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UPON A STATISTICAL METHOD IN THE THEORY OF 
DIOPHANTINE APPROXIMATIONS. 

By AUREL WINTNER. 

INTRODUCTION. 
Let oo 

f(s)=Eanexp(Xns); an#O0 
n=l 

denote a Dirichlet series possessing linearly independent real exponents An 

and a domain (i. e. half-plane or strip) in which f(s) is absolutely convergent. 
Let a be a real number in the interior of this domain and set 

z-==z(t) =x(t) +iy(t) =f(a+ it) 

where - co < t < + co. The values taken by z(t) are, according to Jessen,* 
distributed asymptotically in such a way that there exists, in the (x, y) -plane, 
a continuous function D = D (x, y) determining the density of this distribu- 
tion, i. e. the density of probability (relative frequency as t -> co ) of the values 
taken by z (t) ==x(t) + iy(t). The method of Jessen is built, on the one 
hand, upon an integration theory in a space of infinitely many dimensions and, 
on the other hand, upon the Kronecker-Weyl approximation theorem. 

In the present paper the treatment of the distribution problem belonging 
to the almost-periodic function z (t) will be based upon the general statistical 
or momentum method, as developed, for the one-dimensional case, by the 
author,t and recently extended to higher spaces by Haviland.: It will be 
proven that the continuous density function D, the existence of which (i. e. 
Jessen's result) need not be presupposed, is related to the distribution func- 
tion ? p belonging to the real part x(t) of z(t) by an integral equation of the 
Abel type. Since p is explicitly known ? we thus obtain an analytical method 

* B. Jessen, Bidrag til Integraltheorien for Funktioner of uendelig mange Variable, 
Copenhagen, 1930. 

t A. Wintner, " Diophantische Approximationen und Hermitesche Matrizen. I.," 
Mathematische Zeitschrift, Vol. 30 (1929), pp. 290-319 (more particularly pp. 310-311). 
This paper will be referred to as I. 

: E. K. Haviland, " On statistical methods in the theory of almost-periodic func- 
tions," Proceedings of the National Academy of Sciences, Vol. 19 (1933), May issue. 

? First introduced loc. cit. I. 
? A. Wintner, " On an application of diophantine approximation to the repartition 

problems of dynamics," Journal of the London Mathematical Society, Vol. 7 (1932), 

309 
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310 AUREL WINTNER. 

for an effective control of D. With the use of Bessel functions, the application 
of this explicit method yields the result that D (x, y) not only is everywhere 
continuous but also possesses derivatives of arbitrarily high order save at most 
at the origin x =y --0, without being analytic im grossen. The question 
as to whether D is analytic im kleinen remains open. On the other hand, the 
method works just as well in the " non-analytic " case,* where the series f(s) 
is absolutely convergent not in a domain (i. e. half-plane or strip) but only 
on the isolated line s- a + it. Hence we start directly with an arbitrary 
almost-periodic function 

0o 

(1) z(t) - x(t) +iy(t) E=rjexpiAj(t-tj); r1 > 0 
.y=1 

oo < t < + oo ) where the frequencies Aj are supposed to be linearly in- 
dependent, in which case, according to a theorem of Bohr,t of necessity 

00 

(2) < + oo where R= rj. 
1=1 

It may be mentioned that the ultimate reason for the occurance of the 
Abel integral equation reducing D to p lies in the fact that on account of the 
Laplace-Fourier transforms of D and p this reduction is a transformation of 
planes waves " into " spherical waves."2 

Applications to the h-function of Lindelof will be given in a subsequent 
paper. 

THE DISTRIBUTION OF THE REAL COMPONENT. 

The distribution function p =p () of an arbitrary : real-valued almost- 
periodic function x(t) is defined for oo < t < + so as 

(3) lim meas {x(t) ? $; T}/2T 
T=+oo 

where {x (t) _ t; T} denotes the set of all those points t for which both 
inequalities x(t) C 4, I t I < T are satisfied, and meas {x(t) _ 4; T} is the 
Lebesgue measure ? of this set. The limit (3) exists ? save for a denumerable 

pp. 242-246. This paper will be referred to as II. Cf. also "Ueber die statistische 
Unabhaingigkeit," Mathemartische Zeitschrift, Vol. 36 (1933), pp. 618-629. This paper 
will be referred to as III. 

* In reality the question regarding the analytic continuation of such a function 
f (a + it) does not seem to have been treated yet in the literature. 

t H. Bohr, " Zur Theorie der fast-periodischen Funktionen. I.," Acta Mathematica, 
Vol. 45 (1925), p. 103. 

1 The linear independence of the frequencies is not yet supposed. 
? This is at present a Jordan content inasmuch as x (t) is almost-periodic and 

therefore continuous. 
?ILoc. cit. L. 
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A STATISTICAL MIETHOD IN THE THEORY OF APPROXIMATIONS. 311 

set of exceptional values t = em which, if they exist, are always discontinuity 
points * of the monotone function p($). The latter is defined as the limit 
(3) if g#-Th and as the arithmetical mean of p(?+O) and p( -O) if 
=4m. An exceptional point tm may actually exist.t On the other hand, 
it is possible that tm is a discontinuity point of p (t) without being $ an 
exceptional point t. 

Now let x(t) be the real part of (1), i. e. suppose that the frequencies 
of the almost-periodic function x(t) are linearly independent. Then p (t) is 
everywhere continuous ;?; hence (3) exists for every t. We shall see later on 
that all derivatives of p (t) exist. Let p (4) denote the distribution function 
belonging to the partial sum 

k 
(4) Xk(t) =Xrj cos Aj (t-tj) 

j=l 
of 

00 00 

(5) x(t) E rj cosAj(t -t); trj-R <+oo. 
:1=1 1=1 

Then ? 
~+oo 

(6) pks+1 W ) Pk( -q) dow+,. (v); Pi cr (i t) 
coo 

where cj (t) denotes the distribution function belonging to the periodic 
function 
(7) ae.(t) rj cosk (t tj) 
i. e. 

