Induction

Jordan Bell

September 10, 2022

Let
$$\mathbb{N} = \{0, 1, 2, \ldots\}$$

Theorem 1. For all $n \in \mathbb{N}$, $6^n - 1$ is a multiple of 5.

Proof. Base case For n = 0, $6^n - 1 = 6^0 - 1 = 0$. 0 is a multiple of 5: $0 = 0 \cdot 5$. The claim is true for n = 0.

Inductive step Assume the claim is true for some $n \ge 0$. That is, suppose that $6^n - 1$ is a multiple of 5. Being a multiple of 5 means that there is some $a \in \mathbb{N}$ such that $6^n - 1 = 5a$.

$$6^{n+1} - 1 = 6(6^n) - 1$$

$$= 6(6^n - 1 + 1) - 1$$

$$= 6(6^n - 1) + 6 - 1$$

$$= 6(6^n - 1) + 5$$

$$= 6(5a) + 5$$

$$= (6a)5 + 5$$

$$= (6a + 1)5$$

 $6a+1 \in \mathbb{N}$, so the above shows that $6^{n+1}-1$ is a multiple of 5, completing the inductive step.

Conclusion By induction, for all $n \in \mathbb{N}$ it is true that $6^n - 1$ is a multiple of 5. \square

Theorem 2. For $n \ge 5$, $2n + 1 < 2^n$.

Proof. Base case For n = 5, 2n + 1 = 11 and $2^n = 32$, and it is true that 11 < 32. The claim is true when n = 5.

Inductive step Assume the claim is true for some $n \ge 5$. That is, suppose $2n+1 < 2^n$.

$$2(n+1) + 1 = (2n+1) + 2 < 2^n + 2$$

 $2^{n} + 2 < 2^{n} + 2^{n}$ for $n \ge 1$, and here $n \ge 5$ so this is true.

Then we have

$$2(n+1) + 1 < 2^n + 2^n$$
, and $2^n + 2^n = 2(2^n) = 2^{n+1}$, so

$$2(n+1) + 1 < 2^{n+1}$$

This shows that the claim is true for n+1, completing the inductive step.

Conclusion By induction, for all $n \ge 5$ it is true that $2n + 1 < 2^n$.

Theorem 3. For $n \ge 5$, $n^2 < 2^n$.

Proof. Base case Let n = 5. $n^2 = 25$ and $2^n = 32$, and it is true that 25 < 32. The claim is true when n = 5.

Inductive step Assume the claim is true for some $n \geq 5$. That is, suppose that $n^2 < 2^n$

$$(n+1)^2 = n^2 + 2n + 1$$
 expanding
 $< 2^n + 2n + 1$ because $n^2 < 2^n$ $< 2^n + 2n + 1$

We proved in the previous theorem that for $n \ge 5, \, 2n+1 < 2^n$. Therefore,

$$2^{n} + 2n + 1 = 2^{n} + (2n + 1) < 2^{n} + 2^{n} = 2(2^{n}) = 2^{n+1}$$

This show that the claim is true for n+1, completing the inductive step. Conclusion By induction, for $n \geq 5$ it is true that $n^2 < 2^n$.