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1 Introduction
Fowler [22]

Measure theory of continued fractions: Einsiedler and Ward [19, Chapter 3]
and Iosifescu and Kraaikamp [37, Chapter 1].

In harmonic analysis and dynamical systems, we usually care about infinite
continued fractions because we usually care about the Lebesgue measure of a set
defined by some conditions on the convergents or partial quotients of a continued
fraction. For some questions about functions defined using continued fractions in
which we speak about the continuity or differentiability of a particular function,
we do indeed care about rational numbers. This paper assembles and comments
on the Euclidean algorithm and finite continued fractions in classical Greek and
medieval Latin mathematics.

2 Numbers and magnitudes
Plato, Parmenides 140b–c [12, p. 126]:

Further, the One, being such as we have described, will not be either
(a) equal or (b) unequal either to itself or to another.

If it is equal, it will have the same number of measures as anything
to which it is equal. If greater or less, it will have more or fewer
measures than things, less or greater than itself, which are commen-
surable with it. Or, if they are incommensurable with it, it will have
smaller measures in the one case, greater in the other.

Allen [2, pp. 236–241] comments on this passage.
Aristotle, Metaphysics Δ.13, 1020a [56]:
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‘Quantum’ means that which is divisible into two or more constituent
parts of which each is by nature a ‘one’ and a ‘this’ . A quantum is
a plurality if it is numerable, a magnitude if it is measurable. ‘Plu-
rality’ means that which is divisible potentially into non-continuous
parts, ‘magnitude’ that which is divisible into continuous parts; of
magnitude, that which is continuous in one dimension is length, in
two breadth, in three depth. Of these, limited plurality is number,
limited length is a line, breadth a surface, depth a solid.

Again, some things are called quanta in virtue of their own nature,
others incidentally; e.g. the line is a quantum by its own nature, the
musical is one incidentally. Of the things that are quanta by their
own nature some are so as substances, e.g. the line is a quantum (for
a ‘certain kind of quantum’ is present in the definition which states
what it is), and others are modifications and states of this kind of
substance, e.g. much and little, long and short, broad and narrow,
deep and shallow, heavy and light, and all other such attributes. And
also great and small, and greater and smaller, both in themselves
and when taken relatively to each other, are by their own nature
attributes of what is quantitative; but these names are transferred
to other things also. Of things that are quanta incidentally, some
are so called in the sense in which it was said that the musical and
the white were quanta, viz. because that to which musicalness and
whiteness belong is a quantum, and some are quanta in the way in
which movement and time are so; for these also are called quanta of a
sort and continuous because the things of which these are attributes
are divisible. I mean not that which is moved, but the space through
which it is moved; for because that is a quantum movement also is
a quantum, and because this is a quantum time is one.

Polybius Histories, Book IV, Chapter 40:

For given infinite time and basins that are limited in volume, it
follows that they will eventually be filled, even if silt barely trickles
in. After all, it is a natural law that, if a finite quantity goes on and
on increasing or decreasing – even if, let us suppose, the amounts
involved are tiny – the process will necessarily come to an end at
some point within the infinite extent of time.

Plato, Laws 819
Diodorus Siculus, 11.25.1 [57, pp. 124–125]:

Gelon after his victory honored with gifts not only those cavalry
who had killed Hamilcar, but also others who had distinguished
themselves in the battle. He put aside the best of the booty to
decorate the temples of Syracuse. Of the remainder, he nailed much
of it to the most magnificent temples of Himera and the rest along
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with the captives he distributed to his allies according to the number
of their soldiers who had fought with him.

Definition 4 of Elements V [30, p. 114]:

Magnitudes are said to have a ratio to one another which are ca-
pable, when multiplied, of exceeding one another.

For x, y ∈ R>0, let

T (x, y) = sup(k ∈ Z≥0 : x− ky ≥ 0),

which satisfies
x− y < T (x, y) · y ≤ x. (1)

For x ∈ R>0, let
⌊x⌋ = sup(n ∈ Z : n ≤ x),

which satisfies
x− 1 < ⌊x⌋ ≤ x.

Lemma 1. For x, y ∈ R>0,

T (x, y) = ⌊x/y⌋.

Proof. First, ⌊x/y⌋ ∈ Z≥0. Second, as ⌊x/y⌋ ≤ x/y,

x− ⌊x/y⌋ · y ≥ x− (x/y) · y = 0.

