does not map to the zero section.

Now we show that πR has a blowdown singularity along Σ . (πR)∗ is the same as
in [36], by letting h = 0 there. Then as in [36], we have that Kernel((πR)∗) ⊂ T Σ .
Therefore, πR has a blowdown singularity along Σ . �

Next we consider the imaging operators R∗
c Rc and R∗

c DRc where D is a dif-
ferential operator on Yc . As in the last section (see Remark 1), we modify Rc first
by multiplying it by an infinitely differentiable cutoff function χc that is identically
1 in a compact subset of Yc and 0 outside a bigger compact subset.

Theorem 4 The wavefront sets of R∗
c Rc and R∗

c DRc satisfy the following:

WF
(
R∗

c Rc

) ⊂ Δ ∪ C1, (11)

WF
(
R∗

c DRc

) ⊂ Δ ∪ C1, (12)

where

Δ := {
(x1, x2, ξ1, ξ2;x1, x2, ξ1, ξ2)

}
and

C1 := {
(x1, x2, ξ1, ξ2;x1,−x2, ξ1,−ξ2)

}
.

Here, over the point x = (x1, x2), (ξ1, ξ2) consists of all nonzero multiples of the
vectors

−∇x

(∣∣x − γT (s)
∣∣ + ∣∣x − γR(s)

∣∣)

for all s ∈ R.

We include the differential operator D in (12) because we will discuss a recon-
struction algorithm using this type of operator in Sect. 4.

Remark 3 Similar to Remark 2, note that given a point x and foci locations γT (s)

and γR(s), a vector (ξ1, ξ2) as in the theorem above is a vector perpendicular to the
ellipse Ec(s,L) where (L = |x − γT (s)| + |x − γR(s)|) at the point x.
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Remark 4 Theorem 4 describes the added singularities in any reconstruction algo-
rithm R∗

c DRcf . Let f be a function of compact support in X. Using (12), one may
infer [31] that

WF
(
R∗

c DRc

)
(f ) ⊂ (

Δ ◦ WF(f )
) ∪ (

C1 ◦ WF(f )
)
.

Now,

Δ ◦ WF(f ) = WF(f ) (13)

and

C1 ◦ WF(f ) = {
(x1,−x2, ξ1,−ξ2) : (x1, x2, ξ1, ξ2) ∈ WF(f )

}
. (14)

Therefore, the reconstruction operator R∗
c DRcf will show singularities of f by

(13). However, the operator will also put singularities at the mirror points with re-
spect to the x1 axis. This is demonstrated by (14) because a singularity above the
point (x1, x2) can cause a singularity above (x1,−x2). We will observe this so called
left–right ambiguity in our reconstructions in Sect. 4.2. Finally, we note that the vec-
tors (ξ1; ξ2) are all perpendicular to ellipses in the data set because of the condition
on (ξ1; ξ2) given at the end of Theorem 4.

Proof The proof is similar to the one give in [36]. Since we use a slightly different
coordinate system, we will give it for completeness.

By the Hörmander–Sato Lemma, we have that WF(R∗
c Rc) ⊂ Λt

c ◦ Λc, where

Λt
c ◦ Λc

=
{(

x1, x2,−ω

(
x1 − s − α

|x − γT (s)| + x1 − s + α

|x − γR(s)|
)

,

− ω

(
x2

|x − γT (s)| + x2

|x − γR(s)|
))

;
(

y1, y2,−ω

(
y1 − s − α

|y − γT (s)| + y1 − s + α

|y − γR(s)|
)

,−ω

(
y2

|y − γT (s)| + y2

|y − γR(s)|
))

: ∣∣x − γT (s)
∣∣ + ∣∣x − γR(s)

∣∣ = ∣∣y − γT (s)
∣∣ + ∣∣y − γR(s)

∣∣,

x1 − s − α

|x − γT (s)| + x1 − s + α

|x − γR(s)| = y1 − s − α

|y − γT (s)| + y1 − s + α

|y − γR(s)| , ω �= 0

}
.

We now obtain a relation between (x1, x2) and (y1, y2). This is given by the follow-
ing lemma.

Lemma 3 For all s, the set of all (x1, x2), (y1, y2) that satisfy
∣∣x − γT (s)

∣∣ + ∣∣x − γR(s)
∣∣ = ∣∣y − γT (s)

∣∣ + ∣∣y − γR(s)
∣∣, (15)

x1 − s − α

|x − γT (s)| + x1 − s + α

|x − γR(s)| = y1 − s − α

|y − γT (s)| + y1 − s + α

|y − γR(s)| , (16)

necessarily satisfy the following relations: x1 = y1 and x2 = ±y2.
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Proof In order to show this, we use the following change of coordinates:

x1 = s + α coshρ cos θ, y1 = s + α coshρ′ cos θ ′,

x2 = α sinhρ sin θ, y2 = α sinhρ′ sin θ ′.

Using this change of coordinates, we have
∣
∣x − γT (s)

∣
∣ = α(coshρ − cos θ),

∣
∣x − γR(s)

∣
∣ = α(coshρ + cos θ),

x1 − s − α

|x − γT (s)| = coshρ cos θ − 1

coshρ − cos θ
,

x1 − s + α

|x − γR(s)| = coshρ cos θ + 1

coshρ + cos θ
.

(17)

The terms involving y are obtained similarly. Now (15) and (16) transform as fol-
lows:

2 coshρ = 2 coshρ′,

coshρ cos θ − 1

coshρ − cos θ
+ coshρ cos θ + 1

coshρ + cos θ
= coshρ′ cos θ ′ − 1

coshρ′ − cos θ ′ + coshρ′ cos θ ′ + 1

coshρ′ + cos θ ′ .

Using the first equality in the second equation, we have

cos θ

cosh2 ρ − cos2 θ
= cos θ ′

cosh2 ρ − cos2 θ ′ .

This gives cos θ = cos θ ′. Therefore, θ = 2nπ ± θ ′, which then gives sin θ =
± sin θ ′. Therefore, in terms of (x1, x2) and (y1, y2), we have x1 = y1 and x2 =
±y2. �

Now to finish the proof of the theorem, when x1 = y1 and x2 = y2, there is
contribution to WF(R∗

c Rc) contained in the diagonal set Δ := {(x1, x2, ξ1, ξ2;
x1, x2, ξ1, ξ2)} and when x1 = y1 and x2 = −y2, we have a contribution to
WF(R∗

c Rc) contained in C1, where C1 := {(x1, x2, ξ1, ξ2;x1,−x2, ξ1,−ξ2)}. We
restrict to vectors perpendicular to ellipses in the data set, vectors given by the condi-
tion at the end of Theorem 4, because these are the vectors in πR(Λc) in (8). Finally
note that introducing a differential operator D does not add any new singularities,
and so the same proof holds for the analysis of WF(R∗

c DRc). This completes the
proof of the theorem. �

4 Our Algorithm and Reconstructions for the Common Offset
Elliptical Radon Transform

In this section we describe the authors’ algorithm and the refinements and imple-
mentation from [38] for the common-offset ellipse problem that was discussed in
Sect. 3. Recall that the forward operator Rc and its dual R∗

c are both of order −1/2.
Our reconstruction operator is

Λ(f ) = R∗
c

(
χcD

(
Rc(f )

))
, (18)
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where D is a well-chosen second-order differential operator, and χc is a compactly
supported cut off in L. Therefore, Λ is an operator of order one, so it emphasizes
boundaries and other singularities.

One includes the cutoff function χc because Rc(f ) does not have compact sup-
port in general, even if f has compact support. Therefore, one cannot evaluate R∗

c

on Rc(f ) in general, without this cutoff. We will provide more details about χc and
the differential operator D later in this section, but for the moment we will discuss
this general type of algorithm.

An algorithm like (18) is called a derivative-backprojection operator because it
takes a derivative and then takes some type of dual operator, a so-called backpro-
jection operator. Such an algorithm will, typically, reconstruct singularities of the
object, such as jumps at boundaries. It will image shapes and locations of objects
rather than density values, and it is not an inversion method. Backprojection algo-
rithms typically use other filters besides derivatives, and such algorithms have been
considered in the context of bistatic SAR imaging in [57].

Therefore, researchers need to understand which singularities the algorithm re-
constructs, which singularities are not imaged, and which singularities can be added
to the reconstruction by the algorithm. This is one reason microlocal analysis and
theorems in Sect. 3 are important.

Derivative-backprojection algorithms are useful in many problems, in particular
when there is no inversion formula, when there is limited data, and when one is
interested only in shapes, not density values.

The earliest modern tomography algorithm of this type is Lambda tomography,
which was independently developed by Smith and Vainberg [55] (see [14, 15] for
the state of the art). This algorithm is for planar X-ray tomography, and it is useful in
medical [14] and industrial tomography (e.g., [49]). The planar Lambda operator is
an elliptic pseudodifferential operator, so the reconstruction shows all singularities.
However, in limited angle tomography some singularities can be invisible, as in
electron microscopy [51].

In three-dimensional tomography problems, singularities can be spread, and ar-
tifacts can be created that are of the same strength as the original singularities. This
occurs in local backprojection algorithms for cone beam 3-D CT (e.g., [34, 39]),
and this was proven in [21] (see [25] for general admissible line complexes on
manifolds). A derivative-backprojection reconstruction algorithm was developed for
slant-hole SPECT in [50]. It was shown in [20] that if one chooses the right differen-
tial operator D, then the added singularities are suppressed in relation to the genuine
singularities, and so they are less obvious in the reconstruction. Unfortunately, Rc

spreads singularities in a more complicated way than the slant-hole SPECT trans-
form, and it is an open problem to find a differential operator to globally decrease
the strength of the added singularities.

4.1 Our Algorithm

The choices of the differential operator D and of the cutoff function χc in our re-
construction operator Λ (18) are important, and we describe them in this section.
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Fig. 1 The top figure shows
the ellipse E(s,L) tangent to
a ball at the top point of the
minor axis. The figure on the
lower left shows the ellipse if
L is increased slightly, and
the ellipse intersects the ball.
The figure on the lower right
shows the ellipse if s is
increased slightly. In this
case, the ellipse remains
outside the ball

It is shown in [38] that the operator

D = − ∂2

∂L2
(19)

gives better reconstructions than the operator − ∂2

∂s2 . Boundaries are imaged more
clearly as we will now explain using Fig. 1. Let f be the characteristic function
of the ball in Fig. 1, and let x be the point of tangency of the ellipse in the top
picture in Fig. 1. One can see from the lower left image in Fig. 1 that because the
ellipse moves into the ball as L is increased, and the integral, Rcf (s,L), increases

from zero like a square root function. Therefore ∂2

∂L2 Rcf will be unbounded at

this ellipse. The reconstruction operator, R∗
c

∂2

∂L2 Rcf , averages ∂2

∂L2 Rcf all ellipses
through x. Therefore, the reconstruction at x will be large.

However, movement in the s (horizontal) direction keeps the ellipse outside of

the ball, so Rcf (s,L) remains zero, and ∂2

∂s2 Rcf will be zero at this ellipse. For
ellipses nearby, the s derivative of the data will also be small. Therefore, the recon-

struction operator, R∗
c

∂2

∂s2 Rcf , which averages this derivative on all ellipses through

x will be small. These horizontal boundaries were almost invisible in the ∂2/∂s2 re-
constructions in [38]. If the ellipse was tangent at another point, then as s increased,
the ellipse could intersect the ball, but Rcf would, in general, increase from zero
more slowly than if L were increased and so the derivative in s would be smaller
than the derivative in L.

4.2 Reconstructions

We now present reconstructions of the characteristic function of a ball of radius 1/2
and centered at (0,1): B((0,1),1/2). The backprojection R∗

c is implemented using
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Fig. 2 Reconstruction of the
ball B((0,1),1/2) using the
function χc supported on
[−3,3] and equal to 1 on
[−9/4,9/4]

the trapezoidal rule, and the derivative D is implemented using a central second
difference. The common offset is d = 1/4 (α = 1/8). Details are in the second
author’s senior honors thesis [38].

We will analyze both types of artifacts in the reconstructions, those caused by the
left–right ambiguity and those caused by the limited range on s.

As noted in Remark 4 after Theorem 4, the reconstruction operator (18) for the
common offset elliptical transform has the left–right ambiguity: singularities on one
side of the x1 axis are reflected on the other side in the reconstruction. This explains
why our reconstructions put copies of the circle on both the right and left of the
flight path. This global spreading of singularities is more difficult to decrease than
the local spreading in SPECT [20, 50] and electron microscopy [51].

The second type of added singularity is the “parentheses” surrounding and tan-
gent to the circle, and they are explained by the limited values of s or, equivalently,
the support of the cutoff χC . The choice of cutoff function χc makes an important
difference to the reconstruction [38]. Two parameters, M > m > 0, are chosen, and
the cutoff function χc(L) is supported in [−M,M] and equal to one in [−m,m]. In
this case χc does not need to be compactly supported on Yc but only in L since the
functions we reconstruct have compact support.

If one looks carefully at the reconstructions, one can show that the “parentheses”
artifacts are parts of the boundaries of ellipses that are tangent to the circle and with
s = −M (for the ones “pointing” right) and with s = M (for the ones “pointing”
left). These are ellipses with foci at (−3,0) and (−2.75,0) tangent to the ball and
two with foci at (2.75,0) and (3,0) tangent to the ball.

The authors believe that there are both microlocal reasons and practical grounds
for these elliptical artifacts. If the integration had been over [−3,3] without a
smooth cutoff χc, then the operator would not have smooth kernel, and that could
cause the artifact because Λ would not be a smooth Fourier integral operator. How-
ever, the algorithm includes the smooth function χc and there is still an artifact. In
order to reduce the effect of these artifacts, we changed the cutoff χc . In Fig. 3, the
artifacts caused by these ellipses are decreased, but somewhat fewer singularities
are visible than in the reconstruction in Fig. 2, which is with a sharper cutoff.

Smith’s implementation of Lambda tomography includes a constant term in the
derivative D. This shows contours of the object because it adds a multiple of the
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Fig. 3 Reconstruction of the
ball B((0,1),1/2) using the
function χc supported on
[−3,3] and equal to 1 only at
the origin, [0,0]

Fig. 4 Reconstruction with

D = 1 − ∂2

∂L2 , which includes
the simple backprojection as
well as the derivative in L

simple backprojection; for our case, it would be R∗
c χcRc . The reconstruction in

Fig. 4 illustrates this, and the inside of the ball has higher “density” than the outside.

5 Discussion

In this section, we will discuss the implications of our work for bistatic SAR, and
we will suggest some open problems and conjectures.

The elliptical Radon transforms we consider in this article, while motivated by
bistatic SAR imaging, are simplifications of the operators that appear in bistatic
SAR. In our case, the transmitter and receiver are on the ground, and in general, in
SAR, they are above the ground. The canonical relations in SAR are different from
ours, but they become the same if the transmitter and receiver are on the ground. The
SAR operators are also FIOs of a different order. For the common offset case with
transmitter and receiver above the ground, the projections are a fold and blowdown
[36], as in our case. It is easy to see that the same holds for the transform with one
fixed focus above the origin and the other moving above the horizontal axis.

The appearance of ambiguities is a serious issue in SAR imaging. In the acqui-
sition geometries we considered in this paper, we showed in Theorems 2 and 4 that
there are only left-right ambiguities. We can decrease such ambiguities by focusing
the antenna beam (known as beam forming) to the right or left of the flight path.
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However, one then images only one half of the scene, and one must fly over the
scene again to image the other side. In general, one needs to know the nature and
structure of such ambiguities in order to decide if focusing the beam could decrease
these ambiguities. For general bistatic acquisition geometries, this is an open prob-
lem. The structure of ambiguities could be very complicated in this case.

Monostatic SAR has colocated transmitter and receiver. For such SAR systems,
more is known. For linear flight trajectory, a similar theorem to Theorem 3 is true,
namely for that canonical relation, πL is a fold along the set Σ at which it drops
rank, and πR is a blowdown along Σ , and Theorem 4 is also true in this case [16,
17, 42].

For linear flight paths and monostatic or bistatic SAR, it is conjectured that, with-
out beam forming, the left–right ambiguity is intrinsic to the problem and cannot be
eliminated.

However, for other flight paths, more can be done. Injectivity holds for the circu-
lar transform with centers on a curve as long as the curve is not a line or a Coxeter
system of lines [1]. This suggests, but does not prove, that the general monostatic
SAR transform is injective for such curves. For nonlinear flight tracks, there is a lo-
cal left–right ambiguity as can be seen from reconstructions in [38]. However, these
added singularities seem to be spread and look quantitatively weaker than for linear
flight tracks. Felea [17] showed that for the monostatic SAR transform with circular
flight tracks, one can displace added singularities far away from the image [17].

We conjecture that Felea’s methods would work for the circular transform be-
cause it has the same canonical relation as the monostatic SAR transform. For the
elliptical Radon transform with transmitter and receiver a fixed distance apart along
a circle, the reconstruction operator is an elliptic pseudodifferential operator as long
as the scene is sufficiently inside the circle [2]. This suggests that ideas in [17] might
be helpful for the bistatic case with circular trajectories.

Nolan and Dowling [44] showed that if one takes monostatic data over two per-
pendicular linear flight paths, then the added singularities caused by the left–right
ambiguity are quantitatively weaker than the image itself. This makes sense because,
when one adds the images, only the real image reinforces itself.

The authors and their colleagues will continue investigating novel flight paths
and reconstruction algorithms, evaluating them using microlocal analysis as we
have done in this article for the elliptical transform with one fixed focus and for
the common-offset case.
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Mathematics of Hybrid Imaging: A Brief Review

Peter Kuchment

Abstract The article provides a brief survey of the mathematics of newly being
developed so-called “hybrid” (also called “multi-physics” or “multi-wave”) imaging
techniques.

1 Introduction

Leon Ehrenpreis was a mathematician of remarkable strength, famous accomplish-
ments, and extremely wide interests. In the last couple of decades of his life, integral
geometry was one of the main areas he was interested in. This had lead in particular
to his involvement with problems of tomography [7, 53]. E.T. Quinto and the author
had the honor of writing at Leon’s request an Appendix [83] dedicated to tomogra-
phy for his last book [52]. He was also interested in new developments in medical
imaging, which in some instances turned out to be directly related to some integral
geometric and PDE problems he considered in [52]. It is thus appropriate to address
some of these new techniques in an article dedicated to Leon’s memory.

It is natural to wonder, why do we need new methods of medical imaging in the
first place, if we already have the whole bunch of well-developed ones [95, 104]?
Indeed, one can mention the widely known “standard” X-ray CT (Computed To-
mography) scanners, MRI, and ultrasound scanners, which can be found in most
hospitals nowadays. There are also less known to the general public, but well de-
veloped by now PET (Positron Emission Tomography) and SPECT (Single Photon
Emission Computed Tomography) techniques, Optical Tomography (OT), Electrical
Impedance Tomography (EIT), Elastography, as well as quite a few others.

It seems that even the existing methods are way too many. Why would one need
all of them? One of the main answers is that different imaging techniques “see”
different things. One can say (in a crude approximation) that the CT scan can distin-
guish between the tissues of different density. What if two tissues (e.g., the cancer-
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ous and the healthy one) have essentially the same density but absorb significantly
different amounts of light in certain part of the spectrum? One can think of using
OT then rather than the X-ray CT. Some modalities can show the metabolism (e.g.,
the PET and SPECT), while some others cannot. Some new methods can show the
level of oxygenation in blood, while those relying upon density would not be able
to do so. This list can go on and on, and so the reader can see the point in having a
variety of imaging techniques.

There are several other parameters that make a difference when using different
types of scanners. Here are the most common ones:

1. Safety for the patient and practitioner. Indeed, X-ray scans are clearly not too
safe, while, for instance, OT or ultrasound tomography are not harmful. If there
is a choice, one surely would shoot for a safer method.

2. Cost, in the times of the high medical expenses, is clearly one of the major issues.
Some imaging techniques (X-ray CT-scan, MRI, PET, and some others) require
very expensive devices, with the price tags in millions of dollars. Some others,
however, e.g., OT and EIT, are orders of magnitude cheaper.

3. Contrast is another important feature. For instance, if the parameter that a
method can detect is, say, electric conductivity of the tissue, then one will be able
to distinguish between the tissues that have a significant conductivity contrast and
will not see any difference between tissues that happen to have very close elec-
tric conductivities. So, high contrast between the features that we would like to
distinguish is crucial. One clearly would prefer the contrast that is on the order of
hundreds (or at least dozens) of percents, while one percent contrast, albeit still
usable, is much less desirable. For instance, some breast tumors on early stages
might have almost no contrast with the healthy tissues with respect to ultrasound
propagation, but a huge contrast (several hundreds of percents) in their optical
and electric properties.

4. Resolution, which determines what is the smallest size of a feature that a method
can “see,” is another very important parameter. Indeed, resolution of several
centimeters probably is not good for early breast tumor diagnostics, where sub-
millimeter resolution is desirable.

These are the reasons, why the quest for new and “better” (at least in some of the
parameters) imaging methods not only does not subside, but intensifies in the recent
decades, involving new physics, engineering, and mathematics ideas. However, all
attempts to find a “magic wand” method that would “see everything” and feature
low cost, safety, high contrast and high resolution are clearly futile. Thus, having a
variety of techniques at our disposal is apparently the way to go.

For a mathematician, however, the main motivation for working on these various
tomographic modalities is that they bring about a large variety of challenging and
beautiful mathematical problems that involve more or less all areas of mathematics.

Let us describe now the structure of this article. After a general discussion of hy-
brid methods in Sect. 2, we will concentrate in more details on three of the emerg-
ing hybrid methods. The largest Sect. 3 contains an overview of the most devel-
oped (both experimentally and mathematically) Thermo-/Photo-acoustic Tomog-
raphy (TAT/PAT). The next, shorter, Sect. 4 addresses the much newer technique
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of Acousto-Electric Tomography.1 Although AET was initially suggested (and its
principle experimentally proven) by biomedical engineers [148], here mathematics
is getting developed fast in the recent few years, while experimentalist still struggle
with reaching good signal-to-noise ratios (SNR) in the measurements. This situation
is reversed in the Ultrasound Modulated Optical Tomography (UMOT, also called
UOT), which by now is significantly studied experimentally, while the mathematics
of this modality is still in its infancy (and even mathematical models are still being
agreed upon). This topic is addressed in ever shorter Sect. 6.

Both AET and UMOT rely upon an assumption of a “perfect focusing” of ultra-
sound at a given location, which is a crude approximation to the reality (see, e.g.,
[66]). The synthetic focusing technique, discussed in Sect. 5, allows one to use more
realistic sets of ultrasound waves.

The common feature of AET and UMOT (as well as some other hybrid imag-
ing techniques, such as CDI and MREIT, which are just mentioned in this text) is
that the measurements provide the researcher with some interior information, i.e., a
function of an interior location x. There has been a rather common feeling that such
an interior information might stabilize the notoriously unstable modalities such as
EIT or OT. This issue is briefly discussed in Sect. 7.

The topics surveyed in this article are highly technical and involve a wide range
of interesting mathematics. Due to space limitations, the author was forced to show
very few technical details and instead to try to give a hand-waving heuristic descrip-
tion. The literature references (as well as the references therein) will provide the
interested reader with more details.

2 Hybrid Imaging Methods

As we have indicated in the introduction, each of the available imaging methods has
its advantages and deficiencies. For instance, in breast imaging ultrasound provides
a high (sub-millimeter) resolution while suffers from a low contrast. On the other
hand, many tumors absorb much more energy of electromagnetic waves (in some
specific energy bands) than healthy cells. Thus, using such electromagnetic waves
offers very high contrast. Alas, the resolution in this case is very low. One can go on
and on with such examples.

Since both the advantages and disadvantages of various modalities come from
the underlying physics, can one do anything to combine the advantages and si-
multaneously alleviate the problems associated with different type of physical
waves/radiation involved? The natural idea is to try to this end to combine differ-
ent imaging modalities into some kind of “hybrid” ones. This is how the hybrid
(also called multi-physics or multi-wave) techniques have been appearing in the last
decade–decade and a half [10, 16, 19, 121, 131, 134, 138, 139, 141].

1Besides the name AET, suggested in the original paper [148], other names are also used: Ultra-
sound Modulated EIT (UMEIT) [17], Impediography [10], and some others.
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The “hybridization” can occur at different stages of the imaging process. Let us
recall the crude scheme of all CT methods: on the first step, some wave(s) are sent
through the body and the outgoing (transmitted or reflected) waves are measured;
on the second stage, mathematical processing of the measured data is done; finally,
the third stage provides a picture (tomogram). Correspondingly, one can combine
different techniques at different stages. The simplest, and already industrially im-
plemented (e.g., in PET/CT scanners) idea is to run two types of scans of the same
patient and then somehow “combine” the images so that they hopefully complement
each other. Here reconstruction of both individual images requires neither new types
of scanners nor new mathematical reconstruction algorithms. Certainly, some (often
nontrivial) processing is needed to correctly overlap the two images (the so-called
image registration).

Another option is to combine the techniques on the second stage. Namely, af-
ter collecting data from two independent types of scans, a reconstruction algo-
rithm is applied that uses both data sets. The additional information can signifi-
cantly improve the quality (stability, resolution, etc.) of the resulting picture (to-
mogram). Such combined techniques might not require any new physics or en-
gineering, but do demand new mathematical processing. There are several recent
imaging procedures that successfully implement this idea. Some of them (CDI, cur-
rent density imaging [99–101], and MREIT [122, 142]) combine MRI and EIT
measurements. Having the extra MRI data makes the mathematical problem of
EIT reconstruction (the so-called Calderón problem, or inverse conductivity prob-
lem [15, 27, 31, 37, 41, 73, 95, 98, 129, 132, 133, 135]), known for its severe
ill-posedness, significantly less ill-posed and thus allows for good quality recon-
structions of the internal electrical conductivity maps. Another actively developing
method of this kind, called MRE [96, 97], combines MRI with elastography: MRI
allows one to observe propagation of elastic waves through the tissue, which then
leads to mathematical reconstruction of mechanical properties (e.g., stiffness) that
carry important medical diagnostic information. Probably the oldest such combina-
tion is of CT and SPECT. The CT scan provides the reconstruction of the attenuation
map, which is used then to recover the distribution of a radio-pharmaceutical inside
the patient’s body [33].

Due to the author’s limited expertise and lack of space, these types of hybrid
methods will not be discussed in the article. The interested readers are referred to
the literature cited above.

We reserve in this text the name “hybrid methods” only for the techniques that
combine different types of waves already on the first, scanning stage. In the exam-
ples that we will discuss this will lead to one physical type of irradiation triggering
or modulating the other one and thus producing new types of measurements, which
hopefully allow one to improve images in comparison with the two techniques done
separately.2

2The reader should be aware that this classification of hybrid modalities into three classes, al-
though being reasonable, is not commonly accepted and is used in this text only for the author’s
convenience.
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Fig. 1 The TAT procedure

We now move to considerations of some of the hybrid techniques in more detail.
We start in the next section with the probably best developed (both experimentally
and mathematically) among the hybrid techniques Thermo-/Photo-acoustic tomog-
raphy (TAT/PAT) and then move to the less studied ultrasound modulated electrical
and optical tomography.

3 Thermo-/Photo-Acoustic Tomography (TAT/PAT)

As we have already mentioned, in many medical diagnostics situations, ultrasound
displays low contrast (and thus sees the tissues as almost homogeneous), while pro-
viding fine resolution. Optical or radio-frequency EM illumination, on the other
hand, gives an enormous contrast between the cancerous and healthy cells, while
both are known to suffer from low resolution. How can one combine their strengths?
The answer is in the photo-acoustic effect, which was discovered by Alexander Gra-
ham Bell [28] but had to wait for another century for its applications to follow [32].

Imagine that a biological object is irradiated by a wide, homogeneous, but ex-
tremely short electro-magnetic pulse in radio-frequency range (Fig. 1). Some part
of the electromagnetic (EM) energy will be absorbed throughout the tissues. Let us
denote by f (x) the density of energy absorbed at a location x. It is known that the
values of this absorption function will be several times higher at the cancerous loca-
tions than in the surrounding healthy tissues [50, 89, 90, 108, 109, 130, 131, 138–
141, 143]. Thus, if this function were known, it would provide an extremely valu-
able diagnostic information. However, the radio-frequency waves are too long to
lead to any reasonable resolution. This is where the photo-acoustic effect kicks in:
the EM energy absorption leads to heating, and higher levels of absorption lead to
more heating. In turn, the resulting thermoelastic expansion creates a pressure wave
p(x, t) (acoustic wave), whose initial value is essentially (proportional to) the func-
tion of interest f (x). Placing an ultrasonic transducer (a microphone) at a location
y at the boundary of the object, one can measure the value of p(y, t) at this point
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for any time t ≥ 0. If we now surround the object by transducers located on an ob-
servation surface S (this can be done using optical interferometers, which do not
obstruct the acoustic wave propagation), we can collect the values of p(y, t) for
all (y, t) ∈ S × R

+ (Fig. 1). Now the problem reduces to finding the initial values
p(x,0) inside the volume surrounded by the surface S. This is the idea of Thermoa-
coustic Tomography (TAT), which found its implementation in the middle of 1990s
[75, 108, 109], in particular in the work of R. Kruger [75], who started a company
OptoSonics manufacturing TAT devices. The Photo-acoustic version (PAT) differs
by the choice of heating radiation, a laser beam instead of radio waves. A large part
of the corresponding mathematics is parallel in TAT and PAT cases, and thus we will
only mention TAT here.

The mathematics of TAT/PAT reconstruction happens to be fascinating and oc-
cupied attention of a large group of mathematicians throughout the 1st decade of
this century. The reader can consult with the recent surveys, collections, and books
[3, 12, 19, 56, 58, 77, 80, 84, 111, 114, 121, 124, 131, 134, 138] for details and
further references.

We will now describe the mathematical model of TAT. Let us denote by c(x) the
sound speed in the interior of the body. Then the pressure p satisfies the following
wave equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂2p

∂t2 = c2(x)Δp in R
3 ×R+,

p(0, x) = f (x),

∂p
∂t

(0, x) = 0.

(1)

The data g measured by a TAT machine provides the values of the pressure p on the
observation surface S:

f (x) �→ g(y, t) := p |S×R+ . (2)

The goal of TAT thus is inverting this forward operator.

3.1 TAT/PAT and (Restricted) Spherical Mean Operators

In the case of an acoustically homogeneous medium (i.e., when c(x) = const), one
can reduce the TAT problem to an equivalent integral geometry question. Namely,
using the standard Kirchhoff–Poisson formulas [46, 71] for the solution of (1), the
TAT inversion can be reduced to the equivalent (see [6]) problem of recovery the
function f (x) from its spherical averages over spheres centered at the transducers’
locations, i.e., on the observation surface S:

f �→ g(y, t) := (RSf )(y, t) =
∫

|x−y|=t

f (x) dσ (x), y ∈ S, t ≥ 0. (3)

Here RS denotes the operator of taking spherical averages over all spheres centered
on S.



Mathematics of Hybrid Imaging: A Brief Review 189

One can notice that such transforms were considered in more general situation
and without any relation to tomography by Leon Ehrenpreis in his book [52] and by
V. Lin and A. Pinkus in [92, 93] for the needs of approximation theory and neural
networks. The restricted spherical mean transforms also play important role in the
Radar and Sonar studies [40, 94]. One can find a list of other applications in [6].

3.2 Main Mathematical Problems in TAT

As in all tomographic methods, the following questions play the central role:

Uniqueness of reconstruction: Is the collected data g sufficient for the unique re-
construction of the tomogram (function f (x))? When the author first looked at
this problem in terms of system (1), he was confused for a second. Indeed, the
measured data g seems to be the boundary value of the solution of the wave
equation in a cylinder, and the function f to recover is the initial condition.
This clearly is impossible, since g essentially does not carry any information
about f , besides the standard junction conditions where these functions meet.
However, the thing is that (1) is not a boundary-value problem in a cylinder, but
rather a problem in the whole space, whose solution we observe on the surface
S only. What is even more important, if the sound speed is nontrapping (e.g.,
constant) and S is a closed surface (i.e., the boundary of a bounded domain),
then the local energy decay theorems [35, 51, 119, 136, 137] show that the
solution decays in the interior of S. This turns out to be the main feature that
brings about uniqueness and inversion [2, 68, 69, 124].
The question of sufficiency of the data collected on a nonclosed hyper-surface
S is much more complicated and can be considered largely resolved only in
2D, when the sound speed is constant and the function f (x) is compactly sup-
ported (see [6],3 as well as surveys [3, 77, 80] for the results and further discus-
sion). This is a fascinating mathematical problem, which involves a variety of
techniques from PDEs, integral, differential, and algebraic geometry, microlo-
cal analysis, commutative algebra, etc. A more general problem (with spheres
replaced by the level surfaces of a polynomial) is discussed in L. Ehrenpreis’
book [52].

Reconstruction procedures: Having a uniqueness of reconstruction theorem is far
from being sufficient for tomography, since one needs to be able to actually
reconstruct the tomogram. So, the natural question, after proving uniqueness,
is: how can one actually invert the mapping f �→ g? We will briefly describe
the known algorithms in the next subsection.

Stability: Having uniqueness of reconstruction theorem, or even a reconstruction
algorithm, is no guarantee that the reconstruction is practicably feasible (or

3Some microlocal arguments in [6], although correct, were incomplete. The missing arguments are
provided in [123].
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at least that it can provide sharp pictures). The word “stability” in this con-
text means the effect that small errors in the measured data have on the re-
constructed image. In other words, stability means well-posedness (in the
Hadamard’s sense [46]) of the inverse problem. Unfortunately, essentially all
tomographic problems are ill-posed to some degree. Some of them, such as
Radon transform inversion, are very mildly unstable, which allows for wonder-
ful CT-scan images. Some others, like EIT and OT, are known to be severely
ill-posed, and thus reconstruction of sharp images is practically impossible.
The stability of the TAT/PAT reconstruction with full data (i.e., for the obser-
vation surface surrounding the object completely) is known to be very good,
the same as for the Radon transform inversion, which leads to excellent recon-
structions. This applies both to the case of an acoustically homogeneous object
(when c(x) = const), as well as to the case of a variable nontrapping sound
speed c(x) [2, 69, 107, 124, 126, 127]. The proofs are based upon inversion
procedures and/or a microlocal analysis of the problem.

Range: As it is common in integral geometry and tomography [60, 61, 63, 64, 104,
105], the range of the forward operator f �→ g has infinite codimension in
the natural scales of function spaces. The description of this range is an im-
portant part of integral geometric and tomographic studies [ibid]. In the case
of a spherical observation surface S and constant sound speed, the complete
range descriptions are known [1, 4, 5, 9, 57]. Some of these range conditions
are known to be necessary for more general observation surfaces and sound
speeds, but in these cases complete range description is not known (and might
be impossible).

Incomplete data: In the TAT/PAT case, one usually mentions an incomplete data
situation, when the observation surface S does not surround the object com-
pletely [3, 77, 80, 145, 146]. This is a common, albeit somewhat misleading
description, since depending on the location of the object, the “incomplete”
data might be sufficient for unique, and sometimes even stable, reconstruc-
tion. It is quite common that even a small observation surface S can provide
enough data for proving uniqueness of reconstruction. For example, in the
case of a constant sound speed, it is known that any set S that is not a part
of an algebraic hyper-surface leads to the injectivity of the spherical mean
operator RS and thus to unique TAT reconstruction (see [6] and references
therein). Note that such S can be geometrically very small. It is clear that for
all practical purposes, in spite of an uniqueness theorem, something should
go wrong with the actual reconstruction in this case. And indeed, microlocal
arguments similar to those of X-ray CT [118] show that most of the singulari-
ties (i.e., wave front set directions) of f (x) will be “invisible” (“not audible”)
[3, 69, 77, 80, 107, 111, 112, 124, 145, 146]. This implies, in particular, the
high instability of the reconstruction (all “invisible” interfaces will be blurred,
no matter how sophisticated the algorithms are) [69, 107, 124, 145, 146]. This
is also well known in the more standard X-ray CT and SPECT [82, 118]. The
wonderful feature of the microlocal analysis is that it not only explains, but also
allows one to predict these blurring effects [ibid].
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On the other hand, if one is in the situation where there is a uniqueness result
and all singularities of the object are “visible,” one indeed can reconstruct the
object stably [13, 14, 87]. Conditions of unique reconstruction and “visibility”
have been also figured out for the case of variable sound speeds and can be
expressed simply in terms of geometric optics rays [3, 69, 77, 80, 107, 124,
145, 146].

While the questions above are common for all tomographic techniques, there is
one issue that is specific for TAT (a similar, still not completely resolved, problem
arises also in SPECT, see [76] and references therein, as well as the recent papers
[20, 34]). This is the following:

Speed recovery problem: Problem (1) involves the unknown function f (x), the to-
mogram, as well as the sound speed c(x), which in all reconstruction methods
is assumed to be known. It has been observed [69, 70] that errors in the val-
ues c(x) introduce significant artifacts into reconstruction. In other words, one
needs to know the speed c(x) well, which is normally not the case. One of the
options suggested to alleviate this difficulty is to run an ultrasound transmission
scan beforehand, which would provide the speed map [70]. However, there is
numerical evidence [147, 149] that it might be possible to determine both the
speed c(x) and then the tomogram f (x) from the TAT data. Proving the unique-
ness of reconstruction of c(x) happens to be a difficult problem. Some very
limited partial results have been obtained recently (and not published, except
[67, 69]) by various mathematicians: M. Agranovsky, D. Finch, K. Hickmann,
Y. Hristova, P. Kuchment, L. Nguyen, P. Stefanov, and G. Uhlmann. However,
the problem (which, according to D. Finch’s observation, is closely related
to also not completely resolved well-known transmission eigenvalue problem
[36, 43–45, 74, 110, 128]) is essentially open. Somewhat more understanding
has been achieved concerning possible instability of the speed reconstruction
[107, 124, 125].

3.3 Reconstruction Methods in TAT/PAT

What techniques are available for actual TAT reconstructions? There are several
groups of approaches that have been used successfully:

Closed-form inversion formulas: Closed-form inversion formulas in tomography
bring about better theoretical understanding and lead to efficient reconstruc-
tion algorithms. The best known example is the so-called filtered backprojec-
tion (FBP) algorithm in X-ray tomography, which is derived from one of the
popular inversion formulas for the classical Radon transform (see, for example,
[63–65, 104, 105]).
The first such formulas for TAT (the very existence of which had not been clear)
were obtained in odd dimensions in [55], for the observation surface S being a
sphere and the sound speed being constant. Let the function f (x) be supported
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within a ball of radius R, and the detectors be located on the boundary S = ∂B

of this ball. Some of the formulas obtained in [55] are:

f (x) = − 1

8π2R
Δx

∫

∂B

g(y, |y − x|)
|y − x| dA(y), (4)

f (x) = − 1

8π2R

∫

∂B

(
1

r

∂2

∂r2
g(y, r)

)∣
∣
∣
∣
r=|y−x|

dA(y), (5)

f (x) = − 1

8π2R

∫

∂B

(
1

r

∂

∂r

(

r
∂

∂r

g(y, r)

r

))∣
∣
∣
∣
r=|y−x|

dA(y), (6)

where dA(y) is the surface measure on ∂B , and g represents the values of the
spherical integrals (3).
Here differentiation with respect to r in (5) and (6) and the Laplace operator in
(4) represent the filtration step, while the (weighted) integrals correspond to the
backprojection: integration over the set of spheres passing through the point x

and centered on S.
A different family of inversion formulas valid in any dimension was found
in [85]. Still another set of closed-form inversion formulas applicable in even
dimensions was found in [54]. Finally, a unified family of inversion formulas
was derived in [106].
Having closed-form inversion formulas has the advantage that they usually lead
to fast and precise inversion algorithms. However, there are several disadvan-
tages of these formulas in TAT. First of all, the FBP formulas are now available
only for the observation surface being a sphere (see discussion above), with the
only exception of [88], where such formulas are derived for a cube and some
other crystallographic domains. Secondly, it is known (e.g., [77]) that if some
part of the source function f (x) is supported outside the observation surface S,
then its reconstruction inside S using FBP formulas might be incorrect. Finally,
there are no FBP formulas known for the case of a variable sound speed.

Eigenfunction expansions: This approach, which theoretically works for arbitrary
closed surfaces, was proposed in [86] (and extended in [2] to the case of vari-
able sound speeds). It is based on expansion into eigenfunctions of the Lapla-
cian operator in the interior B of S with zero Dirichlet conditions on S. It is thus
nicely implementable whenever the spectrum and eigenfunctions of the Dirich-
let Laplacian are known explicitly, e.g., for spheres, half-spheres, cylinders,
cubes, and parallelepipeds, as well as the surfaces of some crystallographic
domains.
The function f (x) can be reconstructed inside B from the data g in (1), as the
following L2(B)-convergent series:

f (x) =
∑

k

fkψk(x), (7)

where ψk(x) are properly normalized eigenfunctions of the operator (−c2(x)Δ)

in B with zero Dirichlet conditions, and λ2
k are the corresponding eigenvalues.
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The Fourier coefficients fk can be recovered from the data g in (3) using one
of the following formulas:

fk = λ−2
k gk(0) − λ−3

k

∫ ∞

0
sin (λkt)g

′′
k (t) dt,

fk = λ−2
k gk(0) + λ−2

k

∫ ∞

0
cos (λkt)g

′
k(t) dt, or

fk = −λ−1
k

∫ ∞

0
sin (λkt)gk(t) dt

= −λ−1
k

∫ ∞

0

∫

S

sin (λkt)g(x, t)
∂ψk

∂n
(x) dx dt,

(8)

where

gk(t) =
∫

S

g(x, t)
∂ψk

∂n
(x) dx.

This method becomes computationally efficient when the eigenvalues and
eigenfunctions are known explicitly and a fast summation formula for the se-
ries (7) is available, for instance, when the acquisition surface S is a surface of a
cube, and thus the eigenfunctions are products of sine functions. The resulting
3D reconstruction algorithm is extremely fast and precise (see [86]).
This method applies in any dimension and is stable. It also does not have the
deficiencies of the FBP formulas that we have mentioned above. Namely, pres-
ence of a part of the function f (x) outside f (x) does not hurt the reconstruc-
tion inside. The method, at least theoretically, works for arbitrary closed ob-
servation surface s and variable speed c(x). However, its practicality in these
circumstances is still questionable.

Time reversal: We now describe an inversion technique that has the same advan-
tages as the eigenfunction expansion method above and in addition is easy to
implement for any shape of the observation surface and acoustically inhomo-
geneous media. One can come up easily with this method if one notices the
underlying assumption of TAT, which is often hidden, and which we have dis-
cussed explicitly before: local energy decay of the solution of (1). Then one
can naturally come up with the idea of running the wave equation in (1) back
in time, starting at the infinite time with zero initial condition (which reflects
the local energy decay) and using the measured data g as the boundary value.
Eventually, at time t = 0, one arrives to the tomogram f (x). Certainly, the so-
lution never vanishes exactly at any finite time (unless the sound speed is con-
stant and the dimension is odd, where the Huygens’ principle kicks in). Thus,
one has to start from some sufficiently large time t = T with zero conditions
and go back in time to arrive at an approximation of f (x), which one expects
to get better as T → ∞. This approach has been implemented by various re-
searchers, its feasibility was shown, and error estimates were provided (see,
e.g., [62, 68, 69, 144]). This works [62, 69] even in 2D (where decay is the
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slowest) and in inhomogeneous media. However, when trapping occurs, some
parts become “invisible” and blur away [69].
A more sophisticated (than just zero) cut-off at time t = T is used in the version
of time reversal suggested in [117, 124, 125]. This leads to an equation with a
contraction operator, which allows the use of the Neumann series (fixed-point
iterations) to obtain high-quality images.
It is the author’s belief that the time reversal is the most versatile and easy to
implement method of TAT reconstructions.

Algebraic reconstruction techniques: ART is the well-used workhorse in approach-
ing inverse problems (especially, when analysis of the problem is too compli-
cated). To put it simply, in ART one discretizes the problem and uses one’s
favorite method (usually an iterative one) for solving the resulting linear alge-
braic system. Such techniques have been used in CT for quite a while [104].
ART algorithms frequently produce very good images. However, they are noto-
riously slow. In TAT, they have been used successfully for reconstructions with
partial data [13, 113] and sound speed recovery [147, 149].

Parametrix approaches: Some of the earlier noniterative reconstruction techniques
of approximate nature [75, 115, 116] were based (explicitly or implicitly) upon
microlocal analysis. For example, in [75], by approximating the integration
spheres by their tangent planes at the point of reconstruction and applying one
of the inversion formulas for the classical Radon transform, one reconstructs a
decent approximation to the image.
Such techniques are related to the general scheme proposed in [29] for the in-
version of the “generalized” Radon transform that integrates over curved mani-
folds. One constructs a parametrix (usually an integral Fourier operator (FIO))
for the forward operator F : f → g, i.e. such operator P that the operators
PF − I and FP − I , while not equal to zero, as in the case of a true inversion,
are “smoothing.” Thus, applying a parametrix P to the data g, one recovers the
image f up to addition of a smooth function. This also often reduces the prob-
lem to a Fredholm integral equation of the second kind, which is well amenable
to numerical solution. In other words, the parametrix method provides an effi-
cient pre-conditioner for an iterative solver; the convergence of such iterations
can be much faster than that of algebraic iterative methods. On the other hand,
parametrix reconstructions can be often accepted as approximate images.

3.4 Examples of TAT/PAT Reconstructions

Now, the mathematics looks nice, but does the TAT/PAT procedure really work? The
reader can find below (Fig. 2) the wonderful PAT image (courtesy of Wikipedia) of
a blood vessel structure inside a human hand.

The next Fig. 3 (from [145]) shows several TAT reconstructions of a muscle+fat
phantom shown on top left.
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Fig. 2 A PAT reconstruction of the blood vessel system of a human hand. The picture is courtesy
of Wikipedia

3.5 Quantitative PAT

The usual TAT/PAT procedure essentially recovers the initial pressure f (x), which
is proportional to the energy deposition function H(x). How does H(x) relate to the
actual electric or optical parameters of the medium? It is less of a problem for TAT,
where radio frequencies are used, and one can hope to obtain more or less homo-
geneous irradiation of all tissues. The situation is different in PAT. In the diffusion
regime, one has

H(x) = Γ (x)σ (x)u(x),

where Γ is the so-called Grüneisen coefficient, σ(x) is the EM energy absorption
coefficient, and u(x) is the radiation intensity. The following equation is satisfied by
u(x):

−∇ · D(x)∇u(x) + σ(x)u(x) = 0,

where D is the diffusion coefficient. The question arises whether, after doing the
TAT/PAT reconstruction and recovering H(x), one can go further and recover the
actual optical parameters (D,σ,Γ ) from H(x)? This is the goal of the so-called
Quantitative PAT (QPAT), which has started developing only recently [21, 22, 24,
26, 47–49, 120, 147] and is in a very active stage now. In other words, QPAT takes
of where PAT lands.

4 Acousto-Electric Tomography

Electrical impedance tomography (EIT) strives to recover the interior distribution
of electric conductivity by measurements on the boundary [15, 27, 31, 37, 41, 42,
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Fig. 3 a. The phantom. b. Reconstruction from partial data with “invisible” details blurred. c. Re-
construction from partial data with all features visible. d. Reconstruction from full data [145]

73, 95, 98, 129, 132, 133, 135]. Namely, one creates various boundary voltages
and measures the resulting boundary currents (or vice versa) see Fig. 4. From these
measurements one tries to recover the internal conductivity. The mathematical in-
carnation of EIT is the inverse conductivity problem, which was apparently sug-
gested first by E. Calderón and has by now a glorious 30 years history. Efforts of
many leading mathematicians were directed towards proving that the measured data
is sufficient for the unique recovery of internal conductivity. This happens to be
much more mathematically difficult topic than those arising in traditional tomog-
raphy or in TAT. To large extend, this is due to the significant nonlinearity of the
corresponding mapping and instability of its inversion. This is still an active area,
for instance, since the optimal result in 3D is still not known. However, the general
understanding is that one does have sufficient information for the reconstruction of
the conductivity. We provide just a sample of references to this bursting with life
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Fig. 4 The AET procedure: electrical boundary measurements are done concurrently with scan-
ning the object with ultrasound. The picture is courtesy of L. Kunyansky

topic [15, 31, 37, 41, 73, 129, 132, 133, 135], where the reader can find plenty of
information and further references.

In this text we will be interested in the issues related to the actual reconstruction
in EIT, which has also attracted enormous attention of scientists, including math-
ematicians. Due to the already mentioned instability,4 the pictures come out very
much blurred and of low resolution. This is a rigorously proven fact of life, not
the deficiency of the mathematics used. It is the author’s opinion that by now ex-
perts have achieved as good EIT reconstructions as humanly possible . . . unless one
changes the physical set-up of the measurements and/or uses some a priori infor-
mation. Changing the experimental setup is what is suggested in Acousto-Electric
Tomography (AET).

The main obstacle of EIT (and similarly of OT (optical tomography)) is that
the signals measured at the boundary loose, exponentially fast with the depth, the
information on where they came from. This is a simple-minded explanation of why
reconstructions are blurred. So, if one could somehow get some type of “interior”
information about where the signals came from, one could hope for stabler image
reconstructions. AET is one of the implementations of this idea. It has been known
for some time that ultrasound irradiation of soft tissues modifies the tissues’ electric
and optical properties (electro-acoustic effect [89, 90]). It was thus an easy step to
decide to send an ultrasound beam that focuses on some internal location x and thus

4Here instability = ill-posedness = super-algebraic decay of singular values of the direct mapping.
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modifies (by a multiplicative factor close to 1) the electric conductivity σ(x) at this
location. This would lead to a perturbation of the boundary EIT measurements, and
what is crucial, the practitioner will know where the perturbation came from—from
the point x. Then one could scan the focused beam throughout the whole object
and get hopefully sufficient information for a stable reconstruction. This idea of
AET was suggested and tried by a direct measurement in [148]. It was shown there
that a detectable (albeit rather small) signal does exist. However, no reconstruction
was done at that time. In a few years, the topic started developing fast [10, 11, 30,
38, 59, 78, 79, 148], sometimes with the researchers being unaware of the original
work [148]. Let us describe briefly the current state of affairs in AET (although by
the time of publication, the situation will definitely change).

The following observation was made experimentally and justified theoretically
[89, 90, 148]: the acousto-electric effect, although detectable, is so small that one
can safely linearize the problem.

Another smallness assumption was used in most works: the ability of sharp fo-
cusing at a given location (i.e., creating a delta-type ultrasound pulse). Such perfect
focusing is clearly impossible (see the discussion in the book [66] devoted to this
issue). Still, let us assume for the time being that sufficiently good focusing is possi-
ble (and return to this discussion in Sect. 5). This allows one to use the well-studied
“small volume inclusion” asymptotics, as in [10, 11, 38, 39], where such asymp-
totics play the crucial role. On the other hand, in [78, 79], only smallness of the
acousto-electric effect is needed, and no perfect focusing is required (see Sect. 5).

In all these works the authors studied what kind of interior quantities can be
stably recovered from the measurements if perfect focusing (in particular, small
volume asymptotics) is possible. For instance, if u1(x), u2(x) are the (unknown)
potentials created by some boundary current setup, then one can recover the values

σ(x)∇u1(x) · ∇u2(x)

for any interior point x, where u · v denotes the inner product of two vectors. Some
other local functionals of the form F(σ(x),ui(x),∇ui(x)) could be recovered (this
is also the case in the previously mentioned MREIT and CDI [99–101, 122, 142],
which we do not discuss in this paper).

It was shown then that such values, if recovered from measurements, lead to
locally unique and stable reconstruction of the conductivity σ [30, 38, 78, 79, 81].
Essentially, one can prove that the Fréchet derivative of the mapping

σ �→ values of F(σ,ui,∇ui)

(in appropriate function spaces) is an injective semi-Fredholm operator.
A variety of inversion procedures has been suggested and mostly tested on nu-

merical phantoms: those involving numerical optimization [11, 38], those reduced
to solving well posed hyperbolic problems [16], or the ones that lead to solving
transport equation or Poisson-type elliptic equations [78, 79].

In most cases one could achieve wonderful quality reconstructions; e.g., see
Fig. 5, where the method of [79] is used, which reduces to solving a Poisson equa-
tion for determining the conductivity.
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Fig. 5 An example of AET reconstruction. The picture is courtesy of L. Kunyansky

Looking at Fig. 5, one might (and should) feel cheated. Indeed, how can one get
such a good reconstruction with the data contaminated by a 50% noise? The answer
will be given in the next section.

By now, the mathematics of AET, albeit just a few years old, is already rather
successful. The experimental implementation of the AET lags behind, due to the
difficulty of acquiring good signal-to-noise ratios.

A different combination of ultrasound and EIT is suggested in [59]. Here one
again creates currents through the interior of the body of interest. These currents
lead to a small inhomogeneous heating of the tissues and thus to thermoelastic ex-
pansion. Then the TAT procedure, using the microphones surrounding the body,
reconstructs a local functional F(σ(x),u(x),∇u(x)), after which one of the previ-
ously mentioned procedures of reconstruction can be applied.

5 Synthetic Focusing in Hybrid Techniques

As it has been mentioned, the unfeasible [66] perfect focusing is assumed in most
mathematical work on AET, in particular, when using the small volume asymptotics.
Can this be avoided? The answer, as it was explained in [78] and then confirmed
in [79], is a “yes.” Indeed, the delta functions that are idealized focused beams, form
a function “basis.” Suppose that we can produce another, practically feasible set of
ultrasound waves, which would also form such a basis. Then, using the smallness of
the acousto-electric effect and thus linearity, one could mathematically process the
data obtained from that basis of waves and “synthetically focus” them by changing
the basis to delta-functions.

There are several examples of possible bases from [78]:

• Using large planar broad band transducers, one could generate a set of monochro-
matic planar waves with arbitrary wave vectors, and then the synthetic focusing
would be just applying the inverse Fourier transform. This option was adopted
in [16]. Its practical feasibility is not yet clear.

• Using point-like omni-directional transducers, one could generate thin spherical
shell waves. Then, lo and behold, the synthetic focusing will boil down to inver-
sion of a restricted spherical mean transform, and thus any of the standard TAT
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Fig. 6 An N-shaped pulse

inversions would do it. This is the option of [79]. The problem with this is that
it is much easier to create a short N-shaped (Fig. 6) spherical wave rather than
δ-shaped such wave.

• One can create narrow “pencil beams,” as it is done in [141], and then synthetic
focusing would coincide with the inversion of the standard X-ray transform. This
option has to struggle with impossibility of creating a truly homogeneous pencil
ultrasound beam of sufficient length [66].

The sharp and amazingly stable with respect to the noise reconstruction, shown
in Fig. 5, was done using the second option for the basis: thin spherical waves with
consecutive TAT inversion for the synthetic focusing. After that an elliptic (Poisson-
type) equation was solved to recover the conductivity. Now, what about having N-
shaped rather than δ-shaped pulses? This “difficulty” turns out to be a blessing.
Indeed, the TAT reconstruction includes a filtering portion, which increases the noise
and decreases stability. However, with the N-shaped pulse, this filtration step is not
needed, since it is already performed by the transducer. As the result, the synthetic
focusing by the TAT inversion happens to be a smoothing operator and thus kills a
lot of noise. If we could indeed produce and use δ-shaped pulses, the reconstruction
would work, but would be very unlikely to survive a 50% noise.

6 Ultrasound-Modulated Optical Tomography (UMOT)

The idea of scanning an object with a focused ultrasound that we applied in AET can
be tried with the optical tomography (OT) as well. The goal is the same: to improve
drastically the resolution of OT (which is dismal on a centimeter depth and deeper).
Since OT, like EIT, is a cheap, safe, and high-contrast modality, achieving this goal,
and thus adding high resolution, would make it an invaluable diagnostic tool.

In comparison with the AET, the situation with UMOT is reversed: there is an
extensive body of experimental research (see [141] and references therein), but the
first glimpses on the mathematics of UMOT are just appearing [8, 25, 102, 103],
and even the mathematical model is not settled down.

The set-up of OT is as follows: One sends a beam of (coherent or incoherent)
laser light through the body of interest and observes the intensity and speckle pat-
terns of the outgoing light. The features of interest are the internal distribution of
the absorption and scattering coefficients. The contrast in optical properties of can-
cerous and healthy locations is often huge. However, diffused photons, when they
reach a detector after multiple scattering, essentially loose any information about the
locations they went through. This leads to dismal resolution at centimeters’ depth
(although good pictures can be obtained at skin depth). The idea of UMOT is to,
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concurrently with OT measurements, scan the body with a focused ultrasound and
thus to acquire some interior (i.e., location-dependent) information, which hopefully
would stabilize the problem. It has been argued in physics and biomedical engineer-
ing literature (e.g., [72, 91, 141]) that when using coherent light and measuring the
ultrasound frequency Fourier component of the outgoing speckle pattern, one can
recover the values of the following functional at an interior location x:

G(x,d)A2(x)I (x).

