BERRY-ESSEEN BOUNDS AND A THEOREM OF

ERDOS AND TURAN ON UNIFORM DISTRIBUTION
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1. Introduction. Let (x,), » = 1, 2, --- , be a sequence of real numbers
contained in [0, 1). Denote by A(N, z) the number of n < N with z, < z.
The sequence (z,) is called uniformly distributed (u.d.) if N'AN, z) — =
asN — o forall0 <z < 1. (Ingeneral, (x,)is called u.d. mod 1 if the sequence
of fractional parts {z,} is u.d.) It is easy to see that (z,) is u.d. if and only if

D% sup |[INT'AWN, 2) — x| — 0.

0<z<1

Another equivalent condition is the Weyl criterion: (x,) is u.d. if and only if

def
SN(h) = N—l Zehrihzu —0

n<N

forallh & Z — {0}. (For the proof of the basic theorems see [5].) The follow-
ing theorem due to Erdés and Turdn [3] can be regarded as a quantitative
version of the sufficient part of the Weyl criterion.

Taeorem A. For any integer m>1

m

D¥sa—17+a Z 7 1Sx(®)|-

The best constants ¢; and ¢, so far have been ¢; = 17.2 and ¢, = 4.3 (Nieder-
reiter, unpublished). Much larger values were given by Yudin [9].

The purpose of this paper is to give various generalizations of this theorem
and to point out their connections with other parts of analysis. We shall
prove the following theorem.

TraeoreM 1. Let F(x) be nondecreasing on [0, 1] with F(0) = 0 and F(1) =
and let G(x) satisfy a Lipschitz condition on [0, 1], i.e. ,

G@) — G| < M |z — y|

forall0 < z,y < 1. Supposethat G(0) = 0and G(1) = 1. Then for any positive
integer m

R (e AR

T h=1

sup |F(z) — G(x)| S
08zs51
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634 H. NIEDERREITER AND WALTER PHILIPP

where
POy = f " exp (2niha) dF@) and G(R) = f " exp (2mihe) dG().

If weset F(z) = N'A(N, z) and G(x) = z for 0 < z < 1, we get the Erdos-
Turdn theorem as a special case.

Theorem 1 has a celebrated continuous analogue, namely, the Berry-Esseen
inquality [2; p. 206], [7; p. 285]. Let F(z) be a distribution function of a random
variable and let G(r) satisfy a Lipschitz condition |G(z) — G@¥)| £ M |z — y|
for all z, y € R. Suppose that G(— «) = 0 and G(~) = 1. Then for any
T>0

sup |Fe) — G@)| < 2”_4% n 1_2; fT J40) = ¢l 4,

—<zL®

Remark. This is less restrictive than the usual assumption that |/ (z)| < M.
The proofs given in [2] and [7] require no changes. Here and here only we put
P@t) = [, """ dF(z) and G(t) = [, e'*" dG(z).

It is not difficult to modify the proof of Theorem 1 so as to give a theorem
where the integral [§ is taken with respect to an arbitrary measure ». But
the only applications we could think of were the cases where » is the Lebesgue
measure yielding the Berry-Esseen inequality and where » is the counting
measure yielding Theorem 1. Consequently, we felt that the presentation of this
generalization did not justify the extra effort.

Theorem 1 is also related to the sampling theorem in information theory [6].

Sampling theorem. Let F(x) be of bounded variation on [—3h, k], b > 0.
Suppose that the jumps of F(z) at the endpoints of this interval are equal.
Then

= sin w(ht — n)
f(t) - n_z_w f(n/h) W(ht — n) ) ¢ E R7

where
£t = f exp (2nitz) dF(3).
[—4h,}h]

Putting = 1 we conclude that the “characteristic function” f(f) of a random
variable, bounded by %, is uniquely determined by its values f(n) on the integers.
(In this context the term characteristic function usually is reserved for the
expression [, exp (ifx) dF(x). The factor 2 affects only a change in scale.)
Shifting the scale half a unit to the left we see that this fact is also implied by
Theorem 1. Of course, the condition on the boundedness of the random variable
cannot be entirely omitted. Simply consider the sequence of independent
Bernoulli trials centered at expectations, i.e., P(X;, = —%) = P(X;, = %) = %
fork = 1,2, --- . The X, have “characteristic function”

P = fexp (2witX,) dP = cos «t.
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But this coincides on the integers with (cos #t)****, the “characteristic function’

of Sens1 = Xy + -+ 4+ Xsu41, Which is a binomially distributed random var-
iable, centered at expectation.