Third, if x− ky ≥ 0 then k ≤ x/y < ⌊x/y⌋+ 1, and k < ⌊x/y⌋+ 1 is equivalent
to k ≤ ⌊x/y⌋. Therefore

⌊x/y⌋ = sup(k ∈ Z≥0 : x− ky ≥ 0) = T (x, y).

For x, µ ∈ R>0, we say that µ measures x if x = T (x, µ) · µ, and write
µ | x, and write µ ∤ x if µ does not measure x. We say that x, y ∈ R>0 are
commensurable if there is some µ ∈ R>0 such that µ | x and µ | y, and call
µ a common measure of x and y. If ν is a common measure of x and y
and for any common measure µ of x and y it holds that ν ≥ µ, we say that ν
is a greatest common measure of x and y, and write ν = gcm(x, y). For
µ ∈ R>0,

(µ | x) ∧ (µ | y) ⇐⇒ µ | gcm(x, y).

Definitions 1 and 2 of Elements VII [30, p. 277]:

1. An unit is that by virtue by which each of the things that exist
is called one.

2. A number is a multitude composed of units.
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We model numbers by elements of Z≥2. If p is a number then 1 | p, and if p
and q are numbers then 1 is a common measure of p and q, so any two numbers
are commensurable. Definitions 12 and 14 of Elements VII [30, p. 278]:

12. Numbers prime to one another are those which are measured
by an unit alone as a common measure.

14. Numbers composite to one another are those which are
measured by some number as a common measure.

3 Anthyphaeresis
Aristotle, Topics VIII.3, 158b29–35 [66, pp. 506–507]:

It would seem that in mathematics also some things are not eas-
ily proved by lack of a definition, such as the proposition that the
straight line parallel to the side which cuts the plane divides in the
same way both the line and the area. But when the definition is
stated, what was stated becomes immediately clear. For the areas
and the lines have the same alternating subtraction (antanairesis);
and this is the definition of the same proportion.

Alexander of Aphrodisias, On the Topics, VIII.3:

For likewise when this is stated it is not obvious; but when the
definition of proportion is enunciated it becomes obvious that both
the line and the area are cut in the same proportion by the line drawn
parallel. For the definition of proportions which those of old time
used is this: Magnitudes which have the same alternating subtraction
(anthyphairesis) are proportional. But he has called anthyphairesis
antanairesis.

Fowler [22] is a comprehensive summary of Greek writings about ratios and
anthyphaeresis. In Fowler’s formalization, for magnitudes x, y, x > y, the an-
thyphaeresis of the ratio x : y is the sequence an formed when applying the
Euclidean algorithm with x and y.

Mendell [45]

4 The Euclidean algorithm
Weil [72, p. 5, Chap. I, §II]:

Was there originally a relation between the so-called “Euclidean al-
gorithm”, as described in Eucl.VII.1–2, for finding the g.c.d. of two
integers, and the theory of the same process (Eucl.X.2) as it ap-
plies to possibly incommensurable magnitudes? Has it not often
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happened that a mathematical process has been discovered twice, in
different contexts, long before the substantial identity between the
two discoveries came to be perceived? Some of the major advances
in mathematics have occured just in this manner.

In his introduction to Book V of Euclid’s Elements, Heath says the following
[30, p. 113]:

It is a remarkable fact that the theory of proportions is twice treated
in Euclid, in Book V. with reference to magnitudes in general, and
in Book VII. with reference to the particular case of numbers. The
latter exposition referring only to commensurables may be taken to
represent fairly the theory of proportions at the stage which it had
reached before the great extension of it made by Eudoxus.

In this paper we talk only about using the Euclidean algorithm with com-
mensurable magnitudes, equivalently, about finite continued fractions. This
gives us a chance to become familiar with the Euclidean algorithm just as it oc-
curs in Elements VII.1–2, rather than in Elements VII.1–2 and Elements X.2–3
together. A study of the Euclidean algorithm for not necessarily commensurable
magnitudes should involve the following.

1. The regular polygons in Elements IV,VI.30,XII.1,XIII.1–12, XIII.18.

2. The classification of incommensurable lines in Elements X, for which see
e.g. Taisbak [64] and the commentary of Pappus of Alexandria [67].

3. Methods for approximating square roots in works like Heron’s Metrica [1],
Archimedes’ Measurement of a Circle, and Ptolemy’s Almagest [69].

4. Solving Pell’s equation as in Diophantus, Arithmetica, Lemma to VI.15
[31, p. 238], and side and diagonal numbers as in Proclus, Commentary on
Plato’s Republic [21, pp. 133–135] and Theon of Smyrna, Expositio rerum
mathematicarum ad legendum Platonem utilium I.XXXI [18, pp. 70–75].