Here A is the applied ultrasound power (assumed to be known), I is the light inten-
sity, d is the detector position on the boundary, and G(x,d) is the “probability of
a photon emitted at the location x to reach the detector at the location d .” In other
words, G(x,d) is a Green’s function of the diffusion equation

−∇D(x)∇I (x) + μa(x)I (x) = 0

inside the domain of the interest. The difficulty (at least for the author) is determin-
ing what the “probability of reaching the detector” means (e.g., does this mean the
first time of reaching the point d?). Thus, it is not clear what boundary conditions
the Green’s function should correspond to.

It was assumed in [8] that the correct boundary conditions are those that corre-
spond to the optical impedance at the boundary of the object. Under this condition
and with the perfect focusing assumption, a reconstruction algorithm was applied
that showed sufficiently sharp internal reconstructions of the absorption coefficient
μa (although the quality was lower than in the AET case). It was also shown in [8]
(see also the acknowledgments there) that (formally computed) Fréchet derivative
of the forward mapping is a semi-Fredholm operator in natural function spaces.
However, injectivity of this derivative was not shown. Thus there are so far no local
injectivity results.

Some controversy surrounds the usage of coherent light. It is claimed in engi-
neering literature [141] that the signal from ultrasound modulation in the case of
incoherent light could not be detected so far. However, there already are some math-
ematical studies of UMOT using incoherent light [25].

Synthetic focusing in UMOT is possible. However, while the spherical waves
should still do the job, the use of planar waves and the consequent inversion of the
Fourier transform seems to be not an option here, due to the presence of the square
of the acoustic power A(x) in the measured functional.

7 Why the Improvement? Inverse Problems with Interior
Information

The examples of AET and UMOT show how acquiring interior (i.e., attached to
the internal locations) information stabilizes the utterly unstable inverse problems.
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This is an example of a folklore meta-statement: “appropriate” internal information
stabilizes the severely unstable problems like diffused OT or EIT.

This issue was studied in detail in [16, 18, 23], where several internal information
functionals arising in applications (including those described above) were studied.
Different functionals required sometimes different techniques. There is a feeling
though that there might be an answer to a general question: What kind of a function
F(D(x), σ (x),u(x),∇u(x)), if known, stabilizes the inverse boundary problems
for

−∇ · D(x)∇u + σu = 0?

A rather general answer was just given in [81]. Under some reasonable condi-
tions on the functional, which cover all cases we have considered here, it is shown
that the Fréchet derivative of the forward mapping is a semi-Fredholm operator.
This explains why the observed improvement in stability occurs. Together with lo-
cal uniqueness (which probably need to be proven individually in each case), this
also gives local uniqueness and stability.
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On Fermat-Type Functional and Partial
Differential Equations

Bao Qin Li

Abstract This paper concerns entire and meromorphic solutions to functional and
nonlinear partial differential equations of the form a1f

m + a2g
n = a3 with function

coefficients ak , k = 1,2,3, where f and g are unknown functions or partial deriva-
tives of an unknown function. We will discuss some recent results and also give,
among other things, some new results on these equations.

1 Fermat-Type Equations

This paper concerns entire and meromorphic solutions to functional equations of
the form

a1f
p + a2g

q = a3 (1)

and nonlinear partial differential equations

a1u
p
z1 + a2u

q
z2 = a3, (2)

where the coefficients ak are given functions, and f , g, u are unknown. Complex
solutions to such equations over some commonly studied function fields have been
investigated by many authors, and there is an extensive literature on these equa-
tions and generalizations as well as connections to other problems (see [1, 4–6, 15–
17, 19, 21, 24, 27], etc. and various references therein). These equations clearly
contain the Fermat equations f p + gp = 1 as special cases. A classic result due to
Montel [19] (see [13] for a simpler proof) states that entire solutions f , g of the
Fermat equation f p + gp = 1 (p ≥ 3) are necessarily constant. The Fermat theo-
rem of this type for polynomial or rational function solutions to these equations and
relations to the so-called ABC theorem can be found in [6, 14], etc. These results
are also related to the geometric fact that the surface xp + yp = 1 is a Kobayashi
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hyperbolic manifold when p ≥ 3, which implies the nonexistence of nonconstant
entire holomorphic curves to the manifold (see, e.g., [21]). This also has a striking
similarity with the Fermat last theorem in number theory. While the Fermat equation
xp + yp = 1 when p ≥ 3 does not admit nontrivial solutions in rational numbers by
Fermat’s last theorem [25, 26], the equation when p = 2, i.e., x2 + y2 = 1, does ad-
mit nontrivial rational solutions. While the equation f p + gp = 1 when p ≥ 3 does
not admit any nontrivial entire solutions, the equation when p = 2, i.e., f 2 +g2 = 1,
does admit nonconstant function solutions over some commonly studied function
fields. Taking f = uz1 and g = uz2 in the functional equations f p + gp = 1, we
then have the Fermat partial differential equations (p ≥ 3) and the eikonal (eiconal)
equation (p = 2). These partial differential equations in real variables, especially the
eikonal equation and its generalizations arise in wave propagation, geometric optics,
quantum mechanics, general relativity, etc. The nonexistence of nontrivial entire so-
lutions to the Fermat equations f p + gp = 1 when p ≥ 3 immediately implies that
the Fermat partial differential equations have no nonlinear entire solutions. In spite
of the failure of the above result for entire solutions of the functional equation when
p = 2, the eikonal partial differential equation still has no nonlinear entire solutions
in C2, and this result can be obtained from many results of different nature (see
[8, 11, 15–17, 20], etc.). For instance, we obtained in [17] the following:

Theorem 1 Meromorphic solutions f,g of f 2 + g2 = 1 in C2 are constant if and
only if fz2 and gz1 have the same zeros (counting multiplicities).

If we let f = uz1 and g = uz2 , then fz2 = gz1(= uz1z2), and thus the condition in
Theorem 1 is trivially satisfied, which immediately implies that entire or meromor-
phic solutions of the eikonal equation u2

z1
+ u2

z2
= 1 must be linear.

We give another proof of this result using a theorem in our paper [16]:

Theorem 2 Let u be a meromorphic function in C2. Then its partial derivatives uz1

and uz2 have a common right factor (in the sense of composition) if and only if u is
a linear function, or u = c1z1 + f (z2 + c2z1), where f is a meromorphic function
in the complex plane such that f ′ is nonlinear, and c1 and c2 �= 0 are two constants.

Now suppose that u is a meromorphic solution of u2
z1

+ u2
z2

= 1. Note that f 2 +
g2 = 1 implies that (f + ig)(f − ig) = 1 and thus f + ig = q and f − ig = 1

q
for

some meromorphic function q . That is,

f = 1

2

(
q + q−1) = 1

2

(
z + z−1) ◦ q,

g = 1

2i

(
q − q−1) = 1

2i

(
z − z−1) ◦ q.

(3)

Thus, the partial derivatives uz1 and uz2 have a common right factor. By Theorem 2,
if u is nonlinear, then u = c1z1 + h(z2 + c2z1), where h′ is nonlinear, and c1 and
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c2 �= 0 are two constants. Thus, from the given equation it follows that

0 = u2
z1

+ u2
z2

− 1

= {
c1 + c2h

′(z2 + c2z1)
}2 + {

h′(z2 + c2z1)
}2 − 1

= {
(c1 + c2w)2 + w2 − 1

} ◦ h′(z2 + c2z1).

However, this composite function is clearly a nonzero function, a contradiction.
Thus, u must be linear. This result for entire solutions of the eikonal equation was
first proved in [11], and the same result for meromorphic solutions was given in [20]
(the proof in [20], however, appears to contain an error in using the method of char-
acteristics for partial differential equations).

These studies naturally extend to more general settings such as f p + gq = 1 for
different positive integers p,q and a1f

p + a2g
q = a3 over function fields. For in-

stance, the nonexistence of nonconstant entire solutions is still true for f p + gq = 1
when 1

p
+ 1

q
< 1 (due to a theorem of Cartan, see, e.g., [4]). It was shown in [5]

that meromorphic solutions to the equation f p + gp = 1 reduce to constant when
p ≥ 4, and it was shown in [27] that the relation a1f

p + a2g
q = 1 with coeffi-

cients aj , which grow more slowly than f,g, cannot hold for meromorphic solu-
tions f,g when p,q ≥ 3 unless p = q = 3, which was then improved for entire
solutions [24] when 1

p
+ 1

q
< 1. All these results will be contained and unified in

a result (Lemma 1) presented below with a short proof, which will then be applied
to prove a result (Theorem 4) on entire and meromorphic solutions of (1) and (2).
In doing this, we also give a theorem (Theorem 3) on relationships between Nevan-
linna characteristics of meromorphic functions and those of their partial derivatives,
which is of independent interest.

2 Some Preliminaries

We will need some notation and facts from Nevanlinna theory (see, e.g., [22] and
[23]) such as the counting function N(r,1/f ) (resp. N̄(r,1/f )) for the zeros of a
meromorphic function f in Cn counting multiplicities (resp. without counting mul-
tiplicities), the proximity function m(r,f ), the Nevanlinna characteristic function
T (r, f ) := m(r,f ) + N(r,f ), the Nevanlinna first fundamental theorem:

T

(
r,

1

f − a

)
= T (r, f ) + O(1)

for any complex number a, the Nevanlinna second fundamental theorem:

T (r, f ) ≤
3∑

j=1

N̄

(
r,

1

f − aj

)
+ S(r, f )
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for any three distinct values aj ∈ P, and the logarithmic derivative lemma:

m

(
r,

fzj

f

)
= S(r, f ),

where S(r, f ) denotes a quantity satisfying that S(r, f ) = o{T (r, f )} as r → ∞
outside a possible exceptional set of r of finite Lebesgue measure, if f is noncon-
stant. Let us also recall that the order ρ(f ) of a meromorphic function f is defined
as

ρ(f ) = lim sup
r→∞

log+ T (r, f )

log r
.

A meromorphic function f in Cn is of finite λ-type if T (r, f ) ≤ Aλ(Br) for some
constants A,B > 0 and large r , where λ : R+ → R+ is a nondecreasing growth
function. Finite λ-type generalizes the traditional concept of finite type for which
λ = rρ(ρ > 0). If λ = log r , then an entire (meromorphic) function f is of finite
λ-type if and only if f is a polynomial (rational function). If λ is a constant, then
an entire (meromorphic) function f is of finite λ-type if and only if f is a constant.
We refer to [12] for an extensive study of finite λ-type functions.

3 A Comparison on Characteristics of a Meromorphic Function
and Its Partial Derivatives

We give in this section a comparison result on Nevanlinna characteristics of a mero-
morphic function and its partial derivatives, which will be needed in proving The-
orem 4 on entire and meromorphic solutions of (1) and (2). Theorem 3 and Corol-
lary 1 below are more than what we need for the proof of Theorem 4. We include
them as stated due to their own independent interests.

In one variable, it is well known that T (r, f ) can be bounded by T (r, f ′) ([2],
[28], p. 93): If f is meromorphic in C with f (0) �= ∞, then for r > 0 and τ > 1,

T (r, f ) ≤ C
{
T

(
τr, f ′) + log+ r + log+ ∣∣f (0)

∣∣ + 1
}
, (4)

where C > 0 is a constant depending only on τ . It is easy to see that this result is
false for meromorphic functions f in Cn when n > 1 if f ′ is replaced by a partial
derivative of f . For example, consider the function f = eez1 + ez2 in C2. It is clear
that its characteristic T (r, f ) cannot be bounded by the characteristic T (r, fz2). In
fact, f has infinite order, while its partial derivative fz2 = ez2 has order 1.

It turns out that we have the following comparison theorem in Cn, which coin-
cides with (4) when n = 1:
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Theorem 3 Let f be a meromorphic function in Cn and analytic at 0. Then for
r > 0 and τ > 1, we have that

T (r, f ) ≤ C

{
n∑

j=1

T (τr, fzj
) + log+ r + log+ ∣∣f (0)

∣∣ + 1 + logn

}

,

where C > 0 is a constant depending only on τ .

Proof Let ζ = (ζ1, ζ2, . . . , ζn) be a unit vector in Cn. We denote f |ζ (z) = f (ζz) :
C → C, the lifting of f to the plane via the map z → ζz. Note that

d

dz
f

∣∣∣∣
ζ

(z) = ζ1fz1 |ζ (z) + · · · + ζnfzn |ζ (z).

Thus, using the arithmetic properties of the characteristic function, we deduce that

T

(
r,

d

dz
f

∣∣∣∣
ζ

)
≤

n∑

j=1

T (r, fzj
|ζ ) + logn.

Applying (4) to the one-variable function f |ζ , there is a constant C depending
only on τ (it is important that the constant C in (4) depends only on τ so that it is
independent of the vector ζ ) such that

T (r, f |ζ ) ≤ C

{
T

(
τr,

d

dz
f

∣∣∣
∣
ζ

)
+ log+ r + log+ ∣∣f (0)

∣∣ + 1

}

≤ C

{
n∑

j=1

T (τr, fzj
|ζ ) + log+ r + log+ ∣∣f (0)

∣∣ + 1 + logn

}

.

We next use the following result (see [12], p. 335): If f is meromorphic in Cn and
analytic at 0 with f (0) �= 0, then T (r, f ) = ∫

S
T (r, f |ζ ) dηζ for r ≥ 0, where S is

the unit sphere, and the integral is normalized so that
∫
S

dηζ = 1. Assume for the
moment that

f (0)fz1(0)fz2(0) · · ·fzn(0) �= 0.

Then we can apply this result to f,fz1, fz2 , . . . , fzn to deduce that

T (r, f ) =
∫

S

T (r, f |ζ ) dηζ

≤ C

{
n∑

j=1

∫

S

T (τr, fzj
|ζ ) dηζ + log+ r + log+ ∣∣f (0)

∣∣ + 1 + logn

}

= C

{
n∑

j=1

T (τr, fzj
) + log+ r + log+ ∣∣f (0)

∣∣ + 1 + logn

}

. (5)
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Thus, the theorem holds in this case. Now, if

f (0)fz1(0)fz2(0) · · ·fzn(0) = 0,

then we can choose constants aj with |aj | < 1 so that

F := f + a1z1 + a2z2 + · · · + anzn + a0,

which is f plus a linear function, satisfies the condition

F(0)Fz1(0)Fz2(0) · · ·Fzn(0) �= 0.

Then we can apply the already proved result (5) for F to obtain that

T (r,F ) ≤ C

{
n∑

j=1

T (τr,Fzj
) + log+ r + log+ ∣∣F(0)

∣∣ + 1 + logn

}

. (6)

On the other hand, in view of the fact that |aj | < 1 and by the arithmetic properties
of the characteristic function, we have that

∣∣F(0)
∣∣ = ∣∣f (0) + a0

∣∣ ≤ ∣∣f (0)
∣∣ + 1, (7)

T (r,Fzj
) = T (r, fzj

+ aj ) ≤ T (r, fzj
) + log 2, (8)

and when |z| ≤ r ,

log+ |a1z1 + a2z2 + · · · + anzn + a0|
≤ log+(nr + 1) ≤ log+ r + logn + log 2,

which implies that

T (r, a1z1 + a2z2 + · · · + anzn + a0) ≤ log+ r + logn + log 2

and thus that

T (r, f ) = T
(
r,F − (a1z1 + a2z2 + · · · + anzn + a0)

)

≤ T (r,F ) + T (r, a1z1 + a2z2 + · · · + anzn + a0) + log 2

≤ T (r,F ) + log+ r + logn + 2 log 2. (9)

Now, by (9), (6), (8), and (7), we deduce that

T (r, f ) ≤ C1

{
n∑

j=1

T (τr, fzj
) + log+ r + log+ ∣∣f (0)

∣∣ + 1 + logn

}

,

where C1 is a constant depending only on τ . This completes the proof. �
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In one variable, it is well known that f and f ′ have the same order. This is false
in Cn when n > 1 for f and one of its partial derivatives, as we see from the example
preceding Theorem 3. However, Theorem 1 enables us to give the relation between
the order of f and the orders of its partial derivatives as follows.

Corollary 1 If f is meromorphic in Cn, then ρ(f ) = max1≤j≤n{ρ(fzj
)}.

Proof We may assume that f is nonconstant. Denote σ := max1≤j≤n{ρ(fzj
)}.

First, suppose that σ < +∞. Then for any ε > 0, T (r, fzj
) ≤ rσ+ε for large r and

each 1 ≤ j ≤ n. Without loss of generality, we may assume that f is analytic at 0.
(Otherwise, we may consider the function F(z) := f (z0 + z) for some z0 at which
f is analytic. The characteristic of F and that of f differ by a constant multiple
(see, e.g. [12], p. 335]), and thus f and F have the same order.) By Theorem 1 we
obtain that

logT (r, f ) < (σ + ε) log r + O(1)

for large r . Thus, ρ(f ) ≤ σ . To show that σ ≤ ρ(f ), we use the logarithmic deriva-

tive lemma: m(r,
fzj

f
) = o{T (r, f )} outside a possible exceptional set of r of finite

Lebesgue measure, from which it follows that

T (r, fzj
) = N(r,fzj

) + m(r,fzj
)

≤ N(r,fzj
) + m

(
r,

fzj

f

)
+ m(r,f ) ≤ CT (r, f ) (10)

for large r outside a possible exceptional set, denoted by E, of r of finite Lebesgue
measure, denoted by l, where C > 0 is a constant. If r ∈ E, then there exists a r1 �∈ E

with r ≤ r1 and r1 − r ≤ l +1 since the measure of E is l. Then by (10), which holds
at r1, we have that

T (r, fzj
) ≤ T (r1, fzj

) ≤ CT (r1, f ) ≤ CT (r + l + 1, f )

for large r . Combining this with (10), we see that for large r without any exceptional
set, we always have that T (r, fzj

) ≤ CT (r + l + 1, f ). Hence,

ρ(fzj
) = lim sup

r→∞
log+ T (r, fzj

)

log r

≤ lim sup
r→∞

log+ T (r + l + 1, f ) + log+ C

log(r + l + 1)

log(r + l + 1)

log r
= ρ(f ).

Therefore, σ ≤ ρ(f ). We thus have proved that σ = ρ(f ) when σ < +∞.
If σ = +∞, then it is easy to deduce from (10) that ρ(f ) = +∞. Thus, we also

have that σ = ρ(f ). This proves the theorem. �
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4 Solutions of (1) an (2)

Lemma 1 Let a1, a2, and a3 be nonzero meromorphic functions in Cn, and m1,m2

positive integers satisfying that 1
m1

+ 1
m2

< 1. If f1 and f2 are meromorphic solu-

tions of the equation a1f
m1
1 + a2f

m2
2 = a3 in Cn, then for j = 1,2,

T (r, fj ) ≤ Cj N̄(r, fj ) + O

{
T

(
r,

a1

a3

)
+ T

(
r,

a2

a3

)}
+ S(r, fj ), (11)

where Cj = 1
mj (1− 1

m1
− 1

m2
)
.

Proof Since a1
a3

f
m1
1 + a2

a3
f

m2
2 = 1, we have by Nevanlinna’s first and second funda-

mental theorems that

T
(
r, f

m1
1

)

≤ T

(
r,

a1

a3
f

m1
1

)
+ T

(
r,

a1

a3

)
+ O(1)

≤ N̄

(
r,

a1

a3
f

m1
1

)
+ N̄

(
r,

1
a1
a3

f
m1
1

)
+ N̄

(
r,

1
a1
a3

f
m1
1 − 1

)
+ S

(
r,

a1

a3
f

m1
1

)

+ T

(
r,

a1

a3

)
+ O(1)

= N̄

(
r,

a1

a3
f

m1
1

)
+ N̄

(
r,

1
a1
a3

f
m1
1

)
+ N̄

(
r,

1
a2
a3

f
m2
2

)
+ S

(
r,

a1

a3
f

m1
1

)

+ T

(
r,

a1

a3

)
+ O(1)

≤ N̄(r, f1) + 1

m1
N

(
r,

1

f
m1
1

)
+ 1

m2
N

(
r,

1

f
m2
2

)
+ O

{
T

(
r,

a1

a3

)

+ T

(
r,

a2

a3

)}
+ S(r, f1)

≤ N̄(r, f1) + 1

m1
T

(
r, f

m1
1

) + 1

m2
T

(
r, f

m2
2

) + O

{
T

(
r,

a1

a3

)
+ T

(
r,

a2

a3

)}

+ S(r, f1)

≤ N̄(r, f1) + 1

m1
T

(
r, f

m1
1

) + 1

m2
T

(
r, f

m1
1

) + O

{
T

(
r,

a1

a3

)
+ T

(
r,

a2

a3

)}

+ S(r, f1),
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which implies that

T (r, f1) ≤ 1

m1
(
1 − 1

m1
− 1

m2

) N̄(r, f1) + O

{
T

(
r,

a1

a3

)
+ T

(
r,

a2

a3

)}
+ S(r, f1).

The same conclusion holds for T (r, f2). This proves the lemma. �

Remark 1 The main feature of Lemma 1 is the explicit constant Cj . It allows us
to treat both entire and meromorphic solutions in a precise way and implies/unifies
various known results.

(a) If fj is entire, the term N̄(r, fj ) disappears in (11) so that the growth of fj is
controlled by that of the coefficients whenever 1

m1
+ 1

m2
< 1. Thus, Lemma 1 gives

the results of [19, 24] mentioned above. The condition 1
m1

+ 1
m2

< 1 is precise in that

the lemma fails when 1
m1

+ 1
m2

= 1, i.e., m1 = m2 = 2, since there are transcendental

entire solutions f = sinh, g = cosh to the equation f 2 + g2 = 1, where h is any
nonconstant entire function. Even so, such an estimate is still possible when m1 =
m2 = 2 under certain conditions (see [15]).

(b) When m1 ≥ 3,m2 ≥ 3 with (m1,m2) �= (3,3), it is easy to see that Cj =
1

mj (1− 1
m1

− 1
m2

)
< 1 and thus that

T (r, fj ) ≤ O

{
T

(
r,

a1

a3

)
+ T

(
r,

a2

a3

)}
+ S(r, fj ).

Hence, the growth of fj is controlled by that of the coefficients of the equation;
for instance, if the coefficients aj (1 ≤ j ≤ 3) are constant, then it is immediate to
see that T (r, fj ) = O(1), i.e., the solutions f1, f2 are constant. Thus, it gives the
results of [5, 27] mentioned above. The constant Cj in Lemma 1 is precise in the
sense that the conclusion of the lemma fails when (m1,m2) = (3,3), since there are
transcendental meromorphic solutions f,g (given by Weierstrass elliptic functions)
to the equation f 3 + g3 = 1 (see [1]).

(c) The constant Cj also allows us to treat the case where one of m1,m2 is equal
to 2. It is clear that C1 < 1 when m1 > 4, m2 = 2 or C2 < 1 when m2 > 4, m1 = 2,
which, in particular, implies that meromorphic solutions to f

m1
1 + f

m2
2 = 1 must

reduce to constant for these m1,m2. In the cases m1 = 2,3,4 and m2 = 2 (or m2 =
2,3,4 and m1 = 2), nonconstant meromorphic solutions to f

m1
1 + f

m2
2 = 1 may

exist.
When m1 = m2 = 2, the entire functions given in (a) or the meromorphic func-

tions f,g given in (3) provide such an example. When m1 = 3, m2 = 2, one may

choose the periods of a Weierstrass elliptic function ℘ so that f = −4
1
3 ℘ and

g = i℘′ satisfy the equation f 3 +g2 = 1 (see, e.g., [10]). When m1 = 4,m2 = 2, one
may also choose the periods of a Weierstrass elliptic function ℘ such that f = 2 ℘

℘′
and g = ℘′ satisfy f 4 + g2 = 1 (see, e.g., [9], p. 974).

We next prove the following result using Lemma 1, Theorem 3, and Corollary 1.
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Theorem 4 Let a1, a2 and a3 be nonzero meromorphic functions in C2, and p,q

two positive integers satisfying that p ≥ 2, q ≥ 2 with (p, q) �= (2,2). Let u be
an entire solution of the nonlinear partial differential equation a1u

p
z1 + a2u

q
z2 = a3

in C2. Then u must be of finite λ1-type (resp. finite order ≤ ρ or linear) if a1, a2, a3

are of finite λ-type (resp. finite order ≤ ρ or constant), where λ1 = λ + log r .
If p ≥ 3, q ≥ 3 with (p, q) �= (3,3) or p = 2, q > 4 or q = 2, p > 4, then the

above conclusion also holds for meromorphic solutions u.

A similar statement holds for functional equations a1f
p +a2g

q = a3 with λ1 = λ

(cf. the proof below). Note, however, that for partial differential equations in Theo-
rem 4, λ1 cannot be replaced by λ, as seen from the entire/meromorphic solutions u

of the eikonal equation u2
z1

+ u2
z2

= 1, where the coefficients aj are of finite λ-type
with λ being constant, while u is linear, which is of finite log r-type. The term log r

comes exactly from the same term on the right-hand side of the inequality in Theo-
rem 3.

Proof Since f = uz1 and g = uz2 are entire solutions of the functional equation
a1f

p + a2g
q = a3, by Lemma 1 (cf. Remark 1) we have that

T (r, f ) + T (r, g) = O

{
3∑

j=1

T (r, aj )

}

+ O(1) (12)

outside a possible exceptional set, denoted by E, of r of finite Lebesgue measure,
denoted by l. If the functions aj (1 ≤ j ≤ 3) are of finite λ-type, then there are
positive constants A and B such that

∑3
j=1 T (r, aj ) ≤ Aλ(Br) for all large r . Thus

by (12), for large r outside the exceptional set E, we have that

T (r, f ) + T (r, g) ≤ Cλ(Br) (13)

for some C > 0. If r ∈ E, then there exists an r1 �∈ E with r ≤ r1 and r1 − r ≤ l + 1.
Thus, by (13), we have that

T (r, f ) + T (r, g) ≤ T (r1, f ) + T (r1, g)

≤ Cλ(Br1) ≤ Cλ
(
B(r + l + 1)

) ≤ Cλ(2Br)

for large r . This, together with (13), yields that

T (r, f ) + T (r, g) ≤ Cλ(2Br) (14)

for all large r without exceptional sets of r . This shows that f = uz1 and g = uz2

are of finite λ-type. Without loss of generality, we may assume that u is analytic at
0 (otherwise, we may consider g(z) := u(ζ0 + z) for a ζ0 at which u is analytic; cf.
the proof of Corollary 1). Then by Theorem 3 we deduce that u is of finite λ1-type,
where λ1 = λ + log r .
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If the functions aj (1 ≤ j ≤ 3) are of finite order ≤ ρ, then for any ε > 0,
∑3

j=1 T (r, aj ) ≤ rσ+ε for large r . By (12),

T (r, f ) + T (r, g) ≤ Crσ+ε (15)

for large r outside the exceptional set E. If r ∈ E, then for an r1 �∈ E with r ≤ r1
and r1 − r ≤ l + 1 as above, we have that

T (r, f ) + T (r, g) ≤ T (r1, f ) + T (r1, g) ≤ C(r + l + 1)σ+ε ≤ C2σ+εrσ+ε

for large r . This inequality is also true for r �∈ E by (15). Thus, f = uz1 and g = uz2

are of finite order ≤ ρ, too. Then by Corollary 1, u is of finite order ≤ ρ.
If the functions aj (1 ≤ j ≤ 3) are constant, we then have that T (r, f ) +

T (r, g) = O(1) by (12), which implies that f = uz1 and g = uz2 are constant, and
thus u is linear.

The conclusions of the theorem for meromorphic solutions u of the partial dif-
ferential equation under the given condition on p,q may be shown in exactly the
same way as above in view of the fact that in these cases, Cj < 1 in Lemma 1 (cf.
Remark 1). �

5 Some Variations of the Eikonal Equation

As is well known, there is no foolproof ways to solve general nonlinear partial
differential equations. To conclude the paper, we discuss some variations of the
eikonal equation u2

z1
+ u2

z2
= 1, which present and illustrate different treatments.

First, take the equations u2
z1

+u2
z2

= u2 and u2
z1

+u2
z2

= u3 as examples. The first
one can immediately reduce to the functional equation satisfying the condition in
Theorem 1: f 2 +g2 = 1, where f = uz1

u
and g = uz2

u
satisfying that fz2 = gz1 . Thus,

f,g are constant by Theorem 1, which implies, by integration, that u = cec1z1+c2z2 ,
where c1, c2, c are constants satisfying that c2

1 + c2 = 1 (see also [17] and [7]).
However, the second partial differential equation cannot be treated in this way. Nev-
ertheless, if u is a meromorphic solution of the equation u2

z1
+ u2

z2
= un, it is easy

to see that

nT (r,u) = T
(
r, un

) = T
(
r, u2

z1
+ u2

z2

) = m
(
r, u2

z1
+ u2

z2

) + N
(
r, u2

z1
+ u2

z2

)

≤ m

(
r,

u2
z1

+ u2
z2

u2

)
+ m

(
r, u2) + 4N(r,u)

≤ 2m(r,u) + 4N(r,u) + S(r,u)

by the logarithmic derivative lemma. When u is entire, the term N(r,u) disappears.
Thus, the above inequality clearly implies the following:

Proposition 1 The partial differential equation u2
z1

+ u2
z2

= un has no nonzero en-
tire solutions when n > 2 and has no nonzero meromorphic solutions when n > 4.
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The condition on n is precise since the result fails when n = 1,2 for entire so-
lutions and also fails when n = 1,2,3,4 for meromorphic solutions. When n = 1,
u = 1

4 (z2
1 + z2

2) is an entire solution. When n = 2, an entire solution was given

above. When n = 3, u = 4
z2

1+z2
2

is a meromorphic solution. When n = 4, u =
√

2
z1+z2

is a meromorphic solution.
We next consider the nonlinear partial differential equation of tubular surfaces

(see, e.g., [3], p. 27 and p. 95)

u2(u2
z1

+ u2
z2

+ 1
) = 1, (16)

or u2
z1

+ u2
z2

= 1
u2 − 1. The two-parameter family of the spheres (x − a)2 + (y −

b)2 + u2 = 1 is a complete integral of the equation u2(u2
x + u2

y + 1) = 1. The en-
velopes of one-parameter family of spheres of radius 1 whose center moves along a
curve y = w(x) in the x, y plane are tubular surfaces whose axis is y = w(x). The
equation clearly has solutions u = 1,−1. We will show that they are the only entire
(meromorphic) solutions. This can be proved in different ways. The method used
below applies to the following more general partial differential equations

P(u,uz1 , . . . , uzn, uz1z1 , uz1z2 , . . . )Q(u,uz1 , . . . , uzn, uz1z1 , uz1z2 , . . . ) = 1 (17)

in Cn, where P and Q are any nonconstant polynomials in u and its partial deriva-
tives of arbitrary orders (P and Q can have slowly growing coefficients) with

P(0, uz1 , . . . , uzn, uz1z1 , uz1z2 , . . . ) = 0.

A special example is P = um, m ≥ 1. Thus, (16) is a very special case of (17).
Suppose that u is an entire or meromorphic solution of (17). We use the following

result in [18] (Lemma 2):
∫
E

log+ P
f

η = S(r, f ) for any nonconstant meromorphic
function f in Cn and any nonconstant polynomial P in f and its partial derivatives,
where E is the set of ζ on the sphere Sr in Cn with radius r and centered at the origin
such that |f (ζ )| ≤ 1 and η is the volume form on the sphere normalized so that the
total measure of the sphere is 1. Then by (17) and the definition of the proximity
function m(r,f ) (cf. [18]),

m

(
r,

1

u2

)
≤

∫

E

log+ 1

u2
η =

∫

E

log+
(

P

u

Q

u

)
η

≤
∫

E

log+ P

u
η +

∫

E

log+ Q

u
η = S(r,u),

where the set E is defined as above with |u(ζ )| ≤ 1 on E. But, by (17) and the as-
sumption on P we see that u does not vanish. Thus, N(r, 1

u2 ) = 0. We then obtained
that

2T (r,u) = T

(
r,

1

u2

)
+ O(1) = m

(
r,

1

u2

)
+ N

(
r,

1

u2

)
= S(r,u),

which implies that u is a constant. Substituting u into (17), we obtain the following:
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Proposition 2 If u is a meromorphic solution of (17) in Cn, then u must be a con-
stant c satisfying that

P(c,0, . . . ,0, . . . )Q(c,0, . . . ,0, . . . ) = 1.

In particular, the meromorphic solutions of (16) in C2 are exactly u = 1 and u = −1.

References

1. Baker, I.N.: On a class of meromorphic functions,. Proc. Am. Math. Soc. 17, 819–822 (1966)
2. Chuang, C.: Sur la comparaison de la croissance d’une fonction méromorphe et de celle de sa

dérivée. Bull. Sci. Math. 75, 171–190 (1951)
3. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations,

vol. II. Interscience, New York (1962)
4. Gundersen, G., Hayman, W.: The strength of Cartan’s version of Nevanlinna theory. Bull.

Lond. Math. Soc. 36, 433–454 (2004)
5. Gross, F.: On the equation f n + gn = 1. Bull. Am. Math. Soc. 72, 86–88 (1966) (erratum, 72,

576 (1966))
6. Granville, A., Tucker, T.J.: It’s as easy as abc. Not. Am. Math. Soc. 49, 1224–1231 (2002)
7. Han, Q.: On complex analytic solutions of the partial differential equation um

z1
+ um

z2
= um.

Houst. J. Math. 35, 277–289 (2009)
8. Hemmati, J.: Entire solutions of first-order nonlinear partial differential equations. Proc. Am.

Math. Soc. 125, 1483–1485 (1977)
9. Huber, A.: A novel class of solutions for a nonlinear third order wave equation generated by

the Weierstrass transformation. Chaos Solitons Fractals 28, 972–978 (2006)
10. Hurwitz, A., Courant, R.: Funktionentheorie, vol. 4. Springer, Berlin (1964)
11. Khavinson, D.: A note on entire solutions of the eikonal equation. Am. Math. Mon. 102, 159–

161 (1995)
12. Kujala, R.: Functions of finite λ-type in several complex variables. Trans. Am. Math. Soc.

161, 327–358 (1971)
13. Jategaonkar, A.V.: Elementary proof of a theorem of P. Motel on entire functions. J. Lond.

Math. Soc. 40, 166–170 (1965)
14. Lang, S.: Old and new conjectured diophantine inequalities. Bull. Am. Math. Soc. 23, 37–75

(1990)
15. Li, B.Q.: On certain functional and partial differential equations. Forum Math. 17, 77–86

(2005)
16. Li, B.Q.: Entire solutions of certain partial differential equations and factorization of partial

derivatives. Trans. Am. Math. Soc. 357, 3169–3177 (2005)
17. Li, B.Q.: On meromorphic solutions of f 2 + g2 = 1. Math. Z. 258, 763–771 (2008)
18. Li, B.Q.: Uniqueness of entire functions sharing four small functions. Am. J. Math. 119, 841–

858 (1997)
19. Montel, P.: Leçons sur les familles normales de functions analytiques et leurs applications.

Gauthier-Villars, Paris (1927)
20. Saleeby, E.G.: Entire and meromorphic solutions of Fermat type partial differential equations.

Analysis 19, 369–376 (1999)
21. Shabat, B.V.: Introduction to Complex Analysis, part II, Functions of Several Variables.

Translation Mathematical Monographs, vol. 110. American Mathematical Society, Providence
(1992)

22. Shabat, B.V.: Distribution of Values of Holomorphic Mappings. Translation Mathematical
Monographs, vol. 61. American Mathematical Society, Providence (1985)



222 B.Q. Li

23. Stoll, W.: Introduction to the Value Distribution Theory of Meromorphic Functions. Springer,
New York (1982)

24. Toda, N.: On the functional equation
∑p

i=0 aif
ni

i = 1. Tohoku Math. J. 23, 289–299 (1971)
25. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebra. Ann. Math. 141,

553–572 (1995)
26. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551

(1995)
27. Yang, C.C.: A generalization of a theorem of P. Montel on entire functions. Proc. Am. Math.

Soc. 26, 332–334 (1970)
28. Yang, L.: Value Distribution Theory. Springer, Berlin (1993)



An Analogue of the Galois Correspondence
for Foliations

Bernard Malgrange

Abstract For transverse parallelisms without first integral, I give a result similar to
the Galois correspondence in the differential Galois theory of Kolchin.

1 Introduction

In this note, I discuss a few simple remarks on the “nonlinear differential Galois
theory,” as developed in [3] and [4]. A different theory, essentially equivalent, is due
to Umemura [8, 9].

For simplicity, I limit myself to a special, but important case, the “transverse
parallelisms”; see definition in Sect. 3. This case permits also a comparison with
the theory of “strongly normal extensions” of Kolchin [2]. In a preliminary section,
I review some facts on (algebraic) parallelisms. I have tried to make this note as
independent as possible of [3] and [4], and as an introduction to these papers.

2 Parallelisms

2.1 Let X be a smooth and separated algebraic variety over C. Unless explicitly
stated, I suppose that X is irreducible.

Let n = dimX, and let L be a Lie algebra over C of dimension n. Denote by θX

(resp. ΩX) the sheaf of vector fields (resp. differential 1-forms) on X. By definition,
an L-parallelism on X is a linear map u : L → Γ (X, θX) verifying

(i) u has constant rank n on X;
(ii) u commutes with the brackets (the second one is, of course, the Lie bracket on

vector fields).
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Let M = L∗ be the dual of L, with differential d : M → Λ2M equal to minus the

transpose of the bracket of L. It is equivalent to give a map M
u∗−→ Γ (X,ΩX) of

constant rank n and commuting with the differentials. It is also equivalent to give a
form Ω ∈ Γ (X,ΩX) ⊗C L with the obvious condition of rank and the integrability
condition dΩ + [Ω,Ω] = 0.

The standard analytic description of this situation is the following: let Xan be
the analytic variety defined by X, and ˜Xan its universal covering with base-point
a ∈ X(C). Let also G be a connected Lie group over C, whose Lie algebra LieG is
isomorphic to L. Then, the foliation of G×X given by the components of dgg−1 +
Ω gives a “developing map” ˜Xan → G (defined up to right multiplication by G)
and a monodromy map π1(˜X

an, a) → G, which are the basis of the study of the
given parallelism.

This situation has been much studied (and also its generalization with G replaced
by a homogeneous space G/H . For simplicity, I will not consider this case here).
But, as far as I know, the corresponding algebraic case seems to have been little
studied. There are several differences.

(a) L is not necessarily the Lie algebra of an algebraic group. In the traditional
terminology, the “third fundamental theorem” is not true in algebraic context. How-
ever, one has a weaker version.

Theorem 1 For any Lie algebra L over C, there exists an algebraic L-parallelism.

This theorem is due to Deligne; see the proof in [4], Appendix B. A simple ex-
ample is the following (loc.cit.): let L be the three-dimensional Lie algebra defined
by [ξ, η] = −λη, [ξ, ζ ] = −μζ , [η, ζ ] = 0, with λμ �= 0, λ/μ /∈ Q. One verifies
easily that L is not the Lie algebra of an algebraic group. However, one has an
L-parallelism on C

3, with ξ = ∂
∂x

+ λy ∂
∂y

+ μz ∂
∂z

, η = ∂
∂y

, ζ = ∂
∂z

.

(b) Suppose that L is the Lie algebra of an algebraic group G that we can suppose
to be connected.

Then, on G × X, we can consider again the foliation defined by dgg−1 + Ω or,
equivalently, the connection form g−1dg + adg−1Ω .

It would be equivalent to consider any flat G-connection Π on G × X (G is
supposed to act on the right) and a section X → G × X transversal to the foliation
defined by Π . In general, this situation is not easy to describe.

[For instance, for G = Gl(n), we would need a generalization of Riemann–
Hilbert correspondence to irregular singularities at infinity, plus conditions for the
existence of a transversal section.]

2.2 From now on, I will work birationnally on X, i.e., I will replace freely X

by a (Zariski) open dense set; a “parallelism” on X will mean a parallelism in the
preceding sense on an open dense set U ; and I will identify two parallelisms on U

and V if they coincide on U ∩ V .
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Now, if (L,Ω) is such a parallelism on X, I define the pseudogroup Z associated
to (L,Ω) as the pseudogroup on X fixing Ω .

For a precise definition of algebraic pseudogroups, see [4]. But, here it is suffi-
cient to say that the solutions (algebraic, analytic, or formal) of Z are the leaves
(algebraic, etc.) of the foliation FZ on X × X defined by the coefficients of
p∗

2Ω − p∗
1Ω , (p1,p2) the projections X × X → X.

For simplicity, I abbreviate the notations, denoting by x, ω, etc. the objects on the
first component of X × X and x̄, ω̄, etc. the same object on the second component.
So the foliation FZ is defined by Ω−Ω ; equivalently, if ξ1, . . . , ξn is a basis of u(L),
this foliation is defined by ξ1 + ξ̄1, . . . , ξn + ξ̄n.

Now, denote by C(X) the field of rational functions on X, and the same for
X × X. Note that C(X), equipped with ξ1, . . . , ξn, is a “field with operators” in
the sense of Bialynicki-Birula [1], but not a “differential field” in the sense of
Kolchin [2], since the ξi ’s do not commute in general. Therefore, we cannot use
here the theory of “strongly normal extensions” of Kolchin, but we can use its gen-
eralization by [1]. This gives the following theorem.

Theorem 2 Let (X,L,Ω) be a variety equipped with a parallelism. With the pre-
ceding notations, let C(X × X)c ⊂ C(X × X) be the field of “first integrals” or
“constants” of FZ (i.e., the f ∈ C(X × X) verifying (ξ̄i + ξi)(f ) = 0 (1 ≤ i ≤ n).
Then, the following conditions are equivalent:

(i) (X,L,Ω) is birationally equivalent to (X,LieG,g−1dg) for some algebraic
group G.

(ii) C(X × X) is generated by C(X) ⊗ 1 (= the functions of the first variable) and
C(X × X)c .

Of course, (i) ⇒ (ii) is trivial. The converses uses mainly the birational charac-
terization of algebraic groups due to A. Weil. See [1].

Remark 1 The conditions of Theorem 2 imply that the foliation FZ is “algebraically
integrable”, i.e., FZ is determined by its first integrals.

The converse is false: if X � G is a finite rational morphism, the pull-back of
the standard parallelism on G is a parallelism on X, and the corresponding foliation
is algebraically integrable. I do not know if the converse is true.

More generally, in all the examples that I know, specC(X ×X)c admits a natural
structure of birational algebraic group, but I have no general proof of this fact.

Here is a simple example. I will have to use the following theorem of Rosen-
licht [6].

Theorem 3 Let X be an algebraic variety, and let ξ be a vector field �= 0 on X.
Consider, on X × C, the vector field ξ + f ∂

∂t
, f ∈ C(t), f �= 0. Then this vector

field has no first integral depending on t (i.e., it has the same first integrals as ξ ),
except perhaps in the following cases:
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(i) 1
f

= g′, g ∈C(t);

(ii) 1
f

= c
g′
g

, c ∈C, g ∈ C(t).

Takes now X = C and put ξ = f ∂
∂x

, f ∈ C(x), f �= 0. On X × X, the foliation
FZ is given by f (x) ∂

∂x
+ f (x̄) ∂

∂x̄
. If we are not in the exceptional cases, this vector

field has no first integral except the constants. Iterating, we find also that on C
n, the

vector field Σf (xi)
∂

∂xi
has no first integral except the constants. On the other hand,

if 1
f

= g′, then g(x̄)−g(x) is a generator of C(X×X)c . It has obviously a structure

of (birational) additive group. The case 1
f

= c
g′
g

is similar, with the multiplicative
group.

2.3 The pseudogroup Z has a Lie algebra, more precisely a D-Lie algebra, i.e.,
a system of linear PDEs on θX , whose space of solutions is stable by Lie bracket.
Explicitly, this system is given by LξΩ = 0, L the Lie derivative.

This D-Lie algebra should not be confused with u(L). It is a D-Lie algebra,
whose (analytic) solutions are not necessarily rational. The relation between both
is the following: suppose, by restricting X, that u has constant rank. Then, take
a ∈ X(C). There is an obvious isomorphism of the tangent space Ta with L. On the
other hand, one verifies that the projection on Ta gives an isomorphism with Ta of
the space of formal solutions at a of Lie Z. Now, the two Lie algebra structures on
Ta that we have obtained are not equal, but opposed.

To prove this, it is sufficient to consider the case X = G with a = e (the general
situation reduces to this one by considering a germ at a of developing map, in the
analytic context). Now the first isomorphism (resp. the second) is the isomorphism
of Te with the right-invariant (resp. the left-invariant) vector fields.

Here is a simple example, already considered in [4]. Take X = C
2 with the paral-

lelism given by { ∂
∂y

, ∂
∂x

− y ∂
∂y

} or, equivalently, by the dual basis {dy + y dx, dx}.
The D-Lie algebra is given by Lξdx = Lξ (dy + y dx) = 0. A base of solutions is
∂
∂x

, e−x ∂
∂y

; this is not algebraic.

On the other hand, there is no pseudogroup Z on C
2 such that LieZ has exactly

{ ∂
∂y

, ∂
∂x

−y ∂
∂y

} as a basis of solutions. Since these vector fields are linear affine, one
can prove the following: find such a pseudogroup would be equivalent to find an al-
gebraic subgroup of Aff(2) with Lie algebra { ∂

∂y
, ∂

∂x
− y ∂

∂y
}. But this is impossible:

such a Lie algebra must contain the semi-simple and the nilpotent parts of ∂
∂x

−y ∂
∂y

,

i.e., y ∂
∂y

and ∂
∂x

.

2.4 To end this section, a few simple remarks. They are essentially well known to
the experts; see, e.g., [7].

For X, smooth algebraic variety over C, denote by AutX the groupoid of germs
of analytic isomorphisms (Xan, a)

∼−→ (Xan, b) with a, b ∈ X(C). Roughly speak-
ing, an algebraic pseudogroup on X is a subgroupoid of AutX defined by algebraic
partial differential equations. The precise definition is in terms of jets: for k ≥ 0,
let J ∗

k X be the variety of k-jets of invertible maps X → X. A pseudogroup will be
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defined by a projective system of closed subvarieties Zk ⊂ J ∗
k X. For precise condi-

tions, I refer to [4].
Now Z = {Zk} will be called transitive if Z0 = X × X. One proves that this

condition is equivalent to the following: after restricting X if necessary, for any pair
a, b ∈ X(C), there exists a formal (or an analytic) solution of Z with source a and
target b.

Z = {Zk} will be called “of finite type” (some people say “rigid”) if the projec-
tions Zk+1 → Zk are bijective for k � 0.

For instance, if Z is the pseudogroup associated to a parallelism on X, one ver-
ifies easily that it is transitive of finite type; the maps Zk+1 → Zk are even bijec-
tive for k ≥ 0. Incidentally, this implies that Z has no transitive strict subgroupoid
(adding equations to Z would imply to add equations of order 0).

Now, it turns out that all pseudogroups transitive of finite type on X can be repre-
sented in some suitable frame bundle of X (or “prolongation of X”) by a parallelism.
This will be the case, e.g., for the pseudogroup of automorphisms of an affine struc-
ture, a projective structure, a Riemannian structure with constant curvature, etc. This
means that parallelisms are an important special case of Lie pseudogroups.

Conversely, given a parallelism L, say on Y , it would be interesting to see if there
exists some X with a dominant map Y → X such that the pseudogroup associated
to L “descend” to a pseudogroup on X. For that purpose, may be, considerations
similar to the proof of Theorem 2 could be useful. I will not look at this question
here.

3 Transverse Parallelisms

3.1 This notion is defined in terms of differential forms: let X be a smooth variety
of dimension n as before, and let M be a Lie coalgebra of dimension m ≤ n. By
definition, a transverse parallelism of type M on X is a map M

v−→ Γ (X,ΩX),
verifying

(i) v(M) has constant rank m on X;
(ii) v commutes with the differentials.

Of course, if m = n, this is just a parallelism as considered in Sect. 2. If m < n,
it defines a foliation F of codimension m, with a “transverse parallelism” (roughly
speaking, a parallelism on the transversals to F , invariant by the flow, or holonomy,
of F ).

We will be interested in the transverse parallelisms which have no rational first
integral except the constants (I recall that, we work birationally on X). We call these
parallelisms “transitive,” since their differential Galois pseudogroup (see definition
below) is transitive. Note that, if m = n, the parallelism is never transitive.

Let L be the Lie algebra dual to M , and let L′ be a Lie subalgebra of L. This
is equivalent to give M ′ = L′⊥ verifying dM ′ ⊂ M ′ ∧ M (I call this a “coideal”
of M). Given a parallelism (M,v) on X, L′ (or M ′) defines a foliation G to X,
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bigger than F (i.e., the leaves of G contain those of F ). Now we have the following
simple, but important observation.

Proposition 1 Suppose that the parallelism (M,v) transitive, and denote by F the
corresponding foliation. Then, all the foliations G of X bigger than F are obtained
in this way.

Let G be such a foliation; let N be the conormal bundle of the foliation [with ba-
sis v(M)], and let N ′ ⊂ N the subbundle defined by G. Then N ′ is an F -transversal
structure, i.e., N ′ is stable by the vector fields tangents to F . On the other hand,
(M,v) gives a canonical trivialization N � X × M .

I claim that N ′ is compatible with this trivialization; in other words, there exists
a subspace M ′ of M such that, in the preceding trivialization, one has N ′ = X ×M ′.

We can suppose that condition (i) is satisfied on the whole X. Choose a ∈ X(C),
and choose a decomposition N(a) = N1(a) ⊕ N2(a) such that N ′(a) is the graph
of a map N1(a) → N2(a). The preceding trivialization extends this decomposition
to a decomposition N = N1 ⊕ N2, and a decomposition M = M1 ⊕ M2, with Ni =
X × Mi . For a general b ∈ X(C), N ′(b) is the graph of a map N1(b) → N2(b).
Finally, we obtain a rational function X � Hom(M1,M2), stable by the vector fields
of F . Therefore this map is constant.

Now the fact that M ′ = N ′(a) is a coideal of M follows from the Frobenius
condition on G.

3.2 We will give now some extensions and comments of the preceding result. Here
is a first extension in a “tannakian” spirit. Let again (M,v) be a transitive transverse
parallelism; let F be the corresponding foliation, and N the conormal bundle. Call
“construction on N” a direct sum P of a finite family N⊗p ⊗ (N∗)⊗q and denote
by Q the corresponding construction on M . One has a trivialization P � X × Q.
Now, if Q′ is a subvector space of Q, X × Q′ is a subvector bundle of P , stable by
the vector fields tangent to F ; and all subvector bundles of P stable by these vector
fields are obtained in this way. The proof is similar to Proposition 1.

3.3 To have a more general and systematic extension of Proposition 1, it is con-
venient to use the terminology of [3] and [4]. Given a foliation F on a variety X,
the “Galois pseudogroup of F ” is by definition the smallest pseudogroup on X,
whose D-Lie algebra contains in its solutions all the vector fields tangent to F . For
the proof that such a “smallest pseudogroup, etc.” exists, I refer to loc.cit. Now,
if (M,v) is a transverse transitive parallelism on X, with foliation F , one has the
following result (loc.cit.).

Theorem 4 The Galois pseudogroup of F is the pseudogroup fixing v(M).

Let π1, . . . , πm be a basis of M , and put ωi = v(πi). If ξ is a vector field (al-
gebraic, analytic, or formal) tangent to F , one has 〈ξ,ωi〉 = 0. Denoting by Lξ the
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Lie derivative, one has Lξωi = d〈ξ,ωi〉 + iξ dωi = 0 (the first term of the second
member vanishes by definition; the second because of the expression of dωi ).

Consider now the pseudogroup Z fixing the ωi ’s, and denote by Z′ the Galois
pseudogroup of F . The preceding argument shows that Z′ ⊂ Z. Now, if we had
Z′ �= Z, a transverse modification of the arguments of Sect. 2.4 would prove that Z′
contains nontrivial equations of order 0. But this is equivalent to the existence of
nontrivial first integrals. This proves the theorem.

This result reproves immediately Proposition 1 and its extension Sect. 3.2. Let,
for instance, N ′ be a subbundle of the conormal bundle N , stable by the vector
fields of the foliation. Then, the pseudogroup leaving N ′ stable must contain Z. If
Z1 ⊂ J ∗

1 X is the equation of order one of Z, this means that N ′ is stable by Z1.
But Z1 is the subbundle of J ∗

1 X leaving F invariant and is equal transversally to the

family of isomorphisms N(a)
∼−→ N(b), a, b ∈ X(C) deduced from (M,v). This

gives the required statement.
More generally, Theorem 4 gives similarly a description of all the transverse

structures of F , and not only of the structures of order one, as in Proposition 1 and
Sect. 3.2. I will omit the details.

We can also ask the following question: given a foliation F on X, does there
exist a “normal form,” i.e., a prolongation to some frame bundle over X, which is a
transitive transversal parallelism? The answer is a transverse analogue to the result
of Sect. 2.4. The foliation F should have no nontrivial first integral, and its Galois
pseudogroup must be “transversally finite,” i.e., its restriction on transversals must
be of finite type; see the details in [4].

If F has no first integrals but the Galois pseudogroup is of infinite type, the theory
of Lie pseudogroups gives a more or less similar normal form, but with infinite-
dimensional Lie algebras; see [7]. The intransitive case is more sophisticated; I refer
for it to [4].

3.4 It is interesting to compare the preceding results, especially Sect. 3.2, with the
standard theory of “strongly normal extensions” of Kolchin: see [2], and also [1].

I will consider only a special case of this theory. Let G be an algebraic connected
group over C, and let p : X → S be a G-principal bundle (G operates on right).
I suppose X, S, p smooth, and S connected.

Let Ω be a G-connection on p. I recall that this means a form on X with values
on G = LieG verifying:

(i) The restriction of Ω to the (closed) fibers of p is equal to the image of the left
Maurer–Cartan form g−1dg (I recall that this is defined without ambiguity).

(ii) If Rg is the right multiplication by g ∈ G(C), one has R∗
gΩ = adg−1Ω . I sup-

pose also the connection flat, i.e., verifying dΩ + [Ω,Ω] = 0.

Then, if M is the dual of G, Ω defines a transverse M-parallelism on X. All the
preceding considerations can therefore be applied here.

Let us translate this situation in Kolchin’s language. Let k (resp. K) be the field
C(S) (resp. C(X)) of rational functions on S (resp. X). If we want, we can choose a
commutative basis δ1, . . . , δp (p = dimS) of the derivations Derk/C (for instance,
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we take a dominant projection S → C
p , and we lift the partial derivatives ∂

∂xi
of

C
p). Then, (k; δ1, . . . , δp) is a differential field in the sense of Kolchin, and Ω

determines an extension (δ̄1, . . . , δ̄p) of (δ1, . . . , δp) to X, which makes K a differ-
ential extension of k.

Suppose now that the parallelism defined by Ω is transitive. It is equivalent to say
that Kc , the field of constants of (K, δ̄1, . . . , δ̄p), is equal to kc = C. Then, we are
in the situation of strongly normal extensions. In this situation we have the Galois
correspondence (loc. cit.).

Theorem 5 There is a bijection between the subgroups G′ ⊂ G and the differential
fields K ′ with k ⊂ K ′ ⊂ K . Given G′, K ′ is the subfield of K fixed by G′, and, given
K ′, G′ is the subgroup of G such that G′(C) fixes K ′. Moreover, the connected
subgroups of G correspond to the K ′ algebraically closed in K .

This result has many analogies with Proposition 1. However, it is both less gen-
eral and more precise.

(i) In the situation of Sect. 3.4, given a Lie subalgebra G′ of G, we have a foliation
F ′ of X bigger that the foliation F defined by Ω . If G′ comes from a subgroup
G′ ⊂ G, which we can suppose to be connected, then, may be after restricting

S, there exists Y with dominant maps X
p′

−→ Y −→ S factorizing p, and p′ is
a G′ principal bundle. If we put K ′ = C(Y ), the foliation F ′ on X is the inverse
image of the foliation of Y defined by the differential structure of K ′. But, if G′
is not the Lie algebra of a subgroup of G, no such “descent” exists.

