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1. Introduction. Let (x.), n 1, 2, be a sequence of real numbers
contained in [0, 1). Denote by A (N, x) the number of n _< N with x < x.
The sequence (x.) is called uniformly distributed (u.d.) if N-1A(N, x) x
as N -- m for all 0 _< x _< 1. (In general, (xn) is called u.d. mod 1 if the sequence
of fractional parts {x.} is u.d.) It is easy to see that (x.) is u.d. if and only if

D sup N-’A(N, x) xl O.
0zl

Another equivalent condition is the Weyl criterion: (x) is u.d. if and only if
def

S(h) N-’ e’’" 0

for all h Z {0}. (For the proof of the basic theorems see [5].) The follow-
ing theorem due to ErdSs and Turn [3] can be regarded as a quantitative
version of the sufficient part of the Weyl criterion.

THEORE A. For any integer m 1

1 1

The best constants Cl and c so far have been Cl 17.2 and c 4.3 (Nieder-
reiter, unpublished). Much larger values were given by Yudin [9].
The purpose of this paper is to give various generalizations of this theorem

and to point out their connections with other parts of analysis. We shall
prove the following theorem.

Toa 1. Let F(x) be nondecreasing on [0, 1] with F(O) 0 and F(1) 1,
and let G(x) satisIy a Lipschitz condition on [0, 1] i.e.

G(x) G(y)] M z y]

]or all 0 x, y 1. Suppose that G(O) 0 and G(1) 1. Then ]or any positive
integer m

o m + 1 +
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634 H. NIEDERREITER AND ALTER PHILIPP

where

/(h) exp (2/hx) dF(x) and 0(h) exp (2rihx) dG(x).

If we set F(x) N-1A (N, x) and G(x) x for 0 x <_ 1, we get the Erd6s-
Turhn theorem as a special case.
Theorem 1 has a celebrated continuous analogue, namely, the Berry-Esseen

inquality [2; p. 206], [7; p. 285]. Let F(x) be a distribution function of a random
variable and let G(x) satisfy a Lipschitz condition IG(x) G(y)I <_ M Ix Yi
for allx, y R. Suppose thatG(-) 0andG() 1. Then for any
T>0

sup IF(x) G(x)l < 24 i 2 fo
r l[’(t) d(t)i dr.

Remark. This is less restrictive than the usual assumption that IG’(x)] <_ M.
The proofs given in [2] and [7] require no changes. Here and here only we put
i(t) . e dE(x) and G(t) e de(x).

It is not difficult to modify the proof of Theorem 1 so as to give a theorem
where the integral ro is taken with respect to an arbitrary measure . But
the only applications we could think of were the cases where is the Lebesgue
measure yielding the Berry-Esseen inequality and where is the counting
measure yielding Theorem 1. Consequently, we felt that the presentation of this
generalization did not justify the extra effort.
Theorem 1 is also related to the sampling theorem in information theory [6].
Sampling theorem. Let F(x) be of bounded variation on [-1/2h, 1/2hi, h > 0.

Suppose that the jumps of F(x) at the endpoints of this interval are equal.
Then

](t) ](n/h)
sin r(ht n)
r(ht n) R,

where

(2/tx) dF(x).(t) -, exp

Putting h I we conclude that the "characteristic function" ](t) of a random
variable, bounded by 1/2, is uniquely determined by its values ](n) on the integers.
(In this context the term characteristic function usually is reserved for the
expression f: exp qtx) dF(x). The factor 2 affects only a change in scale.)
Shifting the scale half a unit to the left we see that this fact is also implied by
Theorem 1. Of course, the condition on the boundedness of the random variable
cannot be entirely omitted. Simply consider the sequence of independent
Bernoulli trials centered at expectations, i.e., P(Xk -1/2) P(Xk 1/2) 1/2
for k 1, 2, .... The X have "characteristic function"

f exp (2v/tX) dP cos rt.(t)
J
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But this coincides on the integers with (cos rt) 2/1, the "characteristic function"
of Sn+l X1 - -t- X.+I, which is a binomially distributed random var-
iable, centered at expectation.