* Loc. cit. 1. 
t H. Bohr, "Kleinere Beitriige zur Theorie der fastperiodischen Funktionen. II.," 

Det Kgl. Danske Videnskabernes Selskab. Meddelelser, Vol. 10, No. 10 (1930). 
$ For let the continuous function a (t) be periodic with the period 1 and let it be 

of bounded variation in the fundamental region 0 t' < 1. Suppose further that a (t) 
is zero when t-n 1n 1/4, n = 0, ? 1, ? 2,.. but that $ (t) p 0 for all other values 
of t. Since the Fourier partial sum $k (t) is a periodic trigonometric polynomial, 
its distribution function pk ( is everywhere continuous. Furthermore, X. (t) ap- 
proaches the limit a (t) uniformly when k -> 00. Finally, the limit (3) exists for every 
t inasmuch as x (t) is periodic. The limit p (t) of p,, () possesses, however, a dis- 
continuity at t 0. 

? A. Wintner, "Ueber die Stetigkeit der asymptotischen Verteilungsfunktion bei 
inkommensurablen Partialschwingungen," Mathematische Zeitschrift, Vol. 37 (1933), 
not yet appeared. 

? Loc. cit. II. The recursion formula (6) yields a k-fold iterated Stieltjes integral 
for Pk+l(t), viz. 

Pk+, (t) . f . 1(2)d2(1 ) * 7k-. - .k (v> 

This detailed representation takes the place of the shortened expression (18) in the 
paper II, a formula whose meaning is obvious from (19), loc. cit. II. 
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312 AUREL WINTNER. 

F j 0 for - oo < < - rj 
(8) u r(t) 1-[arc cos (t/rj)]/7r for rj t < rj 

(aj) 1 for rj< <+oo 

where 0 ? arc cos __ 7r. Furthermore, 

(9) ~~~~~~p( W = - lim pk( W 
k=0o 

holds for those * values of 4 which are continuity points of p(4); hence (9) 
holds for all values of 6. Finally,t 

(10) L (s; pk) rJ L (s; aj) 
J=1 

where L(s; v) denotes the Laplace-Fourier transform 
s+00 

(11) l (s; v) = exp (i,st)dv(& 

of the typical distribution function v(t) and s is an arbitrary real or complex 
parameter. Since I Xk(t)I and Ix(t) I are, according to (4) and (2), not 
larger than R, it follows from the definition (3) of a distribution function that 

px( )=0 for - oo < 6 <-R, pk($)==' for R < < + oo 

and 

(12) p()= 0 for -oo < < -R, p(6) 1 for R < 6 < + oo. 

+00 ~~~~~~'R 
Accordingly, all Stieltjes integrations J may be replaced by J. Hence, 
from (9) and (11), 
(13) lim L(s; p*) =L(s; p) 

k=oo 

by virtue of the Helly theorem on term-by-term integration.1 On comparing 
(10) with (13) there results the multiplicative relation ? 

* Loc. cit. 11. 
t Loc. cit. II. Cf. G. Doetsch, "Die Integrodifferentialgleichungen vom Faltungs- 

typus," Mathematische Annalen, Vol. 89 (1923), pp. 192-207. 
t E. Helly, " Ueber lineare Funktionaloperationen," Sitzungsberichte der mathe- 

matisch-naturwissenschaftlichen Klasse der Kaiserl. Akademie der Wissenschaften zu 
Wien, Vol. 121 (1912), pp. 265-297. 

? The existence of the infinite product (14) is for all values of s assured by (13). 
Since J0 (o) = 1, there follows from (15) and (2) by Schwarz's Lemma a finer result, 
viz. the uniform convergence of the series 

oo 

E I L (s; aj)-1 
j=1 

in every fixed s-circle. Similar remarks hold regarding the infinite products occurring 
later on. 
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A STATISTICAL METHOD IN THE THEORY OF APPROXIMATIONS. 313 

oo 

(14) L(s; p) =HL(s; oj) 
j=1 

expressing the statistical independence * of the distributions oj belonging to 
the partial vibrations (7) of (5). 

From (11) and (8) we have 

sri 

L(s; uj) = (1/7r) (r2 j 2_ /2)exp(st)dX, 

i. e. 

L(s; uj) = (2/ir) (1 42)'/2 COS (srj@) dd, 
or, on placing $ cos 0, 

7r/2 

L (s; o-j) = (2/7-) cos (srj cos O) dO. 
Hence t 
(15) L(s; aj) Jo(r,s) 

From (11), (14) and (15) there results 
/'+00 00 

(16) L (s; p) exp (ist) dp() I JO (rjs). 
-00 j=1 

We notice here that the distribution of x(t) is symmetric with respect to 
the origin, i. e. 
(17) p() +p(-) =1. 

On account of (9) it is sufficient to prove that 

(18) Pk($) +Pk( = 

holds for every k. Now from (8.) 

(19) o-(j) +?o( -) =1. 

Hence (18) holds for lk = 1 inasmuch as pi = l. Suppose that (18) holds 
for a fixed value of k. Since from (6) 

w+00 r+00 
pk+i (i -q2( t ) dO-k+l (-q) pk( + C) d0k+i ) 

where v ,there results from ( 18) and ( 19 ) the equality 

* Cf. F. Hausdorff, "Beitraege zur Wahrscheinlichkeitsrechnung," Berichte ihber 
die Verhandluingen der K6nigl. &aechsischen Gesellschaft der Wissenschaften zu Leipzig, 
Mathematisch-physikatische Klasse, Vol. 53 (1901), pp. 152-178. This paper discusses 
also the general methods in Calculus of Probability, which have a connection with the 
present problem. 

t R. Courant und D. Hilbert, Methoden der mathemartischen Physik, I., 1924, p. 393. 
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314 AUREL WINTNER. 

Pk+1(t - 1 [- p7ct ) d[1 - ox.)] 