Since neither X, nor S,,.; have a distribution function satisfying a Lipschitz
condition, one could argue that this is the reason why Theorem 1 fails. But
even if the distribution function G(zx) is assumed to satisfy a Lipschitz con-
dition, Theorem 1 cannot be true unless the density G’(z) has compact support.
Simply consider the “characteristic function” e¢™'*' of a Cauchy-type random
variable X and define a second one F(f) by interpolating linearly between the
points with integer abscissae. By Polya’s theorem [2; p. 169] F(¢) is a “char-
acteristic function” coinciding with e¢™'*' on the integers. But, obviously,
F(x) cannot be the distribution function of X.

We are fully aware that the following comments might make sense only
after the reader has compared the proof of Theorem 1 with one of the standard
proofs of the Berry-Esseen inequality (e.g., see Chung [2; pp. 206-208]). The
following idea suggests itself immediately. Simply sum the formulae obtained
from the integration by parts rather than integrate them as is done in some of
the proofs of the Berry-Esseen inequality. That is, in essence, what we are
doing. But the term with » = 0, if not properly disposed of, causes difficulties.
These evaporate if we “center F(x) — G(x) at expectation”. A slightly more
refined method will even yield a stronger result (see Theorem 1’).

Unfortunately, we were unable to make these methods work in dimension
s > 1. By combining them with ideas from the original proof of the Erdos-
Turan theorem the generalization to higher dimension can be carried out. We
consider this to be the main result of the paper. In order to state the theorem we
introduce some notation. Let F(z,, --- , ,) be a distribution function on R’
with F(1, ---,1) = land F(x,, - -+, 2,) = O wheneversomez; = 0,1 < j < s.
Let G(x, , -+ , x,) be a function of bounded variation in the sense of Vitali on
U’, the closed s-dimensional unit cube, with G(x, , --- , «,) = 0 whenever some
z; =0,1<j<sand GQ, ---,1) = 1. For any Borel set B C U’ write
G(B) = [ dG. We shall assume that for any rectangle R = {a; < z; < a; + k;,
1 <j<s} CU wehave
(1.1) |Gla; <z, <a;+k ,1<j<s| <M]]k .

iLs
(These conditions are satisfied if @ is a distribution function on U* with density
bounded by M.) We note once and for all that (1.1) implies a Lipschitz con-
dition of the form

lG(xI; e ny)_G(yl) !yﬂ)ISlexi_lhl

for (¢, - ,z,), (1, -+ ,y.) € U'. Forany integral vector b = (hy, --- , h,)
write ||h|| = max,¢,<, |h;| and

R(®) = R(m, k) = [ {(1 - mhjrl 1)_1 max (|h,], 1)}

i<s
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where m is a given positive integer. Let (b, z) = ZiS.Ah,wi be the inner
product of h and 2 = (x,, ---, z,). Define F(h) = F(hy, ---, h,) =
[ v exp (2wi(h, ) dF (z) and similarly G (k).

TaEOREM 2. Under the above hypotheses, we have for any positive integer m

m—+1 o iiTem R(h)

where the constant tmplied by <K, depends on s only.

sup |F(z) — G(x)| <,
z€EU?*

Again we can specialize F(z) and G(z) to obtain the s-dimensional version
of the Erdos-Turan theorem, due to Koksma [4] and Sziisz [8]. Unfortunately,
our constants implied by <, are much worse than the best ones known for
this particular case [5]. Similarly, there is a continuous analogue of Theorem 2,
or an s-dimensional version of the Berry-Esseen inequality, due to von Bahr [1].

We are indebted to Professor Cambanis for providing us with reference [6].

2. The one-dimensional case. In this section we present the proof of
Theorem 1 and some remarks concerning the values of the constants. In
fact, we shall establish the following stronger version of Theorem 1.