Since neither X nor S./ have a distribution function satisfying a Lipschitz
condition, one could argue that this is the reason why Theorem 1 fails. But
even if the distribution function G(x) is assumed to satisfy a Lipschitz con-
dition, Theorem 1 cannot be true unless the density G’(x) has compact support.
Simply consider the "characteristic function" e-I1 of a Cauchy-type random
variable X and define a second one/0(t) by interpolating linearly between the
points with integer abscissae. By Polya’s theorem [2; p. 169] /(t) is a "char-
acteristic function" coinciding with e-1 oa the integers. But, obviously,
F(x) cannot be the distribution function of X.
We are fully aware that the following comments might make sense only

after the reader has compared the proof of Theorem 1 with one of the standard
proofs of the Berry-Esseen inequality (e.g., see Chung [2; pp. 206-208]). The
following idea suggests itself immediately. Simply sum the formulae obtained
from the integration by parts rather than integrate them as is done in some of
the proofs of the Berry-Esseen inequality. That is, in essence, what we are
doing. But the term with h 0, if not properly disposed of, causes difficulties.
These evaporate if we "center F(x) G(x) at expectation". A slightly more
refined method will even yield a stronger result (see Theorem 1’).

Unfortunately, we were unable to make these methods work in dimension
s 1. By combining them with ideas from the original proof of the ErdSs-
Turn theorem the generalization to higher dimension can be carried out. We
consider this to be the main result of the paper. In order to state the theorem we
introduce some notation. Let F(x x.) be a distribution function on R’
with F(1, 1) i and F(x, x.) 0 whenever some x; 0, 1 _< j _< s.
Let G(xl, x.) be a function of bounded variation in the sense of Vitali on
U’, the closed s-dimensional unit cube, with G(x, x.) 0 whenever some
x; 0, 1 _-< j_< s, andG(1, 1) 1. For anyBorelset B C U’ write
G(B) f, dG. We shall assume that for any rectangle R {at _< x at -[-/,
1

_
j_ s} C Uwehave

(1.1) [G(a

_
x;

_
a, + k., 1

_
j

_
s)[

_
M IX

(These conditions are satisfied if G is a distribution function on U’ with density
bounded by M.) We note once and for all that (1.1) implies a Lipschit con-
dition of the form

]G(x ,..., x.) G(y ,..., Y.) - M _, ix YI
for (x, xo), (y, y.) U’. For any integral vector h (h,
write I[h]] max_<i_<. h;I and

R(h) R(m, h) 1 max (last, 1)

,h.)
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where m is a given positive integer. Let (h, x) i<_, hix be the inner
product of h and x (xl, ..., x,). Define (h) /(hl, -.., h,)
f v. exp (2i(h, x)) dF(x) and similarly (h).
THEOREM 2. Under the above hypotheses, we have [or any positive integer m

M ]/(h) (h)!sup IF(x) G(x)[ .m -b 1 -b R(h)zEU’ 0<l Ihll_<m

where the constant implied by <<, depends on s only.

Again we can speciali,e F(x) and G(x) to obtain the s-dimensional version
of the ErdSs-Turn theorem, due to Koksm [4] and Sztisz [8]. Unfortunately,
our constants implied by <<. are much worse than the best ones known for
this particular case [5]. Similarly, there is a continuous analogue of Theorem 2,
or an s-dimensional version of the Berry-Esseen inequality, due to von Bahr [1].
We are indebted to Professor Cambanis for providing us with reference [6].

2. The one-dimensional case. In this section we present the proof of
Theorem 1 and some remarks concerning the values of the constants. In
fact, we shall establish the following stronger version of Theorem 1.

