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Abstract
We study the density of the supremum of a strictly stable Lévy process. We prove that for almost
all values of the index α – except for a dense set of Lebesgue measure zero – the asymptotic
series which were obtained in [13] are in fact absolutely convergent series representations for the
density of the supremum.

1 Introduction

Let X be an α-stable process X indexed by parameters (α,ρ), where as usual ρ = P(X1 > 0).
For the definition and properties of stable processes and stable distributions we refer to [5], [14],
[18] and [17]. The admissible set of parameters (α,ρ) is defined as

A = {α ∈ (0,1), ρ ∈ (0, 1)} ∪ {α= 1, ρ = 1
2
} ∪ {α ∈ (1,2), ρ ∈ [1−α−1,α−1]}.

Note that we exclude the case when α ∈ (0, 1) and ρ = 1 {ρ = 0}, as in this case the process
X {−X } is a subordinator and the distribution of extrema is trivial. When α ∈ (1,2) and ρ =
1− α−1 {ρ = α−1} the process X is spectrally positive {negative}. In this case we have complete
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Density of the supremum of a stable process 85

information about the distribution of extrema due to the work of Bingham [6], Doney [8], Bernyk,
Dalang and Peskir [4] and Patie [16].
We are interested in the distribution of the supremum of the process X , defined as

St = sup{Xu : 0≤ u≤ t}.

Note that due to the scaling property of stable processes, we have St
d
= t

1
α S1, thus it is sufficient

to study the distribution of S1. The main object of interest in this paper will be the probability
density function

p(x) =
d

dx
P(S1 ≤ x), x > 0.

The complete description of the asymptotic behavior of p(x) as x → 0+ and as x → +∞ is
provided by the following Theorem, which was proved in [13]. This Theorem generalizes results
for the spectrally one-sided case obtained by Doney [8] and Patie [16] and the results on the
two-sided case, which were proved by Doney and Savov [9].

Theorem 1. (Theorem 9, [13]) Assume that α /∈Q. Define sequences {am,n}m≥0,n≥0 and {bm,n}m≥0,n≥1
as

am,n =
(−1)m+n

Γ
�

1−ρ− n− m
α

�

Γ(αρ+m+αn)
(1)

×
m
∏

j=1

sin
�

π

α

�

αρ+ j− 1
�

�

sin
�

π j
α

�

n
∏

j=1

sin(πα(ρ+ j− 1))
sin(πα j)

,

bm,n =
Γ
�

1−ρ− n− m
α

�

Γ(αρ+m+αn)

Γ
�

1+ n+ m
α

�

Γ(−m−αn)
am,n. (2)

Then we have the following asymptotic expansions:

p(x) ∼ xαρ−1
∑

n≥0

∑

m≥0

am,n xm+αn, x → 0+, (3)

p(x) ∼ x−1−α
∑

n≥0

∑

m≥0

bm,n+1 x−m−αn, x →+∞. (4)

There is a very important subclass of stable processes, for which the above result can be con-
siderably strengthened. The following family of stable processes was first introduced by Doney
[7]:

Definition 1. For k, l ∈ Z define Ck,l as the class of stable processes with parameters (α,ρ) ∈ A
satisfying

ρ+ k =
l

α
. (5)

It turns out (see Theorem 10 in [13]), that when a process X ∈ Ck,l for some integers k and l,
then the coefficients am,n and bm,n can be simplified so that they involve only finite products of
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lentgh not greater than k or l. Also, in this case the coefficients are well defined even for rational
α. Moreover, when α ∈ (0, 1) {α ∈ (1, 2)}, the series in the right-hand side of (4) { (3) } converges
to p(x) for all x > 0.
It is not hard to see that parameters (α,ρ) ∈ A which satisfy relation (5) form a dense set of
Lebesgue measure zero. Therefore, Theorem 10 in [13] gives a convergent series representation
for p(x) for a dense set of parameters. The main goal of this paper is to extend this result and to
prove that in fact we have a convergent series representation for p(x) for almost all parameters
(α,ρ), except when α ∈Q or when α can be approximated by rational numbers extremely well.

2 Main Results

The following set of real transcendental numbers, which can be approximated by rational numbers
extremely well, was introduced in [13].