.e. 
^+00 1+00 

pk+l t dO-k+l ( ) Pk t do-k+l( ) 

or, by virtue of (6), 

+00 

inasmuch as the last integral represents the total variation of a monotone 
function (8). Hence (18) holds for every 7e. From (16) and (17) there 
results 

+00 00 

(20) L(s; p) 2 cos (sn)dp (n) H Jo (rjs); 
j=l 

hence, by virtue of (12), 

4+00 8 00 
(21) 2 sin(s-q)l/' dp(-q) H Jo (rjl ) dl. 

j=1 

For positive values of the independent variable we need the appraisals 
00 

(22) HI Jo(rj) I <rm/qm; (M =O,1,2,* 
j=1 

where rm is a constant depending upon m but independent of v > 0. First, 
the well-known asymptotic formula * 

Jo (q) - - -?/2 (2/.r) /2 cos ( - 7r4) D + GO 

assures the existence of a constant 0' for which 

I Jo q) I <UCA/2. 
Accordingly, 

2m 

IHJo(rj-q) I < rm/-qm 
j=l 

where rm = C2m/ (r1r2 r2mnjr2m) L/2. Hence (22) is obvious inasmuch as 

>2r 

Jo(X) cos (X cos O) dO/2ir 

has, for real values of X, a modulus ? 1. 
We now restrict s in (21) to real and non-negative values and write $ 

instead of s. Thus 

2 sin(6n)/I, dpG() =J' Jo(rj-)d?d; 0?O. 
o O ~~~~~~~j=l 

* Courant-Hilbert, op. cit., p. 435. 
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A STATISTICAL METHOD IN THE THEORY OF APPROXIMATIONS. 315 

This integral equation for the monotone continuous function p may be solved, 
by virtue of (12), by means of the Gauss-Fourier inversion formula which 
yields * 

(23) P($) -p(O) = (1/7r) IJ] H Jo(rjq)} d-q 
j=1 

for 0. It is clear from (17) that (23) holds for t < 0 also. The 
expression 

(1/ir) f (dk{. . }lde) d- 

resulting from (23) by k-fold formal differentiation is, by virtue of (22), 
absolutely and uniformly convergent for - 0o <d < + 0o. In order to see 
this, it is sufficient to choose m;`_ k + 2. Since m, and therefore k, may be 
chosen arbitrarily large, it follows t that the distribution function p (4) 
possesses for - so < t < + so derivatives of arbitrarily high order. 

Hence from (17 ) 

(24) p(O) 2, p() (O) O; (k 2, 4, 6, . . . 
Similarly from (12) 

(25) p(k) (R) =0, p(k) (_ R) =0; (k 1, 2, 3, . . . 

although p (t) is known I to be nowhere constant in the range - R Et?R. 
Thus the behavior of p (t) at t =+? R is the same as that of Cauchy's example 

exp ( 1/42) 

at $=0. 
Let us notice that the distribution function py (t) belonging to the finite 

sum (4) cannot possess derivatives of arbitrarily high order if k has a fixed 
value. Correspondingly, infinitely many appraisals (22) break down if the 
infinite product is replaced by a finite one. 

First, p,? = a1 is everywhere continuous, its derivative is, however, infinite 
at e = + rl. The function p2 has been considered by Bessel in his celebrated 

* The validity of the Gauss-Fourier inversion formula (cf. F. Hausdorff, loc. cit.), 
which is at present (23), is assured under conditions which are essentially more general 
than (12). Cf., for instance, T. C. Burkill, "The expression in Stieltjes integrals of the 
inversion formulae of Fourier and Hankel," Proceedings of the London Mathematical 
Society, Series 2, Vol. 25 (1926), pp. 513-524. 

t Cf., for instance, E. W. Hobson, The Theory of Functions of a Real Variable and 
the Theory of Fourier's Series, Second Edition, Vol. II, p. 359, Cambridge University 
Press, 1926. 

t Loc. cit. I. It follows that the function x (t) takes on every value between -1R 
and R. The latter fact is contained in the Kronecker approximation theorem also. 
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316 AUREL WINTNER. 

paper on the Gaussian frequency curve.* The first derivative of P2 is a com- 
plete elliptic integral of the first kind and is infinite at the four points 

?= + (r1 + r2), t = + (r1 - r2), two of which coincide when r1 = r2. The 
function P3 possesses everywhere a continuous first derivative but the second 
derivative is infinite at some points, and so on, so that pk is the smoother, the 
farther we go in Bessel's statistical t iteration process (6). 

It is clear from (2) that the limit function p cannot be related to the 
Gaussian frequency curve.t 

The Markoff condition for the validity of the Gauss law :? takes in our 
case the form 

k 
lim S2 (k): S2(k) = 0, (n = 2, 3, ), where Sn(k) =( r 
k=OO j=1 

This condition is, however, not a necessary one (Liapounoff). 

AN INTEGRAL EQUATION FOlt THE CENTRAL WAVES. 

For later purposes (cf. p. 327) we consider in the present chapter a 
function 8 (r) implicitly defined for 0 ? r _ R as a continuous solution of the 
functional equation 

IR 
(26) p'(r) 2 f (q2 r2)-Y2 q8(q)dq; 0?_ r < R. 

There exists exactly one such function and it possesses, save at the origin 
r - O, derivatives of arbitrarily high order. Furthermore, 

(27) 8 (k) (.R) O,- (kc = O., 1~, 2, . 

Finally, 

427 R 
(28) f f( (r)exp{i(ut cos l + v sin )r}dr d = L({U2 + v2}'/2; p) 

where u and v are arbitrary real or complex parameters. 
In order to prove these statements we first reduce (26) to Abel's integral 

equation 

* F. W. Bessel, Abhandlungen, Vol. 2 (1876), pp. 378-380. 
t Cf. also H. Bohr and B. Jessen, " Om Sandsynlighedsfordelinger ved Addition af 

konvekse Kurven," Det Kgl. Danske Videnskabernes Selskabs Skrifter, Series 8, Vol. 12 
(1929), No. 3. 

t Cf. in this connection F. Hausdorff, loc. cit. 
? Cf. R. Deltheil, Eirreurs et moindres carr6s, Paris, 1930, pp. 71-74; M. Fr6chet 

and J. Shohat, "A proof of the generalized central limit theorem in the theory of 
probability," Transactions of the Mathematical Society, Vol. 33 (1931), pp. 533-543. 
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X 
(29) X(X) =f (X )-Y Y (Y)dY; 0-< X--R2 

by placing 

(30) X = R2 _ r2, Y-1 2 q2 

and 

(31 ) _ (X "(\ (X) =,(+/2_X) 

(hence x is given and i is the unknown function). Since p(t) has for every 
e derivatives of any order, the function x(X) possesses, according to (31), 
derivatives of arbitrarily high order in the half-open range 0 _ X < R2; 

furthermore, by virtue of (24), (25) and (31), 

(32) x(2) (0) ?0 (kC = O, 1 2,1**) 

and the first derivative x'(X) exists and is continuous in the closed range 
0 ? X ? 12. 2Hence * (29) has exactly one continuous solution i in this 
closed range, viz. the one represented by Abel's inversion formula 

x 
(33) Tr(X)=J (X Y) `/2 x'(Y)dY/w7r 0 ? X ?_ 2. 