(ii) Take, more generally, the situation of a transitive M-parallelism on X, and de-
note by F the corresponding foliation. Then, any Lie subalgebra of M∗ (or any
coideal of M) gives a foliation F ′ on X bigger than F . This is somewhat similar
to Theorem 5, since, from a transverse point of view, (X,F ′) can be considered
as a “quotient” of (X,F ). Then we have here an analogue of the Galois corre-
spondence.

But, in general, there is no corresponding “descent” for several reasons.

(a) A priori, we have nothing analogous to S. We can get one by choosing a dom-
inant projection f : X → S generically transverse to F (in particular, dimS is
equal to the dimension of the leaves of F ).

But the situation will depend strongly of the chosen projection. Take, for
instance, the transverse parallelism defined by dy − dx

x
on C

2. If we take the
projection (x, y) �→ x, we find the situation of a strongly normal extension,
with G = Ga . If we project by (x, y) �→ y, we find a strongly normal extension
with G = Gm. If we take the projection (x, y) �→ t = y + x, we have no group
structure in the fibers; for instance, in the fiber t = 1, we have the parallelism
given by dx

x
+dx, or x

1+x
d
dx

, which is in the nonexceptional case of Theorem 3.
(b) Suppose that we are in the situation of (a), with an S chosen. Given a Lie subal-

gebra L′ of L = M∗, it gives a foliation F ′ on X bigger than F (F ′ is also de-
fined by M ′ = L′⊥ ⊂ M). But, in general there is no factorization X → Y → S
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analogous to (i). A necessary condition for the existence of such a factorization
is that F ′ is “algebraically integrable relatively to S” [this is defined as algebraic
integrability, but with ΩX replaced by ΩX/S ; equivalently, the foliation defined
by v(M ′) and ΩS ◦ p, p the projection X → S, is algebraically integrable].

It would be interesting to study more systematically this situation, and in partic-
ular, to have examples of the phenomena which can occur.

3.5 I come back to the situation of Sect. 3.4, i.e., a transitive transverse parallelism
given by a connection the G-principal bundle p : X → S; as in Sect. 3.4, I denote
by Ω the connection form.

The group G is usually called the Galois group. Another form of G is the “in-
trinsic group” ˜G, introduced by Katz (see a discussion of this question in [5]). This
is the group over S of automorphisms of p commuting with the action of G. ˜G is
naturally equipped with a connection deduced from Ω , which makes it an algebraic
differential group.

Consider now, on the same situations, the objects of the nonlinear theory: the Lie
algebra G, the form Ω on X with value in G, and the Galois pseudogroup Z = {Zk},
Zk ∈ J ∗

k X.
The relation of these objects with the preceding ones is as follows.

(a) G is the Lie algebra of G (by definition).
(b) Given s ∈ S, the restriction of Z to the fiber X(s) is the family of automor-

phisms commuting with the action of G [follows from the form of the restriction
Ω/X(s); as usual, I identify a pseudogroup to its solutions]. This is isomor-
phic noncanonically to G; the isomorphism depends on the choice of a point
x ∈ X(s)(C).

(c) The pseudogroup associated to the differential group ˜G (see [4], Appendix A) is
simply the subpseudogroup Z′ of Z of transformations x �→ x̄ of Z commuting
with p and fixing s = p(x). The only point to verify is that the connection is
the right one. This is a statement on jets of order one; therefore, I can work in
the formal completion of a fiber of p, or also in the analytic category. A fortiori,
I can suppose the fibration trivial, i.e., X = S × G. Denote by ω the restriction
of Ω to S × {e}; then, we have Ω = g−1dg + g−1ωg. The pseudogroup Z′ is
given by the transformations (s, g) �→ (s, ḡ) fixing Ω . Writing ḡ = γg, we find
γ −1dγ +γ −1ωγ = ω, or dγ = γω−ωγ . This is the equation of the connection
of ˜G.

Now, in the general situation of a transitive transverse parallelism, or more gener-
ally, of a general foliation, the things are, roughly speaking, as follows: to the Galois
group of the classical theory of Kolchin corresponds the Lie algebra of the paral-
lelism (or, in general, the “virtual group” in the sense of [4]), and to the intrinsic
group corresponds the Galois pseudogroup.

The distinction between two versions of the “Galois group” seems to have been
considered for the first time by Vessiot [10], with his “groupe de rationalité” and his
“groupe spécifique.’. I thank J.-P. Ramis and G. Casale for this reference.
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A Quantitative Version of Carathéodory’s
Theorem for Convex Sets

Reinhold Meise and Alan Taylor

Abstract Carathéodory’s theorem for compact convex sets K ⊂ R
m shows that

every point x of K lies in the convex hull of m + 1 extreme points of K; that is, in
the m-simplex with vertices at m + 1 extreme points. However, it need not be the
case that if x is a positive distance away from the boundary of K , then x is a positive
distance away from the boundary of one of these simplices. Here, we show that if
K has only finitely many extreme points, then there are a finite set F ⊂ ∂K and a
constant c > 0 such that if x ∈ K is of distance δ > 0 from the boundary of K , then
x belongs to one of the m-simplices with vertices from F and is of distance at least
cδ from its boundary.

1 Introduction

Let K be a polytope in R
m, i.e., a compact convex set in R

m with finitely many
extreme points, say x1, . . . , xp . Let us also suppose that K has a nonempty interior
so that p ≥ m + 1. Carathéodory’s theorem implies that each point x in K can be
written as a convex combination of at most m + 1 of these extreme points. If one
is allowed to use convex combinations of all p extreme points, then a quantitative
version of this fact is also true. Namely, each x ∈ K that is of distance greater than
δ > 0 from the boundary of K can be written as a convex combination of extreme
points

x =
p∑

i=1

λixi,

p∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ p,
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in which all of the coefficients are at least proportional to δ. To see this, one can
assume that 0 ∈ K and that the sum of the extreme points xi is equal to 0. Then if
0 �= x = ∑

λixi ∈ K is of distance δ from the boundary of K , then x∗ = (1 + pε)x

also belongs to K , where ε = δ
p|x| ≥ δ

p diam(K)
. Therefore,

x = x∗

(1 + pε)
= x∗ + 0

(1 + pε)
=

p∑

i=1

(λi + ε)

(1 + pε)
xi,

and the coefficients in this expansion all satisfy

λi + ε

1 + pε
≥ ε

1 + pε
= δ

p(|x| + δ)
≥ δ

2p diam(K)
, 1 ≤ i ≤ p.

The question therefore arises if it is possible to do this using only the “correct num-
ber,” i.e., m + 1, of these points.

A simple example shows that this is not the case. Namely, if K is a rectangle in
the plane, then the center of the rectangle is of large distance from the boundary, but
it does not belong to the interior of any of the triangles formed by choosing three of
the vertices. The obstruction is that the interior of K is not the union of the interiors
of the simplices determined by 3 = m + 1 of the vertices.

There is a similar example for K in three dimensions. Namely, let K denote a
pyramid with rectangular base and one additional vertex, say at height 1 above the
base. Consider the line segment joining the center of the base to this vertex. Then
points on this line at a small distance δ above the base cannot be in the interior of any
of the 3-simplices formed by taking four of the five vertices as corners. Thus, it may
not be just the “interior” obstruction that must be removed but also the “interiors of
the faces” obstruction.

However, we can prove that some finite subset of the boundary of K will work
for the quantitative Carathéodory theorem.

Theorem 1.1 (Quantitative Carathéodory theorem) Let K be a polytope in R
m.

Then there are a finite set F ⊂ ∂K and a constant c > 0 such that whenever x ∈ K

is of distance δ > 0 from ∂K , there is an m-simplex S with its m+ 1 vertices chosen
from the set F such that x ∈ S and the distance from x to the boundary of S is at
least cδ.

Since Carathéodory’s theorem has a simple and elegant proof, one might expect
that this quantitative version does as well. We have been unable to find such an
argument. Rather, the proof given here goes by “brute force.” First, we handle points
near the boundary of K by showing that if a point x ∈ K is “near to” a k-dimensional
face but “far from” (k − 1)-dimensional faces, then it lies in the simplex with k + 1
points chosen from a finite subset of the boundary of the nearby face and m − k

points chosen from another finite subset of the boundary of K chosen by looking
at the projection of K parallel to the nearby face. Second, we show that this allows
us to find a finite set F ⊂ ∂K that works for all the points sufficiently near to the
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boundary of K . Last, we use a compactness argument to show that the remaining
points in the interior can be handled by making the finite set F contain enough
points to avoid the “interior point” obstruction mentioned earlier.

The paper is concluded in Sect. 4 by giving the corresponding version of the
theorem for cones. In fact, this version is what led us to the question studied here
because we suspect that it has application in our ongoing work to characterize the
analytic varieties in C

n that satisfy the local Phragmén–Lindelöf condition at the
origin. Such a characterization for analytic surfaces in R

3 was given in [1], and we
are still studying higher-dimensional cases.

For general reference and terminology regarding convex sets, we refer to [2].
The authors also wish to thank the referee for several helpful comments.

2 Points Near the Boundary of K

It is convenient to have a name for finite sets with the property of the theorem.

Definition 2.1 Let K be a compact convex subset of Rm. A finite subset F of ∂K

is said to be robust for K if there exists a positive constant c > 0 such that given any
ball B(x, δ) ⊂ K , there is an m-simplex S with vertices in F such that B(x, cδ) ⊂ S.

Remark 1 If a vector x = ∑m
i=0 λifi is a convex combination of vectors f0, . . . , fm

that are the vertices of the simplex, then each coefficient λi is of the same magnitude
as the distance of the vector x from the “opposite” facet; i.e., the distance to the
hyperplane spanned by the other m vertices. For example, if N is the unit vector
orthogonal to the hyperplane spanned by the vectors f1 − f0, . . . , fm−1 − f0, then
the distance of x from this facet is

N · (x − f0) = N ·
(

m∑

i=0

λi(fi − f0)

)
= λm

(
N · (fm − f0)

)
,

so λm is proportional to this distance. Therefore, the condition B(x, cδ) ⊂ S is
equivalent to giving a lower bound proportional to δ for the coefficients of x as
a convex combination of the vertices of the simplex.

Remark 2 A robust set F must contain all the extreme points of K . So, only poly-
topes can have finite robust subsets.

Theorem 1.1 can then be restated as: Every polytope in R
m has a robust subset.

We are going to find a robust set F for K by constructing it in pieces. In this
section, we explain how to find sets F that work for points near the boundary of K .
In the next section, we will show how to cover points that are far from the boundary
of K .
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The main step in the proof is the following lemma, which shows that appropriate
sets F exist for balls that lie very near k-dimensional faces of K but far from (k−1)-
dimensional faces of K . Because the proof seems quite technical, let us sketch an
outline here. It proceeds by induction on the dimension. The main idea is to write
points x that are “near” a k-dimensional face ϕk of K in the form x = x′ +x′′, where
x′ lies in the face ϕk , and x′′ is the orthogonal complement of x to x′. The point x′′
is small and lies in the polytope K ′′ = K ′′(ϕk) in R

m−k obtained by projecting
K onto the orthogonal complement of the flat containing ϕk . Apply the induction
hypothesis to x′′ in K ′′ and prove that, since x′′ is small, one of the vertices of the
(m − k)-simplex containing x′′ is 0. Moreover, since x′′ is small, the sum of the
remaining m− k coefficients in the convex combination for x′′ is some small ε > 0.
Then we write x′ = (1 − ε)y′, where y′ is close to x′, so we can apply the induction
hypothesis to y′ with respect to ϕk to represent it as a convex combination of k + 1
points. This will give the desired decomposition of x as a convex combination of
m + 1 points.

Lemma 2.2 Suppose that Theorem 1.1 holds for all polytopes in all dimensions
smaller than m. Let ϕk be a face of K of dimension k, where 0 ≤ k < m. Then for
each C ≥ 1, there exist δ0 > 0, c > 0, C1 > 0, and a finite set F = F(ϕk) ⊂ ∂K

which contains the extreme points of K such that for each 0 < δ ≤ δ0 and each
x ∈ K , the following three conditions (when k = 0, disregard (ii))

(i) dist(x,ϕk) ≤ C dist(x, ∂K),
(ii) dist(x, ∂ϕk) ≥ C1 dist(x, ∂K), and

(iii) B(x, δ) ⊂ K

imply the existence of x0, . . . , xm ∈ F such that the simplex S(x0, . . . , xm) generated
by these vectors contains B(x, cδ).

Proof It suffices to prove the statement for δ = dist(x, ∂K), since x ∈ K and
B(x, δ) ⊂ K if and only if dist(x, ∂K) ≥ δ. We can assume that coordinates are
chosen in such a way that the affine subspace of dimension k containing ϕk is
R

k ×{0} = {(y1, . . . , yk,0, . . . ,0)}. Denote by π : Rm → R
m−k the projection map-

ping onto the (m − k)-dimensional subspace orthogonal to R
k × {0},

π(y1, . . . , ym) = (yk+1, . . . , ym),

so that π(K) is a convex polytope in R
m−k . Let us also use the notation y = (y′, y′′)

for the first k and last m − k components of the vector y ∈R
m.

First, we claim that if x = (x′, x′′) ∈ K with (x′,0) /∈ ϕk , then dist(x,ϕk) =
dist(x, ∂ϕk). That is, if the orthogonal projection of x onto the affine hull of
ϕk does not lie in ϕk , then the nearest to x point of ϕk lies necessarily in the
boundary of ϕk . To prove this, choose the unique point (x′

1,0) ∈ ϕk such that
dist(x,ϕk) = |x − (x′

1,0)|. Then (x′
1,0) ∈ ϕk and (x′,0) /∈ ϕk , so there exists a point

on the line segment joining these two points that lies in ∂ϕk . The points on this line
segment are of the form

(
z′,0

) = (
x′,0

) + λ
(
x′

1 − x′,0
)
, 0 ≤ λ ≤ 1,
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and distance from x to each of these points is given by

dist
(
x,

(
z′,0

))2 = λ2
∣∣x′

1 − x′∣∣2 + ∣∣x′′∣∣2 ≤ ∣∣x′
1 − x′∣∣2 + ∣∣x′′∣∣2 = dist(x,ϕk)

2,

which shows that dist(x, (z′,0)) ≤ dist(x, (x′
1,0)) and hence dist(x,ϕk) ≤

dist(x, ∂ϕk). Of course, the other inequality is clear.
Assume that C1 > C and fix x = (x′, x′′) ∈ K satisfying conditions (i)–(iii) of

the lemma. Then

dist(x, ∂ϕk) ≥ C1

C
dist(x,ϕk) > dist(x,ϕk).

By what we proved in the previous paragraph, this implies that (x′,0) ∈ ϕk . In par-
ticular, the hypotheses of the lemma, together with the triangle inequality, then im-
ply that

δ = dist(x, ∂K) ≤ dist(x,ϕk) = ∣∣x′′∣∣ ≤ C dist(x, ∂K) = Cδ, (1)

dist(x, ∂ϕk) ≥ dist
((

x′,0
)
, ∂ϕk

) ≥ dist(x, ∂ϕk) − ∣∣x′′∣∣ ≥ (C1 − C)δ = C′
1δ, (2)

where C1 > C is a constant that will be specified later.
For y ∈ ∂K , let Ny denote the cone of feasible directions of K at y, i.e., the set

of all vectors N that are inward pointing normals to a hyperplane that supports K at
the point y. Analytically, this is the condition (x − y) · N ≥ 0 for all x ∈ K . If y is
a point in the relative interior of ϕk and N ∈ Ny , then N must have the form

N = (
0,N ′′).

Further, the cones Ny are identical as long as y ranges over the interior of ϕk and
can be identified with the cone

N = N (ϕk) := {
N ′′ : (0,N ′′) ∈ Ny

} ⊂ R
m−k.

The convex set π(K) ⊂ R
m−k has the property that 0 ∈ ∂(π(K)), 0 is an extreme

point of π(K), and the cone of all vectors that are inward-pointing normals to hy-
perplanes that support π(K) at 0 is equal to N . In fact, the extreme rays of the cone
N have the direction of the vectors π(e − σ), where σ is an extreme point of ϕk ,
and e is an extreme point of K such that [σ, e] is an edge of K .

Let us first suppose that k ≥ 1. Then both ϕk and π(K) are convex polytopes
that lie in Euclidean spaces of dimension < m. Therefore, there are robust subsets
G1 ⊂ ∂ϕk , G2 ⊂ ∂π(K) and associated positive constants c1 > 0, c2 > 0 such that
the conditions of Definition 2.1 are satisfied. Let F1 = G1, and let F2 ⊂ ∂K be any
set with the same number of points as G2 and π(F2) = G2. We claim that the set
F = F1 ∪ F2 is a set with the properties of the lemma.

To prove this, recall that δ = dist(x, ∂K) and x is a point satisfying the hypothe-
ses of the lemma. Since B(x, δ) ⊂ K , we see that

π
(
B(x, δ)

) = B
(
π(x), δ

) ⊂ π(K).
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We can therefore find m−k +1 points g0, . . . , gm−k ∈ G2 such that B(π(x), c2δ) ⊂
S(g0, . . . , gm−k), the m− k simplex with vertices at g0, . . . , gm−k . The vectors gi −
g0, 1 ≤ i ≤ m − k, must be linearly independent since the simplex contains an open
subset of Rm−k . Also, by (1), |x′′| ≤ Cδ and (x′,0) ∈ ϕk as pointed out earlier in the
proof. Since G2 is a finite set, if δ is small enough, the only way that we can have
π(x) = x′′ ∈ S(g0, . . . , gm−k) is for one of the gi , say g0, to be the extreme point
0 of π(K). Therefore, if δ is small enough and |y′′ − x′′| ≤ c2δ, there are positive
numbers μ1, . . . ,μm−k such that

∑
μi ≤ 1 and

y′′ =
m−k∑

i=1

μigi.

In fact, the sum of the μi must be small. Because, the cone N contains at least
m − k linearly independent unit vectors N ′′

1 , . . . ,N ′′
m−k , taking the dot product of

each of these vectors with the last equation gives a nonsingular system of m − k

linear equations in m − k unknowns,

Aμ = B,

where the (m − k) × (m − k) matrix A = [gi · Nj ] is nonsingular, and the vector
B = [y′′ · Nj ] has entries of magnitude at most

∣∣y′′∣∣ ≤ ∣∣x′′∣∣ + c2δ ≤ (C + c2)δ,

where the last inequality is because |x′′| ≤ Cδ by (1). Consequently, there is a con-
stant C2 = ‖A−1‖(C + c2) > 0 such that μi ≤ C2δ.

Next make a small adjustment to the positive constants μi to write them in the
form

μi = νi

1 + ∑m−k
j=1 νj

, 1 ≤ i ≤ m − k,

which then gives us the representation

Λy′′ =
m−k∑

i=1

νigi, where Λ = 1 +
m−k∑

i=1

νi .

Because the μi are small, there are always small νi that satisfy this condition,
namely

νi = μi

1 − ∑m−k
j=1 μj

.

It is also clear that there is a constant C3 > 0 such that νi ≤ C3δ when δ is small.
In fact, we can take C3 = 2C2, provided that

∑
j μj ≤ 1/2, which is the case if we

make δ small enough.
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Suppose now that a point y ∈ B(x, c2δ). Let f1, . . . , fm−k be points in ∂K with
π(fi) = gi . Write fi = (hi, gi). With the coefficients νi chosen as above, we have
that

y = 1

Λ

(
m−k∑

i=1

νifi

)
+ 1

Λ

(
Λy′ −

m−k∑

i=1

νihi,0

)
. (3)

Because |y − x| ≤ c2δ, we then also have

∣∣∣∣∣

(
Λy′ −

m−k∑

i=1

νihi

)
− x′

∣∣∣∣∣

=
∣∣∣∣∣(Λ − 1)y′ + (

y′ − x′) −
m−k∑

i=1

νihi

∣∣∣∣∣

≤
(∑

i

νi

)∣∣y′∣∣ + ∣∣y′ − x′∣∣ +
∑

i

νi |hi | ≤ (m − k)C3δ
∣∣y′∣∣ + c2δ + C3δ

∑

i

|hi |

≤ C4δ

for a constant C4 that depends on C3 and the size of the largest vectors in K . Define
C1 = C + (C4/c1). The last inequality shows that if z′ = Λy′ − ∑m−k

i=1 νihi , then
z′ ∈ B(x′,C4δ). Also, the condition that dist(x, ∂ϕk) ≥ C1δ implies that

dist
(
x′, ∂ϕk

) ≥ dist(x, ∂ϕk) − ∣∣x − (
x′,0

)∣∣ ≥ C1δ − ∣∣x′′∣∣ ≥ (C1 − C)δ ≥ C4

c1
δ.

Therefore, inside the face ϕk , we have B(x′,C4δ/c1) ⊂ ϕk , and, since the finite
set G1 is robust for the set ϕk with associated constant c1, there are k + 1 vectors
wi = (w′

i ,0), 0 ≤ i ≤ k, from this set such that B(x′,C4δ) ⊂ S(w′
0, . . . ,w

′
k). In par-

ticular, we have that there exist λ0, . . . , λk such that z′ = ∑m−k
i=0 λiw

′
i and

∑
i λi = 1.

Consequently, from representation (3) we have shown that for all y ∈ B(x, c2δ),

y = 1

Λ

m−k∑

i=1

νifi + 1

Λ

(
z′,0

) = 1

Λ

(
m−k∑

i=1

νifi +
k∑

i=0

λiwi

)
.

In this last expression, the sum of the coefficients of all the vectors is equal to 1,
since Λ = 1 + ∑

i νi and
∑

i λi = 1. Therefore, we have proved that every vector
y ∈ B(x, c2δ) lies inside the m-simplex with vertices at w0, . . . ,wk, f1, . . . , fm−k ,
which completes the proof of the lemma for the case where 1 ≤ k ≤ m − 1.

It remains to treat the case k = 0; that is, the edge ϕk is a vertex of the polytope
which we take to be equal to 0. In this case, the cone N is a full cone in R

m

with vertex at the origin. It is no loss of generality to assume that the unit vector
(0, . . . ,0,1) lies in the interior of N so that every y = (y1, . . . , ym) ∈ N ∗ \ {0},
where N ∗ is the cone dual to N , satisfies ym > 0. If d is the minimum value of the
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last coordinate of an extreme point of K other than 0, then d > 0, and we have that

N ∗ ∩ {ym ≤ d} = K ∩ {ym ≤ d}.
That is, the “corner of K” that lies near the extreme point 0 looks like the dual
cone N ∗. If a ball B(x, δ) ⊂ K has center in xm ≤ d/2 and if δ ≤ d/2, then the
central projection mapping from the origin to the hyperplane, ym = d , i.e.,

π(y) = dy

ym

,

carries the ball onto a subset of K1 = K ∩ {ym = d}, a polytope that lies in a copy
of R

m−1. Note that the boundary of K1 (relative to the hyperplane ym = d) is a
subset of the boundary of K . So, if we pick a robust subset of K1, say G, then it will
also be a subset of ∂K . Also, there will exist a constant c > 0 and m points of G

such that B(π(x), cdδ/xm) ⊂ S for some (m − 1)-simplex with vertices in G. If we
then look at the m-simplex with the origin added as a vertex, then it will contain the
ball B(x, cδ) which is what we had to show. This completes the proof. �

Corollary 2.3 Suppose that Theorem 1.1 holds for compact sets in R
k with k < m.

Let K be a polytope in R
m. Then there exist constants c > 0, δ0 > 0 and a finite

set F ⊂ ∂K such that for every x ∈ K and 0 < δ ≤ δ0 such that B(x, δ) ⊂ K and
dist(x, ∂K) ≤ δ0, there exist m + 1 points of F such that B(x, cδ) is a subset of the
m-simplex with vertices at these points.

Proof We apply Lemma 2.2 m times. Let Kk denote the k-skeleton of K , i.e., the
union of all k-dimensional faces of K . If x ∈ K and dist(x, ∂K) = δ, then there is
an (m − 1)-dimensional face ϕm−1 ∈ Km−1 such that dist(x, ∂K) = dist(x,ϕm−1).
Then condition (i) of Lemma 2.2 is satisfied with C = 1. Therefore, from the
case k = m − 1 of that lemma, there exist constants δ1 > 0, c1 > 0, C1 > 0 and
a finite subset F1 ⊂ ∂K such that B(x, c1δ) ⊂ S(f0, . . . , fm) whenever δ ≤ δ1,
d(x, ∂K) = δ and

dist
(
x,Km−2) ≥ C1 dist(x, ∂K) = C1 dist

(
x,Km−1).

If x is near the boundary of K but fails to satisfy this latter condition, then

δ = dist(x, ∂K) ≤ dist
(
x,Km−2) ≤ C1 dist(x, ∂K).

Then apply the previous lemma with k = m−2 to points x ∈ K . It implies that there
exist a finite set F2 ⊂ ∂K and constants δ2 > 0, c2 > 0, C2 > 0 such that whenever
x ∈ K satisfies the last condition and in addition

dist
(
x,Km−3) ≥ C2 dist(x, ∂K),

then there exist m + 1 points f0, . . . , fm from the set F2 such that B(x, c2, δ) is
a subset of the m-simplex with these vertices. That is, the condition of lemma is
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satisfied for all points near the m − 2 skeleton of K but not too near the m − 3
skeleton of K . The remaining points near the boundary of K therefore satisfy

dist(x, ∂K) ≤ dist
(
x,Km−3) ≤ C2 dist(x, ∂K).

Continuing in this way, we find finite subsets F1, . . . ,Fm of ∂K and posi-
tive numbers δ1, . . . , δm, c1, . . . , cm, and C1, . . . ,Cm such that every x ∈ ∂K with
dist(x, ∂K) = δ ≤ min{δ1, . . . , δm} satisfies one of the pairs of inequalities

δ = dist(x, ∂K) ≤ dist
(
x,Km−i

) ≤ Ci−1 dist(x, ∂K),

dist
(
x,Km−(i+1)

) ≥ Ci dist(x, ∂K)

for i = 1, . . . ,m, except when i = m, the last inequality is vacuous. Thus, F =
F1 ∪ · · ·∪Fm, and c = min{c1, . . . , cm} is a finite set with the required properties. �

3 Points Far from the Boundary of K

We first show that the only obstruction to handling the points of K that are far from
the boundary of K is the “interior of the faces” obstruction.

Lemma 3.1 Let K be a polytope in R
m, and F a finite subset of ∂K such that

int(K) =
⋃{

int(S) : S is an m-simplex with vertices from F
}
.

Then for each positive number η > 0, there exists a number c > 0 such that whenever
x ∈ K satisfies B(x, δ) ⊂ K and dist(x, ∂K) ≥ η, there exist m+1 points of F such
that the simplex S with vertices at these points satisfies B(x, cδ) ⊂ S.

Proof This is a compactness argument. The set Kη of all the points of K of distance
≥ η from the boundary of K is a compact subset of int(K). By hypothesis, the
interior of K is the union of the interiors of all the m-simplices with vertices in F .
Since the interior of each such simplex S is the union of the open sets Sn of points
in S of distance at least 1/n from the boundary of S, the compact set Kη is also
covered by finitely many of these sets Sn. Therefore, there exists an integer N such
that each x ∈ Kη lies in a point of one of the simplices and of distance at least 4/N

from its boundary. Then the ball about x of radius 1/N lies within S. If we choose
c = 1/(Ndiam(K)), then whenever B(x, δ) ⊂ K , we have δ ≤ diam(K), so that
cδ ≤ 1/N , and thus c has the required property when x ∈ Kη . �

We also have to prove that there are sets F satisfying the hypotheses. That one
cannot take F to be the set of extreme points of K was pointed out in the introduc-
tion.
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Lemma 3.2 Suppose that K is a polytope in R
m. Then there is a finite set F ⊂ ∂K

such that

int(K) =
⋃{

int(S) : S is an m-simplex with vertices from F
}
.

Proof We prove the lemma by induction on m. For m = 1, it is obvious. So let
us assume that the result has been proved in all dimensions smaller than m. Then
each facet ψ (i.e., (m − 1)-dimensional face of F ) contains a finite subset Fψ of
its boundary such that every point in the interior of the face lies in the interior of
an (m − 1)-simplex with vertices from Fψ . Consequently, if we can find a subset
F 1 of ∂K such that given any x ∈ int(K), there exists a point f ∈ F 1 and a facet
ψ of K such that the ray from f through x intersects the boundary of K at a point
x∗ ∈ int(ψ), then taking the vertices of the (m − 1)-simplex from the set Fψ in
the facet ψ that contains x∗ together with the point f gives us an m-simplex that
contains x in its interior. Thus, the union of F 1 with all the sets Fψ for all facets ψ

of K gives a set F with the properties of the lemma.
To find such a set F 1, associate to each (m − 2)-dimensional face ϕ of K the flat

L (ϕ); that is, the unique (m − 2)-dimensional affine subspace of Rm that contains
ϕ. Then for f ∈ ∂K \ L (ϕ), let H(f,ϕ) be the unique hyperplane that contains
both L (ϕ) and f . For later reference, note that an equation for this hyperplane
can be written in the following way. Choose any m − 1 = (m − 2) + 1 points from
ϕm−2, say y1, . . . , ym−1, such that the vectors yj −y1, j = 2, . . . ,m−1, are linearly
independent. The equation is

l(x) := l(x, f,ϕ) = det

⎡

⎢⎢⎢⎢⎢⎣

x1 . . . xm 1
f1 . . . fm 1

y1 1
...

...
... 1

ym−1 1

⎤

⎥⎥⎥⎥⎥⎦
= 0. (4)

In particular, this shows that x ∈ H(f,ϕ) if and only if f ∈ H(x,ϕ).
Let L = ⋃

ϕ L (ϕ) denote the union of the finitely many (m − 2)-dimensional
subspaces L (ϕ). L cannot cover any (m − 1)-dimensional face of K because its
dimension is too small. Further define

Vf :=
⋃

ϕ

H(f,ϕ), f ∈ ∂K \ L ,

to be the union of these hyperplanes over the (m − 2)-dimensional faces ϕ of K .
Then Vf is an algebraic variety in R

m ⊂ C
m—it is the zero set of the polynomial

Pf (x) we get by multiplying together the affine functions (of x) given in (4) that
define the hyperplanes. We claim that

⋂

f ∈∂K\L
Vf = L . (5)
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If x is a fixed point that does not belong to L and if ϕ is an (m − 2)-dimensional
edge, then the set of f that lie on the hyperplane H(x,ϕ) given by (4) cannot con-
tain the entire boundary of K . In fact, unless x /∈ L lies on one of the finitely
many hyperplanes that contain an (m − 1)-dimensional face of K , the intersection
of H(x,ϕ) and ∂K is a nowhere dense subset of ∂K since this intersection is at
most an (m − 2)-dimensional subset of ∂K . The union Vx := ⋃

ϕ H(x,ϕ) over the
finitely many (m − 2)-dimensional faces ϕ of K then also meets ∂K in a nowhere
dense set. Therefore, there exists a point f ∈ ∂K \ Vx , so f /∈ Vx or, equivalently,
x /∈ Vf . In fact, if x is in the interior of K , this is the case except for f in a nowhere
dense subset of ∂K .

Consequently, we have the equality of algebraic varieties (5), and so there must
exist finitely many of the values of f , say f1, . . . , fq , so that

q⋂

i=1

Vfi
= L . (6)

We can take for F 1 this finite set of fi . To prove that it has the required property,
choose x ∈ int(K). Since x /∈ ⋂

Vfi
, there exists f = fi such that x /∈ Vfi

. This
implies that the ray from fi through x must intersect ∂K in the interior of an (m −
1)-dimensional face. Otherwise, because the boundary of the facets is covered by the
(m − 2)-dimensional faces ϕ, we would have x ∈ H(fi, ϕ) for some ϕ, contrary to
the fact that x /∈ Vfi

. Therefore, the ray meets ∂K in an interior point of some facet,
and, as noted in the first paragraph of the proof, this completes the argument. �

4 Proof of the Theorem and Concluding Comments

Proof of Theorem 1.1 We are proving the theorem by induction on the dimension
m. For m = 1, it is obvious, so assume that K ⊂ R

m and that the theorem has been
proved for smaller values of m. Let F1 ⊂ ∂K be a finite set with the property from
Corollary 2.3. Let F2 ⊂ ∂K be a finite set with the property of Lemma 3.2. Let
F = F1 ∪ F2. Then F is a robust subset of K , with the points x so that the balls
B(x, δ) with x near the boundary of K being subsets of simplices with vertices
from F1 and those x away from the boundary by Lemma 3.1. This completes the
proof. �

It is also useful to have the version of the theorem that applies to cones in R
m.

Theorem 4.1 Let C be a proper convex cone in R
m that is spanned by finitely

many extreme rays. Then there are constants c > 0, C1 > 0 and a finite set N of
unit vectors so that the rays in the direction of N ∈ N lie in the boundary of C such
that: if x ∈ C is at a positive distance from the boundary of C , there exist m of the
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vectors N1, . . . ,Nm ∈ N such that

x = a1N1 + · · · + amNm

and

ai ≥ c dist(x, ∂C ), 1 ≤ i ≤ m.

Proof It is no loss of generality to assume that the unit vector (0, . . . ,0,1) lies in
the interior of C . Then set K = C ∩ {xm = 1}, a compact convex polytope in a
copy of Rm−1. Therefore, there is robust subset F of ∂K and a constant c > 0 such
that whenever B(x, δ) ⊂ K , we can choose finitely many vectors f1, . . . , fm from F

such that x = λ1f1 +· · ·+λmfm and λi ≥ cδ for 1 ≤ i ≤ m. Now there is a constant
c2 > 0 such that if x ∈ C is of distance C from the boundary of C , then x/xm ∈ K

is of distance at least c2C/xm from the boundary of K . Consequently, we can write

x/xm = λ1f1 + · · · + λmfm, λi ≥ cc2C/xm,

which clearly implies the representation of the theorem with

ai = xmλi ≥ cc2 dist(x, ∂C ).

This completes the proof. �

Remark It is also true that the version of the theorem for cones implies the one
for convex polytopes.

Concluding Remarks It seems clear that the arguments we have made here are
very far from optimal. A robust set F necessarily contains all the extreme points
of K , but it is not clear how many extra points one has to add. Our argument goes
by induction, so one can show that the (large) number of points added can be chosen
to depend only on the dimension m and the number p of extreme points. It is also
not clear if there is interplay between the size of the constant c and the number of
additional boundary points chosen to be in F . We list some of these questions that
seem natural to us.

A. Are quadrilaterals the only convex polygons in the plane for which the quanti-
tative Carathéodory theorem fails with the set F chosen to be the set of extreme
points? For planar convex polygons, if the set of extreme points is augmented
by one additional boundary point, is it always a robust set?

B. Is the only obstruction to the quantitative Carathéodory theorem the interior
point obstruction? Namely, if the interior of K is equal to the union of the inte-
riors of all the simplices with vertices chosen from the extreme points of K , is
the set of extreme points then robust?

C. Is there some simple explicit bound for the number of points needed in the set F ?
Does it depend on more than the dimension m?

D. Can one say more about the size of the constant c? Is it related to the number of
points in the set F ? For example, could one always choose c = 1 − ε by making
F contain a large number N(ε) of points?
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Geometric Path Integrals. A Language
for Multiscale Biology and Systems Robustness

Domenico Napoletani, Emanuel Petricoin, and Daniele C. Struppa

Abstract In this paper we suggest that, under suitable conditions, supervised learn-
ing can provide the basis to formulate at the microscopic level quantitative questions
on the phenotype structure of multicellular organisms. The problem of explaining
the robustness of the phenotype structure is rephrased as a real geometrical problem
on a fixed domain. We further suggest a generalization of path integrals that reduces
the problem of deciding whether a given molecular network can generate specific
phenotypes to a numerical property of a robustness function with complex output,
for which we give heuristic justification. Finally, we use our formalism to interpret
a pointedly quantitative developmental biology problem on the allowed number of
pairs of legs in centipedes.

1 Introduction

Leon Ehrenpreis was a singular mathematician. Not only he had a gift and a vision
for a deep understanding of mathematics, but he had a passion for the construction
of overarching approaches that would allow a general comprehension of vast areas
of mathematics. This passion is embodied in his two masterpieces, Fourier Analysis
in Several Complex Variables [7] and The Universality of the Radon Transform
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[8], but is also apparent in the many papers he published, for example, on wide
generalizations of the Edge-of-the-Wedge theorem.

Reading Ehrenpreis’ works, we are reminded of a beautiful phrase that Kawai,
Kashiwara, and Kimura insert in [16], just after the proof of a fundamental theorem
on the propagation of solutions of microdifferential equations:

It is like a view from a mountain peak.

This aspiration to a global view of mathematics that would offer insights, even in
advance of a fully realized technical description of that view, is part of what made
Ehrenpreis’ work uniquely captivating and uniquely fertile. Many mathematicians,
of at least three generations, have worked to understand, formalize, explain, refute,
demonstrate statements in Ehrenpreis’ work. It is for this reason, that Ehrenpreis’
student, C.A. Berenstein, once noted in his review [4] of The Universality of the
Radon Transform [8] that it is

a book that is worth studying, although mining may be a more appropriate word, as the
reader may find the clues to the keys he is searching for to open up subjects that are seem-
ingly unrelated to this book. Thus, one finds at the end that the title is justified.

It is in this spirit, but with a deep sense of humility and with a full awareness
of our limitations, that we would like to present, in this paper, a proposal, a strat-
egy for a way to mathematically understand and describe one of the fundamental
problems (the fundamental problem?) of modern biology: how can we understand
macroscopic biological traits from our knowledge of molecular level information.

The proposal we make is inspired by the instrument of path integrals, which
is probably the most enduring legacy of Richard Feynman [9], and for which we
suggest here a tentative generalization to provide a plausible tool for the description
of the macroscopic properties of a biological system.

Our specific point of departure lies in an important, and somewhat surprising,
fact. In [19], Chap. 9, it is reported that, out of all known species of centipedes,
there are about 1000 species with 15 pairs of legs, none with 17 or 19 pairs, several
with 21 and 23 pairs, and a few distributed over a very large range from 27 to 191.
No centipedes have an even number of pairs of legs, and some species have a stable
interspecies number of pairs of legs, while some others display a variability of the
number of legs among individuals.

Can we explain in any quantitative way this striking pattern of gaps with respect
to the dynamics at fine molecular scale? And how do we express the remarkable
robustness of the resulting phenotypes? To be more specific, we state the following:

Problem 1 (Centipedes Segmentation (CS) Problem) Show that it is impossible to
have centipedes with an even number of pairs of legs, or with 17 or 19 pairs of legs.

Clearly if we can suitably quantify this problem, we will be able to generalize the
question to the full gap structure that we have described in the previous paragraph.
Moreover, we take the CS problem simply as emblematic of the variety of develop-
mental biology problems in which we observe strong constraints on the phenotype
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([19], p. 86), without having a conceptual frame through which to approach these
problems.

In general, molecular biology approaches to developmental biology problems
such as the CS problem require the construction of an appropriate map that can
relate microscopic variables with macroscopic outputs. But, since a mechanistic
way to relate these variables is often absent, and it is indeed problematic even to
quantify phenotype properties [12], it is challenging to express these questions in a
proper mathematical setting. Even though we are aware of the dangers of suggesting
a general frame that is not fully developed, we still believe (in view of the difficulty
of the problems at hand) that it is worthwhile to attempt to set up a language and a
set of techniques through which these problems might be approached.

Ideally, we would need to study entire sets of models at once, since we would
expect the micro/macro maps to be stable under wide variations of the parameters in
the model of the microscopic dynamics. At the same time, such tremendous model
variability should be understandable in a compact, possibly analytical setting to have
any hope of providing computationally feasible answers.

In this paper we suggest that supervised learning and the resulting classification
functions [11] can provide the basis to formulate at the microscopic level ques-
tions on the phenotype, such as the centipedes segmentation problem, provided that
the classification function satisfies some suitable growth conditions. The problem of
phenotype robustness can then be rephrased as a problem of real geometry on a fixed
domain. General methods to solve such problems are still in their infancy [5], and
we propose a generalization of path integrals that allows us to reduce the problem
of class belonging and of phenotype robustness to specific questions on functions
with complex output. Finally, we will show how to reduce the CS problem to a prob-
lem on the global properties of these functions. Other problems about the restricted
variability of phenotypes in developmental biology could be formulated in similar
ways.

2 A Geometrical Robustness Condition

Let X = (X1, . . . ,XN) be the activation level of a set of proteins (genes, metabo-
lites, or combinations of) at some time t0 and assume that we have access to the
derivatives Ẋ = (Ẋ1, . . . , ẊN ) of those levels at the same time t0 (in practice this
means that we measure the proteins at two very close time points); and suppose that
the biological samples from which (X, Ẋ) is measured can be classified in a set of
M classes C1, . . . ,CM .

We assume that the protein measurements are taken at the embryo stage of de-
velopment of the individuals in the CS problem. Clearly these measurements will
be some sort of average of the activity levels of several cells [6], even though single
cell measurements can be envisioned [13]. We further assume that the underlying
network of interactions is stable (i.e., no essential parameter variation that changes
significantly the dynamics) over a short time range. Without excluding in principle
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other possible state variables, we focus our attention on protein networks as these
are believed to be evolutionary more stable [22].

Call B(X, Ẋ) an instance of the biological class associated to (X, Ẋ) (in the case
of the CS problem, this will be the number of pairs of legs of an adult individual
centipede). We assume that we have access to a training set of instances for each
class, so that we can build a special type of classifier that has the following structure:

Definition 1 (Interval Classifier) A function F(X, Ẋ) is an interval classifier for
the classification problem with classes Sm, m = 1, . . . ,M , if it satisfies m − 1 <

F(X, Ẋ) < m when B(X, Ẋ) ∈ Cm, m = 1, . . . ,M .

Though not strictly necessary at this point, it is useful for our subsequent analysis
of Propositions 1 and 2 to require that F is bounded at infinity and analytic, and
therefore we assume for simplicity that the classifier function F is a neural network
with exponential sigmoidal activation functions ([14], Chap. 10).

Remark 1 At a fundamental level, it is not necessarily possible to identify a subset
of molecular variables that is indeed predictive for the phenotype characteristic that
we are interested in. This problem is not exclusive to our setting, but it is a major
difficulty in all approaches that try to bridge molecular biology with the study of
phenotype characteristics. The very existence of an accurate classifier F depends
on the identification of such variables. Note that our setting requires to estimate not
only state variables, but their derivatives as well. In classical rational mechanics,
state variables and their first derivative are sufficient to characterize a system for all
future times (in a variational, Lagrangian setting [1]). While first derivatives are also
sufficient for our formal analysis of phenotype classification problems, it would be
interesting to understand how many derivatives are truly necessary to have effective
classifiers for these types of problems.

Note that the way we define the multiclass classifier F is not the standard one,
in which an M-class problem is usually approached by having a vector of M output
classification functions ([14], p. 331). For reasons that will be clear when we rein-
terpret analytically the CS problem in Problem 2 of the last section, we not only use
a single function F for the multiclass problem, but we also require that all instances
belonging to a certain class must be within a given interval. This superimposes a
stronger metrical structure on the classification problem.

Remark 2 In the context of neural networks, the request of interval classifier for
training instances within each class transforms the unconstrained optimization prob-
lem usually associated to finding the classifier function ([14], p. 335) into a con-
strained optimization problem.

Take now a slack variable Y and consider the function F(X, Ẋ) − Y , with
(X, Ẋ) ∈ D × Ḋ, where D is the set of biologically meaningful conditions for X,
and Ḋ is the set of biologically meaningful conditions for Ẋ. Then if B(X, Ẋ) ∈ C1,
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there exists Y with 0 < Y < 1 such that F(X, Ẋ) − Y = 0, so that the con-
dition B(X, Ẋ) ∈ C1 can be rewritten as F(X, Ẋ) − Y = 0, (X, Ẋ) ∈ D × Ḋ,
0 < Y < 1. Similarly, B(X, Ẋ) ∈ Cm becomes F(X, Ẋ) − Y = 0, (X, Ẋ) ∈ D × Ḋ,
m − 1 < Y < m.

It is reasonable to suppose that X is in fact a state variable of an ordinary differ-
ential equation (ODE) network ẋ = f (x, a0), x = (x1, . . . , xN), f = (f1, . . . , fN),
f a vector of polynomials in x, modeling ODEs with polynomials or power func-
tions has proven itself to be very flexible for systems of molecular reactions [21].
We further ask that f (x, a) is an analytic function in a. As the condition of analytic
structure of the classifier F itself, the analyticity of f (x, a) in a will be important
in the justification of Proposition 2.

A network of biological significance will usually depend on a large number of
parameters that will depend on the environment where the variable of the network
actually act and live [10]; this is the reason we allow a dependence from the parame-
ter vector a in the ODE network. Write the dependence of ẋ from f (x, a) explicitly
in F(X, Ẋ)− Y = 0, i.e., F(X,f (X,a))− Y = 0. The condition of class belonging
can be written as:

Definition 2 (Network Classification) A network ẋ = f (x, a0) generates pheno-
types belonging to class Cm if

∃X ∈ D, m − 1 < Y < m : F (
X,f (X,a0)

) − Y = 0. (1)

Equation (1) is a condition for the network ẋ = f (x, a0) to give rise to states
that belong to one of the classes we are considering. Note that the domain D of X

constrains the domain Ḋ through the relation Ḋ = f (D).
The macroscopic phenotypic states of an organism are believed to be robust un-

der wide ranging changes of parameters [10]. Therefore, for a realistic network,
(1) should be satisfied for all parameters in a region A, where A is some sizable
neighborhood around a nominal value a = a0 of the parameter a. In other words:

Definition 3 (Class Robustness) A phenotype class Cm is robust if the zeros of the
function F(X,f (X,a)) − Y = 0 are persistent in a region A of parameters, i.e.,

∀a ∈ A,∃X ∈ D, m − 1 < Y < m : F (
X,f (X,a)

) − Y = 0. (2)

Remark 3 We assume that, for each a, ẋ = f (x, a) is capable of generating (x, ẋ)

belonging to a single class Cm, to avoid, in the CS problem, the paradoxical situation
in which the predicted number of pairs of legs can change in a given centipede with
time. We assume instead that the embryo is committed to its specific segmentation
within a large time frame where we could measure our state variables.
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3 Stable Zeros and Path Integrals

In the previous section we described condition (2) that must be satisfied if ẋ =
f (x, a) is to generate robustly states that belong to a class Cm. The problem with
this condition is that it requires identification of zeros of a (nonalgebraic) function
over a real domain, and moreover it requires us to establish that these zeros are
stable under a wide variation of parameters. This is problematic as it is difficult
to establish the existence of solutions of real equations on domains, even in the
algebraic case [3].

In this section we show that a generalized path integral [9] can be built in such
a way that a specific condition on this integral corresponds to the verification or
falsification of (2) over a domain. Path integrals have the remarkable property of
giving information, in a single analytical object, about global, collective properties
of physical systems, a point of view especially stressed in condensed matter field
theory literature [2], and it is this ability that we will try to mirror in the setting of
network analysis. We start by building a path integral that is related to (1). Essen-
tially, we will build a domain G and a function L such that if (1) is satisfied, then
there is at least a path connecting two points in G. This path (and a small tubular
neighborhood thereof, with squeezed endpoints) will dominate the path integral that
we are building, and it will allow us to make qualitative conclusions on the value
of the integral when (1) is verified. We mirror then this analysis for (2). We first go
through the technical building of the path integral, before we explain its heuristic
interpretation.

The condition x = (x1, . . . , xN) ∈ D in (1) can be explicitly written as a condition
on each variable, i.e., dnb < xn < dnt , where dnb and dnt are lower and upper bounds
on the biologically meaningful values that variable xn can assume; in principle these
values can be measured over repeated in vitro experiments. We can always change
variables xn → x̃n so that −1 < x̃n < 1. This is accomplished by setting

x̃n = 2

dnt − dnb

(xn − dnb) − 1.

Similarly, we can force −1 < ỹ < 1 by setting ỹ = 2(y − (m − 1)) − 1. These
are invertible linear transforms, so we can write

∃x̃, ỹ : F̃ (
x̃, f̃ (x̃, a)

) −
(

ỹ − 1

2
+ (m − 1)

)
= 0,

−1 < x̃n < 1, −1 < ỹ < 1, a = a0 (3)

for some transformed functions F̃ , f̃ = (f̃1, . . . , f̃N ) which are obtained from F

and f by replacing x with x̃ and y with ỹ. We further simplify notation by defining
the analytical function

H(x̃, ỹ, a,m) = F̃
(
x̃, f̃ (x̃, a)

) −
(

ỹ − 1

2
+ (m − 1)

)
. (4)
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So we can rewrite condition (3) as

∃x̃, ỹ : H(x̃, ỹ, a,m)2 = 0, on − 1 < x̃n < 1, −1 < ỹ < 1, a = a0. (5)

We square the function H for purposes that will be clear in the following (see (7)
and its justification). The domain restriction on x̃n and ỹ can also be written as
(x̃, ỹ) ∈ S1 × · · · × S1, where S1 is the unit interval [−1,1], and we take the
cartesian product N + 1 times. We now introduce a spherical extension of this do-
main in such a way that on every section of the extended sphere we can formulate a
condition similar to (5).

To build the spherical extension, first suppose we work with a single variable
x̃n, keeping all other variables constant. We embed each point x̃n in the disk S1 in
the space R2 with the map x̃n → (x̃n,0). We want then a basic way to map points
(x̃n,0) on (S1,0) to points (x̃nz, z) in the slices (∗, z) for z in −1 < z < 1, and
moreover we want the whole set (S1,0) to be mapped to the points (−1,0), (1,0)

in the limit of z → ±1.
One way to achieve this embedding is through maps x̃nz = x̃n

√
1 − z2. Con-

versely, any point (x̃nz, z), in Dn = {−1 < z < 1,−√
1 − z2 < x̃nz <

√
1 − z2} can

be mapped to a point in S1 by setting x̃n = x̃nz
1√

1−z2
. If we do a similar mapping

for all x̃n, and for ỹ as well, the function H(x̃, ỹ, a,m)2 can be extended to the
following function of variables (x̃z, ỹz, z, a,m):

L(x̃z, ỹz, z, a,m) = H

(
x̃z

1√
1 − z2

, ỹz

1√
1 − z2

, a,m

)2

, (6)

where x̃z = (x̃1z, . . . , x̃Nz), and Ỹz ∈ Dy with Dy = {−1 < z < 1,−√
1 − z2 < ỹz <√

1 − z2}. The same value of z is used to define all components of x̃z and ỹz, so we
can define the domain of all points in the spherical extension as

D = {
(x̃z, ỹz, z),−1 < z < 1,−

√
1 − z2) < x̃nz <

√
1 − z2,

−
√

1 − z2 < ỹz <
√

1 − z2
}
.

We are now ready to introduce the generalization of the path integral that we
aimed for:

Definition 4 (Geometric Path Integral) Let γ (t), 0 ≤ t ≤ 1, be a path in D with
γ (0) = (0,0,−1) and γ (1) = (0,0,1). Let Γ be the set of all such paths, and let
Dγ be a suitable measure on Γ . We define the geometric path integral associated to
condition (5), and dependent on a parameter h > 0, as

P(a,m,h) =
∫

γ∈Γ

e
ı
h

∫ 1
0 L(γ (t),a,m)dt Dγ. (7)
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The components of |x̃z/
√

1 − z2| and |ỹz/
√

1 − z2| are all bounded by 1 in D ;
moreover, with respect to x̃z/

√
1 − z2, L is essentially the square of (a linear trans-

form of) a neural network classifier F with exponential sigmoidal activation func-
tions ([14], p. 225), while, with respect to ỹz/

√
1 − z2, L is the square of a linear

function. This implies that L is bounded and continuous on all paths in Γ , except
possibly at the endpoints of the paths themselves, where it may be only bounded,
and the integral of L on each path is well defined.

Remark 4 The choice of the appropriate measure Dγ that ensures the convergence
of path integrals is very delicate, and it will require further investigation in the con-
text of geometric path integrals for appropriate classes of integrands L. Note, how-
ever, that the geometrical path integral is defined with respect to paths in a compact
set, and this is a scenario where the standard path integrals are amenable to rigorous
convergence results [15].

In order to understand the motivation for the integral in (7), we consider the
case in which L (and therefore H ) has a set of zeros in D

⋂{(x̃z, ỹz, z) : z = 0};
specifically we can assume that L(x̃0, ỹ0,0, a,m) = 0. We can then build a full path
γ in D such that L(γ (t), a,m) = 0 for every t in [0,1], just by taking suitable
mappings of (x̃0, ỹ0) in D for all values of −1 < z < 1.

Now, following standard heuristic arguments for semi-classical approximations
of path integrals ([2, 9], Chap. 3, [20]), we expect the following result to hold. We
denote by 	f and 
f the real and imaginary part of f , respectively.

Proposition 1 (Geometric Path Integral Real Dominance Conditions) If the network
ẋ = f (x, a) can generate states belonging to class Cm, then 	(P (a,m,h)) > 0,
	(P (a,m,h)) � 
(P (a,m,h)) for all positive values h sufficiently close to zero.

Heuristic justification: Since L = H 2 in (6) is a quadratic function, and H is
linear in y, all the first derivatives of L vanish only when L itself is zero. More-
over, if ẋ = f (x, a) can generate states belonging to class Cm, from Definition 2
we know that F(X,f (X,a)) − Y = 0 has a solution in the domain that establishes
class belonging, and therefore H = 0 has an appropriate solution as well (see (4)
and (5)). This implies that there is a path γ0 ∈ Γ such that L is identically zero
on γ0 and that the functional S(γ, a,m) = ∫ 1

0 L(γ (t), a,m)dt has first-order func-
tional derivatives equal to zero as well, at γ = γ0. The path γ0 is therefore an ex-
tremal path for S(γ, a,m). In the limit as h → 0, the extremal paths, and quadratic
fluctuations around them, will dominate the geometric path integral, since all other
nonextremal contributions to P(a,m,h) will mostly cancel each other out because
of the much faster phase interference of the corresponding exponential integrals in
P(a,m,h). For near-extremal paths in a neighborhood of extremal paths, we have

e
ı
h

∫ 1
0 L(γ (t),a,m)dt ≈ e

ı
h

∫ 1
0 0dt ≈ 1, and they will provide a large, real positive con-

tribution to P(a,m,h), so that P(a,m,h) ≈ p + ıq with p positive and p � q , if
h is sufficiently small, up to a multiplicative phase factor that does not depend on
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the choice of S(γ, a,m), but only on quadratic local fluctuations of near-extremal
paths around the paths for which S(γ, a,m) = 0 [15], and that can be factored out.

Remark 5 In standard path integrals, there may be a different change of phase for
each of the individual contributions of extremal paths to the overall integral ([20],
Chap. 17). Essentially, this is due to the fact that extremal paths may not be globally
minima of the functionals that replace S(γ, a,m) in standard path integrals. No such
problem arises for the extremal paths used in our heuristic justification, since they
all achieve the very minimum (zero) value allowed for the functional S(γ, a,m)

itself.

Remark 6 For geometric path integrals, the extremal paths are not isolated, when
they exist. This may require techniques from functional field integrals (i.e., higher-
dimensional path integrals, see [2], Chap. 4) for the detailed construction of semi-
classical types of approximations in the limit h → 0.

The computation of P(a,m,h) is a global approach to identify zeros of functions
in a specific real domain. Indeed there is a dependence on the original domain of
biologically meaningful conditions that is hidden in the definition of the function L.
However, we really want to know whether these zeros are persistent in a full measure
subset Ã of a domain A of parameters. Because of this additional requirement, we
need one more step before we can fully express condition (2) with the geometric
path integral formalism. This is achieved by taking an ordinary integral of a function
of P(a,m,h) with respect to the parameter vector a in the domain A where we want
to enforce robustness as in (2).

Definition 5 (Robustness Function) The robustness function R(m,h) associated to
class Cm is, for h > 0,

R(m,h) =
∫

A

P (a,m,h)e− 1
h
(
P(a,m,h))2

da. (8)

This definition of robustness may formally remind the reader of the one proposed
by Kitano in [17]. The two proposals, however, are substantially different, since Ki-
tano considers a space of perturbations and defines a measure of robustness through
integration on that space.

What is crucial for our interpretation of the CS problem is the fact that R(m,h)

inherits the real dominance conditions from P(a,m,h), namely:

Proposition 2 (Robustness Function Real Dominance Conditions) If a phenotype
class Cm is robust for a region of parameters Ã ⊆ A, then the robustness function
R(m,h) satisfies the real dominance conditions, i.e., 	(R(m,h)) � 
(R(m,h)),
and 	(R(m,h)) > 0 for all positive values h sufficiently close to zero.