THEOREM 1’. Let F(x) be nondecreasing on [0, 1] with F(O) 0 and F(1) 1,
and let G(x) satis]y the Lipschitz condition

[G(x) G(y)] <_ M y[

]or all O

_
x,y

_
1.

positive integer m
Suppose also that G(O) 0 and G(1) 1. Then/or any

I(F(x) G(x)) (F(y) G(y))

m + 1 + IF(h)
h= m-{-1

If, in particular, (x.) is a sequence in [0, 1), then Theorem 1’ implies an
inequality for the discrepancy DN extended over all intervals mod 1. For
N _> 1 and an interval J mod 1 let A (N, J) be the number of n, I _< n

_
N,

with x. J. Then define DN supj IN-1A(N, J) (J)l where h(J) is
the length of J and the supremum is extended over all intervals J mod 1.
Taking F(x) N-IA(N, x) and G(x) x in Theorem 1, we arrive at the
following version of the ErdSs-Turn theorem.

COROLLARY. For any sequence (x,,) in [0, 1) and any positive integer m we have

m_F l-F-
In order to prove Theorem 1’ we need the following simple auxiliary result

concerning the Fejr kernel.
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LEMMA 1. Let m be a positive integer, and let C and D be positive numbers
with D <_ 1/2and(roW 1)D >_ C. Then

(2.1) f;sin(m+l)Xdx<sin2x -1 (1 + -1)
Pro@ Since sinx >_ 2xfor0_ x_ 1/2, wehave

fo(2.2) sin (m + 1)x dx < 1 1/2sin (m 1)x
dx.i- x x

Using integration by parts, we get

(m ? 1)x dx
1

x -+
1

<5-+
1

<5-+

sin 2(m + 1)D
4(m + 1)rD

sin 2(m + 1)x
2(m + 1)x dx

4(m + 1)rD + 2(m + 1)rx

1 < 1( 1)2(m+ 1)D2-
1 +-

In view of (2.2) we obtain (2.1).
Proo] o] Theorem 1’. It is convenient to extend F(x) and G(x) by setting

#(x) [x] + F({x}) and0(x) [x] + G({x}) forx R, where [x]isthe
integral part and {x} is the fractional part of x. We note that /(x) is non-
decreasing on R and that G(x) satisfies a Lipschitz condition on R with constant
M. We set H(x) .P(x) O(x) for x R. Then H(x) is periodic on R with
period 1, and supo_<.,, IH(x) H(y) sup.,,e IH(x) H(y) !.
We first consider the case where

(2.3) H(x) dx O.
’0

For any integer h integration by parts yields

(2.4) /(h) 0(h) -2ih H(x)e’h dx.

Choose a positive integer m and a real number a to be determined later.
(2.3) and (2.4) imply

--* (m+ 1 Ihl)e (h) (h)
2ih

(2.5)

Then

H(x) (m + 1 lhi)e’’’(-’) dx

H(x + a) (m + 1 [hl)e’’ dx

where the asterisk indicates that h 0 is deleted from the range of summation.
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Because of the periodicity of the integrand, the last integral may also be taken
over [--1/2, 1/2]. We note that

(2.6) (m A- 1 [h[)e’’ sin (.m-t- 1)rx
h,,--m sin l-x

where the right-hand side is interpreted as (m + 1) in case x is an integer.
We infer from (2.5) and (2.6) that

f H(x+a) sin(m+l)xdx 1 * (re+l-h[)[(h)- (h)[
(2.7)

----s-in x --1 E(m+ 1 h) J(h) (h)/.
h=l h

Let us set A sup [H@). Suppose that A > 2M/(m + 1), for otherwise
the theorem is trivial. Since H@-) H@) H@+) for x , we have
either H(b-) - or H(b+) for some b R. We treat only the second
alternative, the first one being almost identical. For > b we have H(t)
+ H(t) H(b+) + (f(t) f(b+)) ((t) -(b)) 2 A M(t- b).