Definition 2. Let L be the set of all real irrational numbers x, for which there exists a constant
b > 1 such that the inequality

�

�

�

�

x −
p

q

�

�

�

�

<
1

bq (6)

is satisfied for infinitely many integers p and q.

It is clear that L is a proper subset of the set of Liouville numbers, which are defined by the
following, weaker condition: for all n≥ 1 the inequality

�

�

�

�

x −
p

q

�

�

�

�

<
1

qn

is satisfied for infinitely many integers p and q. A celebrated result by Liouville states that any
algebraic number is not a Liouville number, but this is also true for many other numbers. In fact,
almost every number is not a Liouville number, as the set of Liouville numbers, while being dense
in R, has zero Lebesgue measure (see Theorem 32 in [12]). Therefore, the Lebesgue measure of
L is also zero.
As we will see later, the structure of the set L can be described in terms of continued fraction
representation of real numbers. We present here the essential results from the theory of continued
fractions, which will be needed later.
The continued fraction representation of a real number x is defined as

x = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 + . . .

where a0 ∈ Z and ai ∈ N for i ≥ 1. For x /∈ Q the continued fraction has infinitely many terms;
truncating it after n steps gives us a rational number pn/qn = [a0; a1, a2, ..., an], which is called the
n-th convergent. The sequence of coprime integer numbers pn and qn can be computed recursively

¨

pn = anpn−1 + pn−2, p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2, q−1 = 0, q−2 = 1.
(7)
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Theorem 17 in [12] tells us that the n-th convergent pn/qn provides the best rational approxima-
tion to x in the following sense

�

�

�

�

x −
pn

qn

�

�

�

�

=min

¨
�

�

�

�

x −
p

q

�

�

�

�

: p ∈ Z, 1≤ q ≤ qn

«

.

There is also a converse result (see Theorem 19 in [12]): if integers p and q satisfy
�

�

�

�

x −
p

q

�

�

�

�

<
1

2q2 , (8)

then p = pn and q = qn for some n. The error of the best rational approximation is bounded from
above and below as follows

1

qn(qn + qn+1)
<

�

�

�

�

x −
pn

qn

�

�

�

�

<
1

qnqn+1
, (9)

see Theorems 9 and 13 in [12].
The next proposition gives us an insight into the arithmetic structure of the set L . We will use
the following notation: {x} ∈ [0, 1) denotes the fractional part of x , i.e. the distance from x to
the closest integer not greater than x; and 〈x〉 = min({x}, {−x}) = min(|x − n| : n ∈ Z), i.e. the
distance from x to the closest integer.

Proposition 1.

(i) If x ∈ L then zx ∈ L and z+ x ∈ L for all z ∈Q \ {0}.

(ii) x ∈ L if and only if x−1 ∈ L .

(iii) Let x = [a0; a1, a2, . . . ]. Then x ∈ L if and only if there exists a constant b > 1 such that the
inequality an+1 > bqn is satisfied for infinitely many n.

(iv) x /∈ L ∪Q if and only if

lim
q→+∞

ln〈qx〉
q

= 0. (10)

Proof: Statement (i) follows immediately from the Definition 2. Statement (ii) also can be derived
from the Definition 2, however it easily follows from (iii) due to the following simple property of
continued fractions: if x > 1 and x = [a0; a1, a2, . . . ], then x−1 = [0; a0, a1, . . . ]. Thus we only
need to prove (iii) and (iv).
Let us prove the “if” part of (iii). Assume that there exists b > 1 such that

an+1 > bqn (11)

for infinitely many n. Let us consider such an index n. Using (11) and the recurrence relation (7)
we find that qn+1 > qnan+1 > qn bqn , which together wih (9) implies that

�

�

�

�

x −
pn

qn

�

�

�

�

<
1

qnqn+1
<

1

q2
n bqn

<
1

bqn
.

Since the above inequality is true for infinite many n, we conclude that x ∈ L .
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Now, let us prove the “only if” part of (iii). Let us assume that x ∈ L . Then there exists a constant
b > 1 such that the inequality (6) is satisfied for infinitely many pairs (p, q). When q is large
enough we have b−q < 1/(2q2), thus p and q satisfy (8) and we conclude that the pair (p, q) must
coincide with some continued fraction convergent (pn, qn). Therefore, from (9) we find

1

qn(qn + qn+1)
<

�

�

�

�

x −
pn

qn

�

�

�

�

<
1

bqn
.