On combining (30) and (31) with (33) we see that (26) possesses the unique 
continuous solution 

(34) a(r) (q2 -r2)-82 p"(q)dq/; 0 ? r? R. 

We have now to prove that in the half-open range r = 0 all derivatives of 8 (r) 
exist and satisfy the relations (27). In other words [cf. (30), (31)], we have 
to prove that in the half-open range 0 < X < R2 the function - (X) possesses 
derivatives of arbitrarily high order which all vanish for X = 0. 

Since X is supposed to be #7 R2, we know that X (X) exists for every k 
and for all values of X under consideration. Hence, from (32), 

(35i) (X-Y)Y12 X(k) (Y) =0 for both Y = 0 and Y=X. 

On writing (33) in the form 

X 
(36) T(X) -2 {d(X- Y)'/2/dY}X'(Y)dYf7r; 0 ? X < R2 

and applying partial integration, the boundary condition (35) yields 

X 
(37) 7* (X) =2 2 (X -Y)12x" (Y) dY/7r; 0 _=y < R2 

* Cf. the definitive results of L. Tonelli, " Su un problema di Abel," Mathematische 
Annalen, Vol. 99 (1928), pp. 185-192. 
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318 AUREL WINTNER. 

Hence r'(X) exists, viz. 

x 
(38) '(X) (X -Y)`1/2 X"(Y)dY/7r; 0 X < R2. 

Since all derivatives of x (Y) exist for 0 ? Y ? X and (35) holds for 
every k, the process which led from (33) to (38) may be repeated indefinitely, 
i. e. all derivatives r( (X) exist and 

x 

(39) f (X) = (X- Y)Y2 X(+l) (Y)dY/7r; 0? X < R2. 

Finally from (39) 
(40) T(k) () 0. 
Q.E.D. 

We now prove (28). The even momentum 

R 

f r2n p'(r) dr 
of p' is, according to (26), 

sR R 
2 fr2n [ (q2 r2) -1/2 q8 (q) dq] dr, 

i. e., by Dirichlet's rule,* 

- [2 r2n ( q2 r2)-V2 dr] q8 (q) dq 

or (on placing r = qp where q is fixed) 
R 

fR[2f1 (qp)2n(1 p2)-1/2 dp] q8(q)dq. 

Hence T r2n p'(r)dr= [5 q2n q8(q)dq] [2fp2n(1_ p2)'/2 dp], 

where t 
1 ~~~~~~~~7r/2 

[2 p2n (1 _ p2) -Y2 dp] =2 5 CoS2n 0 dO - r(2n) !/(n !2 22n). 

Accordingly, 

r fr2n+1 8 (r) dr(n !2 22n) r2n p'(r) dr/(2n)! 

or 
JR 2 R 

7r |( S2r2/4) n rS (r) drl (n! 2) (_ s2r2)"np'(r) drl (2 n) 

* Cf., for instance, L. Tonelli, loc. cit. 
t Cf. in this connection G. P6lya, "Application of a theorem connected with the 

problem of moments," The Messenger of Mathematics, Vol. 55 (1926), pp. 189-192. 
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where s is arbitrary. This may be written, by virtue of the developments 

Jo (sr) r ( sr/4) f/ (n!2 co s(sr) 8 -2r)f(2 ! 
n=O 0n= 

in the form 
sR sR 

7r Jo (sr) r8 (r) dr cos (sr) p'(r) dr, 

the legality of the term-by-term integration being trivial. Hence from (20) 
R 

(41) 27r Jo (sr) r8(r) dr L(s; p). 

On the other hand,* 
s27r 

exp{i cos(wi#) }d# 27rJo(w), 

1. e. 
s27r 

(42) exp{i (u cos i + X sin ) r}d = 27rJo (rs) where S= {U2 + V2}1/2. 

On substituting (42) in (41) there results (28). 
The continuous function 8(r) has so far been defined for 0 < r < R' only. 

It will be convenient to set 

(43) 8(r) 0 for R <-r < + oo. 

By virtue of (27) this extended function 8 possesses derivatives of any order 
for 0 < r < + oo. 

THE LAPLACE TRANSFORM OF THE TIME AVERAGES. 

It is supposed that the frequencies Aj of (1) are linearly independent. 
Hence if n, M., k denote arbitrary non-negative integers, 

'T k k 

(44) limn ( 112T) [ 'Y. rj cos kj ( t -tj ) ] n [ Y. rj sin kj ( t tj ) ] m dst 
T=+oo -T J=i j=1 

2 27r k k 
(1/27r)J . . . [Y rj cos f9j]n [ E rj sin Oj]m d61. d6k, 

j=1 j=1 

where Oi, , Ok are 7c independent integration variables. This well-known 
identity may be verified either by complete induction or else directly and 
yields, according to Bohr, a simple proof for the Kronecker approximation 
theorem. We shall use (44) as in the paper II for purposes which are finer $ 

* Cf. Courant-Hilbert, op. cit., p. 390. 
t Cf. E. C. Titchmarsh, The zeta-f unction of Riemann, Cambridge University Press, 

1930, p. 98. 
$ Cf. the introduction of the paper II, referred to on p. 310. 
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320 AUREL WINTNER. 

than the Kronecker theorem. In fact, we shall extend the statistical relation 
(14) to the case of the complex-valued distribution (1). 

