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Abstract. We give an upper bound for the discrepancy of irrational ro-
tations {nα} in terms of the continued fraction expansion of α and the related
Ostrowski expansion. Our result improves earlier bounds in the literature and
substantially simplifies their proofs.

1. Introduction

Let α ∈ (0, 1) be an irrational number and let

DN ({iα}) = sup
0≤a<b≤1
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denote the discrepancy, resp. star discrepancy of the first N terms of the se-
quence {iα}, i = 1, 2, . . . , where {x} denotes the fractional part of a real
number x. Clearly DN ({iα}) ≦ 2D∗

N ({iα}). Estimating DN({iα}) and
D∗

N ({iα}) is a classical problem of Diophantine approximation theory and
had a wide literature, see e.g. [3], [9], [13], [14] and the references therein.
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Let

(1) α =
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

denote the continued fraction expansion of α with convergents rn = pn/qn.
Ostrowski [12] showed that there is a close connection between DN({iα}),
D∗

N({iα}) and the partial quotients aj in the continued fraction expansion
of α and the coefficients bj in the expansion

(2) N =
m
∑

j=0

bj qj,

where m is defined by qm ≤ N < qm+1, and each coefficient bj satisfies

0 ≤ b0 < a1 , 0 ≤ bj ≤ aj+1 , j ≥ 1 , and bj−1 = 0 if bj = aj+1 .

Schoissengeier [13, Theorem 1] gave a (rather complicated) explicit formula
for D∗

N ({iα}) and some simpler approximation formulas, see also [3, Section
1.4.1]. A simple corollary of his results is the upper bound

(3) ND∗
N ({iα}) ≤ C

(

∑

n≤m

an + bm

)

with an absolute constant C; see also [3, Corollary 1.64 on p. 52]. As shown
in [3], the last estimate is optimal, except for the value of the constant C.
However, the arguments in [3], [13] are long and technical and no explicit
value of C is given. The purpose of the present paper is to give a simple
direct proof of the following variant of (3) with the constant C = 1.

Theorem 1.1. For any natural number N we have

(4) ND∗
N ({iα}) ≤ max

{

∑

n:odd,≤m

an,
∑

n:even,≤m

an

}

+ bm +m+ 1,

where m is the number in the Ostrowski expansion (2) of N .

Since bm ≦ am+1 and m+ 1 ≦
∑

n≦m+1 an, (4) implies that

(5) ND∗
N ({iα}) ≤ 2

∑

n≦m+1

an.
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Most likely, the constant 2 could be improved for sufficiently large N , but
due to the small values of N , to determine the best constant seems to be
very difficult.

As a sharp bound for ND∗
N ({iα}), relation (5) implies a number of

classical discrepancy results in the literature. From the standard linear
recursion for qn it follows that qn grows at least exponentially and thus
m = O(logn). Hence if the sequence (aj) in the expansion (1) is bounded,
then ND∗

N ({iα}) = O(logN), a classical result from the 1920’s (cf. also [9,
p. 125, Theorem 3.4]). The metric behavior of the sum

∑n
k=1 ak is well

known (see e.g. [6]) and Theorem 1.1 also implies Khinchin’s sharp bound

ND∗
N ({iα}) = O((logN)1+ε),

valid for almost all α (cf. [3, Theorem 1.72, p. 63]). Naturally, (5) also im-
plies that for any irrational α ∈ (0, 1) we have D∗

N ({iα}) → 0 as n → ∞,
which is the original equidistribution theorem result of Bohl, Sierpinski and
Weyl (1909/1910). To see this formally, let A = max1≤j≤m aj . The following
estimates are easily derived (cf. [8]);

N ≥ A 2
m

2
−1 (m > 1),

m
∑

j=1

aj ≤ Am,
bm
N

<
1

qm
,

and thus

D∗
N ({iα}) ≤ m 2−

m

2
+1 +

m+ 1

qm
= o(1)

since qm grows at least exponentially.
The asymptotic behavior of the sum

∑n
k=1 ak is quite interesting. From

the results of [2] and [8] it follows that the maximal term of the sum influ-
ences crucially its behavior. In [1] it is shown that removing from

∑n
k=1 ak

its largest ωn terms where ωn → ∞ and ωn/n → 0, the remaining sum is
asymptotically normally distributed. The influence of an isolated large ak
on the discrepancy D∗

N({iα}) was studied in [15], [16].

2. Proof of Theorem 1.1

The proof of Theorem 1.1 uses approximation of irrational rotations by
rational rotations, a method utilized in Mori–Takashima ([10]) and Shimaru–
Takashima ([15]) and actually, widely in the literature. One of the main ideas
in [10] and [15] can be expressed as follows.
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Lemma 2.1. For 0 < b < an+1, any point {iα} (i = 1,2, . . . , bqn) belongs
to one sub-interval of the form, [j/qn, (j+1)/qn), and each sub-interval con-
tains just b points only. Moreover, if {iα} ∈ [j/qn, (j + 1)/qn) for some j,

j

qn
< {iα} < {(i+ qn)α} < {(i+ 2qn)α} < · · · <

j + 1

qn
,

in case n is even, and

j + 1

qn
> {iα} > {(i+ qn)α} > {(i+ 2qn)α} > · · · >

j

qn
,

in case n is odd.

In the Ostrowski expansion (2), let nj =
∑m

k=j+1 bkqk. We split the sum
in the definition of ND∗

N as follows:

N
∑

i=1

I[0,a)({iα})−Na =
m
∑

j=0

{ bjqj
∑

i=1

I[0,a)(sj + {iα}) − bjqja

}

,

where sj denotes the starting point of points {iα}, i = nj + i′, i′ = 1, 2, . . . ,
j = m− 1, . . . , 0, that is, sj =

∑m
k=j+1 bkqk(α − rk), and s0 = 0. Note that

qk(α − rk) > 0 if k is even, and that qk(α − rk) < 0 if k is odd. Decompo-
sitions of the sums were originally introduced in Ostrowski [12].

Using Lemma 2.1 and the well-known inequality r2n < α < r2n−1, we
easily get for even j(≤ m):

−1 ≤

{ nj+bjqj
∑

i=nj+1

I[0,a)({iα})− bjqja

}

≤ bj + 1 ≤ aj+1 + 1,

and for odd j(≤ m):

−aj+1 − 1 ≤ −bj − 1 ≤

{ nj+bnqn
∑

i=nj+1

I[0,a)({iα})− bjqja

}

≤ 1.

From these relations we immediately get Theorem 1.1.
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