5. Magnitudes and ratios, for which see Knorr [40] on Egyptian and Greek
fractions, Larsen [41] and Thorup [68] on pre-Euclidean theories of pro-
portions, Grattan-Guinness [27] for a discussion of numbers, magnitudes
and ratios in the Elements, Murdoch [48] for Latin writers, and Plooij [53]
and Hogendijk [35] for Arabic writers

6. Infinite divisibility and Zeno’s paradoxes, and philosophical writing about
the infinite like in Aristotle’s Physics and Metaphysics, for which see Heath
[29] and commentary by Beere [5, pp. 127–129] on anthyphaeresis.

7. Music theory, for which see Huffman [36] and Barker [4], especially making
sense of the notion of semitone, e.g., Censorinus, De Dei Natali 10.7 [51,
p. 18]: according to Aristoxenus the octave is 6 tones, while according to
the Pythagoreans the octave is 5 tones and 2 semitones, “so Pythagoras
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and the mathematicians, who pointed out that two semi-tones do not
necessarily add up to a full tone.”

8. Astronomy and calendars, for which see Neugebauer [50].

The Euclidean algorithm. Let x, y ∈ R>0 be commensurable, with x > y: there
is some µ ∈ R>0 and some p, q ∈ Z≥1 such that x = p · µ and y = q · µ, p > q.

Define
v0 = p, v1 = q.

Define
a0 = T (v0, v1), v2 = v0 − a0v1.

From (1) we know v0 − v1 < T (v0, v1) · v1 ≤ v0, whence

0 ≤ v2 < v1.

For m ≥ 2, if vm > 0 then define

am−1 = T (vm−1, vm), vm+1 = vm−1 − am−1vm.

From (1) we know vm−1 − vm < T (vm−1, vm) · vm ≤ vm−1, whence

0 ≤ vm+1 < vm.

Because v0, v1, v2, . . . is a strictly decreasing sequence of nonnegative integers,
there is some N ≥ 2 for which

vN > 0, vN+1 = 0.

Thus for 0 ≤ m ≤ N − 1,

am = T (vm, vm+1), vm = amvm+1 + vm+2, (2)

and
vN+1 < vN < · · · < v1 < v0,

with
v0 = p, v1 = q, vN+1 = 0.

Theorem 2. For p > q,
vN = gcd(p, q).

Proof. For d ∈ Z≥1, say d | gcd(p, q), and so d | v0 and d | v1. For 0 ≤ m ≤ N−1,
suppose that d | vm and d | vm+1. Then using (2) we get d | vm+2. By induction,
for each 0 ≤ m ≤ N − 1 it holds that d | vm and d | vm+1. In particular, for
m = N − 1 it holds that d | vN .
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Say d | vN . By (2) we have vN−1 = aN−1vN + vN+1, and by definition of
N we have vN+1 = 0, whence d | vN−1. For 0 ≤ m ≤ N − 1, suppose that
d | vN−m and d | vN−1−m. By (2) we have

vN−1−m = aN−1−mvN−m + vN−m+1,

from which we get d | vN−m+1. By induction, for each 0 ≤ m ≤ N − 1 it holds
that d | vN−m and d | vN−1−m. In particular, for m = N − 1 we get d | v1
and d | v0, which means d | gcd(p, q). We have established that for d ∈ Z≥1,
d | gcd(p, q) if and only if d | vN , which proves the claim.

Example. For example, let p = 60, q = 26, cf. Fowler [22, pp. 25–28]. Then

v0 = 60, v1 = 26.

Then
a0 = T (v0, v1) = T (60, 26) = 2

and
v2 = v0 − a0v1 = 60− 2 · 26 = 8.

Then
a1 = T (v1, v2) = T (26, 8) = 3

and
v3 = v1 − a1v2 = 26− 3 · 8 = 2.

Then
a2 = T (v2, v3) = T (8, 2) = 4

and
v4 = v2 − a2v3 = 8− 4 · 2 = 0.

As v0 = a0v1 + v2,
v0 : v1 = a0 + v2 : v1.

As v1 = a1v2 + v3,
v1 : v2 = a1 + v3 : v2.

As v2 = a2v3 + v4,
v2 : v3 = a2 + v4 : v3.