Heuristic justification: We make the assumption that the imaginary part of
P(a,m,h) goes to zero fast enough as h → 0 if P(a,m,h) satisfies the real dom-
inant conditions, more particularly we assume that |
P(a,m,h)| ≈ h1/2+ε with
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ε > 0 for h small. Now, from Definition 3, if a phenotype class Cm is robust,
then there are persistent zeros of the function F(X,f (X,a)) − Y = 0 in the ap-
propriate domain, and P(a,m,h) satisfies 	(P (a,m,h)) � 
(P (a,m,h)) and
	(P (a,m,h)) > 0 for all a in some region Ã ⊆ A. Therefore for a in such re-
gion Ã, P(a,m,h) will give large, real positive contributions to R(m,h) for h that
goes to zero, since the exponential in (8) will converge to 1. Suppose instead that
we are in a region Ā ⊆ A where the functional S(γ, a,m) = ∫ 1

0 L(γ (t), a,m)dt

has no extremal paths for all a ∈ Ā. Note that, reverting to a coordinate representa-
tion for L, for every small �a, L(x̃z, ỹz, z, a,m) and L(x̃z, ỹz, z, a + �a,m) will
be equal on at most a finite number of points in D , since we asked that f (x, a)

was analytical in a, and F is also assumed analytical in its arguments. The differ-
ences, small, but located almost everywhere in D , between L(x̃z, ỹz, z, a,m) and
L(x̃z, ỹz, z, a + �a,m) will be enhanced in the limit as h → 0, leading to large
differences in the phases of P(a,m,h) and P(a +�a,m,h). Therefore, nearby ge-
ometric path integrals in Ā ⊆ A will have uncorrelated phases for h that goes to 0. In
particular, for each h, the set of points in Ā for which 
P(a,m,h) = 0 is of measure
zero, and therefore this set can be removed when computing the integral in (8). For
all remaining a ∈ Ā, the exponential in (8) will suppress to 0 the contribution of the
corresponding P(a,m,h) to R(m,h) in the limit as h → 0. We can conclude that
the contributions to R(m,h) from path integrals in Ā will be subject to strong phase
interference, and also that their individual contributions to R(m,h) will have norm
that converges to 0. Putting together this result with the real dominant contributions
from regions Ã of A for which S(γ, a,m) has extremal paths, we conclude that
R(m,h) will satisfy the real dominant conditions for all h sufficiently close to 0.

Remark 7 While the real dominant conditions of Propositions 1 and 2 are only
necessary conditions to the existence of zeros and persistent zeros for H , respec-
tively, these conditions are likely to be sufficient for a generic H . In the ab-
sence of extremal paths for S(γ, a,m), it is unlikely that real dominant condi-
tions would hold for all h sufficiently close to zero, as in the limit the phase
of P(a,m,h) becomes increasingly uncorrelated as a function of both h and a.

Also, if e− 1
h
(
P(a,m,h))2

in (8) is substituted by e
− 1

h
(


P (a,m,h)
	P (a,m,h)

)2
, the condition

|
(P (a,m,h))| ≈ h1/2+ε in the justification of Proposition 2 could be substituted
by the weaker |
(P (a,m,h))/	(P (a,m,h))| ≈ h1/2+ε , at the price of a slightly
more complicated argument.

Remark 8 The real dominance conditions for geometric path integrals seem to por-
tend a method to establish the existence of solutions of equations (in particular
real equations) in bounded domains that does not depend on constraints on the
signs of first derivatives. More specifically, suppose that we want to know whether
g(x) = 0 has zeros in a domain D. Then we can substitute the function H in (5) with
H(x,y) = (g(x)−y)2 (we have no dependence from a and m in this setting, and no
change of variables). The boundaries for x can be inferred directly from D, and we
take y in the domain Dy(ε) = {y : −ε < y < ε} for ε > 0. We can use this function
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H(x,y) in the definition of the geometric path integral, so that the partial deriva-
tives of the corresponding function L in (7) are all zeros only when g(x) − y = 0.
Therefore, if g(x) has zeros in the domain D, then g(x) − y = 0 at least for some
(x, y) ∈ D × Dy(ε), and a real dominance condition on the geometric path integral
will hold on D × Dy(ε) for all ε sufficiently small. We will explore this important
application of our technique in a subsequent paper.

4 Centipedes Segmentation Problem Reinterpreted

We come back now to the problem that motivated this work. How to interpret a
pattern of allowed changes in phenotype on the basis of the structure of the underly-
ing molecular network? In the context of the centipedes’ segmentation problem, we
assume that the network ẋ = f (x, a) is essentially the same for all species of cen-
tipedes, with only the set of parameters a changing from one species to the other.
This assumption is not unreasonable if we think that the same species of centipedes
can display different individuals with different number of segments, showing that
there is, in the same network, the potential for variable segmentations. Moreover,
we would expect the process of segmentation to be evolutionary stable ([19], p. 53).

Classify now the networks in such a way that the classification function mirrors
the quantitative phenotype structure. In the setting of the CS problem, if ẋ = f (x, a)

gives rise to a phenotype with 15 pairs of legs, we assume that 15 − 1 < F(X, Ẋ) <

15 for all states (X, Ẋ) arising from that network. Effectively, we treat F as a non-
linear regression model, which predicts the number of pairs of legs from state vari-
ables. Except for the fact that we do not simply want to know what is the output of
F under a specific input (X, Ẋ), we must assure that some suitable (X, Ẋ) can be
generated stably from the network ẋ = f (x, a). We use the robustness function R

to formulate a quantitative version of the CS problem as follows:

Problem 2 (CS Problem Reinterpreted) Let ẋ = f (x, a) be an analytic network,
polynomial in x, with a ∈ A and x ∈ D that describes the molecular dynamics of
relevant signaling compounds in centipedes’ embryos. Show that there is no inter-
val classifier F , with growth conditions compatible with the geometric path integral
definition in (7), and trained on a set of actual data for known centipedes segmen-
tation classes Cm1 , . . . ,Cmk

, such that, for all h sufficiently close to zero, R(m,h)

satisfies the real dominant conditions for m even, m = 17, 19.

We assume that the integral defining R is taken over a very large domain A, so
that we can suppose that different segmentation phenotypes correspond to different
regions of parameters within A.

According to the network path integral formalism, Problem 2 is equivalent to
stating that it is not possible to find sizable volumes of parameters in A such that
ẋ = f (x, a) always gives rise to state variables (X, Ẋ) such that F(X, Ẋ) is even
or equal to 17,19, when F(X, Ẋ) is trained to properly predict the allowed, known
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number of pairs of legs of centipedes. The quantitative interpretation of the CS prob-
lem is not dependent on a specific classifier, and it rather enforces some properties
on any classifier that we may derive from experimental data.

We defined interval classifiers in Sect. 2 exactly to be able to achieve this com-
pact interpretation of the CS problem, and the function R(m,h) is linked to the
corresponding class Cm just by the single parameter m that, in principle, could be
treated now as a continuous variable.

Remark 9 The geometric path integral formulation of the CS problem allows us
to comment on some essential differences between mathematization in biology and
in physics. The theoretical tools used to solve problems can be similar in the two
fields, as we suggested with the development of the geometric path integral formal-
ism. But in the biological setting we lack the ability to unify our understanding of
multiple problems: the functionals in the geometric path integral interpretation of
the CS problem are derived from the classifiers found with supervised learning, and
therefore they are not amenable to interpretation. It is as if every question that we
may ask about phenotypes requires its own theory and associated geometric path
integral, not reducible, even in principle, to simpler geometric path integrals.

5 Challenges Ahead

In this section we highlight some of the major problems that need to be addressed
regarding geometric path integrals and their applications.1

First, it is to be seen how known analytical techniques to evaluate and approxi-
mate path integrals [18] apply to the highly nonstandard geometrical path integrals
derived from biological classification problems. At the very least, we would expect
numerical approximation of these integrals to be possible and hopefully less compu-
tationally intensive than an actual resolution of the associated geometrical problem
in (2), especially for very large domains.

Moreover, path and functional field integrals are powerful qualitative tools to
describe the global state of large systems [2], and similar methods for geometric
path integrals may allow us to rule out real dominant conditions for entire families
of functions H . In particular, to approach the geometric path integral interpretation
of the CS problem, we would need methods that can constrain effectively the sign of
the real part of R(m,h) for large spaces of classifiers trained on a set of experimental
data. It would also be important to develop the theory of geometric path integrals to
allow for a precise estimate of the size of the parameters for which (2) is satisfied.
This parameter size can vary for different classes, and therefore a careful estimate
could be used to compare the relative robustness of different classes.

We point out that a network may be constrained by several classifier functions
if different phenotype characteristics are dependent on it. The function L in the

1Refer to Remarks 5 an 6 for outstanding issues related to the definition of geometric path integrals.
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geometric path integral (7) can be extended to these cases by taking a sum of squares
of the classifier functions where each of them requires the introduction of a new
slack variable, and all heuristic arguments that lead to the real dominance conditions
can be repeated in this generalized case as well.

Finally, we note that if the classifier function F is fixed, it is possible to ask ques-
tions on the topology of the networks ẋ = f (x, a) that are compatible with the real
dominance conditions for each specific class. In other words, the analytical structure
of suitable geometric path integrals may encode and shed light on the structure of the
topologies of molecular networks that are compatible with some given phenotypic
outcomes.

Acknowledgement We would like to thank Mirco Mannucci, Roman Buniy, and the referee for
very useful comments.
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Bounded Cohomology for Solutions of Systems
of Differential Equations: Applications
to Extension Problems

Irene Sabadini and Daniele C. Struppa

Abstract In this paper we expand on some ideas originally put forward by Ehren-
preis in his monograph (Fourier Analysis in Several Complex Variables, Wiley In-
terscience, New York, 1970), and we show how to extend approximate solutions to
the Cauchy–Fueter system in n variables.

1 Introduction

One of the early successes of Ehrenpreis’ approach to the study of systems of par-
tial differential equations was his new and surprising proof of the famous Hartogs’
theorem on the removability of compact singularities for holomorphic functions of
n ≥ 2 complex variables [7]. Ehrenpreis’ proof is elegant and contains many of the
ideas which will be relevant in this paper, and for this reason, we offer it here in a
concise version. The reader may consult [15, 18] for the history of the approaches
to the Hartogs’ theorem.

Theorem 1 Let K be a compact convex subset of Cn, and let f : Cn \K → C be a
holomorphic function. Then there exists a unique entire function f̃ : Cn → C such
that f̃ = f on C

n \ K .

Proof To begin with, we consider a hyperfunction g which extends f to all of Cn.
Let Di = ∂/∂z̄i , i = 1, . . . , n, and let gi := Dig. Clearly, the hyperfunctions gi are
supported in K , and

Digj = Djgi (1)
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for all pairs i, j . Since Digj also have compact support, we can take the Fourier
transform of these hyperfunctions, and from (1) we obtain ziGj = zjGi , where
we have indicated with Gi the Fourier transform of gi . Therefore the function
H := Gj/zj = Gi/zi is holomorphic outside the origin of C

n. By the so-called
second Riemann removability singularity theorem (which stipulates that an ana-
lytic singularity of codimension bigger than or equal to two can be removed) [12],
we immediately obtain that H is entire. The Paley–Wiener theorem for the Fourier
transform of hyperfunctions supported by a compact convex set K implies that for
every positive ε, there exists Aε such that |Gj(z)| ≤ Aε exp(HK(z) + ε|z|), where
z = (z1, . . . , zn), and HK is the supporting function of the compact convex set K .
Therefore, the Ehrenpreis–Malgrange lemma shows that H itself satisfies the same
inequality and therefore is the Fourier transform of a hyperfunction h supported
in K as well. The proof is concluded by defining f̃ = g − h. �

Remark 1 The proof we have given invokes the use of hyperfunctions because this
allows the extension of f to g without losing anything along the boundary of K .
This is not necessary, however, and in fact Ehrenpreis worked directly in the C∞
setting.

Remark 2 It is important to note that the result in [7] is actually stated for solutions
to any system

⎧
⎪⎨

⎪⎩

P1(D)f = 0,

. . .

Pr(D)f = 0,

(2)

where the polynomials P1, . . . ,Pr , symbols of the operators P1(D), . . . ,Pr(D),
have no common factors. The proof we have indicated above carries over with no
changes. One should also point out that Ehrenpreis mentions in [7, 8], and Palam-
odov proves in [14] that the same result can also be obtained for a large class of rect-
angular systems satisfying an algebraic condition, which in the case of system (2),
with one unknown function, reduces to the request that the polynomials have no
common factors.

Remark 3 As Ehrenpreis himself has pointed out, this result can be rephrased in
terms of sheaf cohomology. Specifically, if O denotes the sheaf of germs of holo-
morphic functions in n complex variables, then the proof we have described before
shows that compact singularities can be removed if one can prove the vanishing of
the first cohomology group with compact support H 1

c (U,O) for any open convex
set U in C

n. In the case in which a system different from the Cauchy–Riemann sys-
tem is considered, the sheaf O needs to be replaced by the sheaf of solutions of the
system itself.

Let us discuss explicitly this interpretation. Let f be a solution in R
n \ K of

a system of linear differential operators with constant coefficients. We denote by
P(D) the column vector (P1(D), . . . ,Pr(D))t . As in the proof that we outlined be-
fore, f can be extended to a hyperfunction g over Rn, and one can then consider
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the family gi := Pi(D)g. Assume now that we know that H 1
c (Rn,S ) = 0 where S

is the sheaf of hyperfunction solutions to the system P(D)f = 0. By Theorem 4.6
in [13] the vanishing of this cohomology group is equivalent to the request that the
kernel of the matrix operator Q(D) associated to the first syzygies of P(D) satis-
fies Ker(Q(D)) =Im(P(D)) on the space Br of r-vectors whose components are
compactly supported hyperfunctions in R

n. Since g = (g1, . . . , gr )
t belongs to the

kernel of Q(D), and by the vanishing of the compact cohomology, we obtain that
there is an element h compactly supported in R

n such that Pi(D)h = gi . It is then
immediate to verify that the function f̃ := g −h is the required extension. In actual-
ity, the proof of the theorem shows directly the vanishing of the quotient Ker(Q(D))

Im(P(D))
,

and we can see how the vanishing of the cohomology would imply the vanishing
of the quotient. Specifically, the collection {Pj (D)gi} is a 1-cocycle, and therefore
the vanishing of the cohomology implies the existence of a family of compactly
supported hyperfunctions {ki} such that Pj (D)gi = ki − kj . By taking the Fourier
transform, and using again capital letters Gj,Ki to denote the Fourier transforms of

gj , ki , we obtain PjGi = Ki − Kj , and one can then formally define H := Ki−Kj

PiPj

which is a well-defined entire function because
Ki−Kj

PiPj
= Pj Gi

PiPj
= Gi

Pi
, which is inde-

pendent of the index i. If we define the function h to be the anti-Fourier transform
of H and set f̃ = g − h, we obtain the statement.

Remark 4 Note that Ehrenpreis in his proof does not explicitly construct the family
{ki} but uses the cocycle {Pj (D)gi} to construct directly the function h.

Remark 5 Since the Cauchy–Riemann system is elliptic, the sheaf of hyperfunctions
solutions to the system is exactly the sheaf of holomorphic functions.

Remark 6 The vanishing of H 1
c (U,O) for all open convex sets U in C

n is of course
a standard fact in the theory of several complex variables.

In [8] Ehrenpreis proved a refinement of these results which applies to what
he calls “approximate solutions” to the system of differential equations, see [8],
Chap. XI. He does so for systems of the form (2) in which P(D) is a column
(P1(D), . . . ,Pr(D))t of linear partial differential operators with constant coeffi-
cients.

Theorem 2 Let Ω0 = Ω2 \ Ω1 be a subset of Rn such that Ω1 and Ω2 are open,
convex, and bounded sets in R

n, with Ω1 ⊂ Ω2. Let ∂Ωi be the boundary of Ωi (i =
1,2), and let U (∂Ω1) be a neighborhood of ∂Ω1 in Ω2. Let E denote the sheaf of
infinitely differentiable functions, and let B be a set of functions in E (Ω0 ∪U (∂Ω1))

such that
{
P(D)f | f ∈ B

}
is bounded in E r

(
Ω0 ∪ U (∂Ω1)

)
.

If the polynomials Pi have no common factors then, for any f ∈ B , there exists
f̃ ∈ E (Ω2) such that:
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(a) {f − f̃ : f ∈ B} is a bounded set in E (Ω0 ∪ U ′(∂Ω1)) for some neighborhood
U ′ of ∂Ω1,

(b) {P(D)f̃ } is bounded in E r (Ω2).

The first goal of this paper is to offer a cohomological interpretation of Ehren-
preis’ Theorem 2 in terms of what we call bounded cohomology to which we ded-
icate the next section. The second goal is to expand on the ideas of [19] and show
how Ehrenpreis’ theorem can be formulated for an important concrete case in which
a matrix system is considered, specifically for the Cauchy–Fueter system in 4n vari-
ables. The case n = 2 was treated in [19].

2 Bounded Cohomology

Our main tool to give a cohomological interpretation of Theorem 2 will be a no-
tion of cohomology that we call bounded cohomology. It is constructed by taking
as elements the standard cochains with infinitely differentiable coefficients and as
equivalence relation the relation we introduce in the next definition.

Definition 1 Let Ω ⊆ R
n, and let V = {Ωi}i∈I be an open covering of Ω . We will

say that a family of sections {fi}i∈I , fi ∈ E (Ωi), is equal up to bounded terms to
{gi}i∈I , gi ∈ E (Ωi), and we will write

{fi}i∈I =̇{gi}i∈I

if fi − gi is bounded in the topology of E (Ωi), ∀i ∈ I .

It is immediate to prove the following result:

Proposition 1 The relation of equality up to bounded terms defines an equivalence
relation on E (Ω).

Let us consider the set of 0-cochains C0(V ,E ) = ∏
i E (Ωi) of E and, more in

general, the set of p-cochains Cp(V ,E ) = ∏
i0 �=i1 �=···�=ip

E (Ωi0 ∩ · · · ∩ Ωip). A p-
cochain in Cp(V ,E ) is denoted, as customary, as f = {fi0...ip } where fi0...ip ∈
E (Ωi0 ∩ · · · ∩ Ωip). Let us define the set C

p
b (V ,E ) of p-cochains with coefficients

in E modulo the equality =̇:

C
p
b (V ,E ) = Cp(V ,E )/=̇,

where we use the subscript “b” to emphasize that we consider p-cochains up to
bounded terms. We define the coboundary operator as usual by
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δ : C
p
b (V ,E ) → C

p+1
b (V ,E ),

δ(f )i0...ip+1=̇
p+1∑

j=0

(−1)j fi0...îj ...ip+1 |Ωi0 ∩...Ωip

,

where îj means that the index ij is omitted.

Definition 2 A p-cochain f ∈ C
p
b (V ,E ) such that δ(f ) =̇0 is called a p-cocycle,

and the set of p-cocycles is denoted by Z
p
b (V ,E ). A p-cochain f such that

f =̇ δ(g) is called a p-coboundary, and the set of p-coboundaries is denoted by
B

p
b (V ,E ).

Definition 3 We call the pth bounded cohomology group and denote by H
p
b (V ,E )

the quotient

H
p
b (V ,E ) = Z

p
b (V ,E )

B
p
b (V ,E )

.

Remark 7 In particular, we have

Z1
b(V ,E ) = {{fij } ∈ C1

p(V ,E ) | {fij + fji} =̇ {0}},
B1

b (V ,E ) = {{fij } ∈ C1
p(V ,E ) | {fij } =̇ {fi − fj }

}
,

so that H 1
b (V ,E ) = Z1

b(V ,E )/B1
b (V ,E ). The vanishing of H 1

b (V ,E ) means that
for any choice of {fij + fji} which are bounded in E (Ω), there exist fi, fj such
that fij = (fi − fj ) + bij , where bij is bounded in E (Ω).

Remark 8 The previous definitions can be repeated also in the case of p-cochains
with compact support. In that case we obtain the bounded cohomology with compact
support that we denote by H 1

c,b(V ,E ). By taking a suitable covering of Ω we get

the bounded cohomology with compact support H 1
c,b(Ω,E ).

We now show how this language can be useful to rephrase Theorem 2.

Theorem 3 Let Ω0 = Ω2 \ Ω1 be a subset of Rn such that Ω1 and Ω2 are open,
convex, and bounded sets in R

n, with Ω1 ⊂ Ω2. Let ∂Ωi be the boundary of Ωi

(i = 1,2), and let U (∂Ω1) be a neighborhood of ∂Ω1 in Ω2. Let S be the sheaf of
infinitely differentiable functions that are solutions to the system P(D)f = 0. Let B
be a set of functions in E (Ω0 ∪ U (∂Ω1)) such that

{
P(D)f | f ∈ B

}
is bounded in E r

(
Ω0 ∪ U (∂Ω1)

)
.

If H 1
c,b(Ω2,S ) = 0, then, for any f ∈ B , there exists f̃ ∈ E (Ω2) such that:

(a) {f − f̃ : f ∈ B} is a bounded set in E (Ω0 ∪ U ′(∂Ω1)) for some neighborhood
U ′ of ∂Ω1,

(b) {P(D)f̃ } is bounded in E r (Ω2).
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Proof For every f ∈ B , we can construct its extension g to Ω2 and define gj =
Pj (D)g which can be assumed to be with compact support. By hypothesis we have
that the family {Pi(D)gj − Pj (D)gi} is bounded and compactly supported. The
same is therefore true for the family of its Fourier transforms {PiGj − PjGi}. Now
assume that H 1

c,b(Ω2,S ) = 0. This implies the existence of a family {Ki} such that

PjGi=̇Ki −Kj . By defining as before h as the anti-Fourier transform of
Ki−Kj

PiPj
, we

obtain that the family of extensions {f̃ = g−h | f ∈ B} is such that {f − f̃ | f ∈ B}
is bounded as requested and Pf̃ is bounded as well. �

3 The Cauchy–Fueter System

In this section we will prove an analogue of Theorem 2 for the solutions of the so-
called Cauchy–Fueter system in several variables. Let us begin by recalling some
basic definitions. We will denote by H the skew field of quaternions q = x0 + ix1 +
jx2 + kx3, where x� is real for � = 0, . . . ,3, and i, j, k are such that i2 = j2 = k2 =
−1 and ij = k, jk = i, ki = j , ij = k, jk = i, ki = j . From a vector-space point of
view, H can be seen as R4, but the space H of quaternions admits a noncommutative
multiplicative structure that differentiates it from R

4.
There are several notions that extend the concept of holomorphicity to functions

defined on open sets in H. In this paper we deal with the one introduced by R. Fueter
back in the 1930s, see [9, 20], and which has been extensively studied in the litera-
ture.

Definition 4 Let Ω be an open subset of H, and let f : Ω → H be a real differen-
tiable function. We say that f is regular if it satisfies the so-called Cauchy–Fueter
equation

∂f

∂q̄
:= ∂f

∂x0
+ i

∂f

∂x1
+ j

∂f

∂x2
+ k

∂f

∂x3
= 0. (3)

Equation (3) can be rewritten it by taking advantage of the explicit expression
of the ∂

∂q̄
operator and of the representation of f in its real components f = f0 +

if1 + jf2 + kf3. From this point of view, (3) becomes the following 4 × 4 system of
differential equations in the unknown variables f0, f1, f2, f3:

∂f0

∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3
= 0,

∂f0

∂x1
+ ∂f1

∂x0
− ∂f2

∂x3
+ ∂f3

∂x2
= 0,

∂f0

∂x2
+ ∂f1

∂x3
+ ∂f2

∂x0
− ∂f3

∂x1
= 0,

∂f0

∂x3
− ∂f1

∂x2
+ ∂f2

∂x1
+ ∂f3

∂x0
= 0.
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In [6] the authors showed how the notion of regularity can be naturally defined
for functions in several quaternionic variables and demonstrated that such func-
tions enjoy important properties that make their theory quite similar to the theory
of holomorphic functions in several complex variables. To begin with, we give the
following definition.

Definition 5 Let Ω be an open subset of Hn, and let f : Ω → H be a differentiable
function. Let (q1, . . . , qn) denote the variable in H

n. We say that the function f is
regular if it satisfies the Cauchy–Fueter system of differential equations

∂f

∂q̄1
= ∂f

∂q̄2
= · · · = ∂f

∂q̄n

= 0,

with obvious meaning of the symbols. The right quaternionic vector space of func-
tions that are regular on the open set Ω is denoted by R(Ω).

Remark 9 The assignment Ω → R(Ω) is a sheaf of right vector spaces on H.

Similarly to what is done in the case of one variable, the Cauchy–Fueter system
can be rewritten as a system of 4n differential equations in four unknown functions
f0, . . . , f3. Thus, we now have what is usually referred to as an overdetermined
system of differential equations. As we did in a series of articles, see [1–4], which
culminated in [6], we used extensively the ideas of Ehrenpreis and Palamodov to
develop the theory of its solutions.

In particular, in [16], we described the compatibility conditions on (g1, . . . , gn)

for the nonhomogeneous Cauchy–Fueter system

∂f

∂q̄1
= g1, . . . ,

∂f

∂q̄n

= gn (4)

to be solvable. These conditions correspond, from the algebraic point of view, to
the first syzygies of the module associated to the system and are described in the
following proposition.

Proposition 2 System (4) admits a solution f if and only if the datum g =
(g1, . . . , gn)

t satisfies:

1. For each of the 2
(
n
2

)
ordered pairs of indices r , s, 1 ≤ r, s ≤ n,

∂q̄r ∂qs gs − ∂q̄s ∂qs gr = 0.

2. For each of the
(
n
3

)
triples of indices h, r , s, 1 ≤ h, r, s ≤ n,

∂qh
∂q̄r gs + ∂qr ∂q̄h

gs − ∂q̄s ∂qr gh − ∂q̄s ∂qh
gr = 0

and

∂qr ∂q̄s gh + ∂qs ∂q̄r gh − ∂q̄h
∂qr gs − ∂q̄h

∂qs gr = 0.
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3. For each of the
(
n
3

)
triples of indices h, r , s, 1 ≤ h, r, s ≤ n,

(
D′

qr
∂q̄s − D′

qs
∂q̄r

)
gh + (

D′
qs

∂q̄h
− D′

qh
∂q̄s

)
gr + (

D′
qh

∂q̄r − D′
qr

∂q̄h

)
gs = 0

and

(
D′′

qr
∂q̄s − D′′

qs
∂q̄r

)
gh + (

D′′
qs

∂q̄h
− D′′

qh
∂q̄s

)
gr + (

D′′
qh

∂q̄r − D′′
qr

∂q̄h

)
gs = 0,

where ∂q̄i
= ∂

∂qi0
+ i ∂

∂qi1
+ j ∂

∂qi2
+ k ∂

∂qi3
, ∂qi

= ∂
∂qi0

− i ∂
∂qi1

− j ∂
∂qi2

− k ∂
∂qi3

, D′
qi

=
−i ∂

∂qi2
+ ∂

∂qi3
, and D′′

qi
= ∂

∂qi3
+ j ∂

∂qi1
.

In the sequel we will denote by Q(D) the matrix of differential operators such
that Q(D)g = 0 corresponds to the matrix form of the relations in Proposition 2.

We now give the notion of approximate solutions to the Cauchy–Fueter system
(see also [19]):

Definition 6 Let Ω be a bounded open set in R
4n (or equivalently a bounded open

set in H
n), and let B be a set of quaternionic valued infinitely differentiable functions

in Ω . We say that B is a set of approximate solutions to the Cauchy–Fueter system
on Ω if the set

{
∂f

∂q̄1
, . . . ,

∂f

∂q̄n

: f ∈ B

}

is a bounded set in the topology of the space E n(Ω) of ordered n-tuples of infinitely
differentiable functions on Ω .

Note that regular functions are approximate solutions as well, since the set above
would be reduced to the zero set. In [19], Struppa has proved the following theorem.

Theorem 4 Let Ω0 = Ω2 \ Ω1 be a subset of H2 such that Ω1 and Ω2 are open,
convex, and bounded sets in H2, with Ω1 ⊂ Ω2. Let ∂Ωi be the boundary of Ωi

(i = 1,2), and let U (∂Ω1) be a neighborhood of ∂Ω1 in Ω2. Let B be a set of
functions in E (Ω0 ∪ U (∂Ω1)) such that

{
∂f

∂q̄1
,

∂f

∂q̄2
: f ∈ B

}

is bounded in E 2(Ω0 ∪ U (∂Ω1)
)
.

Then, for any f ∈ B , there exists f̃ ∈ E (Ω2) such that:

• {f − f̃ : f ∈ B} is a bounded set in E (Ω0 ∪ U ′(∂Ω1)) for some neighborhood
U ′ of ∂Ω1,

• { ∂f̃
∂q̄1

,
∂f̃
∂q̄2

} is bounded in E 2(Ω2).

We will now show how to extend this result to the case of several quaternionic
variables.
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Theorem 5 Let Ω0 = Ω2 \ Ω1 be a subset of Hn such that Ω1 and Ω2 are open,
convex, and bounded sets in H

n, with Ω1 ⊂ Ω2. Let ∂Ωi be the boundary of Ωi

(i = 1,2), and let U (∂Ω1) be a neighborhood of ∂Ω1 in Ω2. Let B be a set of
functions in E (Ω0 ∪ U (∂Ω1)) such that

{
∂f

∂q̄1
, . . . ,

∂f

∂q̄n

: f ∈ B

}

is bounded in E n
(
Ω0 ∪ U (∂Ω1)

)
.

Then, for any f ∈ B , there exists f̃ ∈ E (Ω2) such that:

(a) {f − f̃ : f ∈ B} is a bounded set in E (Ω0 ∪ U ′(∂Ω1)) for some neighborhood
U ′ of ∂Ω1,

(b) { ∂f̃
∂q̄1

, . . . ,
∂f̃
∂q̄n

} is bounded in E n(Ω2).

Proof We begin by extending the function f to a function g, infinitely differentiable
on the entire space Ω2, and such that g is equal to f on the set Ω0 ∪ U ′ for some
small neighborhood U ′ ⊂ U of ∂Ω1, and we set Ω3 = Ω1 \ U ′. Let us define

gr = ∂g

∂q̄r

, r = 1, . . . , n,

and consider the set

{g1, . . . , gn : f ∈ B},
which is bounded in E (Ω0 ∪ U ′). We now multiply the functions gr by a C∞
function χ which is identically one on Ω3 and which is compactly supported in Ω2;
we obtain new functions (for the sake of simplicity, we will still denote them by gr ),
which are now compactly supported in Ω2. The set {g1, . . . , gn : f ∈ B} is therefore
a bounded set of compactly supported functions. We now consider the first syzygies
of the system of n Cauchy–Fueter operators described in Proposition 2, and we
apply them to g1, . . . , gn. We obtain the set

FB = {
∂q̄r ∂qs gs − ∂q̄s ∂qs gr , ∂qh

∂q̄r gs + ∂qr ∂q̄h
gs − ∂q̄s ∂qr gh − ∂q̄s ∂qh

gr ,

∂qr ∂q̄s gh + ∂qs ∂q̄r gh − ∂q̄h
∂qr gs − ∂q̄h

∂qs gr ,
(
D′

qr
∂q̄s − D′

qs
∂q̄r

)
gh + (

D′
qs

∂q̄h
− D′

qh
∂q̄s

)
gr + (

D′
qh

∂q̄r − D′
qr

∂q̄h

)
gs,

(
D′′

qr
∂q̄s − D′′

qs
∂q̄r

)
gh + (

D′′
qs

∂q̄h
− D′′

qh
∂q̄s

)
gr

+ (
D′′

qh
∂q̄r − D′′

qr
∂q̄h

)
gs : f ∈ B

}
,

which is bounded in D(Ω4), where Ω4 is a bounded convex set such that Ω̄3 ⊂
Ω̄4 ⊂ Ω1. We can now take, formally, the Fourier transform of the elements of
FB . Since we know that the Fourier transform is a topological isomorphism, we
denote by Gr the Fourier transform of gr for r = 1, . . . , n, we obtain (with obvious
symbolism) that the new set
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SB := {
qr q̄sGs − qsq̄sGr, q̄hqrGs + q̄rqhGs − qsq̄rGh − qsq̄hGr,

q̄rqsGh + q̄sqrGh − qhq̄rGs − qhq̄sGr,
(
z′
rqs − z′

sqr

)
Gh + (

z′
sqh − z′

hqs

)
Gr + (

z′
hqr − z′

rqh

)
Gs,

(
z′′
r qs − z′′

s qr

)
Gh + (

z′′
s qh − z′′

hqs

)
Gr + (

z′′
hqr − z′′

r qh

)
Gs,

r, s = 1, . . . , n, r �= s �= h : f ∈ B
}

is bounded in D̂(Ω4). That this is indeed the case can be confirmed by writing
explicitly the operators (in terms of their real coordinates), then taking the Fourier
transform of the various components, and finally regrouping in quaternionic form.

Denote by B the multiplicity variety associated to the equation q1 = 0 (we refer
to [8] and [17] for a detailed definition of such a variety). Let us now look at the set
S̃B = SB \ {qr q̄1G1 − q1q̄1Gr, r = 1, . . . , n}. The elements in S̃B do not vanish
identically on the variety defined by q1 = 0. Let us formally set q1 = 0 in all the
elements in S̃B , and let us denote this new set by (S̃B)|q1=0. From this fact we
immediately deduce that

(S̃B)|q1=0 is bounded in D̂(Ω4)(B).

Let us consider in (S̃B)|q1=0 the element q2q̄2G1. If we denote by V the subva-
riety of B where |q̄2q2| ≥ 1, then we obtain that {G1 : f ∈ B} is bounded in the
topology of D̂(Ω4)(V), and so, since the set where |q̄2q2| ≥ 1 is a sufficient set
according to [8], we deduce that the set {G1 : f ∈ B} is actually bounded in all
of D̂(Ω4)(B). Note that a similar argument can be made if we look at other com-
ponents of the set S , which are bounded on the multiplicity variety associated to
qr = 0, r = 2, . . . , n. By the Fundamental Principle of Ehrenpreis [8], but see also
[5, 11], (actually by the Extension Theorem that implies the Fundamental Principle,
[10, 17]) we know that every function G holomorphic on the multiplicity variety
B can be extended to an entire function G̃ satisfying on C

n the same bounds that
G satisfies on B. Thus we can say that there exists a function G̃1 such that the set
{G̃1 : f ∈ B} is bounded and, for some entire function H1 ∈ D̂(Ω4),

G1 − G̃1 = q1 · H1.

Now let h1 ∈ D(Ω4) be the anti-Fourier transform of H1, and let g̃1 ∈ D(Ω4) be
the anti-Fourier transform of G̃1. Then

∂h1

∂q̄2
− g2 =

(
∂h2

∂q̄2
− g2

)

+
(

∂h1

∂q̄2
− ∂h2

∂q̄2

)

= −g̃2 +
(

∂h1

∂q̄2
− ∂h2

∂q̄2

)

.

Now notice that

Δ1
∂h1

∂q̄2
− Δ1

∂h2

∂q̄2
= ∂Δ1h1

∂q̄2
− Δ1

∂h2

∂q̄2
= ∂

∂q̄2

∂

∂q1

∂h1

∂q̄1
− Δ1

∂h2

∂q̄2
.
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This last expression is, up to a bounded function, nothing but

∂

∂q̄2

∂g1

∂q1
− Δ1g2,

which is therefore bounded.
Since differential operators (and in particular the Laplacian) are topological iso-

morphisms (see Theorem 6.5 in [8]), we deduce that

∂h1

∂q̄2
− ∂h2

∂q̄2

is also a bounded set. But since the set {g̃r : f ∈ B} is a bounded set, so is the set
{

∂h1

∂q̄2
− g2 : f ∈ B

}

.

If we now define f̃ = g − h1, we conclude that the function f̃ is the one requested
in the statement of the theorem. �

We conclude the paper with the cohomological version of this same theorem.

Theorem 6 Let Ω0 = Ω2 \ Ω1 be a subset of Hn such that Ω1 and Ω2 are open,
convex, and bounded sets in H

n, with Ω1 ⊂ Ω2. Let ∂Ωi be the boundary of Ωi

(i = 1,2), and let U (∂Ω1) be a neighborhood of ∂Ω1 in Ω2. Let B be a set of
functions in E (Ω0 ∪ U (∂Ω1)) such that

{
∂f

∂q̄1
, . . . ,

∂f

∂q̄n

: f ∈ B

}

is bounded in E n
(
Ω0 ∪ U (∂Ω1)

)
.

If H 1
c,b(Ω2,R) = 0, then for any f ∈ B , there exists f̃ ∈ E (Ω2) such that:

(a) {f − f̃ : f ∈ B} is a bounded set in E (Ω0 ∪ U ′(∂Ω1)) for some neighborhood
U ′ of ∂Ω1,

(b) { ∂f̃
∂q̄1

, . . . ,
∂f̃
∂q̄n

} is bounded in E n(Ω2).

Proof For every f ∈ B , we can construct its extension g to Ω2 and define g̃ =
(

∂g
∂q̄1

, . . . ,
∂g
∂q̄n

). It is immediate to see that g̃ belongs to the kernel of the operator
Q(D) associated to the first syzygies and that we can assume that g̃ is with compact
support. By hypothesis, H 1

c,b(Ω2,R) = 0, and so g̃ = ( ∂h
∂q̄1

, . . . , ∂h
∂q̄n

) for a suitable

h ∈ E (Ω2). The family of extensions {f̃ = g − h | f ∈ B} now satisfies the theo-
rem. �

Remark 10 In [6], the authors have discussed the explicit form of the syzygies for
a wide variety of systems of differential equations. In addition to the study of the
Cauchy–Fueter system, for example, the authors have identified the syzygies for the
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Dirac systems, for the Moisil–Theodorescu system, and for many of their variations.
It is quite simple to verify that the theorems proved in this paper for the Cauchy–
Fueter system extend indeed to all the systems treated in [6]. It is possible, and worth
investigating, that in fact the study of bounded cohomology may allow the proof of
a general theorem on the extension of sets of approximate solutions for a large class
of rectangular systems of differential equations.
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On Two Lacunary Series and Modular Curves

Ahmed Sebbar

Abstract We study, from different points of view, the two series χ+(z) = ∑
n≥0 z2n

and χ−(z) = ∑
n≥0(−1)nz2n

. We show that the first series is related to the Jacobi
theta function and the second is related to the Dedekind eta function and to the
modular curve X0(14). We also present another approach to a celebrated identity of
Hardy.

1 Introduction

As far as I know, Leon Ehrenpreis has never visited Bordeaux, but his name was
very familiar to us in the 1980s, thanks to our teacher Roger Gay. Other names were
also familiar: André Martineau, Bernard Malgrange, and Lars Hörmander. It hap-
pened that some theorems carry one or simultaneously two or three of these names.
The main topics we studied were: Analytic functionals, division of distributions by
a polynomial, existence of a fundamental solution for an arbitrary differential oper-
ator with constant coefficients and especially the fundamental principle. The book
Fourier Analysis in Several Complex Variables of Leon Ehrenpreis [9], together with
Introduction to Complex Analysis in Several Variables of Lars Hörmander [14], was
our main concern. Several of us thought that Fourier Analysis contained many prob-
lems, good for very high-level doctorat d’état, the French doctoral dissertation at
that time.

But the total mathematics of Leon Ehrenpreis is much broader and has an impact
in many areas. In the present paper I will discuss some ideas on lacunary series and
automorphic functions or forms, subjects that interested Leon too.

We study, in some details, the algebraic, analytic, and arithmetic properties of the
two lacunary series

χ+(z) =
∑

n≥0

z2n

, χ−(z) =
∑

n≥0

(−1)nz2n

, |z| < 1, (1)
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already considered under a different angle in [18]. I am pleased to observe that the
present point of view is close, in some points, to Ehrenpreis work [10]. The series
(1) verify the functional equations

χ+(z) = z + χ+
(
z2), χ−(z) = z − χ−

(
z2), (2)

and the main objective is to (try to) study their singularities on the unit circle. To
do so, we first try to find a relationship between χ± and automorphic functions,
in particular theta functions, while they seem unrelated. The main results are: The
first power series is related to the fourth powers of the Jacobi theta functions, and
the second is related to an eta product and to the modular curve X0(14). This is
the content of main Theorems 6.5 and 6.6 of this work. Theorem 3.1 gives a new
presentation of a celebrated identity of Hardy.

It is surprising in several respects that the functions χ+ and χ− are related. One is
tempted to think that there must be a hidden relationship between χ+(z) and χ−(z),
despite their differences. Among the things which separate χ+ and theta functions,
there is the behavior at 1. When x is real and tends to 1, x < 1,

∞∑

n=0

xn2 ∼
√

π

2
√

1 − x
∼

√
π

2
√− logx

,

∞∑

n=0

x2n ∼ − log(1 − x)

log 2
.

Our main reference for modular forms and theta functions is Zagier [27] and Ono
[20], and for elliptic curves is Silvermann [24]. For the sequel, we set z = e2iπτ .

Definition 1.1 The theta function, associated to the Dirichlet character ψ is the
series given by

θψ(τ) = θψ(z) =
∑

n

ψ(n)e2iπn2τ =
∑

n

ψ(n)zn2

if ψ is even, and if ψ is odd, by

θψ(τ) = θψ(z) =
∑

n

ψ(n)ne2iπn2τ =
∑

n

ψ(n)nzn2
.

The summations are over positive integers, unless ψ is a trivial character, in which
case the summation is over all integers.

In the case of a trivial character, we write θψ = θ , and we know that

θ(τ ) =
∞∏

n=1

(
1 − z2n

)(
1 + z2n−1)2 =

∞∑

−∞
zn2

.

The Dedekind eta function is

η(τ) = z
1
24

∞∏

n=1

(
1 − zn

) = z
1
24

∞∑

−∞
(−1)nz

3n2+n
2 =

∞∑

n=1

(
12

n

)

z
n2
24 , (3)
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where ( 12
• ) is the Legendre–Jacobi symbol. Hence the eta function is a theta func-

tion, and in fact if χ12 = ( 12
• ), then

η = θχ12 ,

χ12(m) =
(

12

m

)

=
{

1 for m ≡ ±1 mod 12

−1 for m ≡ ±5 mod 12.

(4)

On the other hand, we have the identity [20]

θ(z) = θ(τ ) = η5(2τ)η−2(τ )η−2(4τ),

which can be considered as an inversion of (3).

2 Algebraic Differential Equations, Differential Operators
of Infinite Order

In this section we compare the differential properties of χ±(z) and θ(z). An alge-
braic differential equation (ADE) is an equation of the form

P
(
z,ω,ω′, . . . ,ω(k)

) = 0,

where P is a polynomial over C in all its variables [15]; k is called the order of
the equation, and its degree is the degree of the polynomial P(X,X0,X1, . . . ,Xk).
A power series which satisfies an ADE is called differentially algebraic. A classical
theorem of Maillet, Ostrowski, and Popken asserts that if

∑
fnk

znk , fnk
∈ C, fnk

	=
0 is differentially algebraic, then necessarily lim sup nk+1

nk
< ∞. Nevertheless:

Proposition 2.1 The functions χ+(z) and χ−(z) are not differentially algebraic.

This result can be explained in two ways; the first is through the functional equa-
tion (2) as in [19] or [15]. It should be noted that the lacunarity of a differentially
algebraic power series is specified by the following result of Maillet [17].

Theorem 1 (Maillet) Let
∑∞

m=0 bmzm be a given series, formal solution of a differ-
ential equation of order k and degree μ. We can find a fixed number τ0, independent
of m, such that for large m, if bm is nonzero, the previous nonzero coefficient has an
index greater than or equal to (m+τ0)

μ
.

The function θ(z), instead, is differentially algebraic. It satisfies the Jacobi dif-
ferential equation

(
y2y′′′ − 15yy′y′′ + 30y′3)2 + 32

(
yy′′ − 3y′2)3 = y10(yy′′ − 3y′2)2

,

where “ ′” stands for 1
2iπ

d
dτ

= z d
dz

, z = e2iπτ .
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On the other hand, following Sato, Kawai, and Kashiwara [23], consider

Q1 = d

dτ

∞∏

n=1

(

1 − 1

2iπn2

d

dτ

)

.

Using

sinh ζ = ζ

∞∏

n=1

(

1 + ζ 2

π2n2

)

,

we have that

Q1 =
√

2iπ
d

dτ
sinh

√

2iπ
d

dτ

or

Q1 =
∞∑

j=0

1

(2j + 1)!
(

2iπ
d

dτ

)j+1

.

Q1 is a well-defined differential operator of infinite order, with

Q1

(
d

dτ

)

θ(τ ) = 0.

Similarly, we have the following:

Proposition 2.2 The infinite product

h(τ) =
∞∏

n=0

(

1 − τ

2n

)

is a unique solution of the functional equation

h(τ) = (1 − τ)h

(
τ

2

)

, h(0) = 1.

It represents an entire function of zero exponential type with the following expan-
sion:

h(τ) = 1 +
∞∑

n=1

2n

(1 − 2n)(1 − 2n−1) · · · (1 − 2)
τn,

and hence

h

(
d

dτ

)

= 1 +
∞∑

n=1

2n

(1 − 2n)(1 − 2n−1) · · · (1 − 2)

dn

dτn
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is a well-defined operator of infinite order with

h

(
d

dτ

)

χ+(z) = 0, h

(
d

dτ

)

χ−(z) = 0.

The functions χ± and θ share the following analytic property: the associated Dirich-
let series are solutions to infinite-order differential operators, and hence the lines
of convergence are natural boundaries. It is possible to show that, actually, the
Dirichlet series associated to (1) cannot be continued neither analytically nor quasi-
analytically across the line of convergence 
τ = 0. This means that the power series
have the unit circle as an analytic and quasi-analytic natural boundary [18].

The functions χ(z) and θ(z) share some arithmetical properties. Mahler [16]
showed that for every d ≥ 2, the value of

∑
n≥0 z−dn

at any nonzero algebraic num-
ber is transcendental. For theta functions, the situation is richer, and we refer to [5]
and [3] for various results and conjectures.

3 New Look at Hardy’s Identity Concerning the Series χ+

We would like to interpret Hardy’s identity [11]

∑

n≥0

x2n =
∑

n≥1

(−1)n−1(log 1/x)n

n!(2n − 1)
− 1

log 2
log(log 1/x) + 1

2
− γ

log 2

− 1

log 2

∑

k 	=0

Γ

(−2kiπ

log 2

)

(log 1/x)2kiπ/ log 2, 0 < x < 1, (5)

from another point of view by giving a description in terms of difference equations.
We consider the power series

G(z) = G(z, a) =
∑

n≥1

1

an − 1

zn

n! , (6)

where a 	= 1 is a given positive real number. The function G is an entire function
solution of the functional equation

G(z, a) = −G

(
z

a
,

1

a

)

. (7)

We introduce a new variable u by z = −au and the function

H (u) = −zG′(z). (8)

Then

H (u + 1) − H (u) = ja(u) = aue−au

. (9)



280 A. Sebbar

The function ja belongs to the Schwartz space S (R) of infinitely differentiable
functions f such that unf (m) is bounded on R. In particular, each of the two series∑

m≥0 ja(u + m) and
∑

m≥1 ja(u − m) converge uniformly on compact sets of R.

Theorem 3.1 Equation (9) has three entire solutions K (u) = K (u, a), K1(u) =
K1(u, a), and K2(u) = K2(u, a), with

1. K (u) = −∑
n≥0

(−1)n+1

an+1−1
a(n+1)u

n! ;
2. K1(u) = ∑

m≥1 ja(u − m);
3. K2(u) = −∑

m≥0 ja(u + m);
4. K (u) = K1(u) if a > 1; K (u) = K2(u) if a < 1;
5. K1(u) − K2(u) = P(u) is a periodic function of period 1 given by

P(u) =
+∞∑

−∞
Γ

(

1 − 2inπ

loga

)

e2nπiu;

6. The map which carries K1(u) on K2(u) is represented by the functional rela-
tion (7) G(z, a) = −G( z

a
, 1

a
);

7. The following identity holds for all a > 1:

∑

n≥1

(−1)n

an − 1

anu

n! = −
∑

m≥1

(
e−au−m − 1

)
.

The proof of the theorem is based on the difference equation (9). Since the second
term ja is in the Schwartz space S (R), we can solve this equation by right iteration,
left iteration, or localization. More explicitly, let D be the differentiation operator
d
dx

. By Taylor’s formula, (9) takes the form

(
eD − 1

)
H (u) = ja(u)

or
(
1 − e−D

)
H (u) = ja(u − 1).

The formal inverse of the operator (1 − e−D) is
∑

n≥0 e−nD so that (9) has the
solution K1(u) = ∑

m≥1 ja(u − m), which is in fact an entire function, the series
being a series of holomorphic functions on C uniformly convergent on compact sets.

Equation (9) written in the form (1 − eD)H (u) = −ja(u) can be solved for-
mally by right iteration K2(u) = −∑

m≥0 ja(u + m), and we obtain another entire
solution.

The third method to solve (9) is the localization method. We define the operator
D−1 = 1

D
by

D−1g(u) =
∫ u

0
g(x)dx;
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then (9) takes the form

(
eD − 1

D

)

H (u) =
∫ u

0
ja(x) dx. (10)

The function z
ez−1 is holomorphic in the disc centered at the origin and of radius 2π

and has the power series expansion

z

ez − 1
=

∞∑

n=0

bn

n! z
n, |z| < 2π.

The coefficients bn are the Bernoulli numbers

b0 = 1, b1 = −1

2
, b2 = 1

6
, b3 = 0, b4 = 1

30
, . . . .

A formal solution of (10) is

K3(u) = D−1ja(u) +
∑

n≤1

bn

n! D
nD−1ja(u),

and an easy calculation shows that

K3(u) = au
∑

m≥0

(−1)maum

m!(am+1 − 1)
.

We observe that we have recovered the function K3(u) = K (u) from which we
derived the difference equation (9).

The difference K1(u) − K2(u) is a solution of the homogeneous equation

H (u + 1) − H (u) = 0,

so it is a periodic function of period 1. The Fourier coefficients can be computed
as in the preceding section. The map a �→ 1

a
is a homeomorphism from (0,1) onto

(1,+∞), so we can suppose in the sequel that a > 1, z = au. Relation (7) gives
−zG′(z, a) = z

a
G′( z

a
, 1

a
), which is equivalent to K1(u) = K2(1 − u, 1

a
). Finally, if

we integrate from −∞ to u the identities

∑

m≥1

ja(x − m) = K1(u) = K (u)

and use
∫ u

−∞
ja(x − m)dx = −1

loga

(
e−au−m − 1

)
,

we obtain the last statement of the proposition.
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Remark 1 We have seen that Hardy’s identity can be considered as a connection
formula between two solutions to the same difference equation. In principle, other
connection formulas could be obtained by considering other solutions. However,
according to the asymptotic formula

∣
∣Γ (x + iy)

∣
∣ = √

2πe− 1
2 π |y||y|x− 1

2
(
1 + r(x, y)

)
,

where as |x + iy| tends to ∞, r(x, y) tends to 0, uniformly in the strip |x| ≤ α,
where α is a constant, the connection

K1(u) − K2(u) = P(u) =
+∞∑

−∞
Γ (1 − 2nπiA)e2nπiu

with A = 1
loga

is very small on the real axis; two different solutions of the same
difference equation can be very close. This has been remarked in another context
by Ramanujan and Hardy (see the discussion in [4]; Entry 17) and more recently by
Tricomi [25], who found that for a = 2 or A = 1

log 2 = 1.4427 . . . , one has that, for
all x ∈ R, |P(x) − A| < 0.0000143 . . . , whereas Berndt quotes in [4] the approxi-
mation

log 2

( ∞∑

n=0

2ne−2nx +
∞∑

n=0

(−x)n

(2n+1 − 1)n!

)

≈ 1

x

(

1 + 0.0000098844 cos

(
2π logx

log 2
+ 0.872711

))

.

Now we would like to investigate how the functional relations (7),(8) can be
linked to modular properties of some Eisenstein series. The function (6),

G(z) =
∑

n≥1

1

an − 1

zn

n! ,

is an entire function of order 1 and of exponential type 1
a

, and its Borel transform is

B(z, a) =
∑

n≥1

1

an − 1
z−(n+1), |z| > 1

a
.

Following a presentation of Bochner, we show that the function

P(x) = G(logx) = G(logx, a) =
∑

n≥1

1

an − 1

(logx)n

n! , x ∈ C
∗, (11)

verifies a functional equation almost like the Riemann zeta function.

Definition 3.1 A function F(x) is residual if the three following conditions are
fulfilled:
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1. It is defined and differentiable for 0 < x < ∞, and for some γ > 0, we have
F(x) = O(x−γ ) as x tends to 0 and F(x) = O(xγ ) as x tends to +∞, so that
we may introduce for complex s the Mellin transforms

ξr (s) =
∫ 1

0
F(x)xs−1 dx, ξl(s) =

∫ +∞

1
F(x)xs−1 dx;

ξr is defined in a right half-plane, and ξl in a left-half plane.
2. These two functions can be continued into one another in a domain D which is

the exterior of a bounded set S.
3. If we denote the joint value of the continued function by ξ0(s), s = σ + iτ , then

we have

lim|τ |�→+∞ ξ0(σ + iτ ) = 0

uniformly on finite intervals σ1 ≤ σ ≤ σ2.

This definition is motivated by Hecke’s theory on modular forms [26] that will
be also considered in Sect. 6. That the function P(x) is residual is a consequence
of the fact that G(z) is of exponential type 1

a
and of order 1 and from the following

theorem of Bochner [6].

Theorem 3.2 A function F(x) defined for 0 < x < ∞ is residual if and only if it
can be represented as a series

F(x) =
∑

n≥0

cn

n!
(

log
1

x

)n

, γ0 = lim sup |cn| 1
n < ∞.

The function ξ0(s) is the Borel transform ξ0(s) = ∑
n≥0

cn

sn+1 of the entire function
of exponential type F(e−y) = ∑

n≥0
cn

n! y
n.

Instead of ξ0(s), we consider

ξ(z, a) = ξ(z) =
∑

n≥1

1

an − 1
zn, |a| > 1. (12)

This function has some interesting properties. We first prove the following:

Proposition 3.3 The function ξ(z, a) has a meromorphic continuation to the whole
plane with simple poles at an,n ∈ N

∗, and with residues −an.

In fact, from the definition we see that, for |z| < 1,

ξ(az, a) − ξ(z, a) = − z

z − 1
,
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so that

ξ(z, a) = z
∑

n≥1

1

an − z
.

The last series converges uniformly on compact sets of C \ {an,n ∈ N
∗}, and the

result follows.
Let B(t) be the function defined for 0 < t < ∞ by

B(t) = 1

4
− π

12
t + 2πt

∂ξ

∂z

(
1, e2πt

)
.

Proposition 3.4 The function B verifies the functional relation

B(t) + B

(
1

t

)

= 0.

In particular,

∑

n≥1

n

e2πn − 1
= 1

24
− 1

8π
= 0,0018779 . . . .

The last equality appears in Ramanujan [22] (p. 326, question 387). The proof of
the proposition is an immediate consequence of the modular transformation law of
the Eisenstein series

G2(τ ) = − 1

24
+

∑

n≥1

n

e−2iπnτ − 1
= − 1

24
+

∑

n≥1

σ1(n)e2iπnτ , σ1(n) =
∑

d|n
d,

(13)

according to which for all
(

α β

γ δ

) ∈ SL2(Z), we have

G2

(
ατ + β

γ τ + δ

)

= (γ τ + δ)2G2(τ ) − γ (γ τ + δ)

4iπ
.

We obtain the desired formula by choosing α = δ = 0, β = −1, γ = 1, and τ = it ,
t > 0.

Remark 2 The series G2 in (13) verifies the Chazy equation

D3y + 24yD2y − 36(Dy)2 = 0; Dy = 1

2iπ

d

dτ
,

and hence it is differentially algebraic.
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Now we show that the basic function (12) is related to the Eisenstein series G2.
We shall suppose that q ∈C, |q| < 1, and introduce

χ(z, q) =
∑

n≥1

zn

1 − qn
(14)

and

f (z, q) =
∑

n≥1

zn

n(1 − qn)
. (15)

We clearly have χ(z, q) = z ∂
∂z

f (z, q). For |z| < 1, we have

χ(z, q) = ξ

(
z

q
,

1

q

)

and, for |z| > q and a = 1
q

,

B(z, a) = 1

z
ξ

(
1

z
, a

)

= 1

z
χ

(
q

z
, q

)

.