We set D A/2M and choose a b + D. Then from the above we
getH@ + a) M(D- x) for [xl < D. In particular, weseethatD ,
for otherwise H@) would be positive on an interval of length greater than 1,
contradicting the fact that H(n) 0 for n Z. We obtai

fi H(x + a)dxsin (m + 1)x_
sin x

+ + H(x + a)-sin x

(2.8 > M (D x)
sin (m + 1)z dx

D sin x

;D .f2 sin (m 1)VXdx2MD
sin (m + 1)vx dx 2MD

sin x sin x

ff sin (m + 1)Xdx"sin (m + 1)vx dx 4MD2MD
sin x sin vx

The integral of the Fej6r kernel over [0, ] is (m + 1)/2 by (2.6). Therefore
from (2.8) and Lemma 1

sin* (m + 1)x+ a) dx
sin x

f’ sin (m + 1)vx sin (m2+ 1)Xdx> 2MD dx- 6MD
SI X Sln X

2
A --M 1 + > m+ 1

2
A--M
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where we used (m + 1)D > 1. Combining the above inequality with (2.7),
we arrive at

m+l +- m+ a I(h) O(h)

in particular, this proves the theorem in case (2.3) is satisfied.
We consider now the case where fo H(x) dx O. We shall first show that

there exists c, 0 < c < 1, such that

(2.10) H(x) dx H(c).

Suppose first ] H(x) dx > O. There exists s, 0 < s < 1, such that H(s) >_
fo H(x) dx. We note also that H(1) 0. Since the only discontinuities of
H(x) are positive jumps, the function H(x) must attain the value fo H(x) dx
in the interval [s, 1). If fo H(x) dx < O, one proceeds analogously.
With a number c satisfying (2.10), we define Fl(X) ff(x c) f(c) and

Gl(x) /(x + c) /(c) for x R. We observe that Fl(x) and Gl(x) share
the properties of/P(x) and (x) respectively.
G1 (x)) dx .o (H(x -t-- c) H(c)) dx O.
the inequality

(2.11) sup IFl(x)

_m_l_l +-
holds for any posigive ingeger m.

f’ d(F,(x) Ga(x))

Furthermore, we have fo (Fl(x)
By what we have already shown,

1)m-+-i

We note that

for all integers h.

sup ](F(x) G,(z)) (FI(y)

and so

sup

e2,,hx d(Fl(x) Gl(x))

d((x + c) /(x + c))e2 hx

e2’h dH(x) I(h) 0(h)

It follows from (2.11) that

_m+l +-
71" h=l ) [(h) 0(h)[m-+-I

1 ) I(h)
m+l/

which is the desired inequality.
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An alternative (and somewhat shorter) proof of the weaker Theorem 1 rests
on centering H(x) at expectation, i.e., replacing the function H(x) in the above
argument by H*(x) H(x) I, where I fo H(x) dx. In exactly the same
way, one proves then

sup [H(x).-- I < 2M 2 (_
eR m-t- 1 -7l" h=l

1)m -t- 1 I(h) (h)I.

Choosing x 0, one obtains an estimate for ili which implies the desired esti-
mate for supxeR IH(x)l.
We add some remarks concerning the values of the constants in the corollary

of Theorem 1’. Suppose cl and c. are absolute constants such that DN _<
cl/(m -t- 1) -t- c2 _,’-1 (1/h 1/(m -t- 1))ISv(h)l holds for any sequence
(x.) in [0, 1) and any positive integer m. Then choosing N 2, xl 0, and
x 1/2, weget - m_t_ l + C,.

m-l-1

With m 1 we obtain c >_ 1, and with m 3 we obtain ct -t-’c k 2.
taking m 19 and using c

_
4, we get c,. >_ 0.31.

Also,

3. Proof of Theorem 2 for s 2. We shall prove Theorem 2 in detail for
s 2 only and indicate the necessary changes for s > 3 in the next section.

Write H(x, y) F(x, y) G(x, y), (h h.) (hl h) (h h2) and
define D by A sup(.)ev. [H(x, Y)! 100 MD.

LEMMi 2. I] (u, v) U satisfies H(u, v) A and max (u, V) > 1 50D,
then the conclusion o] Theorem 2 holds.