Thus, as v4 = 0,

v0 : v1 = a0 + v2 : v1

= a0 + (v1 : v2)
−1

= a0 + (a1 + v3 : v2)
−1

= a0 + (a1 + (v2 : v3)
−1)−1

= a0 + (a1 + (a2 + v4 : v3)
−1)−1

= a0 + (a1 + a−1
2 )−1,
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that is,
60 : 26 = (2 + (3 + 4−1)−1)−1.

We can write (2),
vm = amvm+1 + vm+2,

using matrices: (
0 1
1 −am

)(
vm

vm+1

)
=

(
vm+1

vm+2

)
, (3)

with am = T (vm, vm+1), for 0 ≤ m ≤ N − 1. For 0 ≤ n ≤ N − 1,[
n∏

m=0

(
0 1
1 −am

)](
v0
v1

)
=

(
vn+1

vn+2

)
,

in particular, for n = N − 1 and as vN+1 = 0,[
N−1∏
m=0

(
0 1
1 −am

)](
v0
v1

)
=

(
vN
0

)
.

For 0 ≤ n ≤ N − 1, using (3) and(
0 1
1 −am

)−1

=

(
am 1
1 0

)
we get (

am 1
1 0

)(
vm+1

vm+2

)
=

(
vm

vm+1

)
.

Define (
pn pn−1

qn qn−1

)
=

(
a0 1
1 0

)
· · ·

(
an 1
1 0

)
=

n∏
m=0

(
am 1
1 0

)
, (4)

so (
pn pn−1

qn qn−1

)
=

(
pn−1 pn−2

qn−1 qn−2

)(
an 1
1 0

)
,

yielding (
pn
qn

)
=

(
anpn−1 + pn−2

anqn−1 + qn−2

)
.

Now, (
p0 p−1

q0 q−1

)
=

(
a0 1
1 0

)
and (

p1 p0
q1 q0

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
=

(
a0a1 + 1 a0

a1 1

)
.
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We have (
v0
v1

)
=

(
pn pn−1

qn qn−1

)(
vn+1

vn+2

)
,

so for n = N − 1, as v0 = p, v1 = q, vN = gcm(p, q), vN+1 = 0,(
p
q

)
=

(
pN−1 pN−2

qN−1 qn−2

)(
vN
0

)
=

(
vNpN−1

vNqN−1

)
. (5)

Taking determinants of (4),

pnqn−1 − pn−1qn = (−1)n+1. (6)

For n = N − 1, (5) and (6) we get

pqN−2 − qpN−2 = (−1)NvN . (7)

Finally, (6) tells us
pn
qn

− pn−1

qn−1
=

(−1)n+1

qn−1qn
,

thus by (5),
p

q
− pn−1

qn−1
=

N−1∑
m=n

(−1)m+1

qm−1qm
.

Christianidis [10] surveys occurences of linear indeterminate equations in
Greek mathematics.

The formula (7) shows a connection of the Euclidean algorithm with the kut-
taka algorithm of Aryabhata and Bhaskara I for determining, given positive
integers a, b, c, those positive integers x and y such that

ax− by = c.

See Datta and Singh [14, II, pp. 87–125, §13], Heath [31, pp. 281–285], and
Neugebauer [50, pp. 1117–1120, VI C 4, 2].

5 Elements VII.1–3
Mueller [47, p. 11] explains the format of the propositions in the Elements.
A usual proposition has the format protasis, ekthesis, diorismos, kataskeuē,
apodeixis, and sumperasma. The protasis is the statement of the proposition.
The ekthesis instantiates typical objects that are going to be worked with.
The diorismos asserts that to prove the proposition it suffices to prove some-
thing about the instantiated objects. The kataskeuē constructs things using
the instantiated object. The apodeixis proves the claim of the diorismos. The
sumperasma asserts that the proposition is proved by what has been done with
the instantiated objects.

Euclid, Elements VII.1 [30, p. 296]:
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Two unequal numbers being set out, and the less being continually
subtracted in turn from the greater, if the number which is left never
measures the one before it until an unit is left, the original numbers
will be prime to one another.