Theorem 3.5 Let F(z, q) be defined for |z| < 1 by

F(z, q) = 1

(1 − q)(1 − qz)(1 − q2z) · · · .

Then

χ(z, q) = z
F ′(z, q)

F (z, q)
.

The main idea of the proof is in [12], where it is shown that

ef (z,q) = F(z, q)

with the following power series expansion:

F(z, q) = 1 +
∑

Bk(q)zk, Bk(q) = 1

(1 − q)(1 − q)(1 − q2) · · · (1 − qn)
.

By taking the inverse Borel transform we obtain

G(z, a) = 1

2iπ

∫

C0

B(w,a)ezw dw,

where C0 is a circle positively oriented, centered at the origin, and with radius
strictly greater than 1. An easy manipulation shows that finally, for every z ∈C,

G(z, a) = 1

2iπ

∫

C1

∂
∂x

F (x, q)

F (x, q)
e

qz
x dx;
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here C1 is a circle positively oriented, centered at the origin, and with radius strictly
smaller than 1. This is the desired link between the central function of this work
G(z, a) and the partition function.

Remark 3.1 The power series (14) and (15) defined initially for a ∈ C, |a| 	= 1, can
also be considered for a = eiπα with irrational α. Although denominators 1 − eiπnα

never vanish, their modulus |1 − eiπnα| can become very small (phenomenon of
small divisors). The result is that the power series (14) and (15) may have any radius
of convergence ρ, 0 ≤ ρ ≤ 1, according to the arithmetic nature of α [12].

4 Decomposition Theorems, Singularity at x = 1

The function χ+(x) = ∑
n≥0 x2n

, 0 < x < 1 solves the functional equation (2),

f (x) = f
(
x2) + x.

The difference of two particular solutions to it is a periodic function of log log 1
x

.
Another solution of (2) is

∑

n≥1

(−1)n−1(log 1/x)n

n!(2n − 1)
− 1

log 2
log(log 1/x),

leading to the identity of Hardy (5),

∑

n≥0

x2n =
∑

n≥1

(−1)n−1(log 1/x)n

n!(2n − 1)
− 1

log 2
log(log 1/x) + p(x)

with

p(x) = 1

2
− γ

log 2
− 1

log 2

∑

k 	=0

Γ

(−2kiπ

log 2

)

(log 1/x)2kiπ/ log 2.

A much more general result in this direction is the following [1]. If

φ(t) =
∑

k≥1

akt
k, fφ(x) =

∑

n∈Z
φ
(
xθn)

, Dφ(s) =
∑

k≥1

ak

ks
,

then the following formula holds:

fφ(x) = − 1

log θ
D′

φ(0)

+ 1

log θ

∑

n∈Z\{0}
Γ

(

−2πm

log θ

)

Dφ

(

−2πm

log θ

)

exp

(

2πm
log logx−1

log θ

)

.
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5 Singularities on the Circle

Theorem 5.1 (Wigert’s theorem [10]) Let g(z) be an entire function of class (1,0),
that is, an entire function of at most zero type and of order one:

∀ε > 0,∃Cε > 0, |g(z)| ≤ Cεe
ε|z|.

The function defined by the series

f (z) = C +
∑

n≥1

g(n)zn, |z| < 1, (16)

extends analytically to all the plane (including at ∞) except at z = 1. Conversely, if
f (z) is a function with the above regularity properties, then there is a function g(z)

of class (1,0) such that (16) holds in the unit disc. Moreover if g(z) is a polynomial,
f (z) is a rational function of 1

1−z
.

It is possible to interpret Wigert’s theorem slightly differently by using a dif-
ferential operator of infinite order and a Poisson kernel for the unit disc. Because
the entire function g(z) is of exponential type zero, it defines a differential operator
of infinite order g(D),D = d

dζ
. We set g(z) = ∑

n≥0 bnz
n, z ∈ C, z = eζ , and we

obtain by absolute convergence

∑

n≥0

g(n)zn = g(D)
1

1 − eζ
, D = d

dζ
= zD. (17)

By the main property of differential operators of infinite order (as local operators)
and by the holomorphy of the function 1

1−eζ in C \ 2iπZ, we see that
∑

n≥0 g(n)zn

extends analytically to all C \ {1}. This is Wigert’s theorem (16).
We can think of (17) as a representation theorem that we extend in the following

manner. To g(z) = ∑
n≥0 bnz

n we associate a second infinite-order operator

P(D) = 1

2

∑

n≥0

(−i)nbn

dn

dzn
.

We denote, as usual, by Hr the classical Poisson kernel

Hr(θ − t) = eit + reiθ

eit − reiθ
= eit + z

eit − z
, z = reiθ , 0 < r < 1.

Let, for n ≥ 0, φn(z) = Dn 1
1−z

= ∑
p≥0 pnzp , |z| < 1. Then

f (z) =
∑

n≥0

bnφn(z).
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The functions φn(z) and the Poisson kernel are related by

Hr(θ) = 1 + z

1 − z
= 2φ0(z) − 1, H (n)

r (θ) = dn

dθn
Hr(θ) = 2inφn

(
reiθ

)
, n ≥ 1.

In conclusion,

f (z) = b0

2
+ 1

2

∑

n≥0

bn(−i)nH (n)
r (θ).

We now make the following simple observation: Let (mn)n≥0 a sequence of positive
real numbers. For |z| 	= 1, we clearly have

1 + zmn

1 − zmn
= 1 + zm0

1 − zm0
+

n∑

ν=1

{
1 + zmν

1 − zmν
− 1 + zmν−1

1 − zmν−1

}

.

We deduce, for mν = 2ν, ν ≥ 0 , that

1 + z

1 − z
+ 2z

z2 − 1
+ 2z2

z4 − 1
+ 2z4

z8 − 1
+ · · · = ψ(z),

where ψ(z) = 1 if |z| < 1, ψ(z) = −1 if |z| > 1, or

∑

ν≥0

1

z2ν − z−2ν = φ(z) =
{ z

z−1 if |z| < 1,

1
z−1 if |z| > 1.

Introducing the Möbius function μ, we obtain the decomposition of the function χ

in Lambert series (see Lemma 6.4)

χ(z) =
∑

n≥1

′
μ(n)

z2n

1 − z2n , (18)

the summation being only on positive odd integers. This is not a decomposition

of Mittag-Leffler type. Moreover, we observe that the series f (z) = ∑
n≥1

′ z2n

1−z2n

verifies, similarly to (2),

f (z) = z

1 − z
+ f

(
z2).

Remark 5.1 The function θ4(τ ) admits also the well-known decomposition in Lam-
bert series ([21], p. 198), similar to (18),

θ4(τ ) = 1 + 8
∞∑

m=1

nqn

1 + (−1)nqn
, q = e2iπτ . (19)

But this decomposition is not really of Mittag-Leffler type.
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We seek to find a generalized Mittag-Leffler decomposition into partial fractions,

each term giving rise to an essential singularity at the root of unity, z = e
2iπh

k . To
this end, we work first with the theta function. We recall some properties of singular
series, as developed by Hardy (see the complete list of references in [2]). Let rs(n)

denote the number of representations of the positive integer n as a sum of s squares,
that is,

1 +
∞∑

n=1

rs(n)e2iπnτ =
( ∞∑

−∞
e2inπτ

)s

= θ(τ )s, 
τ > 0.

Hardy proved that for s = 5,6,7,8, rs(n) = ρs(n) is given by

rs(n) = ρs(n) = π
s
2

Γ ( s
2 )

n
s
2 Ss(n). (20)

Ss(n) is called singular series and is given more explicitly by

Ss(n) =
∞∑

k=1

Bk(n), Bk(n) = k− s
2

∑

hmod 2k

η(h, k)eiπn h
k , (21)

where η(h, k) = 0 if (h, k) > 1, and if (h, k) = 1,

η(h, k) = 1

2
k− 1

2
∑

j mod 2k

eiπh
j2

k = 1

2

{
1 + (−1)hk

}
k− 1

2

k∑

j=1

eiπh
j2

k . (22)

η(h, k) is an eighth root of unity if h and k are relatively prime and of opposite
parity; otherwise, η(h, k) is zero. For reasons that will become clear later, we are
concerned with the case s = 4, a case qualified as exceptional by Hardy and worked
out by Bateman [2], who shows that if

Ψ4(τ ) = 1 +
∞∑

n=1

ρs(n)e2iπnτ ,

then

Ψ4(τ ) = 1

2

∑

k

∑

(h,k)=1,h≡k+1(mod 2)

(−1)k

(h − kτ)2
. (23)

We can remove the condition (h, k) = 1 by using Mertens’ theorem that the Cauchy
product of a convergent series and an absolutely convergent series is convergent to

the product of the sums. Multiplying both sides of (23) by π2

8 = ∑
n≥0

1
(2n+1)2 , we

obtain

π2

8
Ψ4(τ ) = 1

2

∑

k

∑

h≡k+1(mod 2)

(−1)k

(h − kτ)2
, (24)
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from which, by using modular forms properties of Ψ4(τ ) and θ4(τ ), we obtain that
Ψ4(τ ) = θ4(τ ). Hence, we have the following:

Theorem 5.2 The function θ4(τ ) admits the generalized Mittag-Leffler decomposi-
tion into partial fractions

θ4(τ ) = 4

π2

∑

k

∑

h≡k+1(mod 2)

(−1)k

(h − kτ)2
, (25)

which is a good substitute for (19).

6 A Brief Summary of the Modularity Theorem

6.1 Elliptic Curves

In this section, we give an idea on the relation connecting some lacunary series (like
χ+, χ−) and/or elliptic curves and modular forms, taking into account, of course,
the existence of a strong relationship between these two last concepts. We wish to
develop this theme in a later publication. The reason is that the moduli of elliptic
curves are expressible in terms of modular forms of the parameter τ,
τ > 0. More-
over, in the 1950s a precise relation between elliptic curves and modular forms
was formulated, first by Taniyama, then by Shimura and Weil. We refer to [7]
for the details. Let E be an elliptic curve defined over Q, say by an equation
y2 = 4x3 − ax − b with rational integers a, b. For every prime p not dividing the
discriminant Δ = a3 − 27b2, we get an elliptic curve over the finite field Fp with
this equation. We therefore have its zeta function, the numerator of which has the
shape 1 − apt + pt2, with ap defined by counting the number of solutions to the
congruence y2 ≡ 4x3 − ax − b modp,

1 − ap + p = �(Fp).

Note that �(Fp) is actually one more than the number of solutions to the congru-
ence, since E has one point at infinity in the projective plane. Following Hasse, we
consider the infinite product

L(E, s) =
∏

p

(
1 − a

p−s
p + p1−2s

)−1
.

Then Wiles’ theorem, conjectured by Taniyama, Shimura, and Weil, is the follow-
ing [7]:

Theorem 6.1 (Modularity theorem) Let E be an elliptic curve E over Q with con-
ductor N . Then there exists f (τ), a cusp form of weight 2 for Γ0(N), such that
L(f, s) = L(E, s).
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In a very simplified way, Wiles’ theorem says the following: Let an elliptic
curve E be defined by an equation of the form f (x, y) = 0, f (x, y) ∈ Z[x, y], and
for any prime p not dividing its discriminant, let E(Fp) denote the number of solu-
tions to the congruence f (x, y) = 0 mod p including the point(s) at infinity, written
in the form E(Fp) = 1 + p − ap(E). Then the integer ap(E) is thepth Fourier co-
efficient of a cusp form of weight 2, associated to Γ0(N). Here, N is the conductor
of E.

6.2 η-Products

We first recall some properties of the Dedekind η-function (3), η(τ) =
e

2iπτ
24

∏∞
n=1(1 − e2iπnτ ). It verifies [21]

η(τ + 1) = η(τ), η

(

− 1

τ

)

= √−iτη(τ ),

and for all
(

a b

c d

) ∈ SL2(Z),

η

(
aτ + b

cτ + d

)

= ε(a, b, c, d)(cτ + d)
1
2 η(τ),

where

ε(a, b, c, d) = e
ibπ
12 for c = 0 and d = 1,

ε(a, b, c, d) = eiπ( a+d
12c

−S(d,c)− 1
4 ) for c > 0

and

S(h, k) =
k−1∑

n=1

n

k

(
hn

k
−

[
hn

k

]

− 1

2

)

.

Proposition 6.2 The η-function is differentially algebraic.

In fact, its logarithmic derivative is related to the function G2 in (13) by Dη
η

=
−G2, D = 1

2iπ
d
dτ

, so the Chazy equation gives

D4ηη3 − 28D3ηDηη2 + 12D2η(Dη)2η + 33
(
D2η

)2
η2 − 18(Dη)4 = 0,

as claimed.
The interest in the η-function lies in the following theorem [20], p. 18:
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Theorem 6.3 Let N be a positive integer, and let f (z) = ∏
δ|N ηrd (dz) be an η-

product, rd ∈ Z. If N is such that

∑

d|N
drd = 0 mod 24,

∑

d|N

Nrd

d
= 0 mod 24,

then

f

(
az + b

cz + d

)

= χ(d)(cz + d)kf (z)

for all

(
a b

c d

)

∈ Γ0(N) =
{(

a b

c d

)

∈ SL2(Z) : c ≡ 0 mod N

}

,

where k = 1
2

∑
d|N rd . The character χ is defined by the Legendre–Jacobi symbol

χ(d) =
(

(−1)ks

d

)

, s =
∏

d|N
drd .

More interesting for us is the example of the η-product

S(τ) = η(τ)η(2τ)η(7τ)η(14τ). (26)

It is one of the exactly 30 cusp forms, with multiplicative coefficients, of the forms

s∏

k=1

ηtk (akτ ), ak, tk ∈ N,

discovered by Dummit, Kisilevskii, and McKay [8]. It is a newform [7, 20] of weight
2 whose Mellin transform agrees with the Hasse–Weil L-function of the (isogeny
class of the) elliptic curve of equation

y2 + xy + y = x3 − x.

This curve is modular, of conductor 14, and is generally denoted by X0(14). We
will soon meet this curve by another method.
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6.3 Main Results

We continue to use the previous notation except that z is replaced by q , according
to a current usage:

χ+(q) =
∑

n≥0

q2n

, χ−(q) =
∑

n≥0

(−1)nq2n

, |q| < 1.

We fix an odd positive integer l. Let f be a modular form in M2(2l), that is, of
weight 2 on the group Γ0(2l). We assume that f is an eigenform of the Hecke
operator T (2), which is defined by

T (2) : f =
∑

n≥0

af (n)qn →
∑

n≥0

af (2n)qn.

It is known that the only eigenvalues of T (2) on newforms in M2(2n) are ±1 [24].
Let ε be the eigenvalue of f , and assume that it equals ±1. Then, for all n,

af (2n) = εaf (n).

In other words, we have

f = af (0) +
∑

n odd

af (n)χε

(
qn

)
.

Now for an arithmetical function α(n) with α(1) = 1, we define α̂(n) by

∑

n≥1

α̂(n)

ns
=

(∑

n≥1

α(n)

ns

)−1

.

We have the following lemma, easily proved by taking Mellin transforms.

Lemma 6.4 Let F,G be two formal power series in q , and let α(n) be an arith-
metical function with α(1) = 1. Then

G(q) =
∑

n≥1

α(n)F
(
qn

)

if and only if

F(q) =
∑

n≥1

α̂(n)G
(
qn

)
.

We know assume that f is normalized, i.e., af (1) = 1. Then we can apply the
lemma to deduce

χε(q) =
∑

n≥1,nodd

α̂f (n)
(
f (nz) − af (o)

)
.
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We look at some examples. The first nonzero space is M2(2). It is one-
dimensional, and T (2) is the identity. Let E be the unique normalized modular
form in M2(2). It has the following formula [13]:

E(z) = 1

24
+

∑

n≥0

( ∑

d|n,nodd

)

qn = 1

24

(
θ4

0 + θ4
1

)
,

where, with a classical notation for two other Jacobi theta functions,

θ0(q) =
∑

n≡0 mod 2

q
n2
4 , θ1(q) =

∑

n≡1 mod 2

q
n2
4 .

In particular, we have

α̂E(n) =
∑

d|n,nodd

μ(d)μ

(
n

d

)

d.

Summarizing, we find (compare with [18]):

Theorem 6.5

χ+(q) = 1

24

∑

n≥1

α̂E(n)
(
θ4

0 (nz) + θ4
1 (nz) − 1

)
.

Remark 3 The right Mittag-Leffler decomposition of χ+(q) is obtained by inserting
(25) into the equality of Theorem 6.5.

We now consider the function χ−. The first even level where T (2) has eigenvalue
−1 is l = 14. The space M2(14) is four-dimensional. It contains a unique cusp
form S, which is also the unique eigenform of T (2) with eigenvalue −1. We can
normalize it so that aS(1) = 1. Its first 100 Fourier coefficients are

S 1 2 3 4 5 6 7 8 9 10

0 1 −1 −2 1 0 2 1 −1 1 0

10 0 −2 −4 −1 0 1 6 −1 2 0

20 −2 0 0 2 −5 4 4 1 −6 0

30 −4 −1 0 −6 0 1 2 −2 8 0

40 6 2 8 0 0 0 −12 −2 1 5

50 −12 −4 6 −4 0 −1 −4 6 −6 0

60 8 4 1 1 0 0 −4 6 0 0

70 0 −1 2 −2 10 2 0 −8 8 0

80 −11 −6 −6 −2 0 −8 12 0 −6 0

90 −4 0 8 12 0 2 −10 −1 0 −5
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It can be described in closed form using the Dedekind eta function by

S = η(z)η(2z)η(7z)η(14z)

already met in (26). This is a concrete example of the Modularity Theorem 6.1. The
L-series of S is the L-function of the elliptic curve X0(14):

E : y2 + xy + y = x3 − x

by

∑

n≥1

aS(n)

ns
=

∏

p

1

1 − [p − �E(Fp)]p−s + p1−2s
,

where

�E(Fp) = {
(x, y) ∈ Fp : y2 + xy + y = x3 − x

}
.

The following result is an unpublished result, obtained with N.P. Skoruppa:

Theorem 6.6 With q = e2iπz, 
z > 0, and χ−(q) = ∑
n≥0(−1)nq2n

, we have

χ−(q) =
∑

n≥1,nodd

α̂S(n)η(nz)η(2nz)η(7nz)η(14nz).

Like in Theorem 6.5, we can rewrite the identity in the last theorem by using four
theta functions and identity (4). To this end, we introduce the following:

Definition 6.1 For each a ∈N, we define the theta series θ6,a by

θ6,a(q) =
∑

n∈Z,n≡amod 12

q
n2
24 .

According to (4), η = θ6,1 − θ6,5, and hence, we have the following:

Corollary 6.7

∑

k≥0

(−1)kq2k

=
∑

n≥1, n odd

α̂S(n) (27)

∑

a1,...,a4≡1,5 mod 12

(
a1a2a3a4

3

)

θ6,a1(nz)θ6,a2(2nz)θ6,a3(7nz)θ6,a4(14nz). (28)

Here ( n
3 ) = ε mod 3 with −1 ≤ ε ≤ +1.
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PT Symmetry and Weyl Asymptotics

Johannes Sjöstrand

Abstract For a class of PT-symmetric operators with small random perturbations,
the eigenvalues obey Weyl asymptotics with probability close to 1. Consequently,
when the principal symbol is nonreal, there are many nonreal eigenvalues.

1 Introduction

PT-symmetry has been proposed as an alternative for self-adjointness in quantum
physics [1, 2]. Thus for instance, if we consider a Schrödinger operator on Rn,

P = −h2Δ + V (x), (1)

the usual assumption of self-adjointness (implying that the potential V is real val-
ued) can be replaced by that of PT-symmetry:

V ◦ υ = V , (2)

where υ : Rn → Rn is an isometry with υ2 = 1 �= υ . If we introduce the parity
operator Uυu(x) = u(υ(x)) and the time reversal operator Γ u = u, then this can be
written

[P,UυΓ ] = 0. (3)

Under mild additional technical assumptions, it is easy to see that the spectrum
of a PT-symmetric operator is invariant under reflection in the real axis. However, in
order to build PT-symmetric quantum physics, it seems important that the spectrum
be real, so a natural mathematical question is then to determine when so is the case.
Results on reality and nonreality of the spectrum of PT-symmetric operators can be
found in [2, 6, 7, 12].
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The purpose of this note is to show that in a probabilistic sense “most” non-self-
adjoint PT-symmetric operators that are symmetric in the sense of (7) have their
eigenvalues distributed according to the Weyl law, and hence many of their eigenval-
ues are nonreal. As a matter of fact, this will be a rather easy adaptation of general
results on the Weyl asymptotics for non-self-adjoint operators with small random
perturbations [4], [9–11], [5, 13, 14], where the last three references are the ones
that we shall use directly. For technical reasons, we will state our results for elliptic
operators on compact manifolds, but it would be easy to adapt the results of [13] in
order to treat Schrödinger operators on Rn.

The addition of small random perturbations has the effect of destroying (uniform)
analyticity (if the unperturbated operator has analytic coefficients). A very interest-
ing question is to give criteria for PT symmetric operators with analytic coefficients
to have real spectrum.

The plan of the paper is the following: In Sect. 2 we treat the semi-classical case,
and in Sect. 3 we treat the case of large eigenvalues.

2 The Semi-classical Case

Let X be a compact smooth manifold of dimension n. Let υ : X → X be a smooth
involution; υ2 = id, with υ �= id. Fix a smooth positive density dx on X which is
invariant under υ and let us take L2 norms with respect to dx. Let P be a differential
operator on X of order m ≥ 2 with smooth coefficients, so that in local coordinates,

P =
∑

|α|≤m

aα(x;h)(hDx)
α, aα(·;h) ∈ C∞. (4)

Here 0 < h 	 1 is the semi-classical parameter, and we assume that

aα(x;h) − aα(x;0) = O(h) (5)

locally uniformly and similarly for all its derivatives. We also assume for simplicity
that aα(x;h) = aα(x) is independent of h when |α| = m. Let

p(x, ξ) =
∑

|α|≤m

aα(x;0)ξα, pm(x, ξ) =
∑

|α|=m

aα(x)ξα.

We assume that pm(x, ξ) �= 0 on T ∗X \ 0, so that P is elliptic in the classical sense.
We also assume that

pm

(
T ∗X

) �= C. (6)

Assume that P is symmetric,

P = Γ P ∗Γ =: P t, (7)
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and that

PU = UP ∗, where Uu(x) = Uυu(x) := u
(
υ(x)

)
, Γ u(x) = u(x). (8)

This means that P is PT-symmetric:

[UΓ,P ] = 0. (9)

In addition to the PT-symmetry property (9), we have assumed in (7) that P is
symmetric.

Example 1 P = −h2Δ+V (x) on Tn, where �V is even, and �V is odd, V (−x) =
V (x). Then P is symmetric and PT-symmetric with υ(x) = −x.

Let R̃ be an auxiliary h-independent positive elliptic second-order differential
operator on X which commutes with U . We also assume that R̃ is real or, equiva-
lently, that

[
Γ, R̃

] = 0. (10)

Then R̃ has an orthonormal basis of real eigenfunctions ej such that Uej =
(−1)k(j)ej where k(j) = 1 or k(j) = −1. We say that ej is even in the first case
and odd in second case. Put εj = ej when ej is even and εj = iej when ej is odd.
Then {εj } is also an orthonormal basis, and a linear combination V = ∑

αj εj is PT
symmetric iff the coefficients αj are real: U(V ) = V .

In order to formulate our result, we shall follow [14], where we treated a situation
without any extra symmetry.

Let Ω � C be open, simply connected, and not entirely contained in Σ(p) :=
p(T ∗X). Let Vz(t) := vol ({ρ ∈ R2n; |p(ρ) − z|2 ≤ t}). For κ ∈]0,1] and z ∈ Ω ,
we consider the property that

Vz(t) = O
(
tκ

)
, 0 ≤ t 	 1. (11)

Since r 
→ p(x, rξ) is a polynomial of degree m in r with nonvanishing leading
coefficient, we see that (11) holds with κ = 1/(2m).

By BRd (0, r) we denote the open ball in Rd with center 0 and radius r . Let qω

be a random potential of the form

qω(x) =
∑

0<μk≤L

αk(ω)εk(x), α(ω) = (
αk(ω)

)
0<μk≤L

∈ BRD(0,R), (12)

where μk > 0 are the square roots of the eigenvalues of h2R̃, so that h2R̃εk = μ2
kεk .

We choose L = L(h), R = R(h) in the interval

h
κ−3n

s− n
2 −ε 	 L ≤ Ch−M, M ≥ 3n − κ

s − n
2 − ε

,

1

C
h−( n

2 +ε)M+κ− 3n
2 ≤ R ≤ Ch−M̃ , M̃ ≥ 3n

2
− κ +

(
n

2
+ ε

)
M,

(13)
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for some ε ∈]0, s − n
2 [, s > n

2 , so by Weyl’s law for the large eigenvalues of elliptic
self-adjoint operators, the dimension D in (12) is of the order of magnitude (L/h)n.
We introduce the small parameter δ = τ0h

N1+n, 0 < τ0 ≤ √
h, where

N1 := M̃ + sM + n

2
. (14)

The randomly perturbed PT symmetric operator is

Pδ = P + δhN1qω =: P + δQω. (15)

Here (cf. [13]) the exponent N1 has been chosen so that we have uniformly for
h 	 1 and qω as above:

∥∥hN1qω

∥∥
L∞ ≤ O(1)h−n/2

∥∥hN1qω

∥∥
Hs

h
≤ O(1),

where Hs
h is the natural semi-classical Sobolev space discussed in Section 2 of [14]

with a norm equivalent to the standard norm in Hs for each fixed h > 0.
The random variables αj (ω) will have a joint probability distribution

P(dα) = C(h)eΦ(α;h)L(dα), (16)

where for some N4 > 0,

|∇αΦ| = O
(
h−N4

)
, (17)

and L(dα) is the Lebesgue measure. (C(h) is the normalizing constant, assuring
that the probability of BRD(0,R) is equal to 1.)

We also need the parameter

ε0(h) =
(

hκ + hn ln
1

h

)(
ln

1

τ0
+

(
ln

1

h

)2)
(18)

and assume that τ0 = τ0(h) is not too small, so that ε0(h) is small. Recall that Ω � C
is open, simply connected, and not entirely contained in Σ(p). The main result of
this section is the following:

Theorem 1 Under the assumptions above, let Γ � Ω have smooth boundary, let
κ ∈]0,1] be the parameter in (12), (13), (18), and assume that (11) holds uniformly
for z in a neighborhood of ∂Γ . Then there exists a constant C > 0 such that for
C−1 ≥ r > 0 and ε̃ ≥ Cε0(h), we have with probability

≥ 1 − Cε0(h)

rhn+max(n(M+1),N4+M̃)
e
− ε̃

Cε0(h) (19)

that
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∣∣∣∣#
(
σ(Pδ) ∩ Γ

) − 1

(2πh)n
vol

(
p−1(Γ )

)∣∣∣∣

≤ C

hn

(
ε̃

r
+ C

(
r + ln

(
1

r

)
vol

(
p−1(∂Γ + D(0, r)

))))
. (20)

Here #(σ (Pδ) ∩ Γ ) denotes the number of eigenvalues of Pδ in Γ , counted with
their algebraic multiplicities.

In the introduction of [13] there is a discussion about the choice of parameters
which applies here also: Very roughly, if τ0 is equivalent to some high power of h,
then up to some power of ln(1/h), ε0 is of the order of magnitude hκ . Now choose
ε̃ = hκ−κ0 for some κ0 ∈]0, κ[. When κ > 1/2, then the volume in (20) is O(rβ)

with β = 2κ − 1 > 0, and more generally we may assume that it is O(rβ) for some
β > 0. Then we choose r to be a suitable power of h and obtain that the right-hand
side in (20) is O(hγ−n) for some γ > 0. With these choices of the parameters, we
also see that the probability in (19) is very close to 1.

Proof of Theorem 1 We just have to make some small modifications in the proof of
the main result in [14] (which in turn is a modification of the proof in [13]) and only
mention the points where a difference appears. The proof in the two cited papers
(see also the lecture notes [15]) uses three ingredients:

(1) The construction of a special perturbation of the form δqω with qω as in (12) but
with α in the complex ball BCD(0,R) for which we have nice lower bounds on
the small singular values of Pδ in (15), see Proposition 7.3 in [13] and Proposi-
tion 5.1 in [14].

(2) A complex variable argument in the α variables using the existence of the spe-
cial perturbation in step (1), which permits to conclude that we have nice lower
bounds on a relative determinant for Pδ − z, with probability close to 1.

(3) Application of a proposition about the number of zeros of holomorphic func-
tions with exponential growth. (See also [16] for an improved version of this
proposition, not yet fully exploited.)

In the present situation we want our special perturbation δqω(x) to be PT-
symmetric, that is, we want the coefficients α in (12) to be real. All the parts of
the proofs in step 1 immediately carry over to the case of real α except the fol-
lowing result which is the basic ingredient in the iterative process leading to the
propositions mentioned above:

Let e1, . . . , eN be an ON family in L2(X) such that

∥∥∥∥∥

N∑

1

λj ej

∥∥∥∥∥
Hs

h

≤ O(1)‖λ‖CN ,
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where the constant O(1) is independent of the family and especially of N . Then
there exists

q =
∑

0<μj ≤L

αj εj , αj ∈ C, (21)

with ‖α‖CD ≤ R with the parameters as in (13), such that

‖q‖Hs
h

≤ O(1)h− n
2 NLs+ n

2 +ε

and such that the matrix

Mq =
(∫

q(x)ej (x)ek(x)

)
dx)1≤j,k≤N

and its singular values

‖Mq‖ = s1(Mq) ≥ · · · ≥ sN(Mq)

satisfy

‖Mq‖ ≤ O(1)Nh−n,

sk(Mq) ≥ hn/O(1) for 1 ≤ k ≤ N/2.
(22)

(See (6.23), (7.20), (7.23) in [13].)
Write q = q1 + iq2 where q1 = ∑

(�αj )εj , q2 = ∑
(�αj )εj , so that q1 and q2

are PT-symmetric. The upper bounds on ‖q‖Hs
h

and on ‖Mq‖ follow from the bound
‖α‖ ≤ R and therefore carry over to qj . Since Mq = Mq1 + iMq2 , we can apply the
Ky Fan inequalities [8] and get

hn

O(1)
≤ s2k−1(Mq) ≤ sk(Mq1) + sk(Mq2), 1 ≤ k ≤ N

4
.

Since the singular values are enumerated in decreasing order, it follows that for j

equal to 1 or 2, we have

sk(Mqj
) ≥ hn

2O(1)
, 1 ≤ k ≤ N

4
. (23)

This means that step 1 can be carried out, and we get a PT symmetric operator Pδ

as in Proposition 5.1 in [14]; the only slight difference is that rather than taking θ in
]0,1/4[, we have to confine this parameter to the smaller interval ]0,1/8[.

Step 2 now follows from Remark 8.3 in [13], where the main point is the reality
of the coefficients αj , while the assumption of reality of the basis elements is not
necessary and was made there only because we had in mind a real perturbation.

Step 3 can be carried out without any modifications. �
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3 Weyl Asymptotics for Large Eigenvalues

Let P 0 be an elliptic differential operator on X of order m ≥ 2 with smooth co-
efficients and with principal symbol pm(x, ξ). In local coordinates we get, using
standard multi-index notation,

P 0 =
∑

|α|≤m

a0
α(x)Dα, pm(x, ξ) =

∑

|α|=m

a0
α(x)ξα. (24)

Recall that the ellipticity of P 0 means that pm(x, ξ) �= 0 for ξ �= 0. We assume that

pm

(
T ∗X

) �= C. (25)

As before, we assume symmetry,

(
P 0)∗ = Γ P 0Γ, (26)

and that

P 0U = U
(
P 0)∗

, (27)

with U = Uυ as in Sect. 2.
Let R̃ be a reference operator as in and around (10) and define εj as there. Write

R̃εj = (
μ0

j

)2
εj , 0 < μ0

0 < μ0
1 ≤ μ0

2 ≤ · · · , (28)

so that μk = hμ0
k where μk are given after (12). Our randomly perturbed operator is

P 0
ω = P 0 + q0

ω(x), (29)

where ω is the random parameter, and

q0
ω(x) =

∞∑

0

α0
j (ω)εj . (30)

Here we assume that α0
j (ω) are independent real Gaussian random variables of vari-

ance σ 2
j and mean value 0:

α0
j ∼ N

(
0, σ 2

j

)
, (31)

where

(
μ0

j

)−ρ
e
−(μ0

j )
β

M+1 � σj �
(
μ0

j

)−ρ
, (32)

M = 3n − 1
2

s − n
2 − ε

, 0 ≤ β <
1

2
, ρ > n, (33)
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where s, ρ, ε are fixed constants such that

n

2
< s < ρ − n

2
, 0 < ε < s − n

2
.

Let Hs(X) be the standard Sobolev space of order s. As we saw in [5] (where
the random variables α0

j were complex valued), q0
ω ∈ Hs(X) almost surely since

s < ρ − n
2 . Hence q0

ω ∈ L∞ almost surely, implying that P 0
ω has purely discrete

spectrum.
Consider the function F(w) = argpm(w) on S∗X. For given θ0 ∈ S1 �

R/(2πZ), N0 ∈ Ṅ := N \ {0}, we introduce the property P(θ0,N0):

N0∑

1

∣∣∇kF (w)
∣∣ �= 0 on

{
w ∈ S∗X;F(w) = θ0

}
. (34)

Notice that if P(θ0,N0) holds, then P(θ,N0) holds for all θ in some neighborhood
of θ0. Also notice that if X is connected and X, p are analytic and the analytic
function F is nonconstant, then there exists N0 ∈ Ṅ such that P(θ0,N0) holds for
all θ0.

We can now state the main result of this section, which is an adaptation of the
main result of [5].

Theorem 2 Assume that m ≥ 2. Let 0 ≤ θ1 ≤ θ2 ≤ 2π and assume that P(θ1,N0)

and P(θ2,N0) hold for some N0 ∈ Ṅ. Let g ∈ C∞([θ1, θ2]; ]0,∞[) and put

Γ
g

θ1,θ2;0,λ
= {

reiθ ; θ1 ≤ θ ≤ θ2, 0 ≤ r ≤ λg(θ)
}
.

Then for every δ ∈]0, 1
2 − β[, there exists C > 0 such that almost surely there exists

C(ω) < ∞ such that for all λ ∈ [1,∞[,
∣∣∣∣#

(
σ
(
P 0

ω

) ∩ Γ
g

θ1,θ2;0,λ

) − 1

(2π)n
volp−1

m

(
Γ

g

θ1,θ2;0,λ

)∣∣∣∣

≤ C(ω) + Cλ
n
m

− 1
m

( 1
2 −β−δ) 1

N0+1 . (35)

The proof actually allows us to have almost surely a simultaneous conclusion for
a whole family of θ1, θ2, g:

Theorem 3 Assume that m ≥ 2. Let Θ be a compact subset of [0,2π]. Let N0 ∈ N
and assume that P(θ,N0) holds uniformly for θ ∈ Θ . Let G be a subset of
{(g, θ1, θ2); θj ∈ Θ,θ1 ≤ θ2, g ∈ C∞([θ1, θ2]; ]0,∞[)} with the property that g and
1/g are uniformly bounded in C∞([θ1, θ2]; ]0,∞[) when (g, θ1, θ2) varies in G .
Then for every δ ∈]0, 1

2 − β[, there exists C > 0 such that almost surely there ex-
ists C(ω) < ∞ such that for all λ ∈ [1,∞[ and all (g, θ1, θ2) ∈ G , we have esti-
mate (35).
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Condition (32) allows us to choose σj decaying faster than any negative power
of μ0

j . Then from the discussion below it will follow that qω(x) is almost surely
a smooth function. A rough and somewhat intuitive interpretation of Theorem 3 is
then that for almost every PT-symmetric elliptic operator of order ≥ 2 with smooth
coefficients on a compact manifold which satisfies conditions (25), (26), and (27),
the large eigenvalues distribute according to Weyl’s law in sectors with limiting
directions that satisfy a weak nondegeneracy condition.

Proof of Theorem 2 As already mentioned, the theorem is a variant of Theorem 1.1
in [5]. The difference is just that we now use real random variables in the pertur-
bation q0

ω in order to assure the PT-symmetry while in [5] they were complex. The
proof in [5] used a reduction to the semi-classical case where the main result of
[14] could be applied. The proof of Theorem 2 is an immediate modification of that
proof, where we replace the main result in [14] by Theorem 1. The only point where
the use of real Gaussian random variables instead of complex ones causes a slight
change is the use of (4.10) in [5] that was established in [3], where we have to re-
place the denominator 2 by 4 in the case of real random variables. That was also
proved by Bordeaux Montrieux in [3], Proposition 2.5.4. �
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Complex Gradient Systems

Giuseppe Tomassini and Sergio Venturini

Abstract Let ˜M be a complex manifold of complex dimension n + k. We say that
the functions u1, . . . , uk and the vector fields ξ1, . . . , ξk on ˜M form a complex gradi-
ent system if ξ1, . . . , ξk, J ξ1, . . . , J ξk are linearly independent at each point p ∈ ˜M

and generate an integrable distribution of T ˜M of dimension 2k and duα(ξβ) = 0,
dcuα(ξβ) = δαβ for α,β = 1, . . . , k. We prove a Cauchy theorem for such com-
plex gradient systems with initial data along a CR-submanifold of type (n, k). We
also give a complete local characterization for the complex gradient systems which
are holomorphic and abelian, which means that the vector fields ξc

α = ξα − iJ ξα ,
α = 1, . . . , k, are holomorphic and satisfy [ξc

α, ξ̄ c
β ] = 0 for each α,β = 1, . . . , k.

1 Introduction

Let ˜M be a complex manifold, and T ˜M its (real) tangent space endowed by its
complex structure J .

In [7] the authors introduced a geometric tool named one-dimensional calibrated
foliation on the complex manifold ˜M . It consists of a real function u : ˜M → R and
a vector field ξ ∈ Γ ( ˜M,T ˜M) which satisfy the conditions

[ξ, J ξ ] = 0,

du(ξ) = 0,

dcu(ξ) = 1.

Here [·, ·] is the Poisson Lie bracket between vector fields, and dcu(ξ) = −du(J (ξ)).
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Among the results proved in [7] there is a Cauchy-like theorem for one-
dimensional calibrated foliation (see Theorem 3.1), which states the following: if
M ⊂ ˜M is a real hypersurface and ξ0 is a vector field on M which is transversal to
the holomorphic tangent space to M , then, under the assumption that the integral
curves t �→ γ (t) of ξ0 are real analytic, there exists a (unique) one-dimensional cal-
ibrated foliation (ξ, u), defined in a suitable neighbourhood of M in ˜M , such that
the vector field ξ extends ξ0.

The notion of one-dimensional calibrated foliation was motivated by the problem
of finding for M an equation satisfying the homogeneous complex Monge–Ampère
equation. The method has subsequently been applied in [8, 9] to prove the existence
of adapted complex structures on the symplectization of a pseudo-Hermitian mani-
fold. The key point in proving the existence of a calibrated foliation is the construc-
tion of a function ˜G(z,p) : D → ˜M , where D ⊂ M ×C is an open neighbourhood
of M × {0}, which is holomorphic in z for each p ∈ M , and for real z = t , the map
t �→ ˜G(t,p) is the integral curve of the vector field ξ0 such that ˜G(0,p) = p. This
idea goes back to Duchamp and Kalka (see [3]).

The purpose of this paper is to provide a natural higher-dimensional generaliza-
tion of the notion of one-dimensional calibrated foliations.

Let ˜M be a complex manifold of complex dimension n + k. We say that the
functions u1, . . . , uk and the vector fields ξ1, . . . , ξk on ˜M form a complex gradient
system (of dimension k) if

ξ1, . . . , ξk, J (ξ1), . . . , J (ξk)

are linearly independent at each point p ∈ ˜M and generate an integrable distribution
of T ˜M of dimension 2k and

duα(ξβ) = 0, dcuα(ξβ) = δαβ

for α,β = 1, . . . , k. Here δαβ is the usual Kronecker symbol.
In a more intrinsic way a complex gradient system is given by a real vector space

V of dimension k, a linear monomorphism ρ : V → Γ ( ˜M,T ˜M), the representation
map, and a map U : ˜M → V , the gradient map, which satisfy

dU
(

ρ(V )
) = 0,

dcU
(

ρ(V )
) = V

for each V ∈ V .
The name “complex gradient system” (instead of “calibrated foliation”) arises

from the fact that there are examples of triples (V , ρ,U) where V = g is the Lie
algebra of a Lie group G which is a compact real form of a reductive complex Lie
group GC and the map U (with the identification of g = g∗ with its dual g∗ by
the Killing form) is the moment map associated to a symplectic action of G. It is
customary in the symplectic geometry to call such a moment map as “gradient map”
(see e.g. [4]) and hence the name “complex gradient system”.
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For a general reference on symplectic geometry and moment maps theory, see
e.g. [6] and [1]. Basic definitions and notions in CR-geometry can be found in [2].

Let now describe in more details the content of the paper.
In Sect. 2 contains the elementary properties of a complex gradient system. In

particular, any complex gradient system satisfies the formal commutativity property
[

ρC(V ),ρC(W)
] = 0

for all V,W ∈ V , where ρC(V ) = 1
2 (ρ(V ) − iJρ(V )) (and similarly ρC(,W) =

1
2 (ρ(W) − iJρ(W))) is the complex vector field of type (1,0) naturally associated
to the real vector field ρ(V ) (resp. ρ(W)). See Theorem 1.

In Sect. 3 we solve a Cauchy problem for a complex gradient system on a com-
plex manifold ˜M of dimension n + k with initial data on a CR-submanifold of ˜M

of type (n, k) (Theorem 2).
In Sect. 4 we give a couple of examples applying our construction to the case

of the complexification of a real Lie group G. In particular, we find explicitly the
complex gradient system associated to the standard representation of the Lie algebra
g of G as left-invariant vector fields on G.

Finally, in the last section we give a complete local description of any abelian
holomorphic complex gradient system (V , ρ,U), where abelian means that

[

ρC(V ), ¯ρC(W)
] = 0

for each pair of vectors V,W ∈ V , and holomorphic means that ρC(V ) is a holo-
morphic vector field on ˜M for each V ∈ V . See Theorem 3 for details.

2 Complex Gradient Systems

Let ˜M be a complex manifold of complex dimension n + k, T ˜M its (real) tangent
space endowed by its complex structure J . Let V be a real vector space, and let
ρ : V → Γ ( ˜M,T ˜M) be a linear map. We denote by DR

ρ ⊂ T ˜M the distribution

generated by the vector fields of the form ρ(V ), V ∈ V . We also denote by DC
ρ ⊂

T ˜M the distribution

DC
ρ = DR

ρ + J
(

DR
ρ

)

generated by the vector fields of the form ρ(V ) and J (ρ(V )), V ∈ V .

Definition 1 A complex gradient system of dimension k on ˜M is a triple

(V , ρ,U)

where:

1. V is a real vector space of dimension k;
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2. ρ : V → Γ ( ˜M,T ˜M) is an R-linear map;
3. U : ˜M → V is a smooth map

which satisfies

(i) for each V ∈ V , the vector field ρ(V ) is smooth, and we have the identities

dU
(

ρ(V )
) = 0,

dcU
(

ρ(V )
) = V ;

(ii) the distribution DC
ρ ⊂ T ˜M is integrable.

The maps ρ and U are said respectively the representation and the gradient map
of the complex gradient system (V , ρ,U).

If {V1, . . . , Vk} is a basis of V , we set

ξ1 = ρ(V1), . . . , ξk = ρ(Vk),

and for some smooth functions u1, . . . , uk , we have

U = u1V1 + · · · + ukVk.

Then (V , ρ,U) is a complex gradient system if, and only if,

duα(ξβ) = 0, α,β = 1, . . . , k,

dcuα(ξβ) = δαβ, α,β = 1, . . . , k,

and {ξ1, J ξ1, . . . , ξk, J ξk} is a basis of an integrable distribution.

Proposition 1 Let (V , ρ,U) be a complex gradient system on the manifold ˜M .
Then

DR
ρ = DC

ρ ∩ ker dU,

DC
ρ = DR

ρ ⊕ JDR
ρ ,

T ˜M = JDR
ρ ⊕ ker dU.

Proof Let p ∈ ˜M and v ∈ Tp
˜M . Assume that v ∈ DC

ρ . Then there are V,W ∈ V
such that v = ρ(V )p + Jρ(W)p . It follows that

dU(v) = dU
(

ρ(V )p
) + dU

(

Jρ(W)p
) = −W,

whence

v ∈ ker dU ⇐⇒ W = 0 ⇐⇒ v = ρ(V )p ∈ DR
ρ .

This proves the first assertion of the proposition.
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As for the second one, it suffices to prove that DR
ρ ∩ JDR

ρ = 0. Let v ∈ DR
ρ ∩

JDR
ρ . Then v = ρ(V )p = JWp for some V,W ∈ V . We then have

0 = dU
(

ρ(V )p
) = dU

(

Jρ(W)p
) = −W,

and hence v = Jρ(W)p = 0, as required.
Let now v ∈ Tp

˜M be arbitrary and set V = dU(v), w = ρ(V )p . Clearly, v =
(v − Jw) + Jw. Observe that

dU(v − Jw) = dU(v) − dU(Jw) = V − dU
(

Jρ(V )p
) = V − V = 0,

i.e. v − Jw ∈ ker dU and Jw ∈ JDR
ρ .

If v ∈ JDR
ρ ∩ ker dU , then v = Jρ(W)p for some W ∈ V . It follows that

0 = dU(v) = dU
(

Jρ(W)p
) = −W,

and hence v = Jρ(W)p = Jρ(0)p = 0. This proves the last assertion of the propo-
sition. �

Definition 2 Given a complex gradient system (V , ρ,U), we denote by Hρ the
distribution ker dU ∩ ker dcU .

Proposition 2 Let (V , ρ,U) be a complex gradient system on the manifold ˜M .
Then

ker dU = DR
ρ ⊕ Hρ,

T ˜M = DR
ρ ⊕ JDR

ρ ⊕ Hρ.

Proof The second equality easily follows from the first in view of the equality
T ˜M = JDR

ρ ⊕ ker dU proved in the last proposition. So it suffices to prove that

ker dU = DR
ρ ⊕ Hρ .

By definition we have DR
ρ ⊂ ker dU and by construction Hρ ⊂ ker dU , so that

DR
ρ + Hρ ⊂ ker dU .
Let v ∈ ker dU be arbitrary. Set V = dcU(v) and w = ρ(V )p . Then we have

immediately v = (v − w) + w and w,v − w ∈ ker dU . Observe that

dcU(v − w) = dcU(v) − dcU(w) = V − dcU
(

ρ(V )p
) = V − V = 0,

that is, v − w ∈ ker dcU and w ∈ DR
ρ .

Assume now that v ∈ DR
ρ ∩ ker dcU . Then v = ρ(W)p for some W ∈ V . It fol-

lows that

0 = dcU(v) = dcU
(

ρ(W)p
) = W,

and hence v = ρ(W)p = ρ(0)p = 0. The proof is now complete. �
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Proposition 3 Let (V , ρ,U) be a complex gradient system on the manifold ˜M , and
V,W ∈ V . Then

[

ρ(V ),ρ(W)
]

,
[

ρ(V ), Jρ(W)
]

,
[

Jρ(V ), Jρ(W)
] ∈ Γ

(

˜M,DR
ρ

)

.

Moreover,

ddcU
(

ρ(V ),ρ(W)
) = −dcU

([

ρ(V ),ρ(W)
])

,

ddcU
(

Jρ(V ), Jρ(W)
) = −dcU

([

ρ(V ),ρ(W)
])

,

ddcU
(

ρ(V ), Jρ(W)
) = −dcU

([

ρ(V ), Jρ(W)
])

.

Proof Let ξ1 be either ρ(V ) or Jρ(V ), and ξ2 be either ρ(W) or Jρ(W). Then
ξ1(U) and ξ2(U) are constant functions, and hence,

ξ2
(

ξ1(U)
) = ξ1

(

ξ2(U)
) = 0.

This easily implies that [ξ1, ξ2] ∈ Γ ( ˜M,ker dU). By the definition of a complex
gradient system, DC

ρ is an integrable distribution, so, in view of the last proposition,

we have DR
ρ = DC

ρ ∩ ker dU , and hence [ξ1, ξ2] ∈ Γ ( ˜M,DR
ρ ).

Using again the equalities ξ2(ξ1(U)) = ξ1(ξ2(U)) = 0, we also obtain

ddcU(ξ1, ξ2) = ξ1
(

ξ2(U)
) − ξ2

(

ξ1(U)
) − ddcU

([ξ1, ξ2]
)

= −ddcU
([ξ1, ξ2]

)

.

This completes the proof of the proposition. �

Corollary 1 Let (V , ρ,U) be a complex gradient system on the manifold ˜M , and
V,W ∈ V . Then

ρ
(

ddcU
(

ρ(V ),ρ(W)
)) = −[

ρ(V ),ρ(W)
]

,

ρ
(

ddcU
(

Jρ(V ), Jρ(W)
)) = −[

ρ(V ),ρ(W)
]

,

ρ
(

ddcU
(

ρ(V ), Jρ(W)
)) = −[

ρ(V ), Jρ(W)
]

.

Proof Apply ρ to both sides of the last three equalities of the previous proposition
and use the identity dcU(ρ(V )) = V . �

Corollary 2 Let (V , ρ,U) be a complex gradient system on the manifold ˜M . Then
the distribution DR

ρ ⊂ T ˜M is integrable.

Corollary 3 Let (V , ρ,U) be a complex gradient system of dimension k on the
complex manifold ˜M of dimension n + k. For every V ∈ V , the level set U−1(V ) of
the smooth function U is either empty, or it is a CR-submanifold of type (n, k).
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Proposition 4 Let (V , ρ,U) be a complex gradient system on the manifold ˜M . For
every V,W ∈ V , one has

[

Jρ(V ), Jρ(W)
] = [

ρ(V ),ρ(W)
]

,
[

Jρ(V ),ρ(W)
] = −[

ρ(V ), Jρ(W)
]

.

Proof Since ˜M is a complex manifold, the complex structure J is integrable, and
hence,

J
[

ρ(V ),ρ(W)
] − J

[

Jρ(V ), Jρ(W)
] = [

Jρ(V ),ρ(W)
] + [

ρ(V ), Jρ(W)
]

.

The right side of such an equality belongs to Γ ( ˜M,JDR
ρ ), while the second belongs

to Γ ( ˜M,DR
ρ ). Since JDR

ρ ∩ DR
ρ = 0, it follows that

J
[

ρ(V ),ρ(W)
] − J

[

Jρ(V ), Jρ(W)
] = 0,

[

Jρ(V ),ρ(W)
] + [

ρ(V ), Jρ(W)
] = 0,

and the assertion follows. �

Let TC ˜M = C ⊗R T ˜M denote the complexification of T ˜M , and T
(1,0)
C

˜M the
subbundle of the tangent vector of type (1,0).

Definition 3 Let (V , ρ,U) be a complex gradient system. The complexified repre-
sentation

ρC : V → Γ
(

˜M,T
(1,0)
C

˜M
)

is defined for each V ∈ V by

ρC(V ) = 1

2

(

ρ(V ) − iJ
(

ρ(V )
))

.

With a little abuse of language we say that ρC is holomorphic if ρC(V ) is a
holomorphic vector field on ˜M for each V ∈ V .

With this notation the last proposition can be restated as follows.

Theorem 1 Let (V , ρ,U) be a complex gradient system. Then for each V,W ∈ V ,
we have

[

ρC(V ),ρC(W)
] = 0.
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3 A Cauchy Problem

Let ˜M be a complex manifold of complex dimension n + k. Let M ⊂ ˜M be a CR-
submanifold of ˜M of type (n, k).

Definition 4 Let V be a real vector space. A linear map ρ0 : V → Γ (M,T M)

is said to be CR-transverse if for each V ∈ V \ {0} and each p ∈ M , we have
J (ρ0(V )(p)) �∈ TpM .

Given a vector field X ∈ Γ (M,T M), we denote by Expp(X) the exponential
mapping associated to the vector field X: if γ (t) is the integral curve of the vector
field X such that γ (0) = p, then Expp(X) = γ (1).

Let ρ0 : V → Γ (M,T M) be a linear map of real vector spaces. The flow associ-
ated to ρ0 is defined for p ∈ M and V ∈ V by

Gρ0(p,V ) = Expp

(

ρ0(V )
)

.

Gρ0 is a smooth map which is well defined in an open neighbourhood of M × {0}
in M × V .

Let V C denote the complexification C⊗R V of the real vector space V . We then
say that the flow Gρ0 is uniformly (real) analytic if there exist an open neighbour-
hood D ⊂ M × V C of M × {0} and a smooth function

˜Gρ0 : D → M,

which coincides with Gρ0 , on M × V , and for each p ∈ M , the map defined on the
open set

Dp = {

V ∈ V C | (p,V ) ∈ D
}

by

V �→ ˜Gρ0(p,V )

is holomorphic.
The map ˜Gρ0 will be called the complexification of the flow Gρ0 .
Let Fρ0 denote the restriction of ˜Gρ0 to ˜D = D ∩ M × iV . As it is immedi-

ately seen, shrinking the domain D if necessary, the map Fρ0 is a diffeomorphism
between ˜D and Fρ0(

˜D) if, and only if, the map ρ0 is CR-transverse.
In this case we denote by Uρ0 : Fρ0(

˜D) → V the unique map satisfying

Uρ0

(

Fρ0(p, iV )
) = V

for each p ∈ M and each V ∈ V .
Observe that the map Uρ0 vanishes exactly on M , so we will refer to it as to the

equation of M associated to ρ0.
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We say that a complex gradient system (V , ρ,U) extends ρ0 if it is defined in a
open neighbourhood N ⊂ ˜M of M and for every p ∈ M and V ∈ V ,

ρ(V )(p) = ρ0(V )(p).

If (V , ρ1,U), (V , ρ2,U) are two extensions of ρ0 such that, for every V ∈ V , the
sections ρ1(V ), ρ2(V ) coincide on N , then we write ρ1|N = ρ2|N .

Theorem 2 Let ˜M be a complex manifold of complex dimension n + k, M ⊂ ˜M a
CR-submanifold of ˜M of type (n, k). Let V be a real vector space, and ρ0 : V →
Γ (M,T M) a CR-transverse linear map such that the distribution DR

ρ0
is integrable.

Assume that the associated flow Gρ0 is uniformly real analytic and let Uρ0 be the
associated equation.

Then there exists an open neighbourhood N ⊂ ˜M of M and an R-linear map

ρ : V → Γ (N,T ˜M)

such that (V , ρ,Uρ0) is a complex gradient system which extends ρ0.
The map ρ is unique in a neighbourhood of M , that is, if

ρ1 : V → Γ (N1, T ˜M), ρ2 : V → Γ (N2, T ˜M)

are R-linear maps such that (V , ρ1,Uρ0) and (V , ρ2,Uρ0) are complex gradient
systems which extend ρ0, then ρ1|N = ρ2|N for a suitable open neighbourhood N ⊂
N1 ∩ N2 of M .

Proof It is not restrictive to assume that the map ˜Gρ0 is a diffeomorphism between
˜D = D ∩ M × iV and Fρ0(

˜D).
Fix a basis {V1, . . . , Vk} of V and set

ξ0
α = ρ(Vα), α = 1, . . . , k.

Let J denote the complex structure on T ˜D induced by the pullback of the com-
plex structure on T Fρ0(

˜D) ⊂ T ˜M under the map Fρ0 .
It is not restrictive to identify the neighbourhood Fρ0(

˜D) of M in ˜M with the
domain ˜D ⊂ M × iV . We also identify M × iV with M ×R

k by

M ×R
k 
 (p,u1, . . . , uk) �→ (p, iu1V1 + · · · + iukVk) ∈ M × iV .

Let

U = (u1, . . . , uk) : M ×R
k → R

k � V

be the projection on the second factor.
We will prove the existence of the required complex gradient system showing

that there exist vector fields

ξα, α = 1, . . . , k,



318 G. Tomassini and S. Venturini

defined in a suitable neighbourhood N of M × {0} in ˜D such that

duα(ξβ) = 0, α,β = 1, . . . , k,

and

dcuα(ξβ) = δαβ, α,β = 1, . . . , k.

Let ξ̃0
α , α = 1, . . . , k, denote the vector fields on ˜D which coincide with ξ0

α on
M × {0} and are invariant under the action V × (M × iV ) given by

(

W,(p,V )
) �→ (p,W + V ).