Let f (t) =g (t) + ih (t) be an almost-periodic (hence * continuous and 
bounded) function of the real variable t, where g and h are real, and let 
{fk (t) } denote a sequence of such functions. The exponential 
(45) expi{ug(t) +vh(t)} where f=g+ih 
is an almost-periodic function of t for all real and complex values of the 
parameters u, v, inasmuch as (45) is a uniform limit t of such functions; 
in fact, 
(46) I gnh 11 g 11 g + ih 1 n+tm 

where 11 q 11 denotes the least upper bound of I q (t) I in the infinite range 
-00 <t< + oo. Obviously 

(47) lim exp i{ugk + vh*} - exp i{ug + vh} 11 = 0 
k=oo 

whenever lim 11 f- f 11 = 0, 
k=oo 

where fk = gk + ihk and f = g + ih. The operator 
T 

(48) 9N(f) lim f (t) dt/2T 
T=+oo -T 

is defined t for every almost-periodic function f, hence for the function (45). 
For the time-average of this exponential we introduce the abbreviation 

(49) 2(u,v; f) =9JN(expi{ug+vh}) where f= g+ih, 
so that 2 may be considered as the Laplace-Fourier transform of the time- 
function f ( t). Clearly 

(50) lim 9R(f&) =9 J(f) whenever lim 11 fk -f 11 =0. 
k=oo k=oo 

Also, for all values of the parameters U, v, 

(52) ((u,v; f) = ! p! E Cpq(iu)p-q(iV)q9(gp-qhq), 
PXO q=o 

where f = g + ih and 
(53) Cm 'pp!(p q)1q!L. 
The development (52), resulting formally from (49), is legalized by (50) 
and (46) ; in fact, g(t)n h(t)m is ? an almost-periodic function as f(t) 

g (t) + ih (t) is. 

* H. Bohr, " Fastperiodische Funktionen," Ergebnisse der Mathematik und ihre 
Grenzgebiete, Vol. 1, No. 5 (1932), pp. 29-30. 

t H. Bohr, ibid., pp. 31-33. 
t H. Bohr, ibid., pp. 34-36. 
? H. Bohr, ibid., p. 33. 
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Let I 
(55.) z*(t) Xik(t) + iyk(t)- E Cj( .1=1 
denote a partial sum of (1), where 

(56) rj exp ikj (t-tj) - rj cos Aj (t tj) + irj sin Aj (t-tj) = Cj. 

Then lim 11 zk Z- 0 is assured by (2). Hence from (47), (50), (49) 
k=oo 

(57) 2(U,v; z) = lim 2(U,V; Zk). 
7k=oo 

Furthermore, 
127r 

(58) 2(u, v; cj) = (1/27r) exp i{ (u cos ? + v sin 0)rj} dO. 

In fact, (58) holds by virtue of (56) and (52) if and only if 

(59) W([rj cos Aj (t -tj) ]P-,q [rj sin kj (t -tj) ],q) 
a27 

= (1/27r) [rj cos O]P-2 [ri sin O]q dO (p q 0), 
27o 

where we developed the integral occurring in (58) according to the 

powers of u and v. Since j has in (59) a fixed value it is sufficient to prove 
(59) for j - 1, and on placing in (44) 

n =p- q, m= q, k=, 

there results (59) for j = 1. Hence (58) holds true. Also, from (44), 
(55) and (56), 

(60) (x1P-qy-yq) 
^27r s27r k k 

(1/27r)k ,f rj cos Oj]P-q [ rj sin O69] dO* dOk 

where p > q> 0. 
On replacing in (52) the typical function f(t) g(t) + ih(t) by the 

function (55), it follows from (60) that 

(u, V; Zk) = p - Cpq (iu) P-q (iv) a ( 1/27r) 
p=o q=O 

27r 2r k kc 
x r * [f E rj cos Oj]pq [ 

' 
rj sin Oj q d * * dOk. 

v o t O >=1 j=1 

Accordingly from (53) 
,Y 2(u, V; Z-k) = 1/27r) . p ! 
p=o 

<2r 2* kr kc 

X . .. {iuz N rj cos Oj +-- iv 
' 

ri sin 0j}P dO* dOk, 
whichm rttn in te fO j=r j=m 

which may be written in the form 
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322 AUREL WINTNER. 

(u, v,; z) - (1/2r)'k 
2r lb 2r 00 k 

X ** p! -{ , (iurj cos Oj + ivrj sin Oj) }11 d** d&k, 
a 'O p=O j=1 

the legality of the term-by-term integration being trivial. Consequently, 

2(u,v; Zkg) 
(.27r ^ 27r k 

(1/2r)k . . . exp E (iurj cos Oj + ivrj sin Oj)d* dOk, 
j=1 

or 
27r 42rk 

- 1(/27)kJ . . H exp (iurj cos Oj + ivrj sin Oj) dOj, 
i. e. 

k s27 
2(U, v; z>) II (1/27r) exp irj {u cos Oj + v sin 9j}dOi. 

J=1 

Hence from (58) and (57) 
00 

(61) 2(u,v; z) =ll2(U,v; Cj). 
J=1 

The multiplicative rule (61) is analogous to (14). The expressions 2 
are, however, time-averages whereas the integrals L represent space-integrals 
extended over the one-dimensional phase-space.* We shall now transform the 
time-averages 2 in space-integrals A extended over the present phase-space 
which is the plane (x, y). 

THE STATISTICAL INDEPENDENCE. 

Let R denote the least upper bound of I z(t) 1, where z(t) = x(t) + iy(t) 
is an almost-periodic function. We do not suppose, at present, that the fre- 
quencies Aj are linearly independent. Let Q be a rectangle in the (x, y) -plane 
parallel to the co6rdinate axes, and let {Q; T} denote the set of those values t 
in the interval I t I;< T for which the point x = x(t), y = y(t) is within Q. 
In a recent paper Haviland f proves the following theorems: 

(I). Every almost-periodic function z (t) does possess a distribution 
function. In a more precise manner, there exists a monotone t absolutely 
additive ? set-function c (E) such that 

* Cf. in this connection G. D. Birkhoff, "Proof of the Ergodic Theorem," Pro- 
ceedings of the Nationatl Academy of Sciences, Vol. 17 (1931), pp. 650-660. 

t E. K. Haviland, loc. cit. The order of presentation of these theorems differs in 
his paper from that given here. 

t J. Radon, " Theorie und Anwendungen der absolut additiven Mengenfunktionen," 
Sitzutngsberichte der mathematis.ch-naturwissens.chaftlichen Klasse der Kaiserl. Alkademie 
der Wissenschaften zu Wien, Vol. 122 (1913), pp. 1295-1438 (more particularly p. 1303) 
and " Ueber lineare Funktionaltransformationen und Funktionalgleichungen," ibid., 
Vol. 128 (1919), pp. 1083-1121. 

? J. Radon, loc. cit., p. 1299. 
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lim meas {Q; T}/2T exists and +c(Q), 
T=+oo 

provided that none of the four boundary lines of Q lies on a certain denumer- 
able set of lines x - xj, y- yt. These are termed singular lines of 4. 