Proof. Let AB,CD ∈ Z≥2 with AB > CD, and suppose that when the less is
continually subtracted in turn from the greater, the number that is left never
measures the one before it until a unit is left. Suppose by contradiction that
the numbers are not relatively prime, with E = gcm(AB,CD) ∈ Z≥2. Let

AB = AF + FB = AF + T (AB,CD) · CD, (8)

with AF < CD. Euclid uses without statement that AF > 1. Let

CD = CG+GD = CG+ T (CD,AF ) ·AF, (9)

with CG < AF . Euclid uses without statement that CG > 1. Let

AF = AH +HF = AH + T (AF,CG) · CG, (10)

with AH < CG. Euclid then declares that AH = 1. Now, because E | AB and
E | CD, using (8) it follows that E | AF . Because E | CD and E | AF , using
(9) it follows that E | CG. Because E | AF and E | CG, using (10) it follows
that E | AH. But AH = 1 and E ∈ Z≥2, so this is false. Therefore the numbers
AB and CD are relatively prime.

Elements VII.1 is translated and briefly commented on by Burnyeat [7,
pp. 29–31], in an essay about why Plato encouraged studying mathematics.

Euclid, Elements VII.2 [30, p. 298]:

Given two numbers not prime to one another, to find their greatest
common measure.

Proof. Let AB and CD be numbers that are not relatively prime, with AB >
CD. If CD | AB then gcm(AB,CD) = CD.

If CD ∤ AB, let

AB = AE + EB = AE + T (AB,CD) · CD, (11)

with AE < CD. As CD ∤ AB, AE ̸= 0, and if AE = 1 then by Elements
VII.1 it follows that AB and CD are relatively prime, contrary to what has
been assumed. Therefore AE ∈ Z≥2. Furthermore, because AB and CD have
some common measure µ ∈ Z≥2, by (11) this µ is a common measure of CD
and AE. Let

CD = CF + FD = CF + T (CD,AE) ·AE. (12)

Euclid uses without statement that CF ̸= 0. If CF = 1 then by Elements VII.1,
CD and AE are relatively prime, contradicting that µ ∈ Z≥2 is a common
measure of them. Euclid then declares that CF | AE. Now, by (12) we have

FD = T (CD,AE) ·AE,
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so AE | FD, and with CF | AE this implies CF | FD. But CF + FD = CD,
and because CF | FD and CF | CF we get CF | CD. But by (11),

EB = T (AB,CD) · CD,

so CD | EB, and with CF | CD this implies CF | EB. Therefore, CF | EB
and CF | AE, and with AB = AE + EB this implies CF | AB. Therefore,
CF | AB and CF | CD, namely CF is a common measure of AB and CD.

Now suppose by contradiction that CF is not the greatest common measure
of AB and CD. Then there is some G ∈ Z≥2 with G > CF that is a common
measure of AB and CD. Because G | CD and CD | EB, we get G | EB. But
AB = AE + EB, and G | AB by hypothesis, so it follows that G | AE. Now,
AE | FD, so G | FD. And CD = CF + FD, so G | FD and G | CD together
imply G | CF . This means that the greater measures the less, which is false.
Therefore there is no number greater than CF that measures both AB and CD,
which means that CF is the greatest common measure of AB and CD.

The Porism to Elements VII.2 states, “From this it is manifest that, if a
number measure two numbers, it will also measure their greatest common mea-
sure.”

Proclus, Commentary on the First Book of Euclid’s Elements 301–302 [46,
p. 236], calls determining the greatest common measure of two commensurable
magnitudes a “porism”:

“Porism” is a geometrical term and has two meanings. We call
“porism” a theorem whose establishment is an incidental result of
the proof of another theorem, a lucky find as it were, or a bonus
for the inquirer. Also called “porisms” are problems whose solu-
tion requires discovery, not merely construction or simple theory.
We must see that the angles at the base of an isosceles triangle are
equal, and our knowledge in such cases is about already existing
things. Bisecting an angle, constructing a triangle, taking away or
adding a length – all these require us to make something. But to
find the center of a given circle, or the greatest common measure of
two given commensurable magnitudes, and the like – these lie in a
sense between problems and theorems. For in these inquiries there
is no construction of the things sought, but a finding of them. Nor is
the procedure purely theoretical; for it is necessary to bring what is
sought into view and exhibit it before the eyes. Such are the porisms
that Euclid composed and arranged in three books.

cf. Commentary 278 [46, p. 217]. Pappus of Alexandria, Collection VII.14
[39, p. 96]:

That the ancients best knew the distinction between these three
things, is clear from their definitions. For they said that a theorem
is what is offered for proof of what is offered, a problem what is
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proposed for construction of what is offered, a porism what is offered
for the finding of what is offered.

Euclid, Elements VII.3 [30, p. 300]:

Given three numbers not prime to one another, to find their greatest
common measure.