Let also D denote the distribution on T (M × iV ) ≈ T (M × R
k) generated by

the vector fields

ξ̃0
1 , . . . , ξ̃0

k ,
∂

∂u1
, . . . ,

∂

∂uk

.

D is completely integrable, and the maximal integral submanifolds of D are of the
form S ×R

k , where S is a maximal integral submanifold of the distribution DR
ρ .

By construction, the intersection of each maximal integral submanifold of D with
the domain ˜D is a complex submanifold of ˜D of complex dimension k. Moreover,
for each p ∈ M and each α = 1, . . . , k, we have

J
(

ξ̃0
α

)

(p) = ∂

∂uα

(p).

Let P = (pαβ), Q = (qαβ) be the square matrices of order k with entry smooth
function on ˜D defined by

pαβ = J
(

ξ̃0
β

)

(uα),

qαβ = J

(

∂

∂uβ

)

(uα).

Observe that for each p ∈ M , the matrices P((p,0)) and Q((p,0)) are respectively
the identity matrix and the zero matrix of order k.

Let N be the open neighbourhood of M × {0} in ˜D defined by

N = {

(p,u1, . . . , uk) ∈ ˜D | detP
(

(p,u1, . . . , uk)
) �= 0

}

.

Denote by A = (aαβ) the matrix P −1Q, and set

ξα = −J

(

∂

∂uα

)

+
k

∑

β=1

aβαJ
(

ξ̃0
β

)

, α = 1, . . . , k.
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Then

J (ξα) = ∂

∂uα

−
k

∑

β=1

aβαξ̃0
β, α = 1, . . . , k,

and, in view of the J -invariance of the distribution D , it follows that

ξ1, . . . , ξk, J (ξ1), . . . , J (ξk)

generate the distribution D on N . It is easy to check that

duα(ξβ) = 0, α,β = 1, . . . , k,

and

dcuα(ξβ) = δαβ, α,β = 1, . . . , k,

as required.
In order to prove the uniqueness of the map ρ, assume that the complex gradient

systems (V , ρ1,Uρ0), (V , ρ2,Uρ0) extend ρ0 and set γ = ρ1 − ρ2.
We are going to prove that, after shrinking N if necessary, γ|N = 0 showing

before that the complex distributions DC
ρ1

and DC
ρ2

associated respectively to ρ1 and
ρ2 coincide near to M × {0}.

By hypothesis, the distribution DR
ρ0

is integrable, and its maximal integral sub-
manifold are real submanifolds of M of (real) dimension k. For every p ∈ M , con-
sider the maximal integral submanifolds S1, S2 through p of DC

ρ1
and DC

ρ2
, respec-

tively. Since ρ1 and ρ2 both extend ρ0, it follows that

SR = S1 ∩ M = S2 ∩ M

is the maximal integral (real) submanifold of (real) dimension k of the distribu-
tion DR

ρ0
through p. In view of the hypothesis of CR-transversality, SR is a totally

real submanifold of S1 and S2. It follows that S1 = S2.
We have so proved that the maximal integral submanifolds of the distribu-

tions DC
ρ1

and DC
ρ2

which meet the submanifold M are the same, and consequently,

after shrinking N if necessarily, it follows that the distributions DC
ρ1

and DC
ρ2

coin-
cide on N .

Let now V ∈ V be an arbitrary vector. Then, γ (V ) ∈ Γ (N,Hρ1), and the above
argument shows that γ (V ) ∈ Γ (N,DC

ρ1
). Since T ˜M = DR

ρ1
⊕JDR

ρ1
⊕Hρ1 it follows

that γ (V )|N = 0, and this ends the proof V ∈ V being arbitrary. �

When k = dimV = 1, the result above is contained in [7, Theorem 3.1], where
a stronger uniqueness result was obtained. Namely, if (ξ1, u1) and (ξ2, u2) are two
one-dimensional calibrated foliations such that ξ1 and ξ2 both extend ξ0 along the
hypersurface M , then ξ1 = ξ2 and u1 = u2 in a neighbourhood of M .
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Such a uniqueness result does not hold for a general complex gradient system.
Indeed, consider ˜M = C, M = R, and

ξ0 = ∂

∂x
.

Then our construction yields the gradient map

U(z) = U(x + iy) = −�(z) = −y

and the vector field

ξ = ∂

∂x
,

and also the pair (ξ1,U1), where

U1(z) = U1(x + iy) = e−y − 1

and

ξ1 = ey ∂

∂x
,

is a complex gradient system which extends ξ0.
In the case k = 1 the condition [ξ, J ξ ] = 0, which is in the definition of one-

dimensional calibrated foliation given in [7], ensures the uniqueness for the Cauchy
problem (see [7, Theorem 3.1]). It is not clear which is the right condition (if any)
to add in order to guarantee the uniqueness also in this noncommutative setting.

See also the examples given in the next section.

4 Lie Groups

Let GC be a complex Lie group of (complex) dimension k which is the complexifi-
cation of a real Lie group G; G is a totally real submanifold of GC. Let gC and g be
the Lie algebras of GC and G, respectively.

We identify g (resp. gC) with the tangent space to G (GC) at the origin, and
for each V ∈ g (resp. V ∈ gC), we denote by LV the corresponding left-invariant
vector field on G (resp. GC). The complexification of the flow associated to the
map gC 
 V �→ LV is the map

G × g
C 
 (g,V ) �→ g exp(V ) ∈ GC,

exp being the standard exponential map exp : gC → GC. Let us denote by (g, ρ,U)

the complex gradient system which extends V �→ LV . Then we have the identity

U
(

g exp(−iV )
) = V.



Complex Gradient Systems 321

If GC is a complex reductive Lie group and G is a compact real form for GC, then
we have the Cartan decomposition of GC

G × g → GC

(g,V ) �→ g exp(iV ).

In this case the algebra g admits a definite metric B , invariant under the adjoint
representation AdG of G, inducing an isomorphism between the Lie algebra g and
its dual g∗. With this identification, the gradient map U is (up to the sign) the mo-
ment map associated to a symplectic action of G on GC. See e.g. [5] for details.

This example explains our terminology “complex gradient system”.
We would like to point out that in general, as shown by the examples below, the

representation ρ of the complex gradient system extending the left representation
V �→ LV is not the restriction of the left representation of gC.

Let GC be the matrix Lie group of the matrices of the form
⎛

⎝

1 z1 z3
0 1 z2
0 0 1

⎞

⎠

with zα = xα + iyα ∈ C, α = 1,2,3, and let G be the corresponding group with
zi ∈R.

Then g is given by the matrices of the form
⎛

⎝

0 u1 u3
0 0 u2
0 0 0

⎞

⎠

with uα ∈R, α = 1, . . . ,3.
Put

E1 =
⎛

⎝

0 1 0
0 0 0
0 0 0

⎞

⎠ , E2 =
⎛

⎝

0 0 0
0 0 1
0 0 0

⎞

⎠ , E3 =
⎛

⎝

0 0 1
0 0 0
0 0 0

⎞

⎠ .

Then E1,E2,E3 is a basis of g. Denoting Lα = LEα , we then have

L1 = ∂

∂x1
,

L2 = ∂

∂x2
+ x1

∂

∂x3
+ y1

∂

∂y3
,

L3 = ∂

∂x3
,

JL1 = ∂

∂y1
,
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JL2 = ∂

∂y2
+ x1

∂

∂y3
− y1

∂

∂x3
,

JL3 = ∂

∂y3

Some computation yields for the gradient map U the expression

U(z1, z2, z3) = −y1E1 − y2E2 − (y3 + x1y2)E3,

and the representation ρ is given by

ρ(E1) = ˜E1 = ∂

∂x1
+ y2

∂

∂y3
= L1 + y2J (L3),

ρ(E2) = ˜E2 = ∂

∂x2
+ x1

∂

∂x3
= L2 − y1J (L3),

ρ(E3) = ˜E3 = ∂

∂x3
= L3.

Observe that

[

˜E1, ˜E2
] = ˜E3,

[

˜E1, ˜E3
] = [

˜E2, ˜E3
] = 0,

[

J ˜E1, J ˜E2
] = ˜E3,

[

J ˜E1, J ˜E3
] = [

J ˜E2, J ˜E3
] = 0,

[

˜Ei, J ˜Ej

] = 0, i, j = 1,2,3.

It follows that the representation ρ : g → Γ (GC, T GC) is a Lie algebra isomor-
phism and the gradient map U is a harmonic function.

Let now GC be the matrix Lie group of the matrices of the form

(

z1 z2
0 1

)

with z1, z2 ∈C, z1 �= 0, and let G be the corresponding group with z1, z2 ∈R.
The Lie algebra g of G is given by the matrices of the form

(

u1 u2
0 0

)

with u1, u2 ∈ R. The matrices

E1 =
(

1 0
0 0

)

, E2 =
(

0 1
0 0

)

form a basis of the Lie algebra g which satisfies the relation

[E1,E2] = E2.
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The corresponding left-invariant vector fields on GC are given by

L1 = x1
∂

∂x1
+ y1

∂

∂y1
,

L2 = x1
∂

∂x2
+ y1

∂

∂y1
,

JL1 = −y1
∂

∂x1
+ x1

∂

∂y1
,

JL2 = −y1
∂

∂x2
+ x1

∂

∂y2
.

After some computations we obtain that the gradient map is given by

U(z1, z2) = −θ1E1 − y2θ1

y1
E2,

where

θ1 = arctan
y1

x1
,

and the representation ρ satisfies

ρ(E1) = ˜E1 = x1
∂

∂x1
+ y1

∂

∂y1
+ y2

(

x1

y1
− 1

θ1

)

∂

∂x2
+ y2

∂

∂y2
,

ρ(E2) = ˜E2 = y1

θ1

∂

∂x2
.

Observe that

[˜E1, ˜E2] = [J ˜E1, J ˜E2] = ˜E2

and

[˜E1, J ˜E1] = 2y2

y1

(

x1

y1
− 1

θ1

)

˜E2,

[˜E1, J ˜E2] = −
(

x1

y1
− 1

θ1

)

˜E2,

[˜E2, J ˜E2] = 0,

namely the representation ρ : g → Γ (GC, T GC) is a Lie algebra isomorphism, but
the gradient map U is not a harmonic function, and the vector fields ˜E1, ˜E2, J ˜E1

and J ˜E2 are not a basis of a Lie sub-algebra of Γ (GC, T GC).
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5 The Holomorphic Abelian Case

Let (V , ρ,U) be a complex gradient system.
With a little abuse of language, we say that such a complex gradient system is

holomorphic if ρC(V ) is a holomorphic vector field on ˜M for each V ∈ V .
We also say that it is abelian if

[

ρC(V ), ¯ρC(W)
] = 0

for each pair of vectors V,W ∈ V . Such a condition is equivalent to say that for
each pair of vectors V,W ∈ V , one has

[

ρ(V ),ρ(W)
] = [

ρ(V ), Jρ(W)
] = [

Jρ(V ), Jρ(W)
] = 0.

Consider now a domain Ω ⊂ C
n and let F : Ω → R

k be a smooth function. We
associate to F a complex gradient system as follows.

Set ˜M = Ω ×C
k , V = R

k and define

U(z,w) = F(x, y) − u,

where z = x + iy and w = t + iu with x, y ∈R
n and t, u ∈R

k . Finally consider the
linear map ρ :Rk → Γ ( ˜M,T ˜M) characterized by the conditions

ρ(eα) = ∂

∂tα
, α = 1, . . . , k,

where e1, . . . , ek is the canonical basis of Rk .
It is easy to show that this complex gradient system is holomorphic and abelian,

and the aim of the next theorem is to prove that it is the local model of any holo-
morphic abelian complex gradient system. Namely the following is true.

Theorem 3 Let ˜M be a complex manifold of complex dimension n + k. Let
(Rk, ρ,U) be a holomorphic abelian complex gradient system on ˜M . Then for each
point p, there exist a complex coordinate system

z = (z1, . . . , zn), w = (w1, . . . ,wk),

zμ = xμ + iyμ, μ = 1, . . . , n, wα = tα + iuα , α = 1, . . . , k, x = (x1, . . . , xn), y =
(y1, . . . , yn), u = (u1, . . . , uk), and a smooth (vector) function F depending only on
x and y such that

ρ(eα) = ∂

∂tα
, α = 1, . . . , k,

U(z,w) = F(x, y) − u.

Proof Let

g1
t , . . . , g

k
t , h1

t , . . . , h
k
t
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be the (local) one parameter group of transformation of ˜M generated by the vector
fields

ξ1, . . . , ξk, J (ξ1), . . . , J (ξk).

By hypotheses the Lie brackets between all pairs of vector fields among ξ1, . . . , ξk

and Jξ1, . . . , J ξk are zero, and hence the transformations g1
t , . . . , g

k
t and h1

t , . . . , h
k
t

commute each other.
Let p ∈ ˜M be fixed, and let z1, . . . , zn+k be a complex coordinates system around

p, where zμ = xμ + iyμ,μ = 1, . . . , n + k.
After reordering the coordinates we may suppose that

∂

∂x1
,

∂

∂y1
, . . . ,

∂

∂xn

,
∂

∂yn

, ξ1, J ξ1, . . . , ξk, J ξk

generate the tangent space to ˜M at each point in a suitable neighbourhood of p.
For α = 1, . . . , k, set wα = tα + iuα and define

Gα
wα

= gα
tα

◦ hα
uα

.

Then the map

(z1, . . . , zn,w1, . . . ,wk) �→ G1
w1

◦ · · · ◦ Gk
wk

(z1, . . . , zn,0, . . . ,0)

is a diffeomorphism ϕ between an open set of Cn+k and a suitable neighbourhood
U of p in ˜M , that is,

x1, y1, . . . , xn, yn, t1, u1, . . . , tk, uk

is a real coordinate system on U .
Since the maps G1

w1
. . .Gk

wk
commute each other, it follows that with respect to

such a coordinate system we have

ξα = ρ(eα) = ∂

∂tα

for α = 1, . . . , k.
We now prove

z1, . . . , zn, w1, . . . ,wk

are complex coordinates on U , showing that the diffeomorphism ϕ is in fact a bi-
holomorphism.

Since, by hypotheses, (Rk, ρ,U) is a holomorphic abelian complex gradient sys-
tem, it follows that G1

w1
. . .Gk

wk
are holomorphic local diffeomorphisms and for

fixed w1, . . . ,wk , the map

ϕ(z1, . . . , zn,w1, . . . ,wk)
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is holomorphic with respect to the variables z1, . . . , zn. Moreover, for α = 1, . . . , k,
the maps gtα and huα commute, and hence the map wα �→ Gα

wα
(·) is holomorphic

with respect to wα . On the other hand, since the maps G1
w1

. . .Gk
wk

commute each
other, the map ϕ is holomorphic with respect to the variable wα , α = 1, . . . , k, when
the variables z1, . . . , zn and w1, . . . ,wα−1, wα+1, . . . ,wk are fixed.

Thus the map ϕ is separately holomorphic in each variable and hence is holo-
morphic.

Finally, let U = (U1, . . . ,Uk) : ˜M → R
k be the gradient map and consider the

map F = (F1, . . . ,Fk) : U →R
k defined by

Fα(z,w) = Fα(x, y, t, u) = Uα(z,w) + uα, α = 1, . . . , k.

We end the proof showing that the map F does not depend on the variables t and u.
Indeed, for α,β = 1, . . . , k, we have

∂Fα

∂tβ
= ξβ(Uα) = 0

and

∂Fα

∂uβ

= J (ξβ)(Uα) + δαβ = −δαβ + δαβ = 0. �
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Coleff–Herrera Currents Revisited

Alekos Vidras and Alain Yger

Abstract In the present paper, we describe the recent approach to residue currents
by Andersson, Björk, and Samuelsson (Andersson in Ann. Fac. Sci. Toulouse Math.
Sér. 18(4):651–661, 2009; Björk in The Legacy of Niels Henrik Abel, pp. 605–651,
Springer, Berlin, 2004; Björk and Samuelsson in J. Reine Angew. Math. 649:33–
54, 2010), focusing primarily on the methods inspired by analytic continuation (that
were initiated in a quite primitive form in Berenstein et al. in Residue Currents
and Bézout Identities. Progress in Mathematics, vol. 114, Birkhäuser, Basel, 1993).
Coleff–Herrera currents (with or without poles) play indeed a crucial role in Lelong–
Poincaré-type factorization formulas for integration currents on reduced closed ana-
lytic sets. As revealed by local structure theorems (which can also be understood as
global when working on a complete algebraic manifold due to the GAGA principle),
such objects are of algebraic nature (antiholomorphic coordinates playing basically
the role of “inert” constants). Thinking about division or duality problems instead of
intersection ones (especially in the “improper” setting, which is certainly the most
interesting), it happens then to be necessary to revisit from this point of view the
multiplicative inductive procedure initiated by Coleff and Herrera (Lecture Notes
in Mathematics, vol. 633, Springer, Berlin, 1978), this being the main objective of
this presentation. In homage to the pioneering work of Leon Ehrenpreis, to whom
we are both deeply indebted, and as a tribute to him, we also suggest a currential
approach to the so-called Nœtherian operators that remain the key stone in various
formulations of Leon’s Fundamental Principle.

1 From Poincaré–Leray to Coleff–Herrera Construction

Let X be a complex n-dimensional analytic manifold. Consider M ≤ n closed
hypersurfaces S1, . . . , SM in X that intersect as a nonempty complete intersec-
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tion, that is, the closed analytic subset V = ⋂M
j=1 Sj ⊂ X is purely (n − M)-

dimensional (all its irreducible components have complex dimension n−M). When
S1, . . . , SM are assumed to be smooth and moreover to intersect transversally, a
well-known construction by Leray [22] (see also [1]) leads to the construction
(from the cohomological point of view) of the iterated Poincaré residue morphism
from Hp(X \ S1 ∪ · · · ∪ SM,C) into Hp−M(V,C) (paired with its dual iterated
coboundary morphism) when p ≥ M . Following a currential (instead of cohomo-
logical) point of view, the construction proposed by Coleff and Herrera [14] allows
us to drop the assumption about smoothness of the Sj ’s and the fact they intersect
transversally, keeping just (for the moment) the complete intersection hypothesis.
We propose here to make explicit in this introduction the bridge between such cur-
rential construction and J. Leray’s approach. In order to do that, we recalls a concept,
which is of interest by itself for algebraic reasons, of multilogarithmic meromorphic
form [7, 25].

Definition 1 Let X and S1, . . . , SM,V be as above. A meromorphic (p,0)-form ω

on X (M ≤ p ≤ n), with polar set contained in
⋃M

j=1 Sj , is called multilogarith-
mic with respect to S1, . . . , SM if and only if, for any x ∈ V , one can find an open
neighborhood Ux of x and M holomorphic functions s1,x , . . . , sM,x in Ux such that:

• for any j = 1, . . . ,M , the hypersurface Sj ⊂ X is defined in Ux as {sj,x = 0};
• ds1,x ∧ · · · ∧ dsM,x is not vanishing identically on any irreducible component of

V in Ux , that is, the complete intersection V ∩ Ux is defined by the sj,x , j =
1, . . . ,M , as a reduced complete intersection;

• for any j = 1, . . . ,M , the differential forms sj,xω and sj,x dω (or, equivalently,
sj,xω and dsj,x ∧ ω) can be expressed in Ux as

∑M
l=1 ωl , where ωl is a meromor-

phic form with polar set contained in
⋃

l′ 
=l Sl′ ∩ Ux .

Consider X , the Sj ’s and ω as in Definition 1. Let Vsing be the set of singular
points of V , and let U = X \ Vsing. The closed hypersurfaces Σj = Sj ∩ U ⊂ U ,
j = 1, . . . ,M (considered as closed hypersurfaces in U ), are smooth and intersect
transversally in some open neighborhood Ũ ⊂ U of W = ⋂M

j=1 Σj . Under these
conditions, one can define on the complex submanifold W ⊂ U the Leray–Poincaré
residue ResΣ1,...,ΣM

[ω] of the meromorphic form ω (considered as multilogarithmic
in Ũ with respect to Σ1, . . . ,ΣM ). Let us recall here this construction. For any x ∈
W ⊂ V , one can find an open neighborhood Ux in U such that ds1,x ∧ · · · ∧ dsM,x

does not vanish identically on any irreducible component of V ∩ Ux . If y ∈ W ∩ Ux

and ds1,x(y)∧ · · ·∧ dsM,x(y) 
= 0, then {sj,x = 0} is necessarily a reduced equation
for the complex submanifold Σj about y. In a neighborhood Ux,y ⊂ Ux of such
y ∈ W ∩ Ux , ds1,x ∧ · · · ∧ dsM,x does not vanish, and thus we can write a local
division formula (iterating with respect to j = 1, . . . ,M the division procedure for
differential forms, as introduced by G. de Rham and extensively used in [22]):

ω =
(

M∧

j=1

dsj,x

sj,x

)

∧ rx,y[ω] + σx,y[ω],
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where the (p − M,0)-form rx,y[ω], also denoted by ResΣ1,...,ΣM,x[ω], and the
(p,0)-form σx,y[ω] are both meromorphic, of the form

∑
l ϕl,x,y , ϕl,x,y being a

meromorphic form in Ux,y with polar set contained in
⋃

l′ 
=l Sl′ . The restriction of

every rx,y[ω] to W is a ∂̄-closed, holomorphic (p − M)-differential form on the
closed submanifold W ∩Ux,y . All such forms ResΣ1,...,ΣM,x[ω], x ∈ W , fit together
to form a holomorphic, ∂̄-closed form on the closed manifold W , which is precisely
the Poincaré–Leray residue of ω on W and is denoted as ResΣ1,...,ΣM

[ω]. Such a
holomorphic (p − M)-differential form on the manifold W ⊂ U defines a (p,M)-
current on U :

ResΣ1,...,ΣM
[ω] : ϕ ∈Dn−p,n−M(U,C) �→

∫

W

ResΣ1,...,ΣM
[ω] ∧ ϕ. (1)

The main issue now is to extend (in some standard way) the (p,M)-current (1) to
a (p,M)-current T over the whole manifold X so that suppT ⊂ W and ∂̄T = 0.
There are different ways of doing this, but, for reasons of algebraic nature that will
be made explicit later on, the one we adopt here is based on the analytic continuation
of meromorphic current-valued maps. The use of this approach in different settings
is the main theme of the present paper. It is based on an algorithmic construction of
∂-closed currents sharing a common holonomy property.

To be more specific, we consider a finite collection f1, f2, . . . , fm of holomor-
phic functions in an open set Ω ⊂ C

n, where m ≤ n, and a collection of natural
numbers q1, q2, . . . , qm ∈N. We define now the current

T
f

q,1 =
[

∂

( |f1|2λ

f
q1
1

)]

λ1=0
= ∂

[

(1 − 1[f1=0])
1

f
q1
1

]

,

where [f1 = 0] denotes the principal Weil divisor div (f1). For a holomorphic func-
tion h in Ω , there exists, by the result of Sabbah [26] (completed later on by Gyoja
[19]), about any point z in Ω , a local formal Bernstein–Sato equation, originally
introduced in [6],

Qz(λ1, λ2, ζ, ∂/∂ζ )
[
hλ2+1f

λ1
1

] =
∏

ι

(α0,ι + α1,ιλ1 + α2,ιλ2)h
λ2f

λ1
1 , (2)

where α0,ι ∈ N
∗, (α1,ι, α2,ι) ∈N

2 \ {(0,0)}. This result extends to the context of two
functions a deep result due to Kashiwara [20]. Exploiting this local formal equation
(2) in the sense of distributions in a neighborhood Uz of z, one has, by lifting the
antiholomorphic polar parts, that

bz(λ1, λ2)

( |h|2λ2

h
|f1|2λ1

)

= (formally) bz(λ1, λ2)h
λ2

f
λ1
1 f

λ1
1 hλ2−1

= Qz(λ1, λ2, ζ , ∂/∂ζ )

[

|h|2λ2
h

h
|f1|2λ1

]

, (3)

whenever Reλ1 � 1 and Reλ2 � 1. Using the fact that any distribution coefficient
τ of the current T

f

q,1 can be achieved through analytic continuation as τ = [τλ1 ]λ1=0
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(where τλ1 is a distribution coefficient of ∂(|f1|2λ1/f
q1
1 )), we deduce from (3) the

identity

bz(0, λ2)

( |h|2λ2

h
⊗ τ

)

= Qz(0, λ2, ζ , ∂/∂ζ )

[(

|h|2λ2
h

h

)

⊗ τ

]

(in the sense of distributions about z) for Reλ2 � 1. Iterating the above identity M

times, we get

bz(0, λ2) · · ·bz(0, λ2 + M − 1)

( |h|2λ2

h
⊗ τ

)

=Qz,M(λ2, ζ , ∂/∂ζ )

[(

|h|2λ2
h

M

h

)

⊗ τ

]

(4)

for some differential operator Qz,M . Provided that M is sufficiently large, we deduce
from (4) that the map

λ2 �→ |h|2λ2

h
T

f

q,1

can be continued as a holomorphic map to some half-plane {Reλ2 > −η}. Further-
more, if u is an invertible holomorphic function in Ω , then any differentiation of
|u|2λ2 generates λ2 as a factor. Thus the value of the analytic continuation of

λ2 �→ |uh|2λ2

h
T

f

q,1 = |h|2λ2

h
|u|2λ2 T

f

q,1

at λ2 = 0 is independent of u. This is a remarkable holonomy property allowing us
to use the above process iteratively. In particular, the definition of

T
f

q,2 =
[

∂

( |f2|2λ2

f
q2
2

T
f

q,1

)]

λ2=0
=

[

∂

( |f2|2λ2

f
q2
2

)

∧ T
f

q,1

]

λ2=0

is then justified. In a similar manner, by using a slightly more general form of (2),
given by

Qz(λ1, . . . , λm, ζ, ∂/∂ζ )

[

hλm+1
m−1∏

j=1

f
λj

j

]

=
(

∏

ι

(

αι0 +
m∑

j=1

αιjλj

))

hλm

m−1∏

j=1

f
λj

j ,

we can construct a current T
f

q,3 (for m = 3) by multiplying the current T
f

q,2 with a

suitable meromorphic function. We continue this iteration of the analytic continua-
tion process until the current T

f
q,m is constructed. What is important in this approach
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is that it is algorithmic and essentially algebraic, because of the use of Bernstein–
Sato relations. No log resolution of singularities is explicitly involved in the picture.
Furthermore, this procedure mimics the Leray iterated residue construction. An in-
teresting application of the above approach is the following:

Proposition 1 Let X , the Sj ’s, V , and ω be as before. Let U = X \Vsing, and Σj =
Sj ∩ U for j = 1, . . . ,M . The closed hypersurfaces Σ1, . . . ,ΣM (in U ) are smooth
and intersect transversally in some open neighborhood (in U ) of W = ⋂M

j=1 Σj ,
which allows us to define the Poincaré–Leray residue ResΣ1,...,ΣM

[ω] as a (p −
M,0)-holomorphic form on the closed submanifold W of U . The associated (p,M)-
current ResΣ1,...,ΣM

[ω] in U , acting as (1), is the restriction of a ∂-closed (p,M)-
current T over X , with SuppT ⊂ V .

Proof Let x ∈ V , and let Ux be the neighborhood attached to the multilogarithmic-
ity of ω as described in Definition 1. Since ω is a meromorphic form with polar set
in

⋃M
j=1 Sj , one can express ω in Ux as

ω = ψx

s
q1,x

1,x · · · sqM,x

M,x

,

where ψx is holomorphic in Ux . Consider the ′D(p,M)(Ux,C)-valued map defined
on {Reλ1 � 1, . . . ,ReλM � 1} as

(λ1, . . . , λM) �−→ Rsx,λ1,...,λM [ω] = (−1)M(M−1)/2

(2iπ)M

(
M∧

j=1

∂|sj,x |2λj

)

∧ ω

= 1

(2iπ)M

(
1∧

j=M

∂

( |sj,x |2λj

s
qj,x

j,x

))

∧ ψx.

The reverse order of indices expresses here the absorption of the factor (−1)M(M−1)/2

(2iπ)M
.

It is known from [27] that the current-valued map

(λ1, . . . , λM) �−→ Rsx,λ1,...,λM [ω]
can be continued analytically as a function of M complex variables (λ1, . . . , λM) to
{Reλ1 > −η, . . . ,ReλM > −η} for some η > 0. The proof of such a result relies
deeply on the use of a log resolution X̃ π→ X such that π−1[⋃j Sj ] is a hypersurface

with normal crossings. The approach we developed above for construction of ∂-
closed (p,M)-current in Ux through the iterated analytic continuation process

Rsx [ω] = [[· · · [[Rsx,λ1,...,λM
x [ω]]

λ1=0

]
λ2=0 · · · ]

λM−1=0

]
λM=0

is applied at this point, taking successively λ1 up to {Reλ1 > −η1}, then λ2 up
to {Reλ2 > −η2}, and so on. Note (again) that the argument does not seem (ap-
parently) to require the use of an appropriate log resolution to resolve singularities
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(namely here that of the hypersurface defined as the zero set of hf1 · · ·fm−1), but
this is indeed hidden behind the fact that there exist local Bernstein–Sato equations.
The current Rsx [ω] is also denoted as

Rsx [ω] =
(

M∧

j=1

∂

(
1

s
qj,x

j,x

))

∧ ψx.

To show that all Rsx [ω], for the different Ux , globalize into a ∂-closed, (p,M)-
current over X , we use the holonomy of the currents under consideration. That is,
for any holomorphic functions u,h in Ux , with u nonvanishing, the current-valued
function

λ ∈ {Reλ � 1} −→ |uh|λ
h

Rsx [ω]
can be continued analytically into a half-plane {Reλ > −η}, whose value at λ = 0
is independent of u. The global ∂-closed (p,M)-current thus obtained is denoted
as R[S1]red,...,[SM ]red [ω]. This reflects the fact that it depends only on the mero-
morphic form ω and on the reduced cycles corresponding to the closed hypersur-
faces S1, . . . , SM (with respect to this ordering). In a neighborhood Ux,y of some
y ∈ W ∩ Ux , as introduced before, the ′D(p,M)(Ux,y,C)-current-valued map

(λ1, . . . , λM) ∈ {Reλj > 1 ; j = 1, . . . ,M}

�−→ 1

(2iπ)M

(
1∧

j=M

∂|sj,x |2λj

)

∧
(

M∧

j=1

dsj,x

sj,x

)

∧ rx,y[ω]

can be continued as a holomorphic map to {Reλj > −1; j = 1, . . . ,M}, with value
at λ1 = · · · = λM = 0 the (p,M)-current

ϕ ∈D(n−p,n−M)(Ux,y,C) �→
∫

W∩Ux

ResΣ1,...,ΣM
[ω] ∧ ϕ.

Note that in such a neighborhood Ux,y , we have, for Reλj � 1, j = 1, . . . ,M ,

(
1∧

j=M

∂

( |sj,x |2λj

s
qj,x

j,x

))

∧ ψx =
(

1∧

j=M

∂|sj,x |2λj

)

∧
(

1∧

j=M

dsj,x

sj,x

)

∧ rx,y[ω]

+
(

1∧

j=M

∂|sj,x |2λj

)

∧ σx,y[ω].

Thus, we obtain, for any ϕ ∈ Dn−p,n−m(Ux,y,C),

〈
R[S1]red,...,[SM ]red [ω], ϕ〉 =

∫

W∩Ux

ResΣ1,...,ΣM
[ω] ∧ ϕ.
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This comes from the fact that the ′D(p,M)(Ux,y,C)-current-valued map

(λ1, . . . , λM) �−→
(

1∧

j=M

∂|sj,x |2λj

)

∧ σx,y[ω]

is holomorphic in {Reλj > −1 ; j = 1, . . . ,M} and takes the value 0 at λ1 = · · · =
λM = 0. Finally, using the covering of V by the Ux , x ∈ V , we conclude that the
(p,M)-current defined in U = X \ Vsing as

ϕ ∈ D(n−p,n−M)(U,C) �→
∫

W

ResΣ1,...,ΣM
[ω] ∧ ϕ

can be continued as the ∂-closed current T = R[S1]red,...,[SM ]red[ω] over the whole
manifold X . Note that the support of T satisfies suppT ⊂ V . �

2 Regular Holonomy of Integration Currents

Let X be an n-dimensional complex manifold, and V ⊂ X be a closed, purely
dimensional, reduced, analytic subset of codimension M . El Mir’s extension the-
orem in [17] implies that the integration current [V ] is defined as the unique,
positive, d-closed, (M,M)- current over X such that, for any test function ϕ ∈
D(n−M,n−M)(X \ Vsing,C),

〈[V ], ϕ
〉 =

∫

V

ϕ =
∫

Vreg

ϕ.

It is important to point out here that the closed analytic set V is considered as being
embedded in the ambient manifold X . This will be revealed to us to be important
for two reasons: first, with respect to connections between intersection and divi-
sions problems in X (that one intends to study jointly), closed analytic subsets in X
need to be understood (and studied) in terms of their defining equations. Second, the
Coleff–Herrera sheafs of currents CHX ,V and CHX ,V (· ; �S) that we will introduce
in the two following sections are indeed sheaves of currents in X , with support on V ,
which depend in a crucial way on the embedding ι : V → X . Therefore, instead of
working on the complex analytic space (V , (OX )|V ), using, for example, a log reso-

lution Ṽ
π−→ V for some closed hypersurface Hsing on V , satisfying Vsing ⊂ Hsing,

we will work in the ambient manifold X and keep as far as possible to methods
based on the use of Bernstein–Sato-type functional equations [19, 20, 26]. We will
use extensively in this section the methods introduced to prove Proposition 1. These
methods allow the possibility to define (in a robust way) the exterior multiplication
of the integration current [V ] with a semi-meromorphic form ω, whose polar set in-
tersects V along a closed analytic subset W satisfying dimW < dimV . Recall here
that ′D(p,q)(X ,C) denotes the space of (p, q)-currents on X , acting on the space
D(n−p,n−q)(X ,C) of smooth (n − p,n − q)-test forms on X .
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Proposition 2 (A holonomy property) Let X and V ⊂ X be as above. Let h,u ∈
OX (X ). The ′D(M,M)(X )-valued map

(λ,μ) ∈ {Reλ � 1,Reμ � 1} �−→ |u|2μ |h|2λ

h
[V ]

can be continued analytically as a holomorphic map to the product of half-planes
{Reλ > −η,Reμ > −η} for some η > 0. Moreover, if V \ {u = 0} = V , then the
value of this analytic continuation at λ = μ = 0 remains unchanged if one replaces
|u| by 1. When V \ {h = 0} = V , the construction of the principal value current

1

h
[V ] :=

[ |h|2λ

h
[V ]

]

λ=0
, (5)

is “robust” in the following sense:

1

h
[V ] =

[

|u|2μ |h|2λ

h
[V ]

]

λ=μ=0
=

[

|u|2μ 1

h
[V ]

]

μ=0
(6)

for any holomorphic function u ∈ OX (X ) such that V \ {u = 0} = V .

Proof The second assertion in the statement of the proposition is a consequence of
the first. If V \ {u = 0} = V , i.e., |u| does not vanish identically on any component
of V (hence [|u|2μ]μ=0 ≡ 1 almost everywhere on such component), one has

[

|u|2μ |h|2λ

h
[V ]

]

μ=0
= |h|2λ

h
[V ]

for Reλ � 1. Assume the first assertion, namely that the current-valued function (5)
is holomorphic in two variables in a product of half-spaces {Reλ > −η,Reμ > −η}
for some η > 0. Then, following the analytic continuation in λ up to λ = 0, we get:

[[

|u|2μ |h|2λ

h
[V ]

]

μ=0

]

λ=0
=

[

|u|2μ |h|2λ

h
[V ]

]

λ=μ=0
=

[ |h|2λ

h
[V ]

]

λ=0
.

This proves the second assertion (under the assumption that the first one holds).
In order now to prove the first assertion above, let us reduce the situation to

the local one, that is, where X is a neighborhood Ω of the origin in C
n. One can

assume that V (defined in Ω as the common zero set of holomorphic functions
v1, . . . , vk in H(Ω)) is the union of a finite number of irreducible components of the
complete intersection Ṽ = {f1 = · · · = fM = 0}, with df1 ∧ · · · ∧ dfM 
≡ 0 on each
such component ([18], p. 72). Let v be a linear combination of v1, . . . , vk which
does not vanish identically on any of the irreducible components of the complete
intersection Ṽ that are not irreducible components of V . We introduce from now on
the notation ṼX \V to denote the union of the irreducible components of Ṽ which
are not entirely contained in V . Let using be a holomorphic function in X such
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that Ṽsing ⊂ {using = 0} and using 
≡ 0 on any irreducible component of Ṽ . Let us
introduce the differential (M,0)-form

ω = df1 ∧ · · · ∧ dfM

f1 · · ·fM

and the ∂-closed (M,M)-current

T
f

1,M

(2iπ)M
∧ df1 ∧ · · · ∧ dfM = Res[f1=0]red,...,[fM=0]red [ω],

where the current T
f

1,M is defined by the iterated process

T
f

1,M =
[

∂

( |fM |2λM

fM

)

∧
[

· · · ∧
[

∂

( |f1|2λ1

f1

)]

λ1=0
· · ·

]

λM−1=0

]

λM=0

considered in the proof of Proposition 1, where also the notation Res[·][ω] was in-
troduced. Using the Bernstein–Sato equation (2) (here for M + 4 functions), still in
its conjugate form, one can prove that the current-valued function

(λ,μ, ν,�) �→ |using|2� |v|2ν |u|2μ |h|2λ

h
Res[f1=0]red,...,[fM=0]red [ω]

can be continued from

{
(λ,μ, ν,�);Reλ � 1,Reμ � 1,Reν � 1,Re� � 1

}

to a product of half-planes

{
(λ,μ, ν,�);Reλ > −η,Reμ > −η,Reν > −η,Re� > −η

}

for some η > 0. Moreover, when Reλ � 1, Reμ � 1, and Re� � 1, the value at
ν = 0 of

ν �−→ |using|2�
(
1 − |v|2ν

)|u|2μ |h|2λ

h
Res[f1=0]red,...,[fM=0]red [ω]

is equal to the current

|using|2� |u|2μ |h|2λ

h
[V ].

Keeping Reλ � 1 and Reμ � 1 and taking the analytic continuation in � up to
� = 0, we get precisely the current

|u|2μ |h|2λ

h
[V ]. �
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3 “Holomorphic” Coleff–Herrera Sheaves of Currents

Given an n-dimensional analytic manifold X , together with a closed, purely dimen-
sional reduced analytic subset V (of codimension M), the (“holomorphic”) Coleff–
Herrera sheaf CHX ,V (·,E) of E-valued (0,M)-currents, where E → X denotes
a holomorphic bundle of finite rank over X , plays a major role in division or duality
problems. The local description of its sections, together with the subsequent proper-
ties, suggests how one can profit from the 2n local parameters ζ1, . . . , ζn, ζ 1, . . . , ζ n

instead of just the n “holomorphic” ones ζ1, . . . , ζn. Thinking heuristically, the an-
tiholomorphic local coordinates ζ 1, . . . , ζ n remain unaffected by the holomorphic
differentiations involved in the action of such currents. For example, if Δ1, . . . ,ΔM

are Cartier divisors on X and s1, . . . , sM denote the corresponding holomorphic sec-
tions of the Δj ’s such that the hypersurfaces s−1

j (0) intersect properly (that is, de-
fine a nonempty complete intersection on X ), then the usual Coleff–Herrera residue∧M

j=1 ∂(1/sj ) stands as a global section of the Coleff–Herrera sheaf CHX ,V (·,E),

where E = ∧M
1 OX (−Δj).

The concept and its importance were pointed out by Björk [11, 12]. The original
construction of global sections for such sheaves is due to Coleff and Herrera [14].
In this section, we will recall the definition of the sheaf CHX ,V (·,E) (following
the approach of Björk, Andersson, and Samuelsson [2, 11–13]), together with the
local structure of its sections (which justifies their operational properties). Since
our objective all along this presentation is to stick to the methods based on analytic
continuation (which seems to be a natural way to introduce the objects algebraically,
for example, by using the Bernstein–Sato functional equations as (2)), the approach
we adopt here follows that developed by Andersson [2].

Definition 2 (The Coleff–Herrera sheaf CHX ,V (·,E)) Let X , V , E be as above.
The (“holomorphic”) Coleff–Herrera sheaf CHX ,V (·,E) is the sheaf of sections
of (0,M) E-valued currents T on X , with support on V , which satisfy the three
following conditions:

1. For any holomorphic function u in a neighborhood of V satisfying

V \ {u = 0} = V,

the current-valued function

λ ∈ {Reλ � 1} �−→ |u|2λT

can be analytically continued as an holomorphic map to {Reλ > −η} for some
η > 0, and

[|u|2λT
]
λ=0 = T

(that is, T satisfies the Standard Extension Property (SEP) with respect to its
support V ).
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2. One has, in the sense of currents,

(IV )conjT ≡ 0,

where (IV )conj denotes the complex conjugate of the ideal sheaf of sections of
OX that vanish on V .

3. The current T is ∂-closed.

Global sections of this sheaf, that is, elements in CHX ,V (X ,E), are called E-valued
Coleff–Herrera currents (with respect to V ) on X .

Action on integration currents by adjoints of “simple” holomorphic differential
operators with values in the dual bundle E∗ provides us with an example of Coleff–
Herrera sheaf of currents. To be more specific:

Example 1 Let D be a Cartier divisor in X , and U be an open subset of X . A holo-
morphic differential operator with analytic coefficients QU : C∞

n,n−M(U,E∗) →
C∞

n−M,n−M(U,OX (D)) is said to be (n,n − M)-simple in U if its splits as

QU [ϕ] = qU [ϕ] ∧ ωU,

where qU denotes a holomorphic differential operator from C∞
n,n−M(U,E∗) to

C∞
0,n−M(U,E∗), and ωU is an element of Ωn−M

X (U,E ⊗OX (D)), that is, a global
section over U of the sheaf of E ⊗OX (D)-valued (n−M)-holomorphic forms. Let
us denote as D

n,n−M
X (·,E∗,D) the sheaf whose sections over U ⊂ X are (n,n −

M)-simple holomorphic differential operators with analytic coefficients from
C∞

n,n−M(U,E∗) into C∞
n−M,n−M(U,OX (D)). If QU ∈ D

n,n−M
X (U,E∗,D), then let

Q∗
U be the adjoint operator which transforms elements from ′D(M,M)(U,OX (−D))

into elements in ′D(0,M)(U,E) as follows:

〈
Q∗

U [T ], ϕ〉 = 〈
T ,QU [ϕ]〉, ∀ϕ ∈ D(n,n−M)(U).

If hU denotes an holomorphic section of D in U such that (V ∩ U) \ {h−1
U (0)} =

V ∩ U and QU ∈D
n,n−M
X (U,E∗), then the current

TU = Q∗
U

[ [V ∩ U ]
hU

]

(where [V ∩ U ]/hU is defined as in (6), see Proposition 2) fulfills conditions 1 and
2 in Definition 2. This follows from the fact that the current-valued function

μ ∈ {Reμ � 1} �−→ |u|2μQ∗
[

1

h
[V ]red

]

is analytically continued to Reμ > −η and that its value at μ = 0 does not depend
on u as soon as V \ {u = 0} = V . This shows that Q∗[ 1

h
[V ]red] satisfies both the
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holonomy property and the standard extension property with respect to V , exactly
as 1

h
[V ]red does. If it is additionally ∂-closed (which unfortunately cannot be read

directly on the operator with meromorphic coefficients QU/hU ), then TU fulfills
also condition 3 in Definition 2 and therefore is a global section of the Coleff–
Herrera sheaf CHX ,V (·,E) over U .

Let U be an open subset of X . The local structure result established in [2, 11–
13] can be stated as follows: when T ∈ ′D(0,M)(U,E) is a ∂-closed current, T ∈
CHX ,V (U,E) if and only if, for any x ∈ U , there exists a neighborhood Ux ⊂ U of
x in U , a section Qx ∈ Dn,n−M(Ux,E

∗,C), and a holomorphic function hx in Ux

such that V ∩ Ux \ {hx = 0} = V ∩ Ux and

T|Ux = Q∗
x

[ [V ∩ Ux]
hx

]

.

The local structure result, besides the fact that it provides a useful local represen-
tation of sections of the Coleff–Herrera sheaf CHX ,V (X ,E), also emphasizes that
only holomorphic differential operators are involved in the action of such currents
(which explains indeed why they do play a role of algebraic nature despite their
analytic structure).

It is important also to point out that, when X = P
n(C), such a local structure

result reflects (thanks to the GAGA principle) into a global structure result in this
algebraic setting. The matrix of differential operators QX ,IJ,K involved in the defi-
nition of QX , when expressed in local coordinates (ζ1, . . . , ζn) in some affine chart,
as

QX

[( ∑

J⊂{1,...,n}
|J |=n−M

ϕI dζ I

)

∧ dζ1 ∧ · · · ∧ dζn

]

=
∑

I,J⊂{1,...,n}
|I |=|J |=n−M

( ∑

K⊂{1,...,n}
|K|=n−M

QX ,IJ,K

(

ζ,
∂

∂ζ

)

[ϕK ]
)

dζJ ∧ dζI ,

becomes a matrix of differential operators with polynomial coefficients, while the
polar factor hX corresponds here to a polynomial section of the bundle OX (k)

for some k ∈ N. Such differential operators with polynomial coefficients are of
course reminiscent of the Nœtherian operators involved in the formulation of
the Ehrenpreis–Palamodov fundamental principle [5, 10, 16, 24]. For example,
when P1, . . . ,PM are M homogeneous polynomials in [z0 : · · · : zn] defining a
complete intersection V in P

n(C), a global section of the Coleff–Herrera sheaf
CHX ,V (·,∧M

1 OX (−degPj )) can be used to test the membership to the ideal
(P1, . . . ,PM). Note also that local structure results of this type originally go back to
the work of Dolbeault [15].
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4 “Meromorphic” Coleff–Herrera Sheaves of Currents

Intersection and division problems (in the case of proper intersection) are intimately
connected through the Lelong–Poincaré equation: namely, if Δ1, . . . ,ΔM are M

Cartier divisors on a complex manifold X , together with respective metrics | |j
and holomorphic sections sj such that the s−1

j (0) intersect as a nonempty complete

intersection s−1(0), then the integration current [div (s1) • · · · • div (sM)] (the oper-
ation between cycles being here the intersection product in the proper intersection
context) factorizes as

[
div(s1) • · · · • div(sM)

] =
(

M∧

j=1

∂(1/sj )

)

∧ d1s1 ∧ · · · ∧ dMsM,

where
∧M

j=1 ∂(1/sj ) ∈ CHX ,s−1(0)(X ,
∧M

1 OX (−Δj)) is a Coleff–Herrera current
independent of the choice of the metrics | |j , and dj stands here for the Chern con-
nection on (OX (Δj ), | |j ) (one could in fact replace dj by the de Rham operator d

since the choice of the metrics is here irrelevant). Unfortunately, when V denotes
an (n − M)-purely dimensional, reduced, closed analytic set in X , the integration
current [V ] cannot usually be factorized (locally about a point x ∈ V ) as the prod-
uct of a section of the Coleff–Herrera sheaf CHX ,V (·,C) with a local section of
the sheaf Ωn−M

X of (n − M)-abelian forms. A sufficient condition for this to be
true is that OX ,x/IV,x is Cohen–Macaulay (see [3]). In general (see the proof of
Proposition 2), in some convenient neighborhood Ux of x, there exists a factoriza-
tion [V ∩ Ux] = TUx ∧ ωUx , where ωUx ∈ Ωn−M

X (Ux), and TUx is a section in Ux of
the meromorphic Coleff–Herrera sheaf CHX ,V (· ;�Sx,C) defined below (Sx being
here a closed hypersurface in Ux such that (V ∩ Ux) \ Sx = V ∩ Ux ). This moti-
vates the enlargement of the concept of Coleff–Herrera sheaf in order to tolerate
holomorphic singularities (as we proceed when we enlarge the sheaf OX of holo-
morphic functions in X by introducing the sheaf MX of meromorphic functions on
X ).

Let X , V , E be as in the previous section. We now add in our list of data a
closed hypersurface S in some neighborhood of V (in X ) such that V \ S = V . The
hypersurface S will play the role of a prescribed polar set for the sections of the
sheaves we are about to define.

Definition 3 (The Coleff–Herrera sheaf CHX ,V (· ;�S,E)) Let X , V , E be as
in Definition 2, and S be as above. The (“meromorphic”) Coleff–Herrera sheaf
CHX ,V (· ;�S,E) is the sheaf of sections of (0,M) E-valued currents on X
(M = codimXV ), with support on V , which satisfy, besides conditions 1 and 2
in Definition 2, the additional condition

Supp (∂T ) ⊂ V ∩ S. (7)

In order to exhibit sections of meromorphic Coleff–Herrera sheaves (see Exam-
ple 2 below), the following lemma reveals to be essential. The method we use here
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to prove it illustrates both the power and the flexibility of the analytic continuation
method. An alternative approach (based on the regularization of currents and the use
of cut-off functions) was proposed in [13].

Lemma 1 Let V be a purely (n − M)-dimensional closed analytic subset in an
n-dimensional complex manifold X . Let u,h, s ∈OX (X ) satisfy

V \ {h = 0} = V \ {s = 0} = V \ {u = 0} = V.

Let Q ∈D
n,n−M
X (X ,C) (see Example 1). The (0,M)-current-valued map

(μ, ν) ∈ {Reμ � 1,Reν � 1} �−→ |u|2ν |s|2μ

s
Q∗

[
1

h
[V ]

]

extends as an holomorphic map to {Reμ > −η,Reν > −η} for some η > 0, whose
value T at μ = ν = 0 is independent of u. The “robust” definition of T makes it
natural to denote it as

T = 1

s
Q∗

[
1

h
[V ]

]

.

The current T fulfills conditions 1 and 2 in Definition 2.

Proof Let u ∈OX (X ) and μ,ν be such that Reν � 1 and Reμ � 1. Then

〈

|u|2ν |s|2μ

s
Q∗

[
1

h
[V ]

]

, ϕ

〉

=
〈

1

h
[V ],Q

(

ζ,
∂

∂ζ

)[

|u|2ν |s|2μ

s
ϕ

]〉

=
〈 |u|2ν |s|2μ

h
[V ],Q

[
ϕ

s

]〉

+ μ

〈 |u|2ν |s|2μ

h
[V ],Qu,s

(

μ,ν, ζ,
∂

∂ζ

)

[ϕ]
〉

+ ν

〈 |u|2ν |s|2μ

h
[V ], Q̃u,s

(

μ,ν, ζ,
∂

∂ζ

)

[ϕ]
〉

,

where Qu,s(μ, ν, ζ, ∂/∂ζ ) and Q̃u,s(μ, ν, ζ, ∂/∂ζ ) are the meromorphic differential
operators (polynomial in μ,ν) from C∞

n,n−M(X ) into C∞
n−M,n−M(X ), with polar set

contained in {us = 0}. We can rewrite (for some convenient K ∈ N, namely the
order of the differential operator Q)

〈 |u|2ν |s|2μ

h
[V ],Qu,s

(

μ,ν, ζ,
∂

∂ζ

)

[ϕ]
〉

=
〈 |u|2ν |s|2μ

huKsK+1
[V ],Au,s

(

μ,ν, ζ,
∂

∂ζ

)

[ϕ]
〉

=
[〈 |h|2λ

h

|u|2ν |s|2μ

uKsK+1
[V ],Au,s

(

μ,ν, ζ,
∂

∂ζ

)

[ϕ]
〉]

λ=0
,
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where Au,s denotes a holomorphic differential operator (polynomial in μ,ν) from
C∞

n,n−M(X ) into C∞
n−M,n−M(X ). The same reasoning holds when one replaces Qu,s

by Q̃u,s with some holomorphic differential operator Ãu,s instead of Au,s . Note also
that

Q

[
ϕ

s

]

= 1

sM
A

(

ζ,
∂

∂ζ

)

[ϕ],

where A is a holomorphic differential operator from the space C∞
n−M,n−M into

C∞
n−M,n−M . The second assertion follows from the fact that, when Reμ � 1, the

(0,M)-current

|sh|2ν

s
Q∗

[
1

h
[V ]

]

is annihilated locally by (IV )conj (since Q is a holomorphic differential operator),
which remains indeed true for the current

1

s
Q∗

[
1

h
[V ]

]

=
[ |sh|2ν

s
Q∗

[
1

h
[V ]

]]

ν=0
.

This current fulfills conditions 1 and 2 in Definition 2. �

Example 2 Lemma 1 allows us to revisit Example 1, introducing possible poles. Let
X , V , E, S be as in Definition 3. Let additionally D, Δ be two Cartier divisors on
X . Let U ⊂ X and hU , sU be respectively holomorphic sections of D and Δ in U

such that s−1
U (0) ⊂ S and (V ∩ U) \ h−1

U (0) = V ∩ U . Let Q ∈ D
n,n−M
X (U,E∗,D).

Then the OX (−Δ) ⊗ E-valued current in U

T = 1

sU
Q∗

U

[ [V ∩ U ]
hU

]

belongs to CHX ,V (U ;�S,OX (−Δ) ⊗ E) as soon as QU and hU are such that the
current Q∗

U [[V ∩ U ]/hU ] is ∂-closed.

Example 2 above provides, in fact, what appears locally to be the description
of sections of Coleff–Herrera sheaves, since one has the following proposition (see
[13]):

Proposition 3 Let X be an n-dimensional complex manifold, V be an (n − M)-
purely dimensional closed analytic subset, and S be a closed hypersurface in X
such that V \ S = V . Any element T in CHX ,V (X ;�S,C) can be locally realized
in an open neighborhood Ux of x ∈ V as T = Tx/sx , where Tx is a current in
CHX ,V (Ux,C), sx ∈ OX (Ux) satisfying s−1

x (0) ∩ Ux = S ∩ Ux . This means also
that one has

T = 1

sx
Q∗

x

[
1

hx

[V ]
]

(8)
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with Qx ∈ D
n,n−M
X (Ux,C,C), hx ∈ OX (Ux), satisfying (V ∩ Ux) \ h−1

x (0) = V ∩
Ux , the current Q∗

x[[V ∩ Ux]/hx] being ∂-closed in Ux . Conversely, any (0,M)-
current T over X with support contained in V that can be locally expressed about
each point x ∈ V (in the ambient manifold X ) as (8) and is ∂-closed outside S,
belongs to CHX ,V (X ;�S,C).

Proof The second assertion follows from Lemma 1 since conditions 1, 2 in Defini-
tion 2 and (7) in Definition 3 can be checked locally. If T ∈ CHX ,V (X ;�S,C) and
x ∈ V , {σx = 0} being a reduced equation for S in an open neighborhood Ux of x

in X , one has ∂(sxT ) ≡ 0 in Ux if sx = σ
γ
x as soon as γ ∈ N exceeds strictly the

order of T in Ux . Therefore, sxT|Ux ∈ CHX ,V (Ux,C) (conditions 1, 2 in Defini-
tion 2 remain fulfilled, condition (7) in Definition 3 is now realized). One can check
immediately that

1

sx
× (sxT|Ux ) = T|Ux

(the product on the left-hand side being understood as in Lemma 1), which proves
that T can be represented as (8) in Ux . �

One can adapt the proof of Lemma 1 and Proposition 3 in order to get the fol-
lowing result.

Proposition 4 Let X , V , E be as in Definition 3. Let T ∈ CHX ,V (X ,E), Δ be a
Cartier divisor on X , equipped with a hermitian metric | |, and s be a holomorphic
section of Δ. The (0,M)-current-valued map

μ ∈ {Reμ � 1} �−→ |s|2μ

s
T

extends as a holomorphic map to {Reμ > −η} for some η > 0. Moreover, one has
that

[ |s|2μ

s
T

]

μ=0
∈ CHX ,VX \s−1(0)

(
X ;�s−1(0),OX (−Δ) ⊗ E

)
,

the current being independent of the choice of the metric on Δ. Recall that V X \s−1(0)

denotes the union of irreducible components of V that do not lie entirely in the
closed hypersurface s−1(0).