TrEOREM 1’. Let F(z) be nondecreasing on [0, 1] with F(0) = 0 and F(1) =
and let G(x) satisfy the Lipschitz condition

G@=) — G < M |z — y

forall 0 < z,y < 1. Suppose also that G(0) = 0 and G(1) = 1. Then for any
positive integer m

sup |(F(z) — G(@) — (F(y) — G¥))|

0<z,y<51

<AL (L L) oy - dol

T k=1

If, in particular, (z.) is a sequence in [0, 1), then Theorem 1’ implies an
inequality for the discrepancy Dy extended over all intervals mod 1. For
N > 1 and an interval J mod 1 let A(N, J) be the number of n, 1 < n < N,
with z, € J. Then define Dy = sup; IN'AN, J) — A(J)| where \(J) is
the length of J and the supremum is extended over all intervals J mod 1.
Taking F(z) = N'A(N, z) and G(r) = z in Theorem 1/, we arrive at the
following version of the Erdés-Turdn theorem.

CoroLLARY. For any sequence (x,) in [0, 1) and any positive integer m we have

—m+l+7r;,z=:( m+1)‘SN(h)I

In order to prove Theorem 1’ we need the following simple auxiliary result
concerning the Fejér kernel.

Dy
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LemmA 1. Let m be a positive integer, and let C and D be positive numbers
with D < L and (m + 1)D > C. Then

bgin?
sin® (m + Dz _1_( _1_)
2.0 ./D sin® 7z dv < 8D 1+ xC
Proof. Since sin 7z > 2z for 0 < z < 1, we have
$ 2 32
@2.2) f sin (m2+ Drx e < l/‘ sin (m2+ D7z .
sin” 7x 4 Jp T
Using integration by parts, we get

f* sin® (m + Dz sin 2(m + 1)xD 1 f*sin 2(m + Dz

, z 4(m + DxD* b 2(m + Drz® dz

1
dx = 5D +
1 1 ¥ dx
S T imt D" T fD 5(m + Dz’
1 1 1 1
Sopt otm ¥ DaD? S 9D (1 +E)’
In view of (2.2) we obtain (2.1).
) Proof of Theorem 1’. It is convenient to extend F(z) and G(z) by setting
F(x) = [z] + F({z}) and G(z) = [2] + G({z}) for + € R, where [z] is the
integral part and {z} is the fractional part of z. We note that F(z) is non-
decreasing on R and that G(z) satisfies a Lipschitz condition on R with constant
M. Weset H(x) = F(x) — G(z) forx € R. Then H(z) is periodic on R with
period 1, and supo<..,<1 [H(x) — H(y)| = sup, ,er |[H(@) — H®)|.
We first consider the case where

1
(2.3) [ H@ dz = 0.
vo
For any integer h integration by parts yields
1
(2.4) Py — Gy = —2nih f H@)e™ ™ da.
0

Choose a positive integer m and a real number a to be determined later. Then
(2.3) and (2.4) imply

o —arina P(B) — G(B)
=2 (m 1= [hetre S
(2.5) _ ‘/: H(x)<h-z'n; (m+1— lhl)emn'h(z—a)> da

> (m+1-— |h|)e2'”“‘> dx

=—m

where the asterisk indicates that h = 0 is deleted from the range of summation.
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Because of the periodicity of the integrand, the last integral may also be taken
over [—13, 3]. We note that

_ e = S (m + Dre
(2.6) _Z_:m (m + 1 — |h]e P
where the right-hand side is interpreted as (m + 1)® in case z is an integer.
We infer from (2.5) and (2.6) that

lf He+ oSt D g, <%rzm;*(m+1—|h|)——————1|ﬁ(h)”é(h)

(2.7) '

Let us set A = sup,er |H(z)|. Suppose that A > 2M /(m + 1), for otherwise
the theorem is trivial. Since H(x—) < H(x) < H(x+) for x € R, we have
either H(b—) = —Aor H(b+) = A for some b € R. We treat only the second
alternative, the first one being almost identical. For ¢ > b we have H @) =
A+H@E) —HO+) = A+ (F@) — FO+) — G¢) —G®)) > A — M(E — D).
We set D = A/2M and choose ¢ = b + D. Then from the above we
get H(z + a) > M(D — z) for |x| < D. In particular, we see that D < %,
for otherwise H(r) would be positive on an interval of length greater than 1,
contradicting the fact that H(n) = 0 forn & Z. We obtain

3 ;2
/‘ H@ + a) sin® (m + D7z de
I3

sin® rz
_ sin” (m + Drz
N {f f + f}H( ta) = sin® 7z dz
sin® (m + Dz
2.8) > M f (D - T g