(II). These lines cannot exist if * the total variation of + (E) in Q is 
an absolutely continuous set-function of Q. On the other hand, there exist t 
almost-periodic functions z (t) having actually a singular line x = xj or y =- y. 

(III). Since I z (t) I ?_ R for every t, it is clear from (I) that k (E) 
vanishes for all rectangles E Q without the circle x2 + y2 R 2. Hence $ 
the double Stieltjes integral 

. +00 

P(x, y)cdh(E) 

exists for every continuous point-function P (x, y). In particular, all momenta 

ffxnymdcp(E); (n,m m 0O,1, 2, * ) 

of 4 exist. Here and always if not otherwise indicated the integration is ex- 
tended over any region containing the circle x2 + y2 _ R2, e. g. over the whole 
(x, y)-plane. 

(IV). The momenta of + (X) are the corresponding time-momenta of 
z(t) x(t) +iy(t): 

s 4 ~~~~~~~T 4v 4v xnym do(E) = lim (1/2T) fx(t)n y(t) m dt, 

where n, m = 0, 1, 25, * * - 

(V). If an absolutely additive set-function (E) vanishes ? for all rect- 
angles without a sufficiently large circle, and if the momenta of w(E) represent 
the corresponding time-momenta of z (t), then U is identical ? with the dis- 
tribution function k of z (t) although it is not presupposed that o be monotone. 

* Cf. J. Radon, loc. cit., pp. 1320-1322 and pp. 1093-1094. 
t Cf. Bohr's example referred to above (p. 311). 
t Cf. J. Radon, loc. cit., pp. 1322-1324. 
? It may be shown that this restriction can be omitted. We do not need, however, 

this extension of the uniqueness theorem. 
? This is to mean that w (Q) ? (Q) holds for all those rectangles Q which are 

not excluded by (I). The actual value of the monotone set-function q5 for the " singu- 
lar " rectangles is undetermined and immaterial in the same sense as is the actual 
value of a monotone function p (t) at a discontinuity point t = {m. Cf. the papers of 
Radon and Haviland, referred to above. 
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324 AUREL WINTNER. 

These theorems of Haviland correspond to those results regarding a real- 
valued almost-periodic function which are proven in my first paper, referred 
to on p. 309, footnote t. We know that the latter results may essentially 
be refined if the frequencies Aj be linearly independent. In this case we found 
explicit results instead of the mere existence theorem (3). We shall now 
extend these explicit results to complex-valued almost-periodic functions with 
linearly independent frequencies. This case is of first importance in the ana- 
lytic theory of numbers. Even without the assumption of linear independence 
we have as a consequence of lHaviland's results the following 

LEBMMA. Let 0 (E) denote the distribution function of the almost- 
periodic function z(t). Set 

(62) A(u,v; w)= exp{ux + vy} d&(E) 

where w(E) is any' absolutely additive set-function varnishing without a suffi- 
ciently large circle X2 + y2 ? R2. Then * 

(63a) o)=fr 
holds if and only if 
(63b) A (u%,v;) S(u, v; z) 

for all values' of the arbitrary parameters u and v'. 

In fact, on placing 

Mnum() f ; Xnydgd (E), 
we have from (62) and (53) 

00 p 

A(u,v; o) p l - Cpq(iu)pq (iv)qMpq q(w), 
p=,O q=o 

the legality of the term-by-term integration being trivial: On the other hand, 
from (52), 

00 p 

(u,( V; z) - - ,! -1 E Cpq (iU) pq (ir) q 9 (Xp-qyq), 
p0 q=_ 

where z (t) =- x (t) + iy(t). On comparing the coefficients of these integral 
power series we see that (63b) is equivalent to 

(63c) M,pm((O) = 9(Xnyn); (n, m O,l 1, 2y *. 

Now (63c) follows from (63a) by (IV), and (63a) follows from (63c) by 
(V), so that (63a) is equivalent to (63c). Hence (63a) is equivalent to 
(63b). 

* Cf. the previous footnote. 
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According to the Lemma thus proven we have 

(64) (u, v; z) A(u, v; 4) 
and 
(65) 2(u, v; cj) A(u, v; fj), 

where /j denotes the distribution function of the periodic function Cj (t) 
- rj exp iX1(t- ti). On substituting (64) and (65) in (61) we obtain the 
statistical independence relation 

oo 

(66) A (u, v; 4)) =HA(u, v; 7), 
j=1 

which is by virtue of (1) and (56) the two-dimensional analogue of (14). 
On comparing (66) with (14) and using the Abel integral equation (26) 

we shall now calculate the distribution function of (1) in terms of the one- 
dimensional distribution function p, which we know by the explicit repre- 
sentation (23). It would not be difficult to consider spaces with more than 
two dimensions. Besides, the treatment of spaces with an odd number of 
dimensions is simpler insofar as no Abel integral equation occurs. The 
occurance of this integral equation in the case of an even dimension number 
is related to well-known facts regarding Hluyghens' Principle.* 

THE DISTRIBUTION FUNCTION. 

The total variation of a distribution function + (E) belonging to an arbi- 
trary almost-periodic function z (t) is = 1. In fact, on placing both exponents 
n, m in (IV) equal to zero, there results 

(67) do+(E) 1 

Since + (E) is by (I) monotone and ? 0 we conclude that 

(68) 0 ?+(E) 1 
for every E. 

Let D (x, y) be a continuous point-function which is = 0 when X2 + y2 

> R2. Then 

(69) @ (E) D(x,y)dxdy 

* Cf. Philomena Mader, " Ueber die Darstellung von Punktfunktionen im n-dimen- 
sionalen euklidischen Raum durch Ebenenintegrale," Mathematische Zeitschrift, Vol. 
26 (1927), pp. 646-652. This paper contains also references to previous investigations. 
Cf. also J. Hadamard, Le problerne de Cauchy et les 6quations aux derivees partielles 
lirneaires hyperboliques, Paris, 1932, passim. 