Proof Since it is sufficient to prove this proposition locally, one can assume that
T = Q∗[[V ]/h], where Q ∈ DX (X ,C), and h ∈ OX (X ) is not identically zero
on any irreducible component Vι of V which does not lie entirely in s−1(0). For
Reμ � 1, one has, since 1/h1X \s−1(0) · [V ] = 1/h[VX \s−1(0)], that

|s|2μ

s
T = |s|2μ

s
Q∗

[
1

h
[V ]

]

= |s|2μ

s
Q∗

[
1

h

[
VX \s−1(0)

]
]

.
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We now notice that s does not vanish identically on any irreducible component

of VX \s−1(0), which means VX \s−1(0) \ s−1(0) = VX \s−1(0). Proposition 4 follows
immediately from Lemma 1, combined with the second assertion in Proposition 3
(replacing V by VX \s−1(0)). �

Meromorphic E-valued Coleff–Herrera currents (with respect to V and pre-
scribed polar set on S such that V \ S = V ) induce, via the ∂ operator, elements
in CHX ,V ∩S(·,E). We present here an alternative proof (based on the analytic con-
tinuation) of a key result from [13].

Theorem 1 The ∂-operator maps CHX ,V (· ;�S,E) into CHX ,V ∩S(·,E).

Remark 1 Note that the morphism above is surjective (at the level of germs at
x ∈ V ) as soon as OX ,x/IV,x is Cohen–Macaulay [12].

Proof Since one can reduce the problem to the local situation where E is triv-
ialized, we may assume from now on that E is the trivial bundle X × C. Let
T ∈ CHX ,V (X ;�S,C). The statement in Theorem 1 amounts to check conditions 1,
2, 3 in Definition 2 locally for the current ∂T (with respect to V ∩ S). Then we can
assume (see Proposition 3) that X = U , where U = Ux is an open neighborhood of
a point x in V , T = 1/s Q∗[[V ]/h], with h, s ∈ OX (U) satisfying

(V ∩ U) \ {h = 0} = (V ∩ U) \ {s = 0} = V ∩ U,

and Q ∈ D
n,n−M
X (U,C,C) = D

n,n−M
X (U). It is clear that ∂T satisfies condition 3

since ∂
2 = 0. Since T = [|s|2μ/s Q∗[[V ]/h]]μ=0 (see Lemma 1) and Q∗[[V ]/h] is

closed (as an element in CHX ,V (U,C)), we have

∂T =
[

∂
|s|2μ

s
∧ Q∗

[
1

h
[V ]

]]

μ=0
=

[

μ|s|2μ 1

s

ds

s
∧ Q∗

[
1

h
[V ]

]]

μ=0
.

In order to prove that conditions 1 and 2 in Definition 2 hold for ∂T , it is enough to
show that, when u ∈ OX (U) does not vanish identically on any irreducible compo-
nent of V ∩ S ∩ U (that is, {s = u = 0} ∩ V is defined as a complete intersection in
V ∩ U ), the (0,M + 1)-current-valued function

(μ, ν) ∈ {Reμ � 1,Reν � 1} �−→ μ|u|2ν |s|2μ 1

s

ds

s
∧ Q∗

[
1

h
[V ]

]

(9)

extends as a holomorphic map to {Reμ > −η,Reν > −η} for some η > 0, whose
value at μ = ν = 0 is independent of u and is annihilated (as a current) by
(IV ∩S∩U)conj. Shrinking U = Ux about x, if necessary, we can assume that there

exists a holomorphic differential operator Q ∈ D
n,n−M−1
X (U,C,C) such that, for
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Reμ � 1, Reν � 1, and for any ϕ ∈ D(n,n−M−1)(U,C), the following identity
holds:

Q

[

|u|2ν |s|2μ 1

s

ds

s
∧ ϕ

]

= ds

s
∧Q

[

|u|2ν |s|2μ 1

s
ϕ

]

on Vreg.

This comes from consideration of the facts that multiplication with antiholomorphic
functions commutes with the action of holomorphic differential operators and that
Q splits as Q[ϕ] = q[ϕ] ∧ ω, where q preserves the maximal degree of differential
forms (on Vreg) in dζ , and ω ∈ Ωn−M

X (U,C). Let K be the order of Q. There exist

holomorphic differential operators As , As,u, Ãs,u in D
n,n−M−1
X (U,C,C) (the two

last ones depending also polynomially on μ and ν) such that, for any Reμ � 1,
Reν � 1, and for any ϕ ∈ D(n,n−M−1)(U,C),

Q
[

|u|2ν |s|2μ 1

s
ϕ

]

= |u|2ν |s|2μ

sK+1
As

(

ζ,
∂

∂ζ

)

[ϕ]

+ |u|2ν |s|2μ

uKsK+1

(

μAs,u

(

μ,ν, ζ,
∂

∂ζ

)

+ νÃs,u

(

μ,ν, ζ,
∂

∂ζ

))

[ϕ].

Consider the (0,M + 1)-valued maps

(μ, ν) ∈ {Reμ � 1,Reν � 1} �−→
[

μ
|u|2ν |s|2μ |h|2λ

sK+1h
Bs

]

λ=0

(μ, ν) ∈ {Reμ � 1, Reν � 1} �−→
[

μ
|u|2ν |s|2μ |h|2λ

uKsK+1h
Bs,u(μ, ν)

]

λ=0
,

(10)

where

〈Bs , ϕ〉 =
〈

[V ]red,
ds

s
∧As[ϕ]

〉

,

〈
Bs,u(μ, ν),ϕ

〉

=
〈

[V ]red,
ds

s
∧

(

μAs,u

(

μ,ν, ζ,
∂

∂ζ

)

+ νÃs,u

(

μ,ν, ζ,
∂

∂ζ

))

[ϕ]
〉

for all ϕ ∈ D(n,n−M−1)(U,C). We claim that both current-valued maps (10) ex-
tend as holomorphic maps to {Reμ > −η, Reν > −η} for some η > 0. Moreover,
the value at μ = ν = 0 of the first of these maps is annihilated (as a current) by
(IV ∩S∩U)conj, while the value at μ = ν = 0 of the second one equals 0.

Let us assume this claim for the moment and conclude the proof of the theorem.
For Reλ � 1, Reμ � 1, and Reν � 1, we have
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μ|u|2ν |s|2μ 1

s

ds

s
∧ Q∗

[ |h|2λ

h
[V ]

]

= μ
|u|2ν |s|2μ|h|2λ

sK+1h
Bs + μ

|u|2ν |s|2μ|h|2λ

uKsK+1h
Bs,u(μ, ν). (11)

Thus, the current-valued map (9), which can be rewritten because of (11) (for
Reλ � 1, Reμ � 1, Reν � 1) as

[

μ
|u|2ν |s|2μ|h|2λ

sK+1h
Bs + μ

|u|2ν |s|2μ|h|2λ

uKsK+1h
Bs,u(μ, ν)

]

λ=0
,

extends as a holomorphic function of (μ, ν) to {Reμ > −η,Reν > −η} for some
η > 0, the value at μ = ν = 0 being equal to

[[

μ
|s|2μ |h|2λ

sM+1h
Bs

]

λ=0

]

μ=0
,

which is independent of u and annihilated (as a current) by (IV ∩S∩U )conj. This
proves that ∂T fulfills conditions 1 and 2 in Definition 2.

Proving the claim clearly amounts to prove that for any positive integers σ, τ , the
(M,M + 1)-current-valued map

{Reμ � 1,Reμ � 1} �−→
[

μ
|u|2ν |s|2μ|h|2λ

uτ sσ h

ds

s
∧ [V ]

]

λ=0

extends as a holomorphic map to {Reλ > −η,Reμ > −η} for some η > 0, whose
value at μ = ν = 0 is annihilated by (IV ∩S∩U)conj. In order to do that, we need

to introduce a smooth log resolution V π→ V for the closed hypersurface W =
V ∩ {ζ ; h(ζ )s(ζ )u(ζ ) = 0} ⊂ V . That is, V is an (n − M)-dimensional complex
manifold, and π is a proper surjective holomorphic map such that the closed ana-
lytic subset W (obtained as the union of π−1(W) with the set of points in V about
which π is not a local isomorphism) is a closed hypersurface in V with normal
crossings. Such a log resolution can be obtained applying the Hironaka theorem.
Let ιV : V → X be the inclusion embedding. For any ϕ ∈ D(n−M,n−M−1)(U,C),
we can rewrite, using the properness of π and a (sufficiently refined) partition of
unity (Vι, ρι) subordinated to the support of (ιV ◦ π)∗[ϕ],

〈

μ
|u|2ν |s|2μ|h|2λ

uτ sσ h

ds

s
∧ [V ]red, ϕ

〉

as a sum of contributions of the form

μ

∫

Vι

|uιξ
γι
ι |2ν |sιξβι

ι |2μ|hιξ
αι
ι |2λ

uτ
ι s

σ
ι hιξ

τγι+σβι+αι
ι

(
dsι

sι

+
n−M∑

j=1

βι,j

dξ ι,j

ξ ι,j

)

∧ ρι(ξι)(ιV ◦ π)∗[ϕ](ξι),

(12)
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where ξι = (ξι,1, . . . , ξι,n−M) denote centered local coordinates in Vι, uι, sι, hι are
invertible functions in Vι, and ξ

γι
ι , ξ

βι
ι , ξ

αι
ι are monomial functions in the centered

coordinates (ξι,1, . . . , ξι,n−M) with respective multiexponents γι, βι, αι ∈ N
n−M .

The function

(λ,μ, ν) �−→ μ

∫

Vι

|uιξ
γι
ι |2ν |sιξβι

ι |2μ|hιξ
αι
ι |2λ

uτ
ι s

σ
ι hιξ

τγι+σβι+αι
ι

dsι

sι

∧ ρι(ξι) (ιV ◦ π)∗[ϕ](ξι) (13)

clearly extends as a holomorphic function of (λ,μ, ν) to a product of half-planes
{Reλ > −η,Reμ > −η,Reν > −η} for some η > 0, whose value at λ = μ = ν = 0
equals 0. The reason is that the singularities under the integral in (13) are only
holomorphic singularities. The same remains true if ϕ = hψ , where h ∈ IV ∩S∩U ,
since in this case any ξι,j , j = 1, . . . , n − m, such that βι,j 
= 0 divides π∗h, which
implies that all antiholomorphic singularities in the term under the integral in (12)
are thus canceled. It remains to study the meromorphic analytic continuation (as a
function of (λ,μ, ν)) of

(λ,μ, ν) �−→ μ

∫

Vι

|uιξ
γι
ι |2ν |sιξβι

ι |2μ|hιξ
αι
ι |2λ

uτ
ι s

σ
ι hιξ

τγι+σβι+αι
ι

dξ ι,j

ξ ι,j

∧ ρι(ιV ◦ π)∗[ϕ] (14)

for j ∈ {1, . . . , n−M} such that βι,j > 0. Using integration by parts, we can rewrite
(14) (when Reλ � 1, Reμ � 1, Reν � 1) as

μ

αι,j λ + βι,jμ + γι,j ν

×
∫

Vι

|uιξ
γι
ι |2ν |sιξβι

ι |2μ|hιξ
αι
ι |2λ

uτ
ι s

σ
ι hιξ

τγι+σβι+αι
ι

dξ ι,j ∧ ∂

∂ξ ι,j

(
ρι (ιV ◦ π)∗[ϕ]).

We need here to distinguish two more cases.

• If γι,j = 0, the function

(μ, ν) �−→
[

μ

∫

Vι

|uιξ
γι
ι |2ν |sιξβι

ι |2μ|hιξ
αι
ι |2λ

uτ
ι s

σ
ι hιξ

τγι+σβι+αι
ι

dξ ι,j

ξ ι,j

∧ ρι (ιV ◦ π)∗[ϕ]
]

λ=0

=
[

μ

αι,j λ + βι,jμ

×
∫

Vι

|uιξ
γι
ι |2ν |sιξβι

ι |2μ|hιξ
αι
ι |2λ

uτ
ι s

σ
ι hιξ

τγι+σβι+αι
ι

dξ ι,j ∧ ∂

∂ξ ι,j

(
ρι (ιV ◦ π)∗[ϕ])

]

λ=0

= 1

βι,j

[∫

Vι

|uιξ
γι
ι |2ν |sιξβι

ι |2μ|hιξ
αι
ι |2λ

uτ
ι s

σ
ι hιξ

τγι+σβι+αι
ι

dξ ι,j ∧ ∂

∂ξ ι,j

(
ρι (ιV ◦ π)∗[ϕ])

]

λ=0

extends as a holomorphic function to {Reμ > −η,Reν > −η} for some η > 0.
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• If γι,j > 0, one uses a primitive form of the Whitney division lemma, a clever
trick introduced by Samuelsson [27]. The hyperplane of coordinates {ξι,j = 0} ∩
Vι lies in the closed analytic set {(ιV ◦ π)∗[s] = (π ◦ ιV )∗[u] = 0} ∩ Vι, whose
image by π is included in the (n − M − 2)-dimensional closed analytic subset
of U defined as {u = 0} ∩ S ∩ V ∩ U . Since any differential form dζ I , |I | =
n−M −1, has a vanishing pullback to S∩{u = 0}∩V ∩U for dimension reasons,
the (0, n − M − 1)-differential form (ιV ◦ π)∗[dζ I ] has a vanishing pullback
to {ξι,j = 0} ∩ Vι, which means that (ιV ◦ π)∗[dζ I ](ξι) = ξ ι,j ωI (ξι) for some
(0, n−M −1)-smooth form ωI in Vι. Then ξ ι,j divides (ιV ◦π)∗[ϕ] in Vι, which
implies that antiholomorphic singularities under the integral in (14) are canceled.
Therefore, (14) extends as a holomorphic function of (λ,μ, ν) to a product of
half-planes {Reλ > −η,Reμ > −η, Reν > −η} for some η > 0.

This completes the proof of the claim and thus of the theorem. �

Proposition 4, together with Proposition 1, implies the following: if X ,V ,E,Δ, s

are given as in Proposition 4, then, for all open subsets U ⊂ X ,

∂

([ |s|2μ

s
T

]

μ=0

)

∈ CHX ,VX \s−1(0)∩s−1(0)

(
U,OX (−Δ) ⊗ E

)
(15)

whenever T ∈ CHX ,V (U,E). Note that VX \s−1(0) ∩ s−1(0) is either purely (n −
M − 1)-dimensional or empty, in which last case (15) is somehow irrelevant since
the current on the left-hand side is 0. We will need in the next section the following
result, which is by far more involved, that we formulate here without proof (see [9]
for a detailed proof).

Proposition 5 Let X ,V ,E,Δ, s be as in Proposition 4. Let S be a hypersurface in
X such that V \ S = V and T ∈ CHX ,V (X ;�S,E). The (0,M +1)-current-valued
map

ν ∈ {Reν � 1} �−→ ∂

( |s|2ν

s

)

∧ T

extends as a holomorphic function to {Reν > −η} for some η > 0. Moreover, we
have

[

∂

( |s|2ν

s

)

∧ T
]

ν=0
∈ CHX ,VX \s−1(0)∩s−1(0)

(
X ;�ΣS,s,OX (−Δ) ⊗ E

)
,

where ΣS,s denotes any closed hypersurface in a neighborhood of V in X such that

(
VX \s−1(0) ∩ s−1(0)

) \ ΣS,s = VX \s−1(0) ∩ s−1(0)

and ΣS,s ⊃ SV \s−1(0) ∩ s−1(0), SV \s−1(0) being the union of all components of S

whose intersection with V does not lie entirely in VX \s−1(0) ∩ s−1(0).
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5 Essential Intersection and Coleff–Herrera Original
Construction

Let X ,V ,E,S be as in Proposition 5. Let also Δ1 be a Cartier divisor on
X , equipped with a hermitian metric | |, and s1 be a holomorphic section of
Δ1. Propositions 4 and 5 imply that any global section T ∈ CHX ,V (X ;�S,E)

splits into the sum of an element from CH
X ,V

s
−1
1 (0)

(X ;�S,E) and an element in

CH
X ,V

X \s−1
1 (0)

(X ;�S,E). That is,

T = [(
1 − |s1|2λ1

)
T

]
λ1=0 + [|s1|2λ1T

]
λ1=0 = T|s−1

1 (0)
+ TX \s−1

1 (0)
(16)

(see also [4]). We remark that this splitting is independent of the choice of the metric
on Δ1. To be more specific, suppose that

T = 1

s
Q∗

[ [V ]
h

]

,

where s is a holomorphic section of a Cartier divisor Δ, h is a holomorphic section
of a Cartier divisor D, and Q ∈ D

n,n−M
X (X ,E∗ ⊗ OX (Δ),D) (see Examples 1

and 2). Then, for any test function in C∞
n,n−M(X ,E∗), we have

〈[(
1 − |s1|2λ1

)
T

]
λ1=0, ϕ

〉

=
[[[∫

V

|h|2μ

h
Q∗

[ |s|2ν

s

(
1 − |s1|2λ1

)
ϕ

]]

λ=0

]

μ=0

]

λ1=0

=
[[∫

V
s
−1
1 (0)

|h|2μ

h
Q∗

[ |s|2ν

s
ϕ

]]

λ=0

]

μ=0
.

Furthermore,

[

∂

( |s1|2λ1

s1

)

∧ T
]

λ1=0
=

[

∂

( |s1|2λ1

s1

)

∧ T|X \s−1
1 (0)

]

λ1=0

∈ CHX ,V1

(
X ;�Pol1,OX (−Δ1) ⊗ E

)
, (17)

where V1 stands for the closed analytic set VX \s−1
1 (0) ∩ s−1

1 (0), and Pol1 denotes
a closed hypersurface in X satisfying V1 \ Pol1 = V1. Note that (16) can be under-
stood as an analogue (at the level of meromorphic Coleff–Herrera currents) of the
gap sheaf operation in intersection theory (see, e.g., [23]), namely, the splitting of

the cycle [V ] corresponding to V as the sum [V ]s−1
1 (0) of its components whose

supports lie completely in the hypersurface s−1
1 (0), and the sum [V ]X \s−1

1 (0) of the
other ones. On the other hand, the wedge product operation (17) can be understood
as an analogue (at the level of Coleff–Herrera currents) of the proper intersection
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product between two cycles whose corresponding supports VX \s−1
1 (0) and s−1

1 (0)

intersect properly.
Given an ordered collection Δ1, . . . ,Δm of Cartier divisors, with m ≤ n − M ,

together with respective holomorphic sections s1, . . . , sm, the operation (17) can be
iterated because of the iterative process, initiated with T0 = T :

Tj+1 =
[

∂

( |sj |2λj

sj

)

∧ Tj

]

λj =0
=

[

∂

( |sj |2λj

sj

)

∧ Tj |X \s−1
j (0)

]

λj =0
, 0 ≤ j < m.

When this procedure is carried up to the end, we get

Tm ∈ CHX ,(V ∩s−1
1 (0)∩···∩s−1

m (0))ess

(

X ;�Polm,

m∧

1

OX (−Δj) ⊗ E

)

,

where V ∩ s−1
1 (0)∩ · · · ∩ s−1

m (0) = Vess[s] stands for the essential intersection (see,
e.g., [14]) of V respect to the ordered sequence of hypersurfaces s−1

1 (0), . . . , s−1
m (0).

If T0 = T0 ∈ CHX ,V (X ,E), then the current Tm is a global section of the Coleff–
Herrera sheaf CHX ,Vess[s](·,

∧m
1 OX (−Δj) ⊗ E).

One can consider as well (as in [21]) the
∧m

1 O(−Δj)-valued current Rs1,...,sm ∧
[V ] (which is ∂-closed) obtained, starting from R{ } ∧ [V ] = [V ], through the in-
ductive procedure

Rs1,...,sj+1 ∧ [V ] =
[

∂

( |sj |2λj

sj

)

∧Rs1,...,sj ∧ [V ]
]

λj =0
, 0 ≤ j < m. (18)

This point of view was introduced in a slightly different form in [14]. The authors
consider there a (p,0)-semi-meromorphic form ω on a complex space (V ,OV ),
with poles along the union of a finite number of reduced hypersurfaces S1, . . . , Sm

of V (taken in a prescribed order). They construct on (V ,OV ) an (m,p)-residue
current RS1,...,Sm [ω] with support the essential intersection (S1 ∩ · · · ∩ Sm)ess. Note
that the residual objects defined in [14] are intrinsic with respect to the complex
space (V ,OV ), that is, independent of the embedding ι : V → X . The construction
proposed here and that in [14] are of course related: besides the fact that our currents
are treated here as (M + k,M + p)-currents, 0 ≤ k ≤ m, in the ambient manifold
X instead of (m,p)-currents on the complex analytic space V , the main difference
between the two approaches is that the singularities 1/sj in (18) are isolated from
local expressions for the denominator of ω.

Consider the particular case where there exist holomorphic bundles E1, . . . ,EL

on X such that the integration current [V ] can be expressed as

[V ] =
L∑

l=1

Tl,0 ∧ ωl,

where Tl,0 ∈ CHX ,V (X ,El) and ωl ∈ Ωn−M
X (X ,E∗

l ) (which occurs, for example,
when one restricts X to some relatively compact open subset. When X is Stein and
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OX ,x/IV,x is Cohen–Macaulay about each point x ∈ V (see [3], Example 1), then
one can factorize Rs1,...,sm ∧ [V ] as

Rs1,...,sm ∧ [V ] =
L∑

l=1

Tl,m ∧ ωl, (19)

where each Tl,m is some (
∧m

1 OX (−Δj))⊗El-valued Coleff–Herrera current (with
respect to Vess[s]) which is a pole-free Colef–Herrera current. Factorization (19)
remains valid in general, but one needs to tolerate then poles in the Coleff–Herrera
sections Tl,m.

In conclusion, we claim that the results presented here (within the robust frame
of analytic continuation), together with the geometric formalism of intersection the-
ory (where the role of integration currents on cycles is played by global sections
of Coleff–Herrera sheaves), should be a starting point to pursue an approach, intro-
duced in [8], in order to attack division or duality problems with methods inspired
by those used in intersection theory.
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Right Inverses for P(D) in Spaces of Real
Analytic Functions

Dietmar Vogt

Abstract In this paper we study the question when a linear partial differential
operator P(D) with constant coefficients admits a continuous linear right inverse
in the space A(Rn) of real analytic functions on R

n (or, more generally, in A(Ω)

where Ω is a open subset of Rn). To obtain a necessary condition, we investigate
when P(D) admits solvability “with real analytic parameter” in A(Ω) and solve it
completely for convex Ω , using a different approach from the one used in Domański
(Funct. Approx. 44:79–109, 2011). To obtain a sufficient condition, we show that
the global real analytic Cauchy problem is solvable if and only if the principal part
of P(D) is hyperbolic. In this way we get a complete solution of our main problem
for A(R2) and, in the homogeneous case, for A(Ω) where Ω is the open unit ball
in R

n.

1 Introduction

Let Ω ⊂ R
n be open, and P ∈C[z1, . . . , zn]. We study the linear partial differential

operator with constant coefficients P(D1, . . . ,Dn), with Dj = −i ∂
∂xj

, acting on the
space A(Ω) of real analytic functions on Ω . We want to know when P(D) admits
a continuous linear right inverse in A(Ω).

We recall that P(D) needs not to be surjective in A(Ω) even for Ω =R
n. It had

been conjectured by De Giorgi and Cattabriga [5] and shown by Piccinini [18, 19]
that not every linear differential operator P(D) with constant coefficients is sur-
jective in A(Rn). Their examples were operators whose principal parts had a mute
variable. We study such operators in Sect. 1, and we characterize completely when
they are surjective in A(Ω ×R) for convex Ω (the last variable being assumed to be
mute), so extending results of [22]. The same characterization has been obtained in
Domański [7]. However methods and proofs there are completely different, so that it
appears useful to present our approach. Surjectivity of P(D) in A(Ω) for convex Ω
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has been characterized by Hörmander [8] in terms of a Phragmén–Lindelöf condi-
tion for plurisubharmonic functions on the zero variety of the principal part Pm(D)

of P(D). Meise, Taylor, and Vogt [13] characterized, for convex Ω , the polynomials
P such that P(D) admits a continuous linear right inverse in C∞(Ω), also in terms
of a Phragmén–Lindelöf condition on the zero variety of P . While surjectivity in
A(Ω) depends only on the principal part, the existence of right inverses in C∞(Ω)

does not, and the perturbation conditions for lower order parts are unknown up to
now. The condition for surjectivity with a mute variable, or surjectivity with param-
eter dependence, connects both. It depends only on the principal part, which has to
admit a continuous linear right inverse in C∞(Ω).

Surjectivity with parameter dependence or surjectivity in Ω ×R is, of course, a
necessary condition for the existence of a continuous linear right inverse of P(D)

in A(Ω), which yields a necessary condition depending only on the principal part.
We do not know whether the existence of a right inverse depends in fact only on the
principal part (for the ultradifferentiable case cf. [4]). In some cases, however, the
necessary condition turns out to be also sufficient. This is the case for dimension 2
and Ω = R

2. Here the necessary condition means that the principal part has to be
hyperbolic.

We then show, for arbitrary dimension, that hyperbolicity of the principal part is
equivalent to unique solvability of the global Cauchy problem in the real analytic
functions, for real analytic data. This result is interesting in its own and yields a
complete characterization of the P(D) for which there exists a continuous linear
solution operator in A(R2). Another case where the necessary condition is also suf-
ficient and we get such a characterization is the case of homogeneous operators and
Ω a bounded set with C1-boundary, for instance, the unit ball.

2 Preliminaries

Throughout the paper we denote by A(Ω) the linear space of real analytic func-
tions on the open set Ω ⊂ R

n equipped with its natural locally convex topology,
which is as well of (PDF)-type and ultrabornological (see [12]). This implies by
Grothendieck’s (or de Wilde’s) open mapping theorem that any continuous linear
surjective map from A(Ω) to A(Ω) is open.

We will use the following condition HPL(Ω, loc) introduced in Hörmander [8].
K (Ω) denotes the convex, compact subsets of Ω , and PSH(W) the plurisubhar-
monic functions on a complex variety W . For any compact convex set K ⊂ R

p , we
denote by hK(x) := sup{〈x, ξ 〉 : ξ ∈ K}, x ∈ R

p , the support function of K .
Let V be the germ of a complex variety at ξ ∈ R

n. V satisfies HPL(Ω, loc) if
there are open sets U1 � U2 � U3 �C

n with ξ ∈ U1 such that for each K ∈ K (Ω),
there exists K ′ ∈ K (Ω) and δ > 0 such that each u ∈ PSH(U3 ∩ V ) satisfying (α)
and (β) also satisfies (γ ), where

(α) u(z) ≤ hK(Im z) + δ, z ∈ U3 ∩ V ,
(β) u(z) ≤ 0, z ∈ U2 ∩R

n ∩ V ,
(γ ) u(z) ≤ hK ′(Im z), z ∈ U1 ∩ V .
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For detailed information on this and other related Phragmén–Lindelöf conditions,
we refer to [8] and [16]. For unexplained notation and results on partial differential
equations, we refer to [9].

3 Solvability with Real Analytic Parameter

We will use the following notation: For P ∈C[z1, . . . , zn], we set P + = P , consid-
ered as a polynomial in C[z1, . . . , zn+1], and for open Ω ⊂ R

n, we consider P +(D)

as acting in A(Ω+) where Ω+ = Ω ×R.
We say that P(D) is solvable in A(Ω) with real analytic parameter if P +(D) :

A(Ω+) −→ A(Ω+) is surjective. Solvability in A(Ω) with real analytic parame-
ter has been investigated in a different context in [22], and a characterization for
Ω = R

n was given there. A complete characterization has been given in Domański
[7]. Many results of this section, in particular, Theorem 1 can be found also there.
However our approach and the methods of proof are entirely different.

Various kinds of parameter dependence in different spaces have also been studied
recently in Bonet–Domański [1, 2]. Real analytic parameter-dependence in D ′(Ω)

has been studied and characterized in Domański [6].
The following lemma improves the necessary condition in [22, Proposition 3.1].

Lemma 1 If Ω ⊂ R
n is convex and P +(D) surjective in A(Ω+), then Pm(D) has

a right inverse in C∞(Ω).

Proof Let V = {z ∈ R
n : Pm(z) = 0} be the zero variety of Pm, and V + = V × R

the same for P +
m . By [16, Theorem 3.3], it suffices to show that V satisfies HPL(Ω ,

loc) at zero, and, by [8, Lemma 4.1], we have at our disposal HPL(Ω+, loc) at any
point ξ0 ∈ V + ∩R

n+1 with |ξ0| = 1. We apply it to ξ0 = (0, . . . ,0,1) ∈ R
n+1. We

find 0 < r1 < r2 < r3 and for every K ∈ K (Ω), a K ′ ∈ K (Ω+) and δ > 0 such
that each u ∈ PSH(U+

3 ∩ V +) satisfying (a) and (b) also satisfies (c), where

(a) u(z) ≤ hK×{0}(Im z) + δ, z ∈ U+
3 ∩ V +,

(b) u(x) ≤ 0, x ∈ U+
2 ∩R

n+1 ∩ V +,
(c) u(z) ≤ hK ′(Im z), z ∈ U+

1 ∩ V +.

We have set U+
j = {z ∈ C

n+1 : |z − ξ0| < rj } and put Uj = {z ∈ C
n : |ζ | < rj }. We

remark that hK×{0}(x) = hK(x1, . . . , xn) for x ∈R
n+1.

Let now u be a plurisubharmonic function on U3 ∩ V , and u+ be the same func-
tion acting on U+

3 ∩V +. Notice that for (z1, . . . , zn+1) ∈ U+
3 , we have (z1, . . . , zn) ∈

U3. We assume that

(α) u(z) ≤ hK(Im z) + δ, z ∈ U3 ∩ V ,
(β) u(x) ≤ 0, x ∈ U2 ∩R

n ∩ V .

Then u+ satisfies (a) and (b) and, hence, (c). For z ∈ U1, we set z̃ = (z1, . . . , zn,1).
Then z̃ ∈ U+

1 , and we have
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(γ ) u(z) = u+(z̃) ≤ hK ′(Im z̃) = hK ′′(Im z),

where K ′′ = πK ′ and π : (x1, . . . , xn+1) �→ (x1, . . . , xn). Clearly K ′′ �Ω . �

For convex Ω , we obtain a complete characterization of differential polynomials
P(D) which admit solvability with a real analytic parameter. The same characteri-
zation has been given by a different method in Domański [7, Theorem 6.1].

Theorem 1 For convex Ω , the following are equivalent:

1. P +(D) is surjective in A(Ω+).
2. Pm(D) : C∞(Ω) −→ C∞(Ω) admits a continuous linear right inverse.

Proof One implication is Lemma 1, the other is [22, Proposition 3.2]. �

If we take into account [16, Corollary 3.14], we get as a special case for Ω = R
n

[22, Theorem 3.4].

Theorem 2 For n > 1, the following are equivalent:

1. P +(D) is surjective in A(Rn+1).
2. Pm(D) is surjective in A(Rn), and Pm has no elliptic factor.

As an immediate consequence of Theorem 1, we obtain the following:

Corollary 1 If Pm(z) = Pm(z1, . . . , zp) with 1 ≤ p < n, then the following are
equivalent:

1. P(D) is surjective in A(Rn).
2. Pm(D1, . . . ,Dp) : C∞(Rp) −→ C∞(Rp) admits a continuous linear right in-

verse.

Since by a theorem of Grothendieck elliptic Pm(D1, . . . ,Dp) : C∞(Rp) −→
C∞(Rp) for p ≥ 2 never admits a continuous linear right inverse (see Trèves [20,
Theorem C.1]), this explains the examples of Di Giorgi, Cattabriga, and Piccinini.
A somewhat more general formulation is the following:

Theorem 3 If there is N 
= 0 in R
n such that Pm(z +λN) does not depend on λ for

all z ∈ R
n, then the following are equivalent:

1. P(D) is surjective in A(Rn).
2. Pm(D) : C∞(Rn) −→ C∞(Rn) admits a continuous linear right inverse.

Proof By a linear transformation, we may assume that N = en, and the re-
sult follows from Corollary 1. Assertions 2 in both results are then seen to be
equivalent, because Pm(D) = Pm(D1, . . . ,Dn−1) ⊗ idC∞(R) acting on C∞(Rn) =
C∞(Rn−1)̂⊗C∞(R). �
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By use of a theorem of Langenbruch [11], for general open Ω ⊂ R
n (conditions

for this case see [10]), we obtain the following:

Corollary 2 If P satisfies the assumptions of Theorem 3, Ω ⊂ R
n is open, and

P(D) is surjective in A(Ω), then Pm(D) : C∞(Rn) −→ C∞(Rn) admits a contin-
uous linear right inverse.

Proof By [11] P(D) is surjective in A(Rn), and we can apply Theorem 3. �

We will need it in the following more special version:

Lemma 2 If n > 1, Ω ⊂ R
n is open, and P(D) is surjective in A(Ω+), then Pm(D)

has no elliptic factor.

Proof By [11] P +(D) is surjective in A(Rn+1), and we can apply Theorem 2. �

4 Right Inverses in A(Ω): Necessary Condition

We begin with a simple observation:

Lemma 3 If P(D) has a right inverse in A(Ω), then P +(D) is surjective in
A(Ω ×R).

Proof If we identify A(Ω × R) ∼= A(Ω)̂⊗A(R), then P +(D) corresponds to
P(D) ⊗ idA(R), which has R ⊗ idA(R) as a right inverse, where R is a continuous
linear right inverse for P(D). In particular, P +(D) is surjective. �

Lemma 3 and Lemma 2 together imply the following:

Proposition 1 Let n > 1 and Ω ⊂ R
n open. If P(D) : A(Ω) −→ A(Ω) admits a

continuous linear right inverse, then Pm has no elliptic factor.

For convex Ω , we can use Theorem 1 to sharpen the necessary criterion.

Proposition 2 Let n > 1 and Ω ⊂ R
n open and convex. If P(D) : A(Ω) −→

A(Ω) admits a continuous linear right inverse, then so does Pm(D) : C∞(Ω) −→
C∞(Ω).

Homogeneous polynomials admitting a continuous linear right inverse in C∞(Ω)

are carefully studied in [13]. In the following case we get a sharp criterion and even
a complete characterization:

Proposition 3 Let n > 1, and let Ω ⊂ R
n be open, convex, and bounded with C1-

boundary. If P(D) : A(Ω) −→ A(Ω) admits a continuous linear right inverse, then
Pm is, up to a constant factor, a product of real linear forms.
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Proof This follows from Proposition 2 and [13], Theorem 3.8. �

Example 1 If Ω is the unit ball in R
d and P is homogeneous, then the following

are equivalent:

1. P(D) admits a continuous linear right inverse in A(Ω).
2. P +(D) is surjective in A(Ω+).
3. P(D) admits a continuous linear right inverse in C∞(Ω).
4. P is, up to a constant factor, a product of real linear forms.

The only thing to prove is 4 ⇒ 1. But this is done just by integration. We must
construct a right inverse only for P being a real linear form L, which we may assume
to be L(x) = x1. Then f �→ ∫ x

0 f (ξ, x2, . . . , xd) dξ is a right inverse.

5 Operators with Hyperbolic Principal Part

The existence of a right inverse of P(D) in A(Ω) depends in all cases treated up to
now only on the principal part Pm(D). Therefore it may be of interest to mention
that also “hyperbolicity” in the sense of global existence and uniqueness for the
Cauchy problem follows from and is even equivalent to the hyperbolicity of the
principal part, and in this case the right inverse can be given in a very explicit way.

We will consider P(D) as acting not only in A(Ω) but also in C∞(Ω) and in the
Gevrey classes γ (s)(Ω) for s > 1 defined as follows:

γ (s)(Ω)

= {

f ∈ C∞(Ω) : ∀K �Ω,ε > 0 ∃C ∀α,x ∈ K : ∣∣f (α)(x)
∣

∣ ≤ Cε|α|(|α|!)s}
.

Here α = (α1, . . . , αn) ∈ N
n
0 and |α| = ∑

αj . γ (s)(Ω) is a Fréchet space equipped
with the seminorms

‖f ‖n = sup
x∈Kn

α

∣

∣f (α)(x)
∣

∣

n|α|

(|α|!)s ,

where Kn runs through a compact increasing exhaustion of Ω . For convenience, we
set γ (+∞)(Ω) = C∞(Ω).

Let us remark that γ (s)(Ω) = E(ω)(Ω) with ω(t) = t1/s in the sense of Braun–
Meise–Taylor [3].

We set γ
(s)
0 (Rn) = γ (s)(Rn) ∩ D(Rn) equipped with its natural (LF)-topology.

P is called γ (m/m−1)-hyperbolic with respect to N if there are fundamental so-

lutions E± ∈ γ
(m/m−1)

0

′
(Rn) of P(D) with support in the cones

H± = {

x | 〈x,±N〉 > 0
} ∪ {0}.

From [15, Proposition 2.12] and [9, Theorem 12.7.5] we obtain the following:
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Proposition 4 If Pm is hyperbolic with respect to N , then

1. P is γ (m/m−1)-hyperbolic with respect to N .
2. The Cauchy problem in Proposition 5 is uniquely solvable in γ (m/m−1)(Rn) for

all data g ∈ γ (m/m−1)(Rn) and f0, . . . , fm−1 ∈ γ (m/m−1)(Rn−1).

We use it to show the unique solvability of the Cauchy problem in A(Rn).

Proposition 5 Let N = e1 and set x = (x1, x
′). If Pm is hyperbolic with respect to

N , then the Cauchy problem

P(D)f = g,
∂k

∂xk
1

f
(

0, x′) = fk

(

x′), k = 0, . . . ,m − 1,

is uniquely solvable for all g ∈ A(Rn) and f0, . . . , fm−1 ∈ A(Rn−1) with f ∈
A(Rn).

Proof Since the assumption implies, by [8, Theorem 6.5], that P(D) : A(Rn) →
A(Rn) is surjective, it is easily seen that we may assume that g = 0. Since
f0, . . . , fm−1 ∈ γ (m/m−1)(Rn−1), there is, by assumption and Proposition 4, a
unique solution f ∈ γ (m/m−1)(Rn) of the Cauchy problem.

Due to the Cauchy–Kowalewski theorem, this solution is real analytic in a neigh-
borhood U of {0} ×R

n−1.
Let x ∈ R

n, x1 > 0. We choose φ ∈ γ (m/m−1)(Rn) such that φ ≡ 1 in a neighbor-
hood of 0 and supp (φ2 − φ) ⊂ x − V , where V = U ∩ {ξ | |ξ1| < x1}. Using the

fundamental solution E+ ∈ γ
(m/m−1)

0

′
(Rn), which exists by Proposition 4, we set

T = φE+ and P(D)T = δ − S.

Then suppS ⊂ x − V and suppT ⊂ H+ ∩ suppφ. We obtain

0 = (

P(D)f
) ∗ T = f ∗ (

P(D)T
) = f − S ∗ f,

i.e., f (ξ) = Sy(f (ξ − y)) for all ξ .
For y ∈ suppS, we have x − y ∈ V , and the same holds for all ξ in a neigh-

borhood of x. Therefore f is real analytic in a neighborhood of x. An analogous
argument applies for x1 < 0. �

Theorem 4 If Pm is hyperbolic, then P(D) admits a continuous linear right inverse
in A(Rn).

Proof Let Pm be hyperbolic with respect to N . We may assume that N = e1. We set
R(g) := f where f is the unique solution of the Cauchy problem in Proposition 5
with f0 = · · · = fm−1 = 0. R is clearly a linear right inverse for P(D); it is con-
tinuous because the inverse of the “Cauchy map” χ is continuous (see the proof of
Proposition 6). �
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Proposition 6 If the Cauchy problem

P(D)f = 0,
∂k

∂xk
1

f
(

0, x′) = fk

(

x′), k = 0, . . . ,m − 1,

is uniquely solvable for all f0, . . . , fm−1 ∈ A(Rn−1) with f ∈ A(Rn), then Pm(D)

is hyperbolic with respect to e1.

Proof For x ∈ R
n, we set again x = (x1, x

′). Let χ be the “Cauchy map”
A(Rn) −→ A(Rn−1)m, i.e.,

χ(ϕ) = (

ϕ
(

0, x′), ϕ′(0, x′), . . . , ϕ(m−1)
(

0, x′)),

where all derivatives are taken with respect to the first variable. By assumption,
χ is surjective, hence bijective, and therefore, due to the de Wilde–Grothendieck
theorem, a topological isomorphism.

We consider the functions ϕζ (x) := eixζ , ζ = ξ + iη ∈ C
n, P(ζ ) = 0. Then

χ(ϕζ ) = (

ϕζ

(

0, x′), iζ1ϕζ

(

0, x′), . . . , (iζ1)
m−1ϕζ

(

0, x′))

= ϕζ

(

0, x′)(1, iζ1, . . . , (iζ1)
m−1).

Since χ−1 is continuous, we have the following estimates for ϕζ , P(ζ ) = 0:

∀r ∃R ∀ε > 0 ∃δ > 0,C : ‖ϕζ ‖r,δ ≤ C
∥

∥χ(ϕζ )
∥

∥

R,ε
,

where

∥

∥ϕζ (·)
∥

∥

r,δ
= sup

|x|≤r
|y|≤δ

e−yξ−xη = er|η|+δ|ξ |,

∥

∥ϕζ (0, ·)∥∥
R,ε

= sup
|x′|≤r

|y′|≤ε

e−y′ξ ′−x′η′ = eR|η′|+ε|ξ ′|.

Therefore, taking in A(Rn−1)m the maximum of the “norms,” we have, for
P(ζ ) = 0,

∥

∥χ(ϕζ )
∥

∥

R,ε
= (

1 + |ζ |)m−1
eR|η′|+ε|ξ ′|.

With the quantifiers as above and c = logC, we obtain

r|η| + δ|ξ | ≤ c + (m − 1) log
(

1 + |ζ1|
) + R

∣

∣η′∣
∣ + ε

∣

∣ξ ′∣
∣.

Looking for the solutions of P(ζ ) = 0 for real ζ ′, i.e., η′ = 0, and choosing r = 1,
we obtain, for every ε > 1, a Cε such that

|η1| ≤ Cε + (m − 1) log
(

1 + |ζ1|
) + ε

∣

∣ξ ′∣
∣,



Right Inverses for P (D) in Spaces of Real Analytic Functions 361

which implies

|η1| − (m − 1) log
(

1 + |η1|
) ≤ Cε + (m − 1) log

(

1 + |ξ1|
) + ε

∣

∣ξ ′∣
∣

and, for large |η1|,
1

2
|η1| ≤ Cε + (m − 1) log

(

1 + |ξ1|
) + ε

∣

∣ξ ′∣
∣. (1)

Assume that there are ξ ∈ R
n and η ∈ R such that Pm(ξ + iηe1) = 0. We set

g(z) = Pm(ξ + i(η + z)e1) for z ∈C. Since g(0) = 0 and g 
≡ 0, there is k such that
g(z) = zkg0(z) and |g0(z)| ≥ A > 0 in a neighborhood Ur(0).

Now t−mP (t (ξ + i(η + z)e1)) = g(z) + h(z), where |h(z)| ≤ M
t

for z in Ur(0)

and all t > 0. We apply the theorem of Rouché for large t to the disc Uρ(0) with ρ =
Ct−1/k , where C is chosen such that ACk > M , and obtain zt with |zt | ≤ Ct−1/k

such that, for ζt = t (ξ + i(η + zt )e1), we have P(ζt ) = 0.
We assume now η 
= 0 and apply inequality (1) with ε > 0 such that ε |ξ ′| < 1

2 |η|
to ζt for large t . Then instead of η1, we have Im(it (η + zt )), and we can estimate

∣

∣Im
(

it (η + zt )
)∣

∣ = t |η + Rezt | ≥ t
(|η| − |zt |

) ≥ t
(|η| − Ct−1/k

)

.

Instead of ξ1, we have t (ξ1 − Imzt ) and the estimate
∣

∣t (ξ1 − Imzt )
∣

∣ ≤ t
(|ξ1| + Ct−1/k

)

.

So (1) takes for all large enough t the form

t

2

(|η| − Ct−1/k
) ≤ Cε + (m − 1) log

(

t
(|ξ1| + Ct−1/k

)) + ε
(∣

∣ξ ′∣
∣t

)

.

Dividing by t and letting t → +∞, we get a contradiction to the choice of ε. Hence,
η has to be zero. �

Notice that solvability of the Cauchy problem above for all data implies that e1
is noncharacteristic, hence the uniqueness of a solution. We obtain the following:

Theorem 5 The following are equivalent:

1. The Cauchy problem in Proposition 5 (“inhomogeneous Cauchy problem”) is
(uniquely) solvable for all data.

2. The Cauchy problem in Proposition 6 (“homogeneous Cauchy problem”) is
(uniquely) solvable for all data.

3. Pm is hyperbolic with respect to e1.

6 Case of n = 2

We may use this to prove a complete characterization for n = 2. We assume Ω to
be open in R

2.
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Lemma 4 If n = 2 and P +(D) is surjective in A(Ω+), then Pm is, up to a constant
factor, the product of real linear forms.

Proof Pm decomposes into irreducible factors, as follows:

Pm(z1, z2) = Az
m1
2

m2
∏

μ=1

(z1 + aμz2),

where A ∈ C, a1, . . . , am2 ∈ C, and m1 + m2 = m. If aμ ∈ C \R, then D1 + aμD2
is elliptic, which, by Lemma 2, cannot occur. �

We arrive at the theorem:

Theorem 6 For n = 2, the following are equivalent:

1. P(D) admits a continuous linear right inverse in A(Ω) for some open con-
vex Ω .

2. P(D) admits a continuous linear right inverse in A(R2).
3. P +(D) is surjective in A(R3).
4. Pm is, up to a constant factor, the product of real linear forms.

Proof 2 ⇒ 1 is obvious, 1 ⇒ 4 follows from Lemmas 3 and 4, 2 ⇒ 3 is Lemma 3,
and 3 ⇒ 4 is Lemma 4. It remains to prove 4 ⇒ 2. We notice that Pm(D) is hyper-
bolic, even with respect to every noncharacteristic direction. Theorem 4 then gives
the result. �

Example 2 Consider the polynomial P(x, t) = x2 +it ∈ C[x, t]. Then P(Dx,Dt ) =
∂/∂t − ∂2/∂x2 is the heat operator in one space dimension. By Theorem 6 it admits
a continuous linear right inverse in A(R2), while it does not admit such an inverse
in C∞(R2), since it is hypoelliptic (see [21, Theorem 3.3] or [13, Corollary 2.11]).

7 Case of Convex Ω with Boundary

In this section we return to the case handled in Proposition 2 and Example 1. We
collect the information we have up to now in the following theorem:

Theorem 7 If Ω ⊂ R
n, n > 1, is a bounded, open, and convex set with C1-

boundary, then the following are equivalent:

1. P +(D) is surjective in A(Ω+).
2. Pm(D) admits a continuous linear right inverse in C∞(Ω).
3. Pm is proportional to a product of real linear forms.
4. P(D) is γ (m/m−1)-hyperbolic in every noncharacteristic direction.
5. P(D) admits a continuous linear right inverse in γ (m/m−1)(Ω).
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6. P +(D) admits a continuous linear right inverse in γ (m/m−1)(Ω+).
If P is homogeneous, then the following is also equivalent:

7. P(D) admits a continuous linear right inverse in A(Ω).

Proof 1 ⇒ 2. This is Lemma 1.
2 ⇒ 3 follows from [13, Theorem 3.8].
3 ⇒ 4. Since Pm is hyperbolic in every noncharacteristic direction, this follows
from Proposition 4.
4 ⇒ 5 follows from [14, Theorem 4.6].
5 ⇒ 6 follows by obvious tensor argument, or also from [14, Theorem 4.6], since 5
implies 3, and 3 implies 3 for P +

m .
6 ⇒ 1 follows from [14, Corollary 5.11].
7 ⇒ 1 is always true, as follows from Lemma 3.
Let now P be homogeneous.
3 ⇒ 7. We have only to show that a real differential operator of order 1 has a
continuous linear right inverse in A(Ω). We may assume that P(D) = ∂/∂x1.
We act in a similar way as in the proof of Example 1. Set ω = {x′ ∈ R

n−1 :
exists x1 with (x1, x

′) ∈ Ω} and for x′ ∈ ω, let ]γ1(x
′), γ2(x

′)[= {x1 : (x1, x
′) ∈

Ω}. We put γ̃ = 1
2 (γ1 + γ2). Then γ̃ ∈ C(ω). By Whitney’s approximation the-

orem (see [17, Theorem 1.6.5]) we find γ ∈ A(ω) such that |γ (x′) − γ̃ (x′)| <
1
2 (γ1(x

′) − γ2(x
′)) for all x′ ∈ ω. Then x′ �→ (γ (x′), x′) is a real analytic section

of ω to Ω , and f �→ ∫ x1
γ (x′) f (ξ, x′)dξ is a continuous linear right inverse. �

The author wants to thank P. Domański for suggesting the use of Whitney’s ap-
proximation theorem in 3 ⇒ 7, which led to a considerable improvement of the au-
thor’s original statement, where real analyticity of the boundary had been assumed.
We have even:

Remark 1 3 ⇒ 7 in Theorem 7 holds for any convex, open, and bounded Ω .

We can formulate the last part also in the following way:

Theorem 8 If Ω is bounded and convex with C1-boundary, then the only noncon-
stant irreducible homogeneous differential operators P(D) which admit a continu-
ous linear right inverse are, up to a factor, directional derivatives of order one.

We end the paper by two more special cases. First we assume that Ω ⊂ R
n and

ω ⊂ R
n−1 are convex and open and {0} × ω ⊂ Ω ⊂ R× ω. So Ω may, for instance,

be the open unit ball.
We obtain the following analogue to Proposition 5. For some of the tools we will

be using, we refer to the proof of Proposition 5.

Proposition 7 Assume that Pm(x) = xm
1 . Then the Cauchy problem

P(D)u = 0,
∂k

∂xk
1

f
(

0, x′) = fk

(

x′), k = 0, . . . ,m − 1,

is uniquely solvable for all f0, . . . , fm−1 ∈ A(ω) with u ∈ A(R× ω).
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Proof Due to the Cauchy–Kowalewski theorem, we find an open neighborhood
W ⊃ {0} × ω in R

n and u0 ∈ A(W) which solves the Cauchy problem. We choose
ϕ ∈ γ (m/m−1)(Ω) with suppϕ ⊂ W such that {x : ϕ(x) = 1} contains a neighbor-
hood of {0} × ω.

Then w := P(D)(ϕu0) ∈ γ (m/m−1)(R× ω), suppw ⊂ W , and w ≡ 0 in a neigh-
borhood of R×ω. By the assumption and [15, Corollary 2.11] there are fundamental
solutions E+ and E− with supports in [0,+∞) × {0} and (−∞,0] × {0}, respec-
tively. By decomposition of w in an “upper” and a “lower” part, convolution with
E+ or E−, and putting the results again together, we obtain v ∈ γ (m/m−1)(R × ω)

with P(D)v = w and v ≡ 0 in a neighborhood of {0} × ω.
We set now u := u0 − v and obtain a solution in γ (m/m−1)(R×ω) of the Cauchy

problem such that u is real analytic in a neighborhood of {0} × ω. Now we proceed
like in the proof of Proposition 5, using E+ and E−. �

In the following we set N(X) = {f ∈ A(X) : P(D)f = 0} for any open subset
X ⊂ R

n.

Theorem 9 Under the assumptions of Proposition 7, we obtain:

1. The restriction map N(R× ω) → N(Ω) is surjective.
2. N(Ω) is complemented in A(Ω).
3. P(D) has a continuous linear right inverse in A(Ω).

Proof f → u(f ), where u(f ) is the unique solution of the Cauchy problem of

Proposition 7 with fk(x
′) = ∂k

∂xk
1
f (0, x′), is a continuous linear extension operator

N(Ω) → N(R×ω). This proves 1. Composition with the restriction A(R) → A(Ω)

gives the required projection to prove 2. Now P(D) is surjective in A(Ω), which
follows from an easy evaluation of the Phragmén–Lindelöf condition in [8], or from
our Remark 1 together with the fact that surjectivity depends only on the principal
part (see [8]). Then it is also open (see the Preliminaries). Together with 2, this
shows 3. �

Example 3 If Ω = {(t, x) ∈ R
2 : t2 + x2 < 1} is the open unit ball in R

2, then the
heat operator ∂/∂t − ∂2/∂x2 has a continuous linear right inverse in A(Ω).

Finally, we consider the case of a noncharacteristic half-space.

Theorem 10 Let Ω = {x : 〈x,N〉 < γ }, where Pm(N) 
= 0. Then the following are
equivalent:

1. P(D) admits a continuous linear right inverse in A(Ω).
2. Pm is hyperbolic with respect to N .

Proof If 1 is given, then, by Proposition 2, Pm(D) admits a continuous linear right
inverse in C∞(Ω), and therefore, by [13, Proposition 3.2], Pm(D) is hyperbolic
with respect to N .
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To prove the converse, we may assume that N = e1 and Ω = {x : x1 < 1}. The
map which assigns to every f ∈ A(Ω) the restriction to Ω of the unique solution
u ∈ A(Rn) of the Cauchy problem

P(D)u = 0,
∂k

∂xk
1

u
(

0, x′) = ∂k

∂xk
1

f
(

0, x′), k = 0, . . . ,m − 1,

is a continuous projection in A(Ω) onto N(Ω). Since, by [13, Proposition 3.2] and
[13, Proposition 4.12], P(D) is surjective in A(Ω), we obtain, like in the proof of
Theorem 9, assertion 1. �
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Averaging Residue Currents
and the Stückrad–Vogel Algorithm

Alain Yger

Abstract Trace formulas (Lagrange, Jacobi–Kronecker, Bergman–Weil) play a
key role in division problems in analytic or algebraic geometry (including arith-
metic aspects, see, for example, Berenstein and Yger in Am. J. Math. 121(4):723–
796, 1999). Unfortunately, they usually hold within the restricted frame of complete
intersections. Besides the fact that it allows one to carry local or semi-global an-
alytic problems to a global geometric setting (think about Crofton’s formula), av-
eraging the Cauchy kernel (from C

n \ {z1 . . . zn = 0} ⊂ P
n(C)), in order to get the

Bochner–Martinelli kernel (in C
n+1 \ {0} ⊂ P

n+1(C) = C
n+1 ∪ P

n(C)), leads to
the construction of explicit candidates for the realization of Grothendieck’s duality,
namely BM residue currents (Passare et al. in Publ. Mat. 44:85–117, 2000; Anders-
son in Bull. Sci. Math. 128(6):481–512, 2004; Andersson and Wulcan in Ann. Sci.
École Norm. Super. 40:985–1007, 2007), extending thus the cohomological incar-
nation of duality which appears in the complete intersection or Cohen–Macaulay
cases. We will recall here such constructions and, in parallel, suggest how far one
could take advantage of the multiplicative inductive construction introduced by Col-
eff and Herrera (Lecture Notes in Mathematics, vol. 633, Springer, Berlin, 1978), by
relating it to the Stückrad–Vogel algorithm developed in Stückrad and Vogel (Queen
Pap. Pure Appl. Math. 61:1–32, 1982), Tworzewski (Ann. Pol. Math. 62:177–191,
1995), Andersson et al. (arXiv:1009.2458, 2010) toward improper intersection the-
ory. Results presented here were initiated all along my long-term collaboration with
Carlos Berenstein. To both of us, the mathematical work of Leon Ehrenpreis cer-
tainly remained a constant and very stimulating source of inspiration. This presen-
tation relies also deeply on my collaboration over the past years with M. Andersson,
H. Samuelsson, and E. Wulcan in Göteborg.
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1 Coleff–Herrera Residue Currents for Complete Intersections
and the Transformation Law

Let X be an n-dimensional (ambient) complex manifold, and V ⊂ X be a closed
analytic subset with pure codimension M , equipped with its structure sheaf OV =
OX /IV , where IV,x = {hx ∈ OX ,x;hx = 0 on Vx}. Let [V ] be the integra-
tion current on the complex subspace (V ,OV ). Let Δ1, . . . ,Δm be m ≤ n − M

Cartier divisors on X , with respective holomorphic global sections s1, . . . , sm, such
that for all x ∈ V ∩ ⋃m

j=1 s−1
j (0), the germs (s1,x , . . . , sm,x) define a regular se-

quence in OV,x . We denote as OV [s] the ideal sheaf of OV obtained as the im-
age of

⊕m
j=1 OV (−Δj) by the interior product with (s1, . . . , sm). Note that, if

the closed hypersurfaces s−1
j (0), j = 1, . . . ,m, intersect properly on V (that is,

dim(V ∩ ⋂m
j=1 s−1

j (0)) ≤ n − M − m) or, equivalently, define a complete inter-
section on V , the required condition holds, provided that the ambient manifold X is
replaced by some convenient neighborhood U of V ∩ s−1(0) := V ∩⋂m

j=1 s−1
j (0).