Proof. Let A,B,C be numbers that are not relatively prime. By Elements VII.2,
let D be the greatest common measure of A and B. Either D | C or D ∤ C. In
the first case, D | C and then D measures each of A,B,C, hence is a common
measure of A,B,C. Suppose by contradiction that there is some number E that
is a common measure of A,B,C such that E > D. As E measures each of A,B,
by Elements VII.2, Porism E measures their greatest common measure D. But
then the greater measures the less, which is false. Therefore D is the greatest
common measure of A,B,C.

In the second case, D ∤ C. Because A,B,C are not relatively prime, some
number M ∈ Z≥2 is their common measure. This number measures A,B hence
by Elements VII.2, Porism measures the greatest common measure D of A,B.
But M | C and M | D shows, as M ∈ Z≥2, that C and D are not relatively
prime. By Elements VII.2, let E be the greatest common measure of C and
D. Because E | D and D | A it follows that E | A, and because E | D and
D | B it follows that E | B. But also E | C, so E is a common measure of
A,B,C. Suppose by contradiction that E is not the greatest common measure
of A,B,C, so there is a number F that is a common measure of A,B,C with
F > E. Because F measures A,B,C, it measures A,B and hence by Elements
VII.2, Porism we get that F measures the greatest common measure of A,B,
i.e. F | D. But also F | C, and because F measures C,D, by Elements VII.2,
Porism we have that F measures the greatest common measure of C,D, that is
F | E. But then the greater measures the less, which is false, showing that E is
the greatest common measure of A,B,C.

Aristotle writes about generalization from a chance case in Posterior Ana-
lytics, A.4, 73b32f.

On induction in Euclid, see Mueller [47, pp. 68–69] and Itard [38]. Itard [38,
p. 73] writes:

Cependant on peut trouver quelques démonstrations par récurrence
ou induction complète. On ne trouvera jamais le leitmotiv moderne,
un peu pédant: « nous avons vérifié la propriété pour 2, nous avons
montré que si elle est vraie pour un nombre, elle est vraie pour son
suivant, donc elle est générale »et ceux qui ne voient l’induction com-
plète qu’accompagnée de sa rengaine auront le droit de dire qu’on
ne la trouve par dans les Eléments.

Pour nous, nous la voyons dans les prop. 3, 27 et 36, VII, 2, 4 et 13,
VIII, 8 et 9, IX.
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For example, Euclid’s proof of VII.8, VII.12, and VII.14. Euclid’s proof of
XI.20 does the case where A,B,C are given prime numbers, and lets ED be
the least number measured by A,B,C, and takes EF = ED +DF = ED + 1.

Proclus 381–382 [46, pp. 300–301], on Elements I.32 (Proclus refers to Timaeus
53c):

We can now say that in every triangle the three angles are equal to
two right angles. But we must find a method of discovering for all
the other rectilineal polygonal figures – for four-angled, five-angled,
and all the succeeding many-sided figures – how many right angles
their angles are equal to. First of all, we should know that every
rectilineal figure may be divided into triangles, for the triangle is
the source from which all things are constructed, as Plato teaches us
when he says, “Every rectilineal plane face is composed of triangles.”
Each rectilineal figure is divisible into triangles two less in number
than the number of its sides: if it is a four-sided figure, it is divisible
into two triangles; if five-sided, into three; and if six-sided, into four.
For two triangles put together make at once a four-sided figure, and
this difference between the number of the constituent triangles and
the sides of the first figure composed of triangles is characteristic of
all succeeding figures. Every many-sided figure, therefore, will have
two more sides than the triangles into which it can be resolved. Now
every triangle has been proved to have its angles equal to two right
angles. Therefore the number which is double the number of the
constituent triangles will give the number of right angles to which
the angles of a many-sided figure are equal. Hence every four-sided
figure has angles equal to four right angles, for it is composed of two
triangles; and every five-sided figure, six right angles; and similarly
for the rest.

Proclus 422 [46, pp. 334–335], on Elements I.45:

For any rectilineal figure, as we said earlier, is as such divisible into
triangles, and we have given the method by which the number of its
triangles can be found. Therefore by dividing the given rectilineal
figure into triangles and constructing a parallelogram equal to one
of them, then applying parallelograms equal to the others along the
given straight line – that line to which we made the first application
– we shall have the parallelogram composed of them equal to the
rectilineal figure composed of the triangles, and the assigned task
will have been accomplished. That is, if the rectilineal figure has
ten sides, we shall divide it into eight triangles, construct a paral-
lelogram equal to one of them, and then by applying in seven steps
parallelograms equal to each of the others, we shall have what we
wanted.