— oMD f‘”sin2 (m + Dax dr — 2MDf sin® (m + 1)1rxd

sin® rz b sin® rx
— oMD [”wdx — AMD f’ sin® (m + Dz
Jo sin® rz > sin® 7z
The integral of the Fejér kernel over [0, 1] is (m + 1)/2 by (2.6). Therefore
from (2.8) and Lemma 1

sin® (m + Dz iz
sin® 7z

fH(+)

4 in2
>oyp [ Slnt ey, 6Mpfw
0 sin- 7z sin® wx

z————m+lA—%M<1+11r>>m'2HA—M

2
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where we used (m 4+ 1)D > 1. Combining the above inequality with (2.7),
we arrive at

eo  as L 23 (E_L)pe - dol.

T h=

In particular, this proves the theorem in case (2.3) is satisfied.
We consider now the case where [, H(z) dv # 0. We shall first show that
there exists ¢, 0 < ¢ < 1, such that

(2.10) [ H@) do = HE).

Suppose first [; H(z) dz > 0. There exists s, 0 < s < 1, such that H(s) >
[ H(x) dz. We note also that H(1) = 0. Since the only discontinuities of
H(z) are positive jumps, the function H(z) must attain the value [j H(z) dz
in the interval [s, 1). If [; H(z) dz < 0, one proceeds analogously.

With a number ¢ satisfying (2.10), we define F(z) = F(x + ¢) — F(c) and
Gi(x) = G + ¢) — G(c) for z € R. We observe that F,(z) and G,(z) share
the properties of (x) and G(z) respectively. Furthermore, we have [} (Fy(z) —
Gi(@)) dz = [} (H@& + ¢) — H(c)) dz = 0. By what we have already shown,
the inequality

(2.11) sug |Fy(@) — Gy(@)]

h=1

<2+l Z( ~ o 1) lf ¢ d(Fy(x) — Gi(@)

holds for any positive integer m. We note that

l]: e d(Fy(z) — Gi(z)) fol e d(F@ + ¢) — G + ¢)

1+e¢
[ e21rihz dH(x)

‘e

2rih(z-—c) dH(.’lI) —

PR — G|

[
= [oez’”"’dH(x)

for all integers h. It follows from (2.11) that
sup |(Fi(z) — Gi(2)) — (Fi(y) — G:(y))|

a4M 4 & (1
< +;Z<z

h=1

L) 1pay — éon

and so

sup |H@ +0) — Hy + 0| < —~

+
2L+ 23 (1 - 1) o - col

T h=1

which is the desired inequality.
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An alternative (and somewhat shorter) proof of the weaker Theorem 1 rests
on centering H (x) at expectation, i.e., replacing the function H (x) in the above
argument by H*(x) = H(x) — I, where I = [j H(z) dz. In exactly the same
way, one proves then

sup |Hx) — Il < 2=+ ¢ Z( ) B — G|

T h=

m-l—l

Choosing £ = 0, one obtains an estimate for |I| which implies the desired esti-
mate for sup.er [H(®)|.

We add some remarks concerning the values of the constants in the corollary
of Theorem 1’. Suppose ¢, and c, are absolute constants such that Dy <
a/m + 1) + ¢, ooy (1/h — 1/(m + 1)) |Sy(h)| holds for any sequence
{r,) in [0, 1) and any positive integer m. Then choosing N = 2, z; = 0, and
z, = 1, we get

1 1 1
2% m +1+02,§, (Z‘m+1)'

h even

With m = 1 we obtain ¢, > 1, and with m = 3 we obtain ¢, + ¢, > 2. Also,

taking m = 19 and using ¢; < 4, we get ¢, > 0.31.

3. Proof of Theorem 2 for s = 2. We shall prove Theorem 2 in detail for
s = 2 only and indicate the necessary changes for s > 3 in the next section.

Write H(z, y) = F(z,y) — Gz, ), ﬁ(hl y he) = F(hl s he) — G’(hl , h2) and
define D by A = supe.pevs [H(, y)| = 100 MD.

Levma 2. If (u,v) € U? satisfies H(u, v) = A and max (u, v) > 1 — 50D,
then the conclusion of Theorem 2 holds.