Proo]. Without loss of generality we assume that max (u, v) v. Then

H(u, 1) A + F(u, 1) F(u, v) (G(u, 1) G(u, v))

>_ A 50MD

But F(x, 1) and G(x, 1) satisfy the hypotheses of Theorem 1. Hence

(3.1) 1/2 < H(u, ) < sup IH(x, )1
0<x<l

<
m -t- 1 + ’-- 1

m -t- 1 exp (2-ihz) dII(x,, 1)

Since the last integral is iust I(h, 0), the lemma is proved.

Li a. Le O < <__ 1. Thee H(--, v-) <_ --zX where (, v) U
implie min (, v) _> lOOeD.

ProoJ. In fact, < 100eD leads to a contradiction, --100eMD --Z _>
F(-, v--) (a(, v) a(O, v)) > --100eMD.
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COROLLARY. We may assume that D

_
1/50.

Proo]. If D :> 1/50, an application of Lemma 3 with e 1 shows that there
is no point (u, v) U with H(u--, v-) --4. Hence there must exist a
point (u, v) U with H(u, v) /. But then, since 1 50D < 0

_
max (u, v),

Lemma 2 applies.
Define

Then by (2.6)

lhl

For0_ a_ lput

[.sin: r(m_ 4- 1)t for ( Z/(t) sin t
/

[ (m4-1) for tZ.

(m + 1 Ihll)(m + 1 Ihl) exp (2i(h,t, + h.t2)).

r.(w)
1

m zr 1 /(w- t)dt.

We observe that for 0

_
a, f, a, b

_
1 we have

r.(x a)r(y b) ahl(a, a)ah2(, b) exp (2(hix + hy))

with ao(a, a) a and

a.(a a) m+ 1 ]hl_(1 e-’’")e-""forh 0
2ih m 1

Using the fact f v. dH(x, y) 0, we obtain for any choice of a, , a and b

fv r.(x a)r(y a.(a, a)a(, h)b) dH(x, Y) E b)(hl
(3.2)

o< R(h)

Our goal is to estimate the integral from below by a nontrivial linear com-
bination of A, M/(m + 1) and the last sum in (3.2). Integration by parts
gives

r.(z )r( b) dH(z, ) -r(1 b) H(, 1)r(z ) dz

(a.a) r.(1 a) H(1, y)r(y b) dy

fv. H(x, y)r(x a)r(y b) dx dy.+
Notice that 0 r.(1 a), r(1 b) 1 for any choice of a, , a and b.
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LEMMA 4.

and

For any choice o] a, , a and b we have

fo H(x 1)r’.(x a) dx < 8M 8 II(h,
ml -" h-, R(h, O)

H(1, y)r’(y b) dy _< 8M 8 I/(0, h)]
m+ 1 -r R O h

m+l

We prove the first inequality only. Its left-hand side equals

H(x, 1)(](x a) ](x a a)) dx

< 2 sup IH(x, 1)[ 1 jl
ox<_l m - 1 ](x) dx 2 sup

0<x<l
IH(x, 1)

by (3.1) and the remark following it.

LEMMA 5. I] (u, v) U satisfies H(u, v) >_. A and max (u, v) _< 2D,
then the conclusion o] Theorem 2 holds.

Proo]. Choosea b 0. For0_< x _< a- 1/2(m-}- 1) wehave

Hence

m + 1 l(x t)dt > ](t) dt > 2/-m+l

( 1 1 )r.(x)r(y) dF(x, y) > F
r 2(m + 1) 2(m - 1)

Next choosea u + 1/2(m+ 1) andf v + 1/2(m + 1). Since we may
assume 1/(m -[- 1)

_
D, we have 0

_
a, f 1/20 in view of the corollary of

Lemma 3. Thus

F(u, v) -r r.(x)r(y) dF(x, y)

and

r.(x)r(y) dG(x, y) G(u, v).