2 
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326 AUREL WINTNER. 

is an absolutely additive set-functioni which vanishes for all rectangles without 
the circle X2 + y2 ? R2. Furthermore, 

(70) ffP(x,y)dw(E) f P(x, y)D(x,y)dxdy 

for any continuous point-function P(x, y). For we have from (69) 

(69a) o (Q ik) = D(jk, qik) I Qik 1, 

where (eik, -) is some point in the interior or on the boundary of the rect- 
angle Qe, and I Qik I denotes the area of Qik. Accordingly, 

(70a) E E P(eik, -tk)o(Qk) P i P(eikc, -ik)D(eik,, -ik) J QIk I 
i k k 

for every partition of the square I x ? R, J y I < R in rectangles Qik. On 
considering a sequence of partitions in such a way that the maximum diameLer 
of the rectangles occurring in the n-th partition approaches zero when 
lim n = oo, equation (70) follows from (70a) by the integral definitions of 
Radon and Riemann respectively. 

If the distribution function +(E) of an almost-periodic function z(t) 
possesses a representation (69), it is clear from (II) that the sequence of 
singular lines mentioned under (I) cannot exist, i. e. that 

(71) lim meas{Q; T}/2T fJ D(x,y)dxdy 

holds for every Q. If the frequencies of the almost-periodic function z (t) be 
linearly independent, its distribution function may be represented, according 
to Jessen, in the form (69), provided that z(t) is analytic by virtue of its 
representation as an absolutely convergent Dirichlet series (cf. p. 310 above). 
The distribution function q~j (E) belonging to the partial vibration (56) of (1 ) 
does not allow a representation (69). More than that, there does not exist a 
measurable function possessing over E a Lebesgue integral = tj(E). In 
fact, the very definition of a distribution function yields from (56) the relation 

(72) 2wrrjy/j (E) = length of the arc Ej, 

where Ej denotes that portion of the circle X2 4- y2 = rj2 which is within the 
open rectangle E, provided that there exist such a portion; otherwise 
tj (E) = 0. Now this set-function is clearly not absolutely continuous and 
therefore does not allow a Lebesgue representation. 

From (72) and (62) we obtain by the Radon integral definition the 
formuLla 
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r27r 
(73) A(u, v; j) = exp{i(urj cos 0 + vrj sin 0)} dO/27r 

where x = r cos 0, y = r sin 0. Besides, (73) follows from (58) and (65) 
also. Now from (73) and (42) 

(74) A (u, v; qj) =JO(rj{2 + v2}/2). 

Hence, from (66), 
00 

(75) A(u,v; )) H JO(rj{u2 + V2}1/2). 
j=1 

On comparing (75) with (16) there results 

(76) A(u,v; 4) =L({u2 + v2}'/2; p), 

or, according to (28), 

(77) A (u, v; ), Jo r8(r) exp {i(u cos + v sin )r} dr dO. 

On placing 
(78) x rcos 0, y= rsin 

and applying (70) to the point-function 

P(x, y) = exp{i (ux + vy) } =- exp{i (u cos 0 + v sin t)r} 

and the absolutely additive set-function 

(79) @o(E) * X(V/x2 + y2)dx dy; 8(+X2? + y2) 0 for X2 + y2 R2, 

we see from (62) that 

(80) A (u, v; o) = f 8 (r) exp {i (u cos ? + v sin 0) r}dx dy; x2 + y2 = r2. 

Since dx dy = r dr dJ, it is clear from (43) that the double integrals occurring 
in (77) and (80) are identical. Consequently 

A(u,v; ) A(u,v; (), 

or, according to (64), 
2(u,v; z) =A(u,v; o). 

Hence from the Lemma 
(81) +(E) @(E) 

(p. 324). Since 4 is monotone by (I) it is clear from (79) that for the 
distribution function (81) the singular lines not excluded by (I) cannot exist 
and that (81) holds for every rectangle. On comparing (69) with (79) we 
see that D (x, y) = 8(r), i. e. that the distribution of (1) is of central sym- 
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328 AUREL WINTNER. 

metry. This is in accordance with the Kronecker-Weyl approximation theorem. 
Furthermore, from (79), 
(82) 8 (r) :>- 0, 

inasmuch as (81) is monotone by (I). 

Accordingly, the asymptotic distribution of the values of every almost- 
periodic function 

00 00 

z(t) = x(t) + iy(t) = rj exp i (t-t )AX ; ri > 0, R = rj < + X 
j=1 j=1 

with linearly independent frequencies Aj possesses a non-negative density of 
probability 8 which is a function of r2 - x2 + y2 alone. This function 8(r) 
possesses derivatives of arbitrarily high order if r # 0 and remains continuous 
at the origin r 0. The radial density is explicitly given by the formula 

.R 

(83a) 78(r) - (q2- rr2)1/2 P'(q)dq; 8(r) =0 for r?R, 
where * 

+oo 00 
(83b) 7rp"(r) =- q sin(rq) H Jo(r1q)dq; p"(r) =0 for r?R. 

j=1 

Also, 

(84a) 7rp'28+-(r) = (_ 1 ) fq2 t(q)cos (rq) dq, (n 0, 1, 2, . . . 

and 

(84b) 7rp (20(r) = (_1)n q2n-I(q)sin(rq)dq, (n 12,2 ) 

where t 

(85) S(q) =H Jo(rjq) 
j=l 

and 
(86) 0(q) O(q-m) when q-> + 

for every fixed value of m ? 0. 

The important point is that the Radon integral notion allows the treat- 
ment of " discontinuous " distributions of the type (72). The method is 
valid also in the case, illustrated by a geometrical investigation by Bohr and 

* Cf. p. 316 and p. 315 above. 
t The product (85) governs also some other statistical problems. Cf. Lord Ray- 

leigh, " On the problem of random vibrations, and of random flights in one, two, three 
dimensions," Phtlosophical Magazine, Series 6, Vol. 37 (1919), pp. 321-347; R. Luine- 
burg, "Das Problem der Irrfahrt ohne Richtungsbeschriinkung und die Randwertauf- 
gabe der Potentialtheorie," Mathematische Annalen, Vol. 104 (1931), p. 700 etc. 
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Jessen (referred to on p. 316), where the densities are distributed along 
arbitrary convex curves. Applications to the g-function will be given later on.* 

THE RADIAL DISTRIBUTION FUNCTION. 