Proof. Without loss of generality we assume that max (u, v) = ». Then
Hu,1) = A+ Fu,1) — Flu,v) — (G, 1) — G(u, )
> A — 50MD = 1A.
But F(z, 1) and G(x, 1) satisfy the hypotheses of Theorem 1. Hence
@1 3 <H@x1< Sup. |H(=z, 1|

Eo\1
—m+1+7r§;( m+1>ﬁ

Since the last integral is just H(h, 0), the lemma is proved.
LemMA 3. Let 0 < ¢ < 1. Then Hu—, v—) < —eA where (u, v) € U*

implies min (u, v) > 100eD.

Proof. In fact, v < 100eD leads to a contradiction, —100eMD = —eA >
Flu—,v—) — (G(u, v) — G(0, v)) > —100eMD.

f l exp (2wthz) dH(z, 1)|-
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CoroLLARY. We may assume that D < 1/50.

Proof. If D > 1/50,an application of Lemma 3 with ¢ = 1 shows that there
is no point (u, v) € U? with H(u—, v—) = —A. Hence there must exist a
point (u, v) € U with H(u,v) = A. But then, since 1 — 50D < 0 < max (u, v),
Lemma 2 applies.

Define

sin® w(m + 1)¢
@ = sin® 7t

(m + 1)? for tE Z.

for t& Z

Then by (2.6)
f(t)f(t) = (m+1— |[lu])(m+ 1 — |h|) exp 2mi(haty + hats)).

Hhlism
For0 < o < 1put
1 a
m+1fo fw — 1) dt.

We observe that for 0 < «, 8, @, b < 1 we have
ra@ — sy — B = 2 an(e, @)ar,(8, b) exp 2mi(uz + hay))

lhltsm

ro(w) =

with ao(e, @) = o and

1 m41- |y
an (e, @) = 2mih, m -+ 1

Using the fact [ y» dH(z, y) = 0, we obtain for any choice of «, 8, @ and b

I (1 - e~216h1a)e—2rih.a fOI' hl # 0.

[ rae = oty = 0 die, 0] = |3 anle, a6, B , 1)

3.2) 4
1 1H®)]
S ocBien E()

Our goal is to estimate the integral from below by a nontrivial linear com-
bination of A, M/(m + 1) and the last sum in (3.2). Integration by parts
gives

[ rle = @y — V) dH@, ) = —rs(1 = D) f ' He, D@ — o) do
3.3) —ra(t = @) [ HO, iy = B dy

+ fU  H@, y)rle — arily — b) dz dy.

Notice that 0 < r,(1 — a), 75(1 — b) < 1 for any choice of a, 8, @ and b.
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LemmA 4. For any choice of @, 8, a and b we have

< 8M 8¢ H(h, 0)]
m+ 1 T h=1 R(h, 0)

1
f H(, )iz — a) dz
1]

and

< 8M 831000
m+4+1 " =i RQ,Hh)

[ Ha, ot — v ay

Proof. We prove the first inequality only. Its left-hand side equals

1
m+ 1

[ He00@ ~ 0~ o~ 0~ @) e

1 1
<2 Hx, 1)| ——— f = 2 , 1
- osslils)l I @ )‘ m—+1J f(x) de ossl:gl [H(x )‘

SM_ 8 h_\ AR, 0]
Sm+1—|_1r,.§(1_m-|-1) h

by (3.1) and the remark following it.

LemMa 5. If (u, v) € U® satisfies H(u, v) > % A and max (u, v) < 2D,
then the conclusion of Theorem 2 holds.

Proof. Choosea =b =0. For0 <z < a— 1/2(m 4+ 1) we have

a 1/(2m+2)
ra@ = —— [ f@— 0 dt > — 1(t) dt > 2/a".
m-+1J m—+1J,

Hence

4 1 1
‘/;}, rﬂ(x)rﬂ(y) dF(IE, y) > ;:4 F(a - 2(m + 1) ) B — 2(m x 1))
Next choose @ = u + 1/2(m + 1) and 8 = v + 1/2(m + 1). Since we may

assume 1/(m + 1) < D, we have 0 < o, 8 < 1/20 in view of the corollary of
Lemma 3. Thus

Fau, ) < 1t [ ru@in() dFe, o)

and

1A < H@, ) = Fu, ) — Glu, v)
<% [ r@n G, 9 + G [ r.@n) 6@, 1) — 6w, o).