Using the recurrence relation (7) and the above inequality we conclude that

1

q2
n(an+1 + 2)

<
1

qn(qn + an+1qn + qn−1)
=

1

qn(qn + qn+1)
<

1

bqn
,

therefore

an+1 >
bqn

q2
n

− 2.

It is clear that if qn is large enough then

bqn

q2
n

− 2> (
p

b)qn ,

Thus we have found infinitely many indices n such that that an+1 > (
p

b)qn . This ends the proof
of (iii).
Let us prove the “if” part of (iv). Since x /∈ L ∪ Q we know that for every b > 1, all q ∈ N
sufficiently large and all p ∈ Z we have

|qx − p|>
q

bq >
1

bq ,

therefore ln〈qx〉>−q ln(b) for all q sufficiently large, which shows that

lim inf
q→+∞

ln〈qx〉
q

≥ 0.

Since we also have ln〈qx〉/q < 0 for all q, it implies condition (10). The “only if” part of (iv) can
be verified in exactly the same way and we leave the details to the reader. ut

Proposition 1 shows that the set L has quite an interesting structure. First of all, property (iii)
gives us a simple method to construct a number x ∈ L (just define recursively an+1 = 2qn),
therefore this set is not empty. The set L is closed under addition and multiplication by rational
numbers, therefore it is dense in R. It is a subset of the set of Liouville numbers, therefore it has
Lebesgue measure zero. In fact, the Hausdorff dimension of the set of Liouville numbers is also
zero (see Theorem 2.4 in [15]), and of course the same is true for L .
We would like to stress that the elements of the set L are rather unusual transcendental numbers
with quite extreme arithmetic properties. The reason for this lies in propety (iii) of the above
proposition. Assume that x is an irrational number. Theorem 12 in [12] tells us that for every
irrational number x

qn ≥ 2
n−1

2 , n≥ 2,
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therefore using Proposition 1, (iii) we find that for every number x ∈ L there exists a constant
b > 1 such that the inequality

an > b(
p

2)n (12)

is satisfied for infinitely many n. Yet one can prove that for all x except a set of Lebesgue measure
zero and all b > 1

an = O(bn), n→+∞. (13)

This result follows from the famous Lévy-Khinchin theorem, which states that for almost all x
it is true that n

p
qn → γ as n → +∞, where γ = exp(π2/(12 ln(2))) (see Theorem 31 and the

footnote on page 66 in [12]). We see now that there is a very large gap between the growth rate
of coefficients an for elements ofL given by (12) and almost all other real numbers given by (13).
This shows that the elements of the set L should be rather exceptional numbers.
Our main result in this paper is the following Theorem, which gives an absolutely convergent
series representation for p(x) for every irrational α which is not in the set L .

Theorem 2. Assume that α /∈ L ∪Q. Then for all x > 0

p(x) =















x−1−α
∑

n≥0

∑

m≥0

bm,n+1 x−m−αn, if α ∈ (0,1),

xαρ−1
∑

n≥0

∑

m≥0

am,n xm+αn, if α ∈ (1, 2),
(14)

where am,n and bm,n are defined by (1) and (2).

Before we prove Theorem 2, let us establish the following result.

Lemma 1. Assume that x /∈ L ∪Q. Then

k
∏

l=1

| sec(πl x)| = 2k+o(k), k→+∞, (15)

k
∏

l=1

| csc(πl x)| = 2k+o(k), k→+∞. (16)

Proof: Let us prove (15). We use the following easily verified fact
�

�

�

�

{y} −
1

2

�

�

�

�

=
�

y −
1

2

�

≥
〈2y〉

2
, y ∈ R

and Proposition 1 (iv) to check that for all x /∈ L ∪Q

lim
N→+∞

ln |{N x} − 1
2
|

N
= 0.

Since for all x /∈ Z+ 1
2

it is true that

�

� sec(πx)
�

�<
2

|{x} − 1
2
|
,
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we conclude that

lim
N→+∞

ln | sec(πN x)|
N

= 0.