The modulus of (1) is, as (1), an almost-periodic function.t On the 
other hand, on replacing z (t) by I z (t) I we lose the linear independence of 
the frequences. It is nevertheless possible to calculate the distribution func- 
tion of I z(t) |, i. e. the radial distribution function of z(t). In fact, on 
placing 

(87) v() 0, - oo < e < 0; v(e) =5 8 r(-q)drj,/27r, 0 e < + o0, 

where 8 is given by (83a) and (83b), it is easy to prove that t 
+00 

(88) (I Z nde) (n 1 2, . 

Hence ? v(e) is the distribution function of I z (t) I. Thus the radial sym- 
metry of + (E) may be interpreted as an indication of the existence of a 
"mean motion" for the function arg z (t) although 

exp [iargz(t)] z(t)/ | z(t)[. 

need not be almost-periodic.? 
We shall not use here all momentum equations (88) but only the relation 

(89) r8(r) dr 2ir, (n= 0) 

which is an obvious consequence of (67), (81), (79), (78) and (70). 

* Cf. H. Bohr und R. Courant, " Neue Anwendungen der Theorie der diophantischen 
Approximationen auf die Riemannsche Zetafunktion," Jo'urnal fiur Mathematik, Vol. 
144 (1914 ), pp. 249-274; H. Bohr und B. Jessen, " Ueber die Wertverteilung der 
Riemannschen Zetafunktion," Acta Mathematica, Vol. 54 (1930), pp. 1-35 and Vol. 58 
(1932), pp. 1-55. 

t This follows from the definition of the almost-periodicity inasmuch as 

II z(t +-a) - Iz(t) I I I z(t+a) -(t) I 
$ The- verification may be based upon the momentum identities developed in the 

Chapter on the Abelian integral equation. 
? Cf. loc. cit. I (referred to on p. 309). 
? Cf. H. Weyl, "Sur une application de la theorie des nombres a la m,canique 

statistique et la theorie des perturbations," L'Enseignement Matheimatique, Vol. 16 
(1914), pp. 455-467. Cf. also F. Bernstein, "Ueber eine Anwendung der Mengenlehre 
auf ein aus der Theorie der sakularen Storungen herriihrendes Problem," Mathematische 
Annalen, Vol. 71 (1912), pp. 417-439; and, on the other hand, H. Bohr, " Kleinere 
Beitriage zur Theorie der fastperiodischen Funktionen. I.," Det Kgl. Danske Videns- 
kabernes Selskab. Meddelelser, Vol. 10, No. 10 (1930). 
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It is clear from (34), (82) and (89) that the second derivative of p(e) 
is non-positive and not identically zero in a certain vicinity R - __ 

- ? R 
of the end-point t = R. It would be interesting to know if it is allowed to 
place e R. This would mean that p represents, as does the Gauss curve, 
a so-called symmetrically convex distribution, i. e. one such that the density 
of probability is a non-increasing function of the distance from the origin. 
A detailed discussion of the curve p ought to be based * upon the Fourier 
integrals (84a), (84Tb). 

A PROPERTY OF REAL LAGRANGIAN REPARTITIONS. 

It has been pointed out in connection with (25) that the function p (r) 
cannot be constant in the vicinity of points which are within the range 
0 r R. Also, the function p (r) has derivatives of any order for all values 
of r. We now show that p (r) need not be an analytic function in the range 
0 ? r ?<R, even if z (t) be analytic by virtue of its representation as an 
absolutely convergent Dirichlet series (cf. the Introduction). 

Suppose that one of the partial vibrations of (1) or (5), say the first one 
(j 1), is " overwhelming " in the sense of Lagrange: t 

00 

(90) r1> rj. 
j=2 

Then the density of probability p'(r) belonging to x (t) is a positive constant 
in the range 

0o 

(91) 0_ r_ ri -i rj(< 
j=2 

without being a constant in the whole range 0 ? r < B, i. e. the repartition of 
x(t) is an equippartition in the domain (91) but not in the whole domain of 
x(t). This is, in reality, a consequence of (23) but the proof is shorter if 
we use 8(r). 

First, from (1), (2) and (90), 
00 

z(t) r Er > O, 
j=2 

. e. 
Iz(t) _2r -R>O; -oo < t < + oo. 

* Cf. M. Mathias, "Ueber positive Fourier-Integrale," Mathematische Zeitschrift, 
Vol. 16 (1923), pp. 103-125. 

t Cf. H. Bohr, " Das absolute Konvergenzproblem der Dirichletschen Reihen," Acte 
Mathematica, Vol. 36 (1913), pp. 202-209; A. Wintner, "Sur l'analyse anharmonique 
des inegalites seculaires fournies par l'approximation de Lagrange," Rendiconti della 
R. Accademia Nazionale dei Lincei, Series 6, Vol. 11 (1930), pp. 464-467. 
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Consequently, the distribution function + (E) of z (t) vanishes for all those 
rectangles E which are within the circle 

x2+y2< (2r -R)2. 

Hence from (81) and (79) 

8(r) =- O when 0 < r < 2r- R, 

or, according to (26), 
(92) p'(r) p'(0) 

when 0 ? r < 2r, - R. On the other hand, (92) cannot hold in the whole 
range 0 ? r < R, i. e. the second derivative of p (r) cannot be everywhere zero. 
This is obvious from (34) and (89). Finally, the constant (92) is, according 
to (26), equal to 

R 
2 8 (q) dq, 

and, therefore, > 0 by (82) and (89). 

ADDENDUM. (May 22, 1933). During the correction of the proof sheets, Jessen 
published in the Zentralblatt fiir Mathematik und ihre Grenzgebiete, Vol. 6 (May 10, 
1933), pp. 162-163, a review of the author's paper III. 

Jessen states that the remark in III regarding the example (4) is incorrect. In 
reality, my remark was "Diese Bedingung kann . . ." and not "Diese Bedingung 
muss . . ." so that Jessen's criticism is not justified. 

Jessen states that although my method is a momentum method my results loc. cit. 
III are essentially the same as those of his Thesis, referred to above (p. 309). It is 
clear from the present paper that the analytical, viz. explicit methods, as developed 
loc. cit. III, yield essentially finer results than those of Jessen. Besides, Jessen does 
not treat the real-valued case, which was the exclusive topic of III, at all, and the 
connection between the real-valued and the complex-valued case is also not indicated 
by Jessen. Finally, the work of Bohr and Jessen on the zeta-function was loc. cit III 
not overlooked but exactly referred to. 

THE JOHNS HOPKINS UNIVERSITY. 
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