The first integral has been estimated in (3.2). Because of (1.1) the second
integral is bounded by
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Mf ro@rs@) dz dy = Mo < lM(zp + ———-1———>
ge VTR =20 2(m + 1)
Finally, |G(u, v)| = |G(u, v) — G(u, 0)] < 2MD. Hence

1,1 QI (_3 1 M) 1
2557 2 Bm T 1078 + +1/ Tl

or

5 4 Ak M
ASm ekl T At
In view of (3.3), Lemma 4 and the observation made after (3.2) we have to
estimate the last integral in (3.3) from below. In these estimates we frequently
have to deal with integrals of the following type.

LemmA 6. We have

4= @I do dy > (m + 17 = 2F1

max(lzl,lyl)<D

B = f@)f() dz dy <

D<max(lz|,lyl)<}

m+ 1
D
and
A+ B = (m+ 1.
Proof. The second integral is bounded by

] 3 3
[ f@a [ 10 d <aom+y [ 5 <mEL

The estimate for A follows now from the last identity.

LemMa 7. Suppose H(u—, v—) < —3A for some (u, v) € U®. Then the
conclusion of Theorem 2 holds.

Proof. Observe that forx < uandy <v
H(z,y) < —50MD + (F(z,y) — Flu—,v—)) — (G(z, y) — G(u, 1))
< —50MD 4+ Mu — z + v — y).

Choosea = u — D and b = v — D and observe that (a, b) € U” since min (u, v)
> 50D by Lemma 3. Hence

(3.4) H(x,y) < —M@48D + (z — a) + (y — b))

for (z,y) € O = O (a, b) C U*. Here we introduced the notation

3.5) O ) = {(y) :max (z — &, [y — »)) < D} and O° = UA\O.
Now
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(m+1* [ H@, iri — arty — ) de dy

- [ 1, wf — ot — b dz dy
(3.6 + [ He, i@ —a—afy-b—pdedy
- [ HG, 0fe - afc— b — 9 drdy

— [ BG, 016 — o - 1y - B dody

=I1+4+1II —III — IV.
Using (3.4) we obtain

@n I<-M f 48D + (z — @) + (y — D) — a)f(y — b) dz dy

+Afmf(x—a)f(y- b) dz dy

= —48MDA + AB.

We choosea =1 —u + 2D and 8 = 1 — v + 2D and observe that 0 < a,
B < 1 since min (u, v) > 50D, as noted before.

For the estimate of II we may assume that on O = O (D, D) we have
H(z, y) < %A, for otherwise we are done by Lemma 5. Hence by the periodicity
of f and Lemma 6

(3.8) I < f 9%5MDf(z — 1 — D)f(y — 1 — D) dz dy

+af fe-1-Diy-1- D dsdy

< 25MDA + AB.
Next, we observe that on 00 = O (a, D), we have H(x, y) = F(z,y) — G(x, y) +
G(z, 0) > —2MD and hence
11 > —2MD [ f& - a)fty ~ 1 — D) de dy
Jo

3.9) — A f f@ — of(y — 1 — D) dz dy
= —2MDA — AB.

By symmetry we get the same bound for IV. Putting (3.6)-(3.9) together and
using Lemma 6 we obtain [y H(z, y)ri(z — a)rj(y — b)de dy < —19MD +
419M/(m + 1) < 0 since otherwise the lemma is trivially true. Hence we
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conclude from (3.2), (3.3) and Lemma 4 that 19MD < 435M /(m + 1) + (9/7)-
> ociinnzm |AR)|/R (k) which gives the result.

Finally, we can finish the proof of the theorem. We can assume that there
exists a point (u, v) € U® with H(u, v) = A, because if H(u;- , v;-) = —A for
some (u; , v;) € U?, then Lemma 7 applies. Actually, and for the same reason,
we even assume that H(z, y) > —1A for all (z, y) € U and that max (u, v) <
1 — 50D, since otherwise we were done by Lemma 2. The remainder of the
proof is nearly the same as the proof in Lemma 7. We have H(z, y) = A +
Flx,y) — Flu,v) — Glx,y) + Gu,v) > A— M@ —u—+y—v)forallz > u
andy > v. Choosea =4 + Dandb = v 4+ D. Then