Applying Theorem 1 from [3] we see that the above statement implies

lim
k→+∞

1

k

k
∑

l=1

ln | sec({πl x})|= ln(2),

which is equivalent to (15). Formula (16) can be verified in the same way; it also follows from
Theorem 2 in [11]. ut

Using the results of Lemma 1 it is not hard to prove that both series in the right-hand side of (14)
converge for all x > 0. However this does not guarantee that the series converges to p(x). As an
example, consider the asymptotic expansion

f (x) = e−x +
1

x − 1
∼
∑

n≥1

x−n, x →+∞.

The asymptotic series in the right-hand side of the above equation converges for all x > 1, but
the limit is not equal to f (x). Therefore, in order to prove Theorem 2 we would need to do some
more work.
Our main tool will be the Mellin transform of S1, which is defined as

M (w) = E[Sw−1
1 ] =

∫

R+

p(x)xw−1dx , Re(w) = 1.

This function was studied in [13], where it was proved that it can be analytically continued to a
meromorphic function. There exists an explicit expression (Theorem 8 in [13]) forM (s) in terms
of the double gamma function, see [1] and [2] for the definition and properties of the double
gamma function. It is also known thatM (s) satisfies several functional equations (see Theorem 7
in [13]) and if α /∈Q and X /∈ Ck,l it has simple poles at the points

{s+m,n}m≥1,n≥1 = {m+αn}m≥1,n≥1, {s−m,n}m≥0,n≥0 = {1−αρ−m−αn}m≥0,n≥0,

with residues given by

Res
�

M (s) : s+m,n

�

=−bm−1,n, Res
�

M (s) : s−m,n

�

= am,n,

see Lemma 2 in [13].

Proof of Theorem 2: In what follows we will always use the principal branch of the logarithm,
which is defined in the domain |arg(z)| < π by requiring that ln(1) = 0. Similarly, the power
function will be defined as za = exp(a ln(z)) in the domain |arg(z)|< π.
Assume that α /∈ L ∪Q, α ∈ (1,2) and define ck = 1− αρ + α

2
− k. Note that ck 6= s−m,n for all

k, m, n≥ 0; if this was not true then α would be a rational number. ThereforeM (s) does not have
singularities on the lines ck + iR for all k ≥ 0.
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Following the proof of Theorem 9 in [13], we start with the inverse Mellin transform representa-
tion

p(x) =
1

2πi

∫

1+iR

M (s)x−sds, x > 0.

The integral in the right-hand side of the above formula converges absolutely, since M (s) →
0 exponentially fast as Im(s) → ∞, see Lemma 3 in [13]. Shifting the contour of integration
1+ iR 7→ ck + iR and taking into account the residues at the poles s = s−m,n, we find that

p(x) =
∑

Res(M (s) : s−m,n)× x−s−m,n +
1

2πi

∫

ck+iR

M (s)x−sds. (17)

where the summation is over all m≥ 0, n≥ 0, such that s−m,n > ck. Now our goal is to prove that as
k→ +∞, the integral in the right-hand side of (17) – which we will denote by Ik(x) – converges
to zero for every x > 0.
First, we perform a change of variables

Ik(x) =
1

i

∫

ck+iR

M (s)x−sds = x−1+αρ− α
2
+k

∫

R

M
�

1−αρ+
α

2
− k+ iu

�

x−iudu. (18)

Using equation (6.2) in [13] and the reflection formula for the Gamma function (see formula
(8.334.3) in [10]) we find that

M (s)

Γ(s)Γ
�

1−s
α

� =−







M (s+ 1)

Γ(s+ 1)Γ
�

1−(s+1)
α

�







sin
�

π

α
(1− s)

�

sin
�

π

α
(αρ− 1+ s)

� , s ∈ C.

Iterating the above identity k times gives us

M (s)

Γ(s)Γ
�

1−s
α

� = (−1)k




M (s+ k)

Γ(s+ k)Γ
�

1−k−s
α

�





k
∏

j=1

sin
�

π

α
(2− j− s)

�

sin
�

π

α
(αρ− 2+ j+ s)

� , s ∈ C. (19)

Next, we use the fact that αρ ≤ 1 for (α,ρ) ∈ A , therefore −1+αρ− α

2
< 0 while for k ≥ 2 we

have −1+αρ− α

2
+ k > 0, which in turn implies the estimate

x−1+αρ− α
2
+k < (1+ x)k, k ≥ 2, x > 0. (20)