Netz [49, pp. 268–269]:
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The Greeks cannot speak of ‘A1, A2, . . . , An’. What they must do is
to use, effectively, something like a dot-representation: the general
set of numbers is represented by a diagram consisting of a definite
number of lines. Here the generalisation procedure becomes very
problematic, and I think the Greeks realised this. This is shown by
their tendency to prove such propositions with a number of numbers
above the required minimum. This is an odd redundancy, untypical
of Greek mathematical economy, and must represent what is after
all a justified concern that the minimal case, being also a limiting
case, might turn out to be unrepresentative. The fear is justified,
but the case of n = 3 is only quantitatively different from the case of
n = 2. The truth is that in these propositions Greek actually prove
for particular cases, the generalisation being no more than a guess;
arithmeticians are prone to guess.

To sum up: in arithmetic, the generalisation is from a particular
case to an infinite multitude of mathematically distinguishable cases.
This must have exercised the Greeks. They came up with something
of a solution for the case of a single infinity. The double infinity of
sets of numbers left them defenceless. I suspect Euclid was aware of
this, and thus did not consider his particular proofs as rigorous proofs
for the general statement, hence the absence of the sumperasma. It is
not that he had any doubt about the truth of the general conclusion,
but he did feel the invalidity of the move to that conclusion.

The issue of mathematical induction belongs here.

Mathematical induction is a procedure similar to the one described
in this chapter concerning Greek geometry. It is a procedure in
which generality is sustained by repeatability. Here the similarity
stops. The repeatability, in mathematical induction, is not left to
be seen by the well-educated mathematical reader, but is proved.
Nothing in the practices of Greek geometry would suggest that a
proof of repeatability is either possible or necessary. Everything in
the practices of Greek geometry prepares one to accept the intuition
of repeatability as a substitute for its proof. It is true that the
result of this is that arithmetic is less tightly logically principled
than geometry – reflecting the difference in their subject matters.
Given the paradigmatic role of geometry in this mathematics, this
need not surprise us.

6 Part and parts
Definitions 3–7, 15 and 20 of Elements VII are the following [30, p. 277–278]:

3. A number is a part of a number, the less of the greater, when it
measures the greater;
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4. but parts when it does not measure it.

5. The greater number is a multiple of the less when it is measured
by the less.

6. An even number is that which is divisible into two equal parts.

7. An odd number is that which is not divisible into two equal
parts, or that which differs by an unit from an even number.

15. A number is said to multiply a number when that which is
multiplied is added to itself as many times as there are units in the
other, and thus some number is produced.

20. Numbers are proportional when the first is the same multiple,
or the same part, or the same parts, of the second that the third is
of the fourth.

Either we define an odd number to be a number that is not even, or we
define an odd number as one that differs from an even number by a unit. In the
first case, we then prove that an odd number differs from an even number by
a unit. In the second case, we then prove that an odd number is not even and
that any number is either even or odd.

Euclid, Elements VII.4 [30, p. 303]:

Any number is either a part or parts of any number, the less of the
greater.

Taisbak [63, p. 31, Chapter 4] writes,

In order to “save” Euclid I prefer to understand 7.4 as a “nomen-
clatural” theorem designed to introduce the statement “a is parts of
b”.

For A > B and C > D, we model “B is the same parts of A that D is of C”
as follow: there are p, q ∈ Z≥2, p > q, such that

A = p·gcm(A,B), B = q·gcm(A,B), C = p·gcm(C,D), D = q·gcm(C,D).

To say that B is parts of A we thus must be given gcm(A,B).

Proof. Let A,BC ∈ Z≥2 with A > BC. Either A,BC are relatively prime or
they are not. If they are, gcm(A,BC) = 1.

7 Music theory
Philolaus, Fragment 6a [36, pp. 146–147], from Nicomachus, Manual of Har-
monics 9:
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The magnitude of harmonia (fitting together) is the fourth (syllaba)
and the fifth (di’ oxeian). The fifth is greater than the fourth by the
ratio 9 : 8 [a tone]. For from hypatē [lowest tone] to the middle string
(mesē) is a fourth, and from the middle string to neatē [highest tone]
is a fifth, but from neatē to the third string is a fourth, and from the
third string to hypatē is a fifth. That which is in between the third
string and the middle string is the ratio 9 : 8 [a tone], the fourth
has the ratio 4 : 3, the fifth 3 : 2, and the octave (dia pasōn) 2 : 1.
Thus the harmonia is five 9 : 8 ratios [tones] and two dieses [smaller
semitones]. The fifth is three 9 : 8 ratios [tones] and a diesis, and
the fourth two 9 : 8 ratios [tones] and a diesis.