(3.10) H(,y) > MO8D — (x —a) — (y — 1))
for (x,y) € O = O (a,b) C U. Using the same notation as in (3.6) we obtain

I>M f ©8D — (z — @) — (y — B)f(w — A)f(y — b) dz dy

— 38 [ fo—afy - b dedy
= 98 MDA — }AB-
By the assumption on H(z, y)
II > —1A(m + 1)

Next, choose o = 1 —u — 2D >0and 8 =1 — v — 2D > 0 as max (u, v) <
1 —50D. Letd =0 (e, 1 —D)and e = u + 2D < 1. Then H(z, y) =
H(, 1) + Flx,y) — F(o, 1) — G, y) + G, 1) < ‘H(O‘, 1)‘ + 4MD for
(z, y) € O. Thus

I < f (H(s, 1| + 4MD)f(z — a)f(y — 1 + D) dz dy

+a[ fa-afy -1+ D dzay

= (|H(s, 1)| + 4MD)A + AB.
Similarly with 7 = v 4 2D we get
IV < (|HQ, 7)| + 4MD)A + AB.
We substitute the estimates for I-IV into (3.6) and obtain, using Lemma 6,
(3.11) f Hez, i)' — ap'(y — b) da dy
U!
> 40MD — 340M /(m +.1) — |H(e, 1)| — |H(1, 7 |

> 40MD — 348M/(m + 1) — (4/m) 3 |II§((£L))
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by (3.1) and the remark following it. The last term can be assumed to be
positive since otherwise the theorem is trivially true. Hence by (3.2), (3.3) and
Lemma 4 we obtain 40MD < 364M/(m + 1) + (13/7) Dociinnism [HB)|/R(R)
which implies the result.

4. The general case. In the present section we shall sketch the proof of
Theorem 2 for s > 3. We assume throughout that Theorem 2 holds for dimen-
sion k < s and use induction.

Define D by A = sup.ey [H(z)| = 10°'MD. We replace Lemma 2 by the
following lemma.

LemMa 25, Let107' < e< 1. If (uy, +-,u,) € U'satisfies H(uy, -+ ,u,)
> eA and max u; > 1 — 310°eD, then the conclusion of Theorem 2 holds.

LEmMA 3s. Let0 < e < 1. Then H(uy—, -+« ,u,—) < —e€A, where (uy, - - -,
u,) € U’, implies min u; > 10°eD.

CoroLLARY 8. We may assume that D < 2-107°,
We use again the functions r, considered in Section 3. Then for 0 < «; ,
a; <1,1 <j<s wehave

4.1)
f‘ Hrai(xi - a’i) dH(xl y "0 Il:,)

iss

= l0< ahi(ai)'ﬂ(hl y T y’h:)'

Integrating by parts we obtain

(4'2) f II rai(xi - a’i) dH(xl y "ty xa)
U* i<s
2 ’f H@ , -+, ) Hr:!{(x!' — a;) dz, - dz,
uv* i<s
a—1
- Z Z X II::)'"iJ
y=l 1<71<+<fp<s
with

I, = f H(---) H”fx;,(xn —a;)dr;, ---dyy, , 1 <5< - <j§, <8
ur k<v

Here in H(---) the coordinates x, with n £ j, , 1 < k < v, are replaced by 1.

Lemma 4 becomes the next lemma.

LemMmA 4s. For any choice of a; , a; , 1 < j < s, we have
12l < 2(a01/m+ 0 45, > O]
0<||hll<m R(h)
for1 <ji < -+ <j, L
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LemMa 5s.  Suppose that there is a point (U, , -+ ,u,) € U with H@,, -,
u,) > 107**' A and having at least two of the coordinates u; bounded by 2D. Then
the conclusion of Theorem 2 holds.

Proof. We can assume that D > 1/(m + 1) since otherwise there is nothing
to prove. We choose a; = 0, @; = u; + 1/2(m + 1),1 < j £ s, and observe
thate; < 1,1 <j<s. Infact,ifu; >1—1/2m+ 1) > 1 — 1D, Lemma 2s
applies with ¢ = 107°, Hence, as in Lemma 5

2\ s
107°7'A < (72L) «/;10 'ISITui(xi —a)dH (@, , -, x,)

@3) 2
+ (g—) [ rae = a) a6, - ) = Gl -+ .

i<s

The first integral is estimated in (4.1). In view of (1.1) the second integral
does not exceed

M-Il e < M(ZD + 2(m1+ 1))

< 5M-10_‘(2D -+ m)

by Corollary s and the assumption on D. Finally, by (1.1), |G(%,, -+, u,)| <
4MD? < 107°**MD. Substituting these inequalities into (4.3) we obtain the
result.