The first integral has been estimated in (3.2).
integral is bounded by

Because of (1.1) the second
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M r.(x)r(y) dx dy Ma <_ M 2D + 2(m + 1)
Finally, ]G(u, v) [G(u, v) e(u, O) <_ 2MD. Hence

IA< 1 J_l ( 1 M ) 1- o<
_

R(h) 4 10-3 +4_m+ 1 +-A
or

5 /(h) M
o< _< m+ 1

In view of (3.3), Lemma 4 and the observation made after (3.2) we have to
estimate the last integral in (3.3) from below. In these estimates we frequently
have to deal with integrals of the following type.

LEMMA 6. We have

A f ](x)l(y)dxdy > (m+ 1)2- m+ 1
ax( Ix[ [y[ _D D

B fD<max(lxl,lvl)_{ I(X)f(Y) dx dy < m+lD
and

A +B (m+ 1)

Prool. The second integral is bounded by

f_, f) f) m+l4 ](x) dx ](y) dy < 4(m + 1) dx <

The estimate for A follows now from the last identity.

LEMMA 7. Suppose H(u--, v--) <_ --1/2A ]or some (u, v) U2. Then the
conclusion o] Theorem 2 holds.

Proo]. Observe that for x <_ u and y <_ v

H(x, y) <_ --50MD + (F(x, y) F(u-, v-)) (G(x, y) G(u, v))

< -50MD+M(u--x+v- y).

Choose a u D and b v D and observe that (a, b) U since min (u, v)
_> 50D by Lemma 3. Hence

(3.4) H(x,y) < -M(48D+ (x- a) + (y- b))

for (x, y) El El (a, b) C U2. Here we introduced the notation

(3.5) El(}, ,) {(x, y) max (ix [, [y ,[) _< D} and El" U2\[:l.
Now
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(m + 1)

(3.6)

Using (3.4) we obtain

H(x, y)r.(x a)r(y b) dx dy

fo, H(x, y)l(x a)l(y b) dx dy

/ H(x, y)l(x a a)](y b --.) dx dy

fv, H(x, y)l(x a)l(x b ) dx dy

H(x, y)](x a a)l(y b) dx dy

Int-II- III-IV.

(3.7) I _< --M Jo (48D -]- (x a) T (y b))l(x a)l(y b) dx dy

/ fo. ](x a)l(y b) dx dy

-48MDA + AB.

We choose a 1 u -[- 2D and 1 v - 2D and observe that 0 _< a,
_< 1 since rain (u, v) _> 50D, as noted before.
For the estimate of II we may assume that on [:] v1 (D, D) we have

H(x, y) < 1/4A, for otherwise we are done by Lemma 5. Hence by the periodicity
of I and Lemma 6

(3.8) II <_ fo 25Mnl(x- 1- n)l(y- 1- D)dx dy- A f.l(x- 1-- n)f(y- 1- n) dx dy

<_ 25MDA -}- AB.

Next, we observe that on ] (a, D), we have H(x, y) F(x, y) G(x, y) -G(x, O) >_ -2MD and hence

III >_ -2MD f f(x a)f(y- 1 D)dx dy

(3.9) f ](x- a)l(y- 1- D)dx dy

-2MDA-- B.

By symmetry we get the same bound for IV. Puting (3.6)-(3.9) together and
using Lemma 6 we obtain f v. H(x, y)r.(x a)rf(y b)dx dy <_ -19MD "k
419M/(m 1) _< 0 since otherwise the lemma is trivially true. Hence we
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conclude from (3.2), (3.3) and Lemma 4 that 19MD 435M/(m + 1) + (9/z)-
o<tttt_ II(h)l/R(h) which gives the result.