We expressM (s) in terms ofM (s+ k) with the help of (19), substitute the resulting expression
into (18) and use (20) to obtain the following estimate

|Ik(x)|< (1+ x)k
∫

R

�

�M
�

1−αρ+
α

2
+ iu

�

�

�× |F1(u; k)| × |F2(u; k)|du, k ≥ 2, x > 0, (21)

where we have denoted

F1(u; k) =
k
∏

j=1

sin
�

π

α

�

αρ− α

2
− iu+ k+ 1− j

��

sin
�

π

α

�

α

2
+ iu− k− 1+ j

�� , (22)
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and

F2(u; k) =
Γ(1−αρ+ α

2
+ iu− k)Γ

�

ρ− 1
2
− i u

α
+ k
α

�

Γ(1−αρ+ α

2
+ iu)Γ

�

ρ− 1
2
− i u

α

� . (23)

First, let us estimate F1(u; k) as k → +∞. Our goal is to prove that as k → +∞ the function
F1(u; k) does not grow faster than some exponential function of k, and that this bound is uniform
in u ∈ R. From the trigonometric identities

sin(x + iy) = sin(x) cosh(y) + i cos(x) sinh(y),
| sin(x + iy)|2 = cosh(y)2 − cos(x)2

we see that | sin(x)| cosh(y)≤ | sin(x + iy)| ≤ cosh(y), therefore
�

�

�

�

sin(a+ iy)
sin(b+ iy)

�

�

�

�

≤
1

| sin(b)|
.

Combining the above estimate with (22) we see that

|F1(u; k)| ≤
k
∏

j=1

�

�

�

�

csc
�π

α

�α

2
− k− 1+ j

��

�

�

�

�

=
k
∏

l=1

�

�

�

�

sec
�

πl

α

�
�

�

�

�

, (24)

where in the last step we have changed the index of summation l = k + 1 − j. As we have
established in the Proposition 1, α /∈ L ∪Q implies α−1 /∈ L ∪Q. Therefore the inequality (24)
and Lemma 1 tell us that there exists a constant C1 = C1(α)> 0 such that

|F1(u, k)|< C13k, k ≥ 2, u ∈ R. (25)

Now we will deal with F2(u; k) defined by (23). Our goal is to prove that as k→+∞ this function
converges to zero faster than any exponential function of k, and that this happens uniformly in
u ∈ R. More precisely, we will prove that there exists a constant C2 = C2(α)> 0 such that

|F2(u; k)|< C2(1+ |u|)exp
�

−
α− 1

α
(k− 1) ln(k− 1) + 2k|A|

�

, k ≥ 2, u ∈ R, (26)

where A= (1+ ln(α)−α)/α.
Using the reflection formula for the gamma function we rewrite F2(u; k) as

F2(u; k) = (−1)k g(u)×
Γ
�

ρ− 1
2
− i u

α
+ k
α

�

Γ
�

αρ− α

2
− iu+ k

� ,

where

g(u) = π
�

sin
�

π

�

αρ−
α

2
− iu

��

Γ
�

1−αρ+
α

2
+ iu

�

Γ
�

ρ−
1

2
− i

u

α

��−1

.

Next we use the following asymptotic expression (see formula (8.328.1) in [10])

|Γ(x + iy)| ∼
p

2π|y|x−
1
2 e−

π

2
|y|, y →∞,
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and the fact that | sin(x + iy)| ∼ exp(|y|)/2 as y →∞ to obtain

|g(u)| ∼ π

�

1

2
eπ|u| ×

p
2π|u|

1
2
−αρ+ α

2 e−
π

2
|u| ×
p

2π

�

�

�

�

u

α

�

�

�

�

ρ−1

e−
π

2
|u|
α

�−1

(27)

= |α|ρ−1|u|(α−1)
�

ρ− 1
2

�

e−(α−1) π|u|
2α ,

as u→∞. We use the inequality (α−1)
�

ρ− 1
2

�

< α−1< 1 and the fact that g(u) is continuous
in u to conclude that there exists a constant C3 = C3(α)> 0 such that

g(u)< C3(1+ |u|)e−(α−1) π|u|
2α , u ∈ R. (28)

Next, from the Stirling’s asymptotic formula for the Gamma function (see formula (8.237) in [10])
we find that