LemMA 6s. We have

4= fmwg ) o (@) dzy - de, > (m+ 1)~ (m+ DTS

B = f@) - @) day - de, < (m+ )7 s
D<max|z;|<} 2D

and
A+ B=m+1).

LemMa 7s.  Suppose that H(u,— , -+, u,—) < —47°**A for some (u,, - -,
u,) € U’; then the conclusion of the theorem holds.

Proof. Write
O=0G, - ,& ={@, ,z):max|z; — &| < D}, O°=U'\O,

and choose ¢; = u; — Dand a; = 1 — u; + 2D, 1 < j < s. It follows from
Lemma 3sthat 0 < q;,0; < 1forl <j<s Now

(4.4) H(@, , - ,2) < —4""A+sMD + M Y (a; — ;)

i<s
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for (xl y " xa) ED (al y "y a,). Expanding

@5 mA D [ Ha, o, w)rm = a) e — 0) day o da,
U‘

in the same way as in (3.6), we observe that there are exactly 2°' terms of
positive sign and 2°”* terms of negative sign. Among those with positive sign

we single out the term [y H(®,, + -, 2)f@: — a1) *+ f(z, — @,) dzy -+ dz, .
By (4.4) it does not exceed
(4.6) (—4°"'A + sMD)A + AB.

Each of the other 2°~' — 1 terms with positive sign contains at least two factors
of the form f(x; — 1 — D) = f(x; — D). For the estimation of these terms we
choose 00 = OO0 (&, + -+, &) with & = D for every j corresponding to a factor
fz; — D) and & = a; otherwise. By Lemma 5s we can assume that
H(y, - ,z,) <10 Afor (xy, -+ ,2,) €0 (1, -+, &). This leads to the
upper bound for the 2°™' — 1 “positive terms’”

4.7) 107°*'AA + AB.

Each term with negative sign contains at least one factor f(z; — 1 — D) =
f(x; — D). We choose O1 (¢, -+ - , £) as before and observe that H(z, , - - , Z,)
> —2MD for (xy, -+ , %) €O (1, -+, £&). This leads to the lower bound
for the 2°~! “negative terms”

(4.8) —2MDA — AB.
Putting (4.5)-(4.8) together we obtain

f H,, -, z)rh (@ — a) - rh(x, — a,) dz, -+~ dz,
U‘

< —147°A + s20°M/(m + 1) < 0.
The result follows now in the usual way from (4.1), (4.2) and Lemma, 4s.

To finish the proof we can assume that there exists a point (u,, --- ,%,) € U’
with H(u, , -+ ,u,) = A, that H(z,, -+ ,x,) > —47""'A and that maxu; < 1
—110°D.

Choose a; = u; + D, a; = 1 — u; — 2D and treat

(m+ 1)° f H(@,, -, z)rh (e — ay) - rh(z, — a,) dz, -+ dzx,
Ul
as before. We obtain
4.9) fv H@, 2l — @) o f@ = a) day o da,

> (A — sMD)A — AB.
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For each of the 2°' — 1 remaining “positive terms’’ we get the lower bound
(4.10) —47 A(m + 1)°.

For the estimate of the ‘“negative terms’ we again observe that each of them
contains at least one factor f(x; — 1 + D) = f(z; + D) and accordingly we
choose (&, + -+, &) with & = 1 — D for each j corresponding to such a factor
and §; = a; otherwise. Moreover, put o; = 1if§; = 1 — D and o; = u; + 2D
otherwise. Then a typical “negative term’ is bounded by

(4.11) (H(oy, -+ , 0.)| + 2sMD)A + AB.

The result follows now from (4.9)-(4.11), (4.1), (4.2), Lemma 4s and the in-
duction hypothesis.

Added in proof. In the one-dimensional case, similar inequalities have been
shown by Fainleib, Izv. Akad. Nauk SSSR Ser. Mat., vol. 32(1968), pp. 859—
879, and Elliott, J. Number Th., vol. 4(1972), pp. 509-522.
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