What seems to be today the most robust approach toward the so-called Coleff–
Herrera current

∧m
j=1 ∂(1/sj ) ∧ [V ] (originally introduced by Coleff and Herrera

in their pioneer work [13]) is the following result (initially obtained in [9] for m = 2,
then finally extended by Samuelsson [28] for arbitrary m).

Theorem 1 (Robust approach to the Coleff–Herrera residue current attached to a
complete intersection) In the above context, for any choice of C∞ metrics | |j on
the line bundles OX (Δj ), the holomorphic

⊕m
r=0

⊕
1≤j1<···<jr≤m

′D(M,M+r)(X ,
∧r

l=1 OX (−Δjl
))-valued map

(λ1, . . . , λm) ∈ {λ; Reλj > 1, j = 1, . . . ,m}


−→
[

1∧

j=m

(

1 − |sj |2λj

j + 1

2iπ
∂

( |sj |2λj

j

sj

))]

∧ [V ] (1)

can be analytically continued as a holomorphic map to a product of half-
spaces {Reλj > −η} for some η > 0. Its value at λ = 0 coincides with its
′DM,M+r (X ,

∧m
j=1 OX (−Δj))-component and defines a ∂-closed bundle-valued

current, which is independent of the metrics | |j , j = 1, . . . ,m. This current, sup-
ported by V ∩ s−1(0), is denoted as

∧m
j=1 ∂(1/sj ) ∧ [V ]. Considered as a ∂-closed

current on the complex space (V ,OV ), it is locally annihilated by any local section
of the ideal sheaf OV [s]. Moreover, when V = X , it realizes the local duality with
respect to the ideal sheaf OX [s], namely

(

hx ·
m∧

j=1

∂(1/sj ) = 0

)

⇐⇒ (
hx ∈ (OX [s])

x
= (s1,x , . . . , sm,x)OX ,x

)
. (2)

The intimate relationship between the sheaf of differential operators with mero-
morphic coefficients and the local description of such a current arises from the fol-
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lowing remark, which refers to the sheaves of Coleff–Herrera currents (here bundle-
valued, holomorphic or meromorphic, see [32]) introduced by Björk [11], together
with their companion local structure theorems (see [11], or also [32] for a survey
in this volume). The current

∧m
j=1 ∂(1/sj ) ∧ [V ] splits locally about each point

of its support V ∩ s−1(0) as Tx ∧ ωx , where Tx is a local section of the Coleff–
Herrera sheaf CHX ,V ∩s−1(0)(·; �Sx,

∧m
j=1 OX (−Δj)), and ωx is a local section of

ΩM+m
X (·,∧m

1 OX (Δj )). Here Sx denotes a germ of hypersurface at x polar re-

spect to Vx ∩ s−1
x (0), i.e., (Vx ∩ s−1

x (0)) \ Sx = Vx ∩ s−1
x (0). Moreover, when V is

Cohen–Macaulay about x0 ∈ V ∩ s−1(0) (that is, OV,x0 is Cohen–Macaulay), the
integration current [V ] factorizes about x0 as τx0 ∧ �x0 , where �x0 is a local sec-
tion of the Coleff–Herrera sheaf CHX ,V , and �x0 is a section of the sheaf ΩM

X (see
[4]), which implies in this particular case that one can take about x0 the current
section Tx0 to be a local section Tx0 of CHX ,V ∩s−1(0)(·,

∧m
1 OX (−Δj)) instead of

CHX ,V ∩s−1(0)(·; �Sx0 ,
∧m

1 OX (−Δj)). This occurs in particular when V is defined
as a reduced complete intersection about the point x0.

Remark 1 Theorem 1 provides a robust approach (via analytic continuation) toward
the Coleff–Herrera residue current for complete intersections on a purely dimen-
sional analytic set (V ,OV ), as developed in [13]. It is important here to point out
that one may replace in (1) the integration current [V ] by any global section of
the Coleff–Herrera sheaf CHX ,V (·,E), where E denotes a finite-rank holomorphic
bundle over X . When m ≤ M , the first assertion in Theorem 1 remains valid under
the complete intersection hypothesis about the sj ’s on V , which provides some kind
of robustness for multiplicative residue calculus involving Coleff–Herrera currents
(see, for example, Proposition 3 below). The proof can be carried in a way similar to
that in [28], taking advantage of the wedge product operation introduced in [12] (see
also [32]). Be careful however that the definition of the sheaf CHX ,V (·,E), whose
global sections are (0,M) E-valued currents in the ambient manifold X with sup-
port lying in V , depends on the embedding V ⊂ X . Nevertheless, Remark 1 will
be important with respect to the role of such Coleff–Herrera residue currents in the
construction of analytic tools for division theory, in accordance with that played by
integration currents in intersection theory (see Sect. 2.2 below).

We considered so far the holomorphic sections s1, . . . , sm of the hermitian line
bundles (OX (Δj ), | |j ) independently, then introduced the Coleff–Herrera cur-
rent

∧m
j=1 ∂(1/sj ) ∧ [V ] through a multiplicative procedure which is reminis-

cent of the multiplicative operational formalism carried by the Cauchy kernel
dz1/z1 ∧ · · · ∧ dzm/zm. Instead of that, one could interpret s = s1 ⊕ · · · ⊕ sm as a
holomorphic section of the m-holomorphic bundle

⊕m
j=1 OX (Δj ), equipped with

the metric ‖ ‖2 = | |21 ⊕· · ·⊕ | |2m. The robustness of the approach toward the current
∧m

j=1 ∂(1/sj )∧[V ] (in the complete intersection setting, see Theorem 1) motivates
this alternative one. We still use analytic continuation, but this time with respect to
a single auxiliary complex parameter λ instead of several. Such an approach was
introduced in [9, 27], then extensively developed (after being interpreted within the
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frame of holomorphic hermitian bundles) in [3, 4, 6, 7]. It is based on an averaging
procedure.

Theorem 2 (Bochner–Martinelli approach) Let X , V , the Δj ’s, and the sj ’s be
as in the preamble of this section. Let ‖ ‖ be an arbitrary hermitian metric on the
m-dimensional bundle

⊕m
j=1 OX (Δj ) = EΔ, s = s1 ⊕ · · · ⊕ sm, and s∗ be the con-

jugate section of s, that is, s∗(x)(ξ) = 〈〈ξ, s(x)〉〉x for x ∈ X , ξ ∈ EΔ,x . The holo-
morphic

⊕m
r=0

′DM,M+r (X ,
∧r

E∗
Δ)-valued map

λ 
−→
(
(
1 − ‖s‖2λ

)+ ∂‖s‖2λ ∧
(

m∑

r=1

1

(2iπ)r

s∗ ∧ (∂s∗)r−1

‖s‖2r

))

∧ [V ] (3)

(defined for Reλ � 1) extends as a holomorphic map in a half-plane Reλ > −η for
some η > 0. It coincides at λ = 0 with its ′DM,M+m(X ,

∧m
E∗

Δ) component, that
is, independently of the choice of the metric ‖ ‖ on EΔ, with the Coleff–Herrera
current

∧m
j=1 ∂(1/sj ) ∧ [V ].

Remark 2 In the particular case where all line bundles OX (Δj ), j = 1, . . . ,m, are
trivial over X , and the holomorphic sections sj are holomorphic functions in X
defining a complete intersection on V , one can interpret the current

[(
(
1 − ‖s‖2λ

)+ ∂‖s‖2λ ∧
(

m∑

r=1

1

(2iπ)r

s∗ ∧ (∂s∗)r−1

‖s‖2r

))

∧ [V ]
]

λ=0

(now ‖ ‖ is the Euclidean norm on C
m, and s∗(x)(ξ) =∑m

1 sj (x) ξj for ξ ∈ C
m) as

an averaged value of the currents

[
1∧

j=m

(

1 − ∣
∣
〈
uj , s

〉∣
∣2λj + 1

2iπ
∂

( |〈uj , s〉|2λj

〈uj , s〉
))

∧ [V ]
]

λ1=···=λm=0

(where (u1, . . . , um) ∈ (Pn−1(C))m, and 〈s, uj 〉 =∑m
k=0 u

j
ksk for k = 1, . . . ,m) de-

fined as in (1), for (u1, . . . , um) generic in (Pm−1(C))m, with respect to the normal-
ized tensorized Fubini–Study metric on (Pn−1(C))m.

Averaging Coleff–Herrera currents (realized in a multiplicative form as in Theo-
rem 1) prevents usually from keeping track of the algebraic or arithmetic structure
of the data (when there is one). Keeping track of such a structure is indeed bet-
ter possible through a multiplicative approach such as in Theorem 1. Nevertheless,
within the complete intersection frame, the fact that the current

∧m
j=1 ∂(1/sj )∧[V ]

remains preserved under such averaging (Theorem 2) allows one to reinterpret in
geometric terms (and prove) the key (algebraic) operational property of multivariate
residue calculus (see, for example, [10, 18, 23]), the so-called Transformation Law.
In order to formulate such a computational rule (which appears to be the geometric
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counterpart of Wiebe’s theorem [33]) in a rather general form, one needs to intro-
duce two sequences of Cartier divisors on the ambient complex manifold X , namely
(Δ1, . . . ,Δm,T0, . . . ,Tk−1) and (Δ̃1, . . . , Δ̃m) (m + k ≤ n − M), together with re-
spective holomorphic sections (s1, . . . , sm, t0, . . . , tk−1) = (s, t), (s̃1, . . . , s̃m) = s̃;
when k = 0, one takes {T0, . . . ,Tk−1} = ∅. The geometric hypotheses are:

codimV

(
V ∩ s−1(0)

)= codimV

(
V ∩ s̃ −1(0)

)= m;
(
V ∩ s−1(0)

)∩ t−1
l (0) = V ∩ s−1(0) ∀l = 0, . . . , k − 1;

codimV

(
V ∩ s−1(0) ∩ t−1(0)

)= codimV

(
V ∩ s̃−1(0) ∩ t−1(0)

)= m + k.

(4)

Let EΔ = ⊕m
j=1 OX (Δj ) and EΔ̃ = ⊕m

j=1 OX (Δ̃j ). As a pendant algebraic hy-
pothesis, one assumes that there is a meromorphic section H of HomC(EΔ,EΔ̃),
together with positive integers ν0, . . . , νk , such that s̃ = H · s and

D = detH ⊗
k−1⊗

κ=0

t⊗νκ
κ ∈OX

(

X ,HomC(EΔ,EΔ̃) ⊗
k−1⊗

κ=0

OX (νκ Tκ)

)

. (5)

Theorem 3 (Transformation Law for Coleff–Herrera residue currents) Under the
above geometric and algebraic hypotheses (4) and (5), one has the following identity
between bundle valued currents:

m∧

j=1

∂

(
1

sj

)

∧
k−1∧

κ=0

∂

(
1

tκ

)

∧ [V ] =
(

m∧

j=1

∂

(
1

s̃j

)

∧
k−1∧

κ=0

∂

(
1

t
νκ+1
κ

)

∧ [V ]
)

⊗D.

Proof In order to get this result, we introduce metrics | |κ on the divisors Tκ , κ =
0, . . . , k − 1, and compare the values at μ0 = · · · = μk−1 (following the analytic
continuation) of the two holomorphic maps (for Reμκ � 1, κ = 0, . . . , k − 1):

μ 
−→
0∧

κ=k−1

∂

( |tκ |2μκ
κ

tκ

)

∧
m∧

j=1

∂

(
1

sj

)

∧ [V ]

μ 
−→
(

0∧

κ=k−1

∂

( |tκ |2μκ
κ

tκ

)

∧
m∧

j=1

∂

(
1

s̃j

)

∧ [V ]
)

⊗ D

t
ν0
0 · · · tνk−1

k−1

.

(6)

These two current-valued maps coincide for Reμκ � 1, κ = 0, . . . , k − 1, be-
cause of the robustness assumption in Theorem 2, together with the holonomy
and the Standard Extension Property of sections of the Coleff–Herrera sheaves
CHX ,V ∩s−1(0)(·; �S) or CHX ,V ∩̃s−1(0)(·; �S), where S = ⋃k−1

κ=0 t−1
κ (0) (see [32],

condition 1 in Definition 2). The fact that they share the same value at μ = 0 about
any x ∈ V ∩ s−1(0)∩ t−1(0) follows from the robustness of the approach toward the
Coleff–Herrera residue via analytic continuation (Theorem 1). On the other hand,
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both maps (6) vanish at μ = 0 about any x ∈ V ∩ (̃s −1(0) \ s−1(0)) ∩ t−1(0) be-
cause of Cramer’s rule, combined with the local duality property (2) in Theorem 1
(here is the crucial algebraic point on which relies Wiebe’s theorem in the algebraic
context). �

In order to focus on the importance of the Transformation Law, let us con-
clude this section with few comments inspired by arithmetic considerations. Let
{p1, . . . , pm} be a collection of polynomials in Z[X1, . . . ,Xn] (here m ≤ n), with
respective degrees d1, . . . , dm, whose homogenizations define a complete intersec-
tion in C

n = P
n(C) \ {z0 = 0}. Denote as T [p1, . . . , pm] the

∧m
1 OPn(C)(−dj )-

valued Coleff–Herrera global current in P
n(C) obtained from the current T [p1] =

∂(1/p1) through the inductive process

T [p1, . . . , pl+1] =
[

1

2iπ
∂

( |pl+1|2λ
l+1

pl

)

∧ T [p1, . . . , pl]
]

λ=0
, l = 1, . . . ,m− 1.

(7)
The metric | |l one takes here on OPn(C)(dl+1) is the Fubini–Study metric, but this
is in fact irrelevant, since the result after taking λ = 0 in (7) is unaffected by such a
choice. For u1, . . . , un−m generic in Z

m+1 \ {0}, the linear subspace

Πu := {[z0 : · · · : zn] ∈ P
n(C); 〈uj , z

〉= 0 , j = 1, . . . ,m
}

is such that dimCn(Πu ∩{p1 = · · · = pm = 0}) = 0. Consider the
∧m

1 OPn(C)(−dj )-
valued (n − m,n) ∂-closed current T [p1, . . . , pm] ∧ [Πu]. For any global smooth
(m,0)-form b in P

n(C) with values in
∧m

1 OPn(C)(dj ), we have

〈
T [p1, . . . , pm] ∧ [Πu],b

〉

= 〈 [(
1 − |z0|2λ

)
T [p1, . . . , pm] ∧ [Πu]

]
λ=0,b

〉

+ 〈 [|z0|2λT [p1, . . . , pm] ∧ [Πu]
]
λ=0,b

〉

= 〈(
T [p1, . . . , pm] ∧ [Πu]

)
|{z0=0},b

〉+ 〈(
T [p1, . . . , pm] ∧ [Πu]

)
|Cn,b

〉
.

An explicit computation of
〈(
T [p1, . . . , pm] ∧ [Πu]

)
|Cn,b

〉
(8)

can be carried thanks to the Transformation Law (such as formulated in Theorem 3
with k = 0), following the procedure described in [18]. In particular, if b[q,J ] is
the form expressed in C

n, in affine coordinates ζ1, . . . , ζn, as

b[q,J ] = q(ζ )

(1 + |ζ |2)(d+degq)/2

m∧

l=1

d

(
ζjl√

1 + |ζ |2
)

, d = d1 + · · · + dm,

for some q ∈ Z[X1, . . . ,Xn] and 1 ≤ j1 < · · · < jm ≤ n, we get for (8) a somehow
explicit rational expression Rq,J [u] ∈ Q. A key point in such a procedure is that it
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provides a final estimate on the logarithmic height h of the rational function Rq,J [u]
of the form

h
(
Rq,J [u])≤ h(q) + κ1(n)D(D + degq)max

(
h(pj ), log

∥
∥uj

∥
∥
)
, (9)

where D =∏m
1 (dj + 1), in accordance with the geometric Bézout theorem and its

arithmetic counterpart. If q (T [p1, . . . , pm] ∧ [Πu]){z0=0}, we get a rational expres-
sion with logarithmic height control (9) for 〈T [p1, . . . , pm] ∧ [Πu],b[q,J ]〉.

2 Coleff–Herrera Residue Currents and Ordered Sequences
of Sections of Cartier Divisors

Let X be an n-dimensional complex manifold. Given a purely dimensional cycle
[V ] ∈ Zn−M(X ) (identified here with the (M,M) associated integration current on
it and with support denoted as V ) and a closed submanifold Z ⊂ X , the splitting
operation

[V ] = [V ]Z + [V ]X \Z , (10)

which consists in separating (as components of [V ]Z ) the components of [V ] with
support lying in Z , from the others, is one of the major operational tools in geomet-
ric intersection theory. Transposed in algebraic terms, it leads to the notion of gap
sheaf (for an introduction to the subject, see Part I in [26]).

Example 1 ([24, 30, 31]) Let [V1], . . . , [Vm] be m purely dimensional algebraic
cycles in P

n(C), [V ] be the (n − M)-cycle in X = P
n(C) (n = m(n+ 1) − 1, M =∑m

j=1 codimPn(C)Vj ) corresponding to the ruled join

J (V1, . . . , Vm) = {[Z1 : · · · : Zm] ∈ P
m(n+1)−1(C); zj ∈ Vj ∀ j = 1, . . . ,m

}

(multiplicities been taken into account), and Z be the diagonal subspace of Pn(C)

defined as a complete intersection as the set of points [Z1 : · · · : Zm] ∈ P
n(C) such

that Zk = Z1 for any k ∈ {2, . . . ,m} (see [19]). Note that, in this particular case, the
coherent OPn(C)-ideal sheaf IZ is globally generated by (m − 1)(n + 1) holomor-
phic sections σl of the same line bundle OPn(C)(1). Moreover the zero sets σ−1

l (0),
l = 1, . . . , (m − 1)(n + 1), define here Z as a complete intersection in the ambient
n-dimensional manifold X = P

n(C).

We propose now to transpose, within the frame of global sections of the Coleff–
Herrera sheaves CHX ,V (or CHX ,V (· ; �S)) (instead of the geometric frame of in-
tegration currents), the splitting operation (10), together with the construction such
an operation generates when applied inductively. We should point out here that such
a construction is directly inspired from the ideas introduced by Coleff and Her-
rera [13] (see, for example, [29]).
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2.1 The Coleff–Herrera Product

Let X and V be as in Sect. 1. Consider also an ordered sequence Δ1, . . . ,Δm (one
drops here the assumption m ≤ n − M) of Cartier divisors on X , equipped respec-
tively with hermitian metrics | |j , j = 1, . . . ,m, and with holomorphic global sec-
tions s1, . . . , sm. The major difference with Sect. 1 is that we forget here the geomet-
ric assumption that the closed hypersurfaces s−1

j (0) ⊂ X , j = 1, . . . ,m, intersect as
a complete intersection on the closed analytic subset V . Let T be a global section
over X of the Coleff–Herrera sheaf CHX ,V (·,E), where E denotes some finite-rank
holomorphic bundle over X . Let

∧m
j=1 ∂(1/sj ) ∧ T be the current in

m⊕

r=0

⊕

1≤j1<···<jr≤m

′D(0,M+r)

(

X ,

r∧

l=1

OX (−Δjl
) ⊗ E

)

defined inductively from

∂

(
1

s1

)

∧ T =
[(

1 − |s1|2λ
1 + 1

2iπ
∂

( |s1|2λ
1

s1

))

∧ T

]

λ=0

by the iterative process

l+1∧

j=1

∂

(
1

sj

)

∧ T =
[(

1 − |sl+1|2λ
l+1 + 1

2iπ
∂

( |sl+1|2λ
l+1

sl+1

))

∧
l∧

j=1

∂

(
1

sj

)

∧ T

]

λ=0
(11)

for l = 1, . . . ,m − 1. Remark that in spite of the notation
∧m

j=1 ∂(1/sj ) ∧ T

(that we use here for simplicity), this current is not in general a (0,m + M)-
current. The above inductive construction is independent of the choice of the
metrics | |j on the line bundles OX (Δj ) but of course depends on the order-
ing of the sequence of divisors {Δ1, . . . ,Δm}. When the hypersurfaces s−1

j (0),
j = 1, . . . ,m, define a complete intersection on V , this current coincides with its
′D(0,M+m)(X ,

∧m
j=1 OX (−Δj) ⊗ E) component and can be recovered in a robust

way in a neighborhood of V ∩ s−1(0) as the value at λ1 = · · · = λm = 0 of a holo-
morphic function in m variables in a product of half planes Reλj > −η for some
η > 0 (see Remark 1 above). The iterative construction is justified by the local
structure theorems for sections of the Coleff–Herrera sheaves CHX ,W (·; �S,E),
where W denotes a purely dimensional closed analytic subset of V , and S is a
closed hypersurface in a neighborhood of W in X such that W \ S = W . When
j = (j1, . . . , jr ) is an r-uplet (0 ≤ r ≤ m, j = ∅ if r = 0) of strictly increas-

ing integers 1 ≤ j1 < · · · < jr ≤ m, the component (
∧m

j=1 ∂(1/sj ) ∧ T )j in
′D(0,M+r)(X ,

∧r
l=1 OX (−Δjl

)⊗E) is a global section of the Coleff–Herrera sheaf
CHX ,Vj [s](·; �Sj [s],Ej ), where Ej = Ej [Δ,E] =∧r

l=1 OX (−Δjl
) ⊗ E, Vj [s] is

a purely (n − M − r)-dimensional closed subset of V , and Sj [s] is some closed
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hypersurface in a neighborhood of Vj [s] such that Vj [s] \ Sj [s] = Vj [s]. The con-
struction of Vj [s] is carried through the procedure that leads to the construction
of the multicycle of contact (see [31]) between a given cycle [V ] and a smooth
closed submanifold Z ⊂ X contained in the intersection of an ordered sequence
H1, . . . ,Hm (m ≤ dimV ) of closed hypersurfaces. More precisely, Vj [s] can be
reached through the following iterated splitting operation: when W is a closed
purely dimensional subset in X and S denotes a closed hypersurface in a neigh-
borhood of W , then W is (geometrically) decomposed as

W = WS ∪ WX \S, (12)

where WS denotes the union of irreducible components of W lying entirely in S,
and WX \S is the union of the remaining ones. The closed analytic set Vj [s] appears
then as the end term in the inductive sequence:

Vj,1[s] = V s−1
1 (0) if 1 /∈ {j1, . . . , jr}; else Vj,1[s] = VX \s−1

1 (0) ∩ s−1
1 (0);

. . . . . . . . .

Vj,k+1[s] = (
Vj,k[s]

)s−1
k+1(0) if k + 1 /∈ {j1, . . . , jr};

else Vj,k+1[s] = (
Vj,k[s]

)X \s−1
k+1(0) ∩ s−1

k+1(0);
. . . . . . . . .

Vj [s] = Vj,m[s] = (
Vj,m−1[s]

)s−1
m (0) if m /∈ {j1, . . . , jr};

else Vj [s] = Vj,m[s] = (
Vj,m−1[s]

)X \s−1
m (0) ∩ s−1

m (0).

(13)

If m ≤ n − M and r = m, V{1,...,m}[s] is the so-called essential intersection
(V ∩ s−1

1 (0) ∩ · · · ∩ s−1
m (0))ess, while, if r = 0, V∅[s] is the union of the irreducible

components of V which lie entirely in the intersection s−1
1 (0) ∩ · · · ∩ s−1

m (0).

The same iterative procedure allows us also to define the Coleff–Herrera cur-
rent

∧m
j=1 ∂(1/sj ) ∧ T when T is a global section of the Coleff–Herrera sheaf

CHX ,V (·; �S,E) for some closed hypersurface S in a neighborhood of V such that
V \ S = V . As before, each component (

∧m
j=1 ∂(1/sj )∧T )j is then a global section

of the Coleff–Herrera sheaf CHX ,Vj [s](·; �Sj [s, S],Ej ) for some convenient hyper-

surface Sj [s, S] in a neighborhood of Vj [s] such that Vj [s] \ Sj [s, S] = Vj [s]. We
can point out (see [8]) that analytic continuation with respect to a single complex
parameter (as in Theorem 2) provides a direct approach to such a current.

Proposition 1 Let X , V , the Δj ’s, the metrics | |j , the holomorphic sections sj ’s,
and the Coleff–Herrera current T (with eventual poles) be as above. Let γ1 > γ2 >
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· · · > γm ≥ 1 be m positive integers, and ε > 0. Then the current-valued map

λ ∈
{

λ ∈ C; ∣∣arg]π,π[(λ)
∣
∣<

π

2(γ1 + ε)
; |λ| � 1

}


−→
[

1∧

j=m

(

1 − |sj |2λ
γj

j + 1

2iπ
∂

( |sj |2λ
γj

j

sj

))]

∧ T (14)

extends as a holomorphic map in an open neighborhood of the closed sector
{|arg]π,π[(λ)| ≤ π/(2γ1)}. Its value at λ = 0 equals the current

∧m
j=1 ∂(1/sj ) ∧ T .

We intend from now on to focus on the advantages (or disadvantages) that carry
the idea of averaging (as done in Sect. 1 when stating Theorem 1, then Theorem 2)
Coleff–Herrera residues of the form

∧m
j=1 ∂(1/sj )∧T or

∧m
j=1 ∂(1/sj )∧T , when

V is a purely dimension (n − M)-closed analytic subset in a complex manifold X ,
s1, . . . , sm being holomorphic sections of arbitrary Cartier divisors on X .

2.2 Vogel Sequences and Vogel Residue Currents

The first positive point with respect to the averaging idea arises from the theory of
improper intersection on X , as developed in the algebraic context in [30] (see also
[24]) and in the analytic context in [31]. Let X and V be as in Sect. 1, and I be a co-
herent ideal sheaf in OX , with Z(I) being the support of the quotient sheaf OX /I .
We recall that, at the local level, a local Vogel sequence (in the geometric sense) at
x ∈ V (for Ix , on the germ of complex analytic space (Vx, (OV )x ) is a sequence
(s1,x , . . . , sn−M,x) in the ideal Ix such that there is a neighborhood Ux of x in X ,
together with representatives s1,x , . . . , sn−M,x of the germs in this neighborhood,
with

codimV

[
(
(Ux ∩ V ) \Z(I)

)∩
l⋂

j=1

s−1
j,x(0)

]

= l or + ∞, l = 1, . . . , n − M. (15)

Such geometric conditions (15) (considered in the semi-global setting) are al-
ready sufficient in order to imply the following proposition.

Proposition 2 Let U be an open set in C
n, V be a purely M-codimensional closed

analytic subset of U , I be an ideal in OCn(U) (with zero set Z(I) in U and gener-
ators σ0, . . . , σL). Let (s1, . . . , sn) be a sequence of elements in I such that

codimV

[
(
V \ Z(I)

)∩
l⋂

j=1

s−1
j (0)

]

= l or + ∞, l = 1, . . . , n − M. (16)
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If T is an element in CHU,V (U,C), then

n−M∧

j=1

∂

(
1

sj

)

∧ T = T|Z(I) +
n−M∑

l=1

T [s1, . . . , sl]|Z(I), (17)

where T [s1, . . . , sl] is defined inductively after l − 1 operations via

T [s1] = 1

(2iπ)

[

∂

( |s1|2λ

s1

)

∧ T|U\s−1
1 (0)

]

λ=0
,

T [s1, . . . , sl′+1] = 1

(2iπ)

[

∂

( |sl′ |2λ

sl′

)

∧ T [s1, . . . , sl′ ]|U\s−1
l′ (0)

]

λ=0
.

Moreover, all currents T [s1, . . . , sl], l = 1, . . . , n − M , are ∂-closed and thus are
Coleff–Herrera currents. Here T|Z(I) means [(1 − |σ |2λ)T ]λ=0, while T|U\Z(I)

means [|σ |2λT ]λ=0, when T is a Coleff–Herrera current.

Remark 3 Formula (17) remains valid if T is replaced by a meromorphic Coleff–
Herrera current T ∈ CHU,V (U ;�S,C) for some closed hypersurface S in U such
that V \ S = V . However, the second assertion does not remain true.

Remark 4 All currents (T [s1, . . . , sl])|Z(I) are supported, as the current T|Z(I), by
the closed analytic set V ∩ Z(I). As noticed in [7], such a (0, l + M)-current
(T [s1, . . . , sl])|Z(I) vanishes as soon as l + M < codim(V ∩ Z(I)), which means
that only the terms with index l between codim(V ∩ Z(I)) − M and n − M re-
main in the development (17). The first term T|Z(I) is of course only present if
codim (V ∩ Z(I)) = codimV = M .

Proof Decompose T as

T = [(
1 − |s1|2λ

)
T
]
λ=0 + [|s1|2λ T

]
λ=0 = T|s−1

1 (0)
+ T|U\s−1

1 (0)
. (18)

The fact that T|s−1
1 (0)

has its support included in V ∩ s−1
1 (0) implies

∂

(
1

s1

)

∧ T|s−1
1 (0)

=
[(

1 − |s1|2λ + 1

2iπ
∂

( |s1|2λ

s1

))

∧ T
s−1
1 (0)

]

λ=0
= T|s−1

1 (0)
.

Since T
U\s−1

1 (0)
is a Coleff–Herrera current with respect to V U\s−1

1 (0), we have

∂

(
1

s1

)

∧ T|U\s−1
1 (0)

= 1

2iπ

[

∂

( |s1|2λ

s1

)

∧ T
U\s−1

1 (0)

]

λ=0
= T [s1].

We now observe that, since all components in the support V s−1
1 (0) of T|s−1

1 (0)
lie in

V ∩ s−1
1 (0) and have codimension M as V , the geometric condition (16) for l = 2
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implies

n−M∧

j=2

∂

(
1

sj

)

∧ T|s−1
1 (0)

= T|s−1
1 (0)

= T|Z(I).

It remains to continue the process to compute

[(

1 − |s2|2λ + 1

2iπ
∂

( |s2|2λ

s2

))

∧ T [s1]
]

λ=0
.

In order to do this, we decompose T [s1] as in (18):

T [s1] = [(
1 − |s2|2λ

)
T [s1]

]
λ=0 + [|s2|2λT [s2]

]
λ=0 = T [s1]|s−1

2 (0)
+ T [s1]|U\s−1

2 (0)
.

The geometric condition (16) for l = 3 implies now that

[(

1 − |s2|2λ + 1

2iπ
∂

( |s2|2λ

s2

))

∧ T [s1]|s−1
2 (0)

]

λ=0
= T [s1]|Z(I).

The contribution
[(

1 − |s2|2λ + 1

2iπ
∂

( |s2|2λ

s2

))

∧ T [s1]|U\s−1
2 (0)

]

λ=0
,

equals, as for the first step,

1

(2iπ

[

∂

( |s2|2λ

s2

)

∧ T [s1]|U\s−1
2 (0)

]

λ=0
= T [s1, s2].

The procedure can be thus repeated, which leads to (17). In order to prove that all
T [s1, . . . , sl] are ∂ closed, it is enough to prove it for T [s1] (then the proof goes
inductively). The result for T [s1] follows immediately from the fact that

T [s1] = 1

(2iπ)

[

∂

( |s1|2μ

s1

)

∧ [|s1|2λT
]
λ=0

]

μ=0
, (19)

by computing ∂ of both sides in (19). �

Proposition 3 Let U be an open set in C
n, M ≤ n, f1, . . . , fM be M holomorphic

functions in U , and T = T [f ] the (0,M)-Coleff–Herrera current

T [f ] =
(

M∧

j=1

∂

(
1

fj

))

(0,M)

(with respect to (V [f ])ess = (f −1
1 (0) ∩ · · · ∩ f −1

M (0))ess). Let I be an ideal in
OX (U) such that (V [f ])ess \ Z(I) = (V [f ])ess, with generators (σ0, . . . , σL). If
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u1, . . . , un−M , one after each other, in this order, are generic in P
L(C), such that in

particular (s1, . . . , sn−M) := (〈u1, σ 〉, . . . , 〈un−M,σ 〉) fulfills conditions (16) with
V = (V [f ])ess, then the current

n−M∧

j=1

∂

(
1

〈uj , σ 〉
)

∧ T [f ] (20)

is annihilated as a current by In−M .

Proof Before presenting a sketch of the proof, let us focus on a simple situation (to
which the general case will in fact be reduced). Suppose for the moment that T ∈
CHU,V (U,C) and that σ and h are two holomorphic functions in a neighborhood
of V such that (σ,h) defines a complete intersection on V . Then, we claim that the
current

[[

∂

( |σh|2λ

σh

)

∧ T

]

λ=0

]

|σ−1(0)

=
[
(
1 − |σ |2μ

)
[

∂

( |σh|2λ

σh

)

∧ T

]

λ=0

]

μ=0

is annihilated by σ . This follows from the fact that the map

(λ1, λ2) ∈ {Reλ1 � 1,Reλ2 � 1} 
−→ |h|2λ1

h
|σ |λ2 T

extends as a holomorphic function of two variables to a product of half-spaces
{Reλ1 > −η} × {Reλ2 > −η} for some η > 0. Since V \ σ−1(0) = V \ h−1(0) =
V , it follows that

[

∂

( |h|2λ1

h
|σ |2λ2 T

)]

λ1=λ2=0
=
[

∂

( |h|2λ

h

)

∧ T

]

λ=0
= ∂

(
T

h

)

,

which is a Coleff–Herrera current on U with respect to V ∩ {h = 0}. Since σ does
not vanish identically on any component the set V ∩ {h = 0}, we have

[
(
1 − |σ |2μ

)
∂

(
T

h

)]

μ=0
= 0,

which proves the claim.
Consider now the Coleff–Herrera current T [f ]. Let Ũ

π→ U be the normalized
blowup of U along I , and E(I ) be its exceptional divisor (multiplicities being
taken into account). Though Ũ is not smooth, one can (locally) consider an em-
bedding Ũ ⊂ Ω ⊂ C

N and treat the current (
∧M

1 ∂(1/π∗[fj ]))(0,M) as the ∂-closed
(N − n,M + N − n) current (

∧M
1 ∂(1/π∗[fj ]))(0,M) ∧ [Ũ ] in Ω . It factorizes in

Ω as the product of a (0,M + N − n)-Coleff–Herrera current with eventual poles
(with respect to some closed M-codimensional analytic subset Ṽ [f ] of Ũ ) times a

holomorphic (N −n,0)-form. Moreover, Ṽ [f ] \ π−1(Z(I)) = Ṽ [f ]. Actually, one
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can approach the current (
∧M

1 ∂(1/π∗[fj ]))(0,M) by χ‖π∗(σ )‖≥ε

∧M
1 ∂(1/π∗[fj ])

as ε > 0 tends to 0, where χ denotes a smooth cutoff function as in [12]. The ex-
ceptional divisor E(I ) defines then a divisor E(I )|Ṽ [f ] on Ṽ [f ]. Choose u1 (gener-

ically) such that π∗[s1]|Ṽ [f ] vanishes on each irreducible component of the support
E(I )|Ṽ [f ] exactly at the multiplicity on this component of the divisor E(I )|Ṽ [f ]. This

means that π∗[s1]|Ṽ [f ] can be expressed locally about a point x ∈ Ṽ ∩ π−1(Z(I))

as π∗[s1] = σ̃|Ṽ [f ]h1, where σ̃ is the generator at x for the stalk of the principal

sheaf ideal (π∗[σ0], . . . , π∗[σL]), and {h1 = 0} defines with σ̃ on Ṽ [f ] (about x)
a complete intersection. Then it follows from the case studied at the beginning that
the current

T [f ][s1]|Z(I) =
[[

∂

( |s1|2λ

s1

)

∧ T [f ]
]

λ=0

]

|Z(I)

is annihilated by I . Suppose that l ≥ 2 and that we know that T [s1, . . . , sl−1] is
annihilated by I l−1, once s1, . . . , sl−1 have been conveniently chosen. Then we have

I l−1T [f ][s1, s2, . . . , sl−1]|Z(I) = 0,

which implies that if h ∈ I l−1, the current

hT [f ][s1, s2, . . . , sl−1]|U\Z(I) = hT [f ][s1, s2, . . . , sl−1]
is a Coleff–Herrera current. Repeating the argument used for l = 1, with T [f ] re-
placed by hT [f ][s1, . . . , sl−1]|U\Z(I), one can choose sl in a generic way (generic-
ity depends here on the previous choices of s1, . . . , sl−1 but is independent of h), so
that, for any h ∈ I l−1,

hT [f ][s1, . . . , sl]|Z(I) =
[[

∂

( |sl |2λ

sl

)

∧ hT [f, s1, . . . , sl−1]|U\Z(I)

]

λ=0

]

|Z(I)

is annihilated by I . It follows then that, with this convenient choice of sl , the current
(T [f ][s1, . . . , sl])|Z(I) is annihilated by I l . This concludes the proof. �

It is natural to call the sequence (〈u1, σ 〉, . . . , 〈un−M,σ 〉) a Vogel sequence for I

with respect to the Coleff–Herrera current T [f ] if such a sequence is constructed
(in a generic way in terms of the uj ) through the inductive procedure described
above step-by-step. The corresponding current

∧n−M
1 ∂(1/〈uj , σ 〉) ∧ T [f ] is then

called a Vogel residue current (for I with respect to T [f ]).

Remark 5 When [V ] is a purely dimensional cycle in X (here assimilated to its
associated integration current), and Z ⊂ X is a complex submanifold, it is proved in
[14] and reinterpreted in algebraic terms in [24] that the (multi)cycle of intersection
[V ] • Z, defined via the Vogel procedure from a prescribed Vogel sequence, is such
that its Chow ideal IChow([V ] • [Z]) (see [24] for the definition of this notion)
lies in the integral closure of the sheaf of ideals (I([V ]),IZ ). Briançon–Skoda’s
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theorem then implies that (IChow([V ] • [Z]))n ⊂ (I([V ]),IZ ). Proposition 3 can
thus be understood as an analogue result when [V ] is replaced by the Coleff–Herrera
T [f ] and intersection theory is transposed at the (algebraic) level of residue currents
instead of the (geometric) one of integration currents.

2.3 Averaging Vogel Residue Currents

Let X be an n-dimensional complex manifold, U be an open set in X , M ≤ n, and T

be a (0,M) E-valued Coleff–Herrera current in U (or T a (0,M) E-valued Coleff–
Herrera current in U with poles) with respect to a closed analytic subset V ⊂ U of
pure codimension M . Let I be an ideal sheaf in OX (U). Assume that σ0, . . . , σL

generate I(U) globally in U . One can think of (σ0, . . . , σL) as a holomorphic sec-
tion of the trivial bundle Eσ = U × C

L+1, equipped with its standard hermitian
metric. It is natural to propose as an averaged current

∫

(PL(C))m

[(
m∧

j=1

∂

(
1

〈uj , σ 〉
))

∧ (T or T )

]

dωL

(
u1)⊗ · · · ⊗ dωL

(
um
)

(21)

(where m = min(L + 1, n − M + 1), ωL denotes the Fubini metric on P
L(C), and

〈u,σ 〉 =∑L
0 ulσl for u = [u0 : · · · : uL] ∈ P

L(C)), the current obtained as the value
at 0 of the

⊕n−M
r=0

′D(0,M+r)(X ,
∧r

E∗
σ ⊗ E) current-valued map

λ 
−→
(

1−‖σ‖2λ + ∂‖σ‖2λ ∧
(

dimV∑

r=1

1

(2iπ)r

σ ∗ ∧ (∂σ ∗)r−1

‖σ‖2r

))

∧ (T or T ). (22)

Here σ ∗ = σ =∑L
0 σ l ⊗ e∗

l and dσ =∑L
0 dσl ⊗ el (if (e0, . . . , eL) denotes a stan-

dard base of sections for Eσ = U ×C
L+1). Because of the local structure theorems

for sections of the Coleff–Herrera sheaves (see [32]), this map is holomorphic in
some half-plane Reλ > −η for some η > 0. It was indeed proved in [8], as a conse-
quence of Crofton’s formula, that if m = min(L + 1,dimV + 1), the averaging

∫

(PL(C))m

[(
m∧

j=1

∂

(
1

〈uj , σ 〉
)

∧ [V ]
)

∧
m∧

j=1

d
〈
uj , σ

〉
]

dωL

(
u1)⊗ · · · ⊗ dωL

(
um
)

leads to the current

Mσ
V :=

[(

1 − ‖σ‖2λ + ∂‖σ‖2λ ∧
(

dimV∑

r=1

1

(2iπ)r

σ ∗ ∧ (∂σ ∗)r−1

‖σ‖2r

))

∧ [V ]
]

λ=0

(dσ, . . . , dσ ). (23)
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The action on (dσ, . . . , dσ ) corresponds here to the contraction operation between
the

∧r
E∗

σ and Eσ as follows:

(
Φ∗

1 ∧ · · · ∧ Φ∗
r

)
(dσ, . . . , dσ ) =

∧r
j=1 Φ∗

j (dσ )

r! , r = 1, . . . ,dimV,

for any Φ∗
j of E∗

σ -valued currents. The current (23) is d-closed and positive in this
case. Even though it is not an integration current, the vector of the Lelong num-
bers (e0(x), . . . , en−M(x)) of its various components (from type (0,0) till type
(n − M,n − M)), at any point x ∈ V ∩ Z(I), coincides with the vector of Segre
numbers (see [22]) at x for Ix with respect to V , which is the minimum (with re-
spect to lexicographic order) of all u-plets (degx γx,0, . . . ,degx γx,n−M), where γ

is a Vogel cycle at x, and γx,k , k = 0, . . . , n − M , denotes its component at x with
codimension k in V (as a subcycle of Vx ). Moreover, the relevant part in the Siu
decomposition of the averaged current Mσ is expressed as

Mσ
V,relevant =

dimV∑

k=0

∑

ι

βk
ι

[
Zk

ι

]
,

where the Zk
ι are the distinguished varieties of I with codimension k (distinguished

varieties being defined as the images of the irreducible components of the excep-
tional divisor E in the normalized blowup of U along the coherent ideal sheaf I).
Here the βk

ι are positive integer coefficients. This generalized version of H. King’s
formula is proved in [8]. This shows that, at the semi global level, averaging Coleff–
Herrera currents, once they are conveniently multiplied in order to become intersec-
tion currents, is an operation that fits well with improper intersection theory, such
as implemented in [30, 31]. Note that the Segre numbers remain unchanged if one
replaces s = (σ0, . . . , σL) by some u-plet (σ̃0, . . . , σ̃L̃

) which generates in OX (U)

an ideal with, locally about each point, the same integral closure as I . This empha-
sizes the role of a current Mσ (or, to be more precise, residue currents involved in
its factorization) with respect to Briançon–Skoda-type theorems.

In order to extend these ideas to the global setting, one assumes that the co-
herent sheaf I is globally generated in X by holomorphic sections σ0, . . . , σL of
the same line bundle OX (Δ). Referring to Example 1, the holomorphic sections of
OPm(n+1)−1(C)(1) defining the diagonal subspace Z in the join as a complete inter-
section, provide a useful illustration of such a situation, the coherent sheaf I being
in this case the radical sheaf IZ . Let Eσ =⊕L+1 OX (Δ). Choose a metric | | on
OX (Δ) that induces the metric ‖ ‖ = | |⊕· · ·⊕| | on Eσ . Let E be a finite-rank holo-
morphic bundle over X . When T (resp. T ) is an element in CHX ,V (X ,E) (resp. in
CHX ,V (X ; �S,E)), it is natural to propose, as the averaged current (21), the current
obtained as the value at 0 of the

⊕n−M
r=0

′D(0,M+r)(X ,
∧r

E∗
σ ⊗ E) current-valued

map (22), where σ ∗ denotes the conjugate section of σ with respect to the met-
ric on Eσ . If π : Ṽ −→ V denotes the normalized blowup of the complex space
(V , (OX )|V ) along the OV ideal sheaf I|V , generated locally by the holomorphic
sections x 
→ σl(ι(x)) (ι being the embedding V ⊂ X ), l = 0, . . . ,L, and E denotes
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the exceptional divisor in this normalized blowup, then one can check that this aver-
aging leads, from the point of view of intersection theory (that is, when T or T are
replaced by the (M,M)-current [V ]) to the construction of the Vogel current

VogV,σ,| | =
[(

1 − ‖σ‖2λ + ∂‖σ‖2λ ∧
(

dimV∑

r=1

1

(2iπ)r

σ ∗ ∧ (∂σ ∗)r−1

‖σ‖2r

))

∧ [V ]
]

λ=0

(dσ, . . . , dσ )

= [
VZ(I)

]+
dimV∑

r=1

π∗
([E] ∧ (

c1(OṼ (−E) ⊗ π∗[Δ|V ]))r−1)

=
dimV∑

r=0

Vog(...); r . (24)

We denote by Δ|V the line bundle OV (Δ). Here π∗[σ ] = e[0] × τ , where τ is a
holomorphic nonvanishing u-plet of sections of OṼ (−E) ⊗ π∗[Δ|V ]. The metric
on OṼ (−E) is defined by |e[0]|E = ‖σ ◦ π‖. It induces a metric on the divisor
OṼ (−E) ⊗ π∗((OX (Δ))|V ), so that

ddc log
∣
∣e[0]∣∣2

E = [E] + c1(OṼ (−E)
)= [E] + ddc log‖τ‖2 − π∗(c1(Δ|V )

)
,

that is,

ddc log‖τ‖2 = c1(π∗[Δ|V ])+ c1(OṼ (−E)
)

= c1(OṼ (−E) ⊗ π∗[Δ|V ]).

The current Vog(...) =∑dimV
r=0 Vog(...); r (that can also be considered as a current on

(V ,OV )) is related to the Segre current

SegV,σ,| | =
[
VZ(I)∩V

]+
dimV∑

r=1

π∗
([E] ∧ (

c1(OṼ (−E)
))r−1)=

dimV∑

r=0

SegV,σ,| |;r

(25)
thanks to the algebraic relations

VogV,σ,| |; r =
r−1∑

l=0

(
r − 1

l

)

SegV,σ,| |; r−l ∧ (
c1(Δ|V )

)l
, r = 1, . . . ,dimV.

An important particular case occurs where T is a Coleff–Herrera residue of the
form

∧M
j=1 ∂(1/sj ), s1, . . . , sM being respective holomorphic sections of Cartier
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divisors Δj , j = 1, . . . ,M , on X , such that the s−1
j (0) define a complete intersec-

tion. In this particular case, one can consider the (M + L + 1)-holomorphic bundle
EΔ,σ =⊕M

j=1 OX (Δj ) ⊕ Eσ , equipped with the metric
⊕M

1 | |j ⊕ ‖ ‖ (where | |j
denotes an hermitian metric on OX (Δj ), j = 1, . . . ,M), and propose as an alterna-
tive averaged version for all Vogel residue currents

m∧

j=1

∂

(
1

〈uj , σ 〉
)

∧
M∧

j=1

∂

(
1

sj

)

, uj ∈ P
L(C), 1 ≤ j ≤ m = min(L+1,dimV +1)

the current obtained (still through the analytic continuation process) as the value at
λ = 0 of the

⊕n−M
r=0

′D(0,M+r)(X ,
∧r

E∗
Δ,σ ) current-valued map

λ 
−→ 1 − ‖s ⊕ σ‖2λ + ∂‖s ⊕ σ‖2λ ∧
(

dimV∑

r=1

1

(2iπ)r

(s ⊕ σ)∗ ∧ (∂(s ⊕ σ)∗)r−1

‖s ⊕ σ‖2r

)

,

(26)
where s ⊕ σ = s1 ⊕ · · · ⊕ sM ⊕ σ , and (s ⊕ σ)∗ denotes its conjugate section with
respect to the metric which has been chosen on EΔ,σ . The two currents, which
belong to

⊕n−M
r=0

′D(0,M+r)(X ,
∧r

E∗
Δ,σ ),

[(

1 − ‖σ‖2λ + ∂‖σ‖2λ ∧
(

dimV∑

r=1

1

(2iπ)r

σ ∗ ∧ (∂σ ∗)r−1

‖σ‖2r

))

∧
M∧

j=1

∂(1/sj )

]

λ=0

and
[

1 − ‖s ⊕ σ‖2λ + ∂‖s ⊕ σ‖2λ ∧
(

dimV∑

r=1

1

(2iπ)r

(s ⊕ σ)∗ ∧ (∂(s ⊕ σ)∗)r−1

‖s ⊕ σ‖2r

)]

λ=0

,

(27)
coincide when codim (s−1(0)∩σ−1(0)) = M+L+1 (see [34]) but differ in general.
They can both be used (see [3, 7]) to materialize the residual obstruction for the
exactness of the generically exact Koszul complex

0 →
M+L+1∧

E∗
Δ,σ

�s⊕σ−→
M+L∧

E∗
Δ,σ −→ · · ·

�s⊕σ−→
l+1∧

E∗
Δ,σ

�s⊕σ−→
l∧

E∗
Δ,σ −→ · · · �s⊕σ−→ E∗

Δ,σ

�s⊕σ−→ X ×C, (28)

since they are both annihilated (as currents) by the operator 2iπ �s⊕σ − ∂ , where
�s⊕σ denotes the interior multiplication by the holomorphic section s ⊕ σ of EΔ,σ .

3 About a Result by M. Hickel, M. Andersson, and E. Götmark

In order to emphasize what averaged Vogel residue currents introduced in Sect. 2
could be useful for, and, in parallel, to illustrate how far using their use reveals



Averaging Residue Currents 385

to be successful, let us focus on the effective geometric global formulation of
Briançon–Skoda’s theorem in C[X1, . . . ,Xn], as obtained first by Hickel [20] and
then reformulated (and thus reproved), using the frame developed above, by An-
dersson and Götmark [5]. Before stating the result, one needs to recall basic facts
about Lojasiewicz exponents at infinity in C

n ⊂ P
n(C) = C

n ∪ {z0 = 0}. Let
p1, . . . , pm be m polynomials in C[X1, . . . ,Xn], together with their homogeniza-
tions P1, . . . ,Pm, considered as respective holomorphic sections of the Cartier divi-
sors OPn(C)(degpj ). Let E =⋃

ι Eι be the (reduced) exceptional divisor of the nor-

malized blowup P̃
n(C)

π−→ P
n(C) of Pn(C) along the coherent ideal sheaf I(P ),

generated locally by the holomorphic sections P1, . . . ,Pm. Let μι(P ) be the multi-
plicity of I(P ) ·O

P̃n(C), and μι(z0) be the multiplicity of I{z0=0} ·O
P̃n(C) along the

same component. The Lojaciewicz exponent ν∞(P ) is defined as

ν∞(P ) = sup
ι

(
μι(P )

μι(z0)

)

.

In the special case where m = n and dimCn p−1(0) ≤ 0, one has the Lojasiewicz
inequality at infinity in C

n ⊂ P
n(C), namely

n∑

j=1

|pj (ζ )|
|ζ |degpj

≥ κ

|ζ |ν∞(P )
, |ζ | � 1, (29)

for some strictly positive constant κ . In particular, for p to be in this case a proper
map from C

n into C
n, it is enough that ν∞(P ) < degpj , j = 1, . . . ,m. Notice that,

when m= n and dimCn p−1(0) ≤ 0, the current
[

n∧

1

∂

(
1

Pj

)]

|{z0=0}

is annihilated by z
nν∞(P )
0 . This can be seen using (as in the proof of Proposition 3)

the normalized blowup of Pn(C) along the coherent ideal sheaf I{z0=0}. On the other
hand, the current

[
n∧

1

∂

(
1

Pj

)]

|Cn

is annihilated by any homogeneous polynomial of the form Q such that the map
ζ 
→ Q(1, ζ )/‖p(ζ )‖n is locally bounded in C

n (see [5]).
M. Hickel’s result ([20], revisited with the analytic methods presented above

in [5]) can be stated as follows (we just mention here the result when m≤ n).

Theorem 4 ([5, 20]) Assume that m ≤ n and let p1, . . . , pm be m polynomials
in C[X1, . . . ,Xn]. Let q be a polynomial in C[X1, . . . ,Xn] such that the func-
tion |q|/|p|m is locally bounded in C

n. Then, there exist polynomials a1, . . . , am ∈
C[X1, . . . ,Xn] such that q ≡∑m

j=1 ajpj with degajpj ≤ degq + [mν∞(p)] + 1,
where [γ ] denotes the integer part of the rational number γ .
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As a consequence of this theorem, it appears that the effective realization
of the global Briançon–Skoda theorem (q being in the ideal (p1, . . . , pm) in
C[X1, . . . ,Xn] if the germ qζ , for each ζ ∈ p−1(0), lies in the m-power of the
integral closure of the ideal (p1,ζ , . . . , p,ζ ) in the local ring OCn,ζ ) can be achieved
with degree estimates for the quotients aj controlled by the geometric Bézout the-
orem, which means that the effectivity of the problem is governed by geometric
intersection theory.

The proof of Theorem 4 relies on the use of the averaged Bochner–Martinelli ver-
sion (22) (Eσ =⊕m

1 OPn(C)(dj ) with the Fubini–Study metric on each component,
σ = P , V = P

n(C) = X ), of all currents

m∧

1

∂

(
1

〈uj ,Pj 〉
)

,

u1, . . . , um ∈ Pm−1(C), m = min(dim({P = 0}) + 1,m), with respect to the ten-
sorized Fubini–Study metric on P

m−1(C) ⊗ · · · ⊗ P
m−1(C) (m times). As pointed

out in [24], when dealing with intersection problems involving arithmetic aspects,
it is more adequate to use a specific Vogel cycle of intersection instead of what
could be understood as an averaged version, for example, the intersection cycle
constructed in [31] and reinterpreted in [8] in the currential setting. The methods
presented here (end of Sects. 1 and 2.2) aim precisely to give some support to the
following conjecture:

Conjecture 1 (Global arithmetic Briançon–Skoda) Let p1, . . . , pm be m polyno-
mials in Z[X1, . . . ,Xn] with degrees bounded by d and logarithmic sizes bounded
by h. Let q ∈ Z[X1, . . . ,Xn] be such that the function q/|p|min(m,n) is locally
bounded in C

n. Then, one can find δ ∈ N
∗ and a1, . . . , am ∈ Z[X1, . . . ,Xn] such

that

δ qκ(n) =
m∑

j=1

ajpj , max
j

(
deg(ajpj )

)≤ κ(n)degq + κ0(n) dγ0 min(n,m),

max
j

(
h(δ),h(ajpj )

)≤ κ(n)h(q) + κ1(n) (h + logm) dγ1 min(n+1,m),

(30)

where κ(n), κ0(n), κ1(n) are numerical constants depending only on the number n
of variables, γ0, γ1 being universal constants (idealistically κ(n) = 1, κ0(n) = n,
γ0 = γ1 = 1).

This result was obtained by Elkadi [16] when dim(p−1(0)) = 0. On the other
hand, the arithmetic membership problem can be solved with such bounds (30)
when m ≤ n and (p1, . . . , pm) defines a complete intersection in C

n (see [17]),
which includes in particular the case of the arithmetic nullstellensatz [10, 15, 25].
This fits well with the ideas that govern the construction of Vogel sequences. Nev-
ertheless, it is known now that methods based on multidimensional residue calculus
(relying essentially on Cauchy–Weil integral formula and associated Bergman–Weil
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developments) do not provide the sharpest bounds for the arithmetic nullstellensatz,
which is truly a problem related to arithmetic intersection theory (see the recent
approach in [15], based on a arithmetic version of O. Perron’s theorem used for
the algebraic nullstellensatz in [21]). As a consequence, this makes more clear that
such methods were in fact more in the spirit of Conjecture 1. Using the Stückrad–
Vogel approach [30], combined with a precise analysis of the Vogel residue currents
involved (for a description of their annihilators and explicit computations of the
restrictions to C

n of the auxiliary Coleff–Herrera currents involved in their expan-
sion, see Propositions 2 and 3 above, together with the concluding comments in
Sect. 1), seems to be a natural way to tackle such a conjecture. It is indeed nec-
essary to overcome the difficulty which is inherent to the fact that averaging such
Vogel residue currents in order to get suitable Bochner–Martinelli currents (for con-
trol of the degree in effectivity questions) does not preserve the arithmetic structure
of the data (which would be necessary in order to get in parallel control on the
heights). It seems also opportune to mention that the initial approach to Theorem 4
by Amoroso [2] relies on the Northcott–Rees notion of superficial elements in ide-
als that is also present in the construction of Vogel sequences (more specifically of
filtered sequences, see [1]).

This presentation of the Coleff–Herrera machinery, combined in Sect. 2.2 with
that of the Stückrad–Vogel approach [8, 30, 31], transposed to the context of residue
currents instead of integration currents on cycles, intends to be a modest invitation
toward such an approach to effectivity questions in arithmetic polynomial geometry,
when they require operational tools related to duality, such as Briançon–Skoda’s
theorem or multidimensional operational residue calculus.
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