Finally, we can finish the proof of the theorem. We can assume that there
exists a point (u, v) U with H(u, v) A, because if H(ul- vl-) -A for
some (ul, vl) U2, then Lemma 7 applies. Actually, and for the same reason,
we even assume that H(x, y) > -1/2A for all (x, y) U and that max (u, v) <
1 50D, since otherwise we were done by Lemma 2. The remainder of the
proof is nearly the same as the proof in Lemma 7. We have H(x, y) A +
F(x, y) F(u, v) G(x, y) + G(u, v) >__ A M(x u + y v) for all x >_ u
andy >_ v. Choosea u-l-Dandb vWD. Then

(3.10) U(x, y) >_ M(USD- (x- a)- (y- b))

for (x, y) [::] (a, b) C U. Using the same notation as in (3.6) we obtain

I>_M f(989- (x a) (y b))](x a)](y b) dxdy

foo a)](y b)dx dy

98 MDA 1/2AB.
By the assumption on H(x, y)

II >_ --1/2A(m -- 1).
Next, choosea l--u-- 2D > 0and l-v- 2D > 0 as max (u, v)
1 50D. Let [:] [::] (a, 1 D) andz u - 2D 1. ThenH(x,y)
H(z, 1) - F(x, y) F(z, 1) G(x, y) + G(z, 1)

_
IH(z, 1) - 4MD for

(x, y) [::]. Thus

III

_
f (IH(z, 1)1 -- 4MD)(x a)](y 1 -- D) dx dy

--[- A f, ](x a)f(y 1 + D)dx dy

(IH(a, 1)1--4MD)A + AB.

Similarly with v -t- 2D we get

IV

_
([H(1, )i--4MD)A + AB.

We substitute the estimates for I-IV into (3.6) and obtain, using Lemma

(3.11) H(x, y)r’(x a)r’(y b) dx dy

>_ 40MD 340M/(m +,. 1) [H(a, 1)1- [H(1,

>_ 40MD 348M/(m -t- 1) (4/) R(h)0<l hii
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by (3.1) and the remark following it. The last term can be assumed to be
positive since otherwise the theorem is trivially true. Hence by (3.2), (3.3) and
Lemma 4 we obtain 40MD <_ 364M/(m 1) (13/) o< II(h)l/R(h)
which implies the result.

4. The general case. In the present section we shall sketch the proof of
Theorem 2 for s > 3. We assume throughout that Theorem 2 holds for dimen-
sion k < s and use induction.

Define D by A supxeu. IH(x)! IO’MD. We replace Lemma 2 by the
following lemma.

LEMM& 2S. Let 10-" _< e _< 1. I] (ul ,..., u.) U" satisfies H(ul
>_ A and max ui >_ 1 1/210’eD, then the conclusion o] Theorem 2 holds.

LEMMA 3S. Let 0 < <_ 1. Then H(u
uo) U, implies min u; > 10eD.

,u.)

u,--) <_ -cA, where (ul

COROLL&RY S. We may assume that D _< 2.10-’.
We use again the functions r considered in Section 3.

a_< 1,1 _< <_ s, wehave

(4.1)

fr II a) dH(zrai(xi

Integrating by parts we obtain

(4.2)

x.)

Then for 0 _< a;

fu. E r.,(x a) dH(x

_<! E
7r" o<llhll_<

>_ H(xx

x.)

with

i’"i,

x) II r,(xi ai) dx dx.

.--1

.-1 l<ix<...<i,<,

H(...) II r,(xik ai) dx,,

Here in H(...) the coordinates x. with n # , 1 _< k _< u, are replaced by I.
Lemma 4 becomes the next lemma.

LEMM& as. For any choice of ai ai 1 <_ <_ s, we have

I (’’ (A,M/(m + 1) + B,,
R(h) /O<lihlt_m

]orl <_i < < , <_s.
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LEMMA 5S. Suppose that there is a point (ul u.) U" with H(ul
uo) >_ 10-’/A and having at least two o] the coordinates ui bounded by 2D.
the conclusion oI Theorem 2 holds.

Then

Proo]. We can assume that D > 1/(m W 1) since otherwise there is nothing
to prove. We chooseai 0, a; ui W 1/2(m+ 1), 1 <_ i <_ s, andobserve
thata_< 1,1<_<s. In fact, ifui) 1- 1/2(m+1) >_ 1- 1/2D, Lemma2s
applies with e 10-’. Hence, as in Lemma 5

(4.3)

The first integral is estimated in (4.1). In view of (1.1) the second integral
does not exceed

( 2(m
i )+1)M.H ai _< M 2D+

<.$_

( 1 )_< 5M.10-’ 2D + 2(m + 1)
by Corollary s and the assumption on D. Finally, by (1.1), [G(ul, u,)l <_
4MD <_ 10-’+IMD. Substituting these inequalities into (4.3) we obtain the
result.