Γ
�

s
α

�

Γ(s)
=
p
αexp

�

−s
�

α− 1

α
ln(s) + A

�

+O(s−1)
�

, s→∞, Re(s)≥ 0,

where A = (1 + ln(α) − α)/α (note that A < 0). Again, the function in the left-hand side of
the above equation is continuous in the half-plane Re(s) ≥ 0; this fact and the above asymptotic
formula imply that there exists a constant C4 = C4(α)> 0 such that

�

�

�

�

Γ
�

s
α

�

Γ(s)

�

�

�

�

< C4

�

�

�

�

exp
�

−s
�

α− 1

α
ln(s) + A

��
�

�

�

�

, Re(s)≥ 0.

We set s = αρ − α

2
− iu+ k (note that for k ≥ 2 we have Re(s) > 0) and use (28) and the above

estimate to conclude that for k ≥ 2

|F2(u; k)| = |g(u)| ×
�

�

�

�

Γ
�

s
α

�

Γ(s)

�

�

�

�

(29)

< C5(1+ |u|)exp
�

−(α− 1)
π|u|
2α
+Re

�

−s
�

α− 1

α
ln(s) + A

���

= C5(1+ |u|)exp
�

−(α− 1)
π|u|
2α
−Re(s)

�

α− 1

α
ln |s|+ A

�

− u
α− 1

α
arg(s)

�

< C5(1+ |u|)exp
�

−Re(s)
�

α− 1

α
ln |s|+ A

��

where C5 = C3 × C4 and in the last step we have used the fact that |arg(s)| < π/2. Using the
following facts: (i) |s|> Re(s)> k− 1 and (ii) Re(s)< 2k we check that

exp
�

−Re(s)
�

α− 1

α
ln |s|+ A

��

< exp
�

−
α− 1

α
(k− 1) ln(k− 1) + 2k|A|

�

(30)

and combining (29) and (30) we finally conclude that (26) is true with C2 = C5.
Combining (21), (25) and (26) we see that

|Ik(x)| < C6

�

3(1+ x)e2|A|
�k

e−
α−1
α
(k−1) ln(k−1), k ≥ 2,
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where

C6 = C5 × C1 ×
∫

R

�

�M
�

1−αρ+
α

2
+ iu

�

�

�× (1+ |u|)du.

Therefore Ik(x) → 0 as k → +∞ and we have proved the second series representation in (14).
The proof of the first series representation in (14) is identical, except that we have to shift the
contour of integration in the opposite direction.

ut

Theorem 2 gives us a convergent series representation for p(x) provided that α /∈ L ∪ Q. Let
us consider what happens in the remaining cases. When α ∈ Q and X /∈ Ck,l for all k, l ∈ Z
then Theorems 1 and 2 can not be valid for the following reason. Using Theorem 8 in [13]
and properties of the double gamma function (see [1] and [2]) we conclude that in this case the
functionM (s)will have multiple poles on the real line. This means that the asymptotic expansions
(3), (4) would include terms of the form

Res(M (s) : s = w)× ln(x) j x−w , 0≤ j ≤ k− 1,

where w is the pole of M (s) of multiplicity k. This also means that the coefficients of such an
expansion, given by the residues of M (s), will depend on the derivatives of the double gamma
function, and in this case it will be much harder (maybe even impossible) to evaluate them ana-
lytically.
In the remaining case, when α ∈ L , it is not clear what happens with the series representation
for p(x) given in (14). By inspecting the form of coefficients am,n and bm,n defined in (1) and (2)
we see that the series in (14) might still converge, as the growth of the product of sin(·) functions
in the numerator in (1) might “cancel” the growth of the denominator. To prove the convergence
one would need some results on the asymptotic behavior as k→+∞ of the following product

k
∏

l=1

| csc(π(l x + y))|.

Results in [3] give us information about these products in the case when y ∈Q and x /∈ L , but we
were not able to find any general results in the existing literature. In any case, even if one were
able to prove convergence of the series (14) for a more general class of parameter α, it would
not imply that the series converges to p(x), see the discussion on page 90. To summarize, when
α ∈ L the question of validity of Theorem 2 is open, and there are three possible scenarios: (i)
the series in (14) do not converge, (ii) they converge, but not to p(x), (iii) they converge to p(x).
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