LEMMA 6S. We have

and

](x) ](x.) dxl dx, > (m -k 1)* (m -[- 1) ’-1 s__
2D

1) ,-1
8

i ](x,)... ](x.)dx,... dx, < (m +

A+B (m+l).
LEMMA 7S. Suppose that H(u-- u.-) <_ --4-+1A ]or some (u

u.) U’; then the conclusion o] the theorem holds.

Proo]. Write

i:::l [::] (,, .) {(x,, x.) max Ix, l <- D},

and choosea. ui- Dandai 1 ui + 2D, 1 j_< s.
Lemma 3s that 0 _< ai, a; _< 1 for 1 _< :

_
s. Now

(4.4)

= U’\,

It follows from

H(x, x,) <_ -4-’+1A T sMD + M (a x)
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for(x1, ,x,) [3 (al, ,a). Expanding

(4.5) (m + 1)’ ] H(xl x,)r,,(xl a) r,.(x. a,) dx dx,

in the same way as in (3.6), we observe that there are exactly 2’-t terms of
positive sign and 2’-t terms of negative sign. Among those with positive sign
we single out the term v. H(x x.)](xl at) ](x, a.) dxt dx,
By (4.4) it does not exceed

(4.6) (--4-’/A + sMD)A +
Each of the other 2’-t 1 terms with positive sign contains at least two factors
of the form ](x; 1 D) ](x D). For the estimation of these terms we
choose [:] [] (, ,) with i D for every j corresponding to a factor
](x D) and ; a otherwise. By Lemma 5s we can assume that
H(x, x.) , 10-’/tA for (xl, x,) [::] (1, ,). This leads to the
upper bound for the 2’-t 1 "positive terms"

(4.7) 10-’+AA + AB.

Each term with negative sign contains at least one factor ](x 1 D)
)’(xi D). We choose [3 (, ,) as before and observe that H(xl,
>" --2MD for (xl x,) [:3 (, ,). This leads to the lower bound
for the 2"- "negative terms"

(4.8) -2MDA- AB.

Putting (4.5)-(4.8) together we obtain

fv H(x x.)r.l(xl al) r..(x. a.) dx, dx.

_<: --1/24-’A + s20"M/(m + 1)

_
0.

The result follows now in the usual way from (4.1), (4.2) and Lemma 4s.
To finish the proof we can assume that there exists a point (u, u,)

with H(ul, u,) A, that H(x, x.) > --4-’+A and that max ui _< 1
--1/210D.
Choose a; u D, a. 1 u; 2D and treat

f (x. a)dx dx.(m + 1)’ H(xl x,)r (x al) r..
U

as before. We obtain

f H(x, ,..., x,)l(x a) f(x,- a.)dx.., dx.(4.9)

>_ (A- sMD)A zB.
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For each of the 2’-1 1 remaining "positive terms" we get the lower bound

(4.10) --4-’+lA(m + 1)’.

For the estimate of the "negative terms" we again observe that each of them
contains at least one factor ](xi 1 + D) ](xi - D) and accordingly we
choose [::] (1, ,) with 1 D for each j corresponding to such a factor
and a otherwise. Moreover, put a I if ; 1 D and a ui -t- 2D
otherwise. Then a typical "negative term" is bounded by

(4.11) ([H((rl ,’’’, o’,)] - 2sMD)A + AB.

The result follows now from (4.9)-(4.11), (4.1), (4.2), Lemma 4s and the in-
duction hypothesis.

Added in proof. In the one-dimensional case, similar inequalities have been
shown by Fainleib, Izv. Akad. Nauk SSSR Set. Mat., col. 32(1968), pp. 859-
879, and Elliott, J. Number Th., col. 4(1972), pp. 509-522.
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