Huffman [36, p. 164] gives a nihil obstat for the following suggestion of Tan-
nery. From the fifth 3 : 2 take away the fourth 4 : 3, getting the tone 9 : 8, which
is lesser than 4 : 3. From 4 : 3 take away 9 : 8, getting 32 : 27, which is greater
than 9 : 8. From 32 : 27 take away 9 : 8, getting the diesis 256 : 243, which
is lesser than 9 : 8. This procedure can be continued. From 9 : 8 take away
256 : 243, getting the apotome 2187 : 2048, which is greater than 256 : 243.
From 2187 : 2048 take away 256 : 243, getting the comma 531441 : 524288,
which is lesser than 256 : 243.

Philolaus, Fragment 6b [36, p. 364], from Boethius, De Institutione Musica
III.8 (according to Huffman, it is uncertain if this fragment is genuine):

Philolaus, then, defined these intervals and intervals smaller than
these in the following way: diesis, he says, is the interval by which
the ratio 4 : 3 is greater than two tones. The comma is the interval
by which the ratio 9 : 8 is greater than two dieses, that is than two
smaller semitones. Schisma is half of a comma, diaschisma half of a
diesis, that is a smaller semitone.

Plato, Timaeus 36b [11, pp. 71–72]:

And he went on to fill up all the intervals of 4
3 (i.e. fourths) with the

interval 9
8 (the tone), leaving over in each a fraction. This remaining

interval of the fraction had its terms in the numerical proportion of
256 to 243 (semitone).

Szabó [62] assembles a philological argument that the Euclidean algorithm
was created as part of the Pythagorean theory of music. Szabó [62, p. 136,
Chapter 2.8] summarizes, “More precisely, this method was developed in the
course of experiments with the monochord and was used originally to ascertain
the ratio between the lengths of two sections on the monochord. In other words,
successive subtraction was first developed in the musical theory of proportions.”
Earlier in this work Szabó [62, pp. 28–29] says, “Euclidean arithmetic is pre-
dominantly of musical origin not just because, following a tradition developed
in the theory of music, it uses straight lines (originally ‘sections of a string’) to
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symbolize numbers, but also because it uses the method of successive subtrac-
tion which was developed originally in the theory of music. However, the theory
of odd and even clearly derives from an ‘arithmetic of counting stones’ (ψῆφοι),
which did not originally contain the method of successive subtraction.”

8 Celestial cycles
Heath [28, p. 284] cites statements by Aulus Gellius, Pliny and Censorinus that
in Athens, a day was defined to be the period from one sunset to the next.
Geminus, Introduction to the Phenomena VIII [28, pp. 284–285]:

The ancients had before them the problem of reckoning the months
by the moon, but the years by the sun. For the legal and oracular
prescription that sacrifices should be offered after the manner of their
forefathers was interpreted by all Greeks as meaning that they should
keep the years in agreement with the sun and the days and months
with the moon. Now reckoning the years according to the sun means
performing the same sacrifices to the gods at the same seasons in
the year, that is to say, performing the spring sacrifice always in the
spring, the summer sacrifice in the summer, and similarly offering
the same sacrifices from year to year at the other definite periods
of the year when they fell due. For they apprehended that this was
welcome and pleasing to the gods. The object in view, then, could
not be secured in any other way than by contriving that the solstices
and the equinoxes should occur in the same months from year to
year. Reckoning the days according to the moon means contriving
that the names of the days of the month shall follow the phases of
the moon.

We define a day to be a period from a sunset to the next sunset, a synodic
month to be a period from a new moon to the next new moon, and a tropical
year to be a period from a vernal equinox and the next vernal equinox. Two
days need not have the same number of seconds, but this discrepancy is tiny and
we shall model the phenomena by taking the period from any sunset to the next
and from any other sunset to the next to be the same, and we call this common
period D. Likewise, we shall model the phenomena by taking the period from
any vernal equinox to the next and from any other vernal equinox to the next
to be the same, and we call this common period Y . Finally, we shall model the
phenomena by taking the period of a large number N of consecutive synodic
months to be nearly N ·M , where M is called the mean synodic month.

Define a hollow month as H = 29D and a full month as F = 30D. Goldstein
[24] presents the following derivation of the Metonic cycle. Let us take as given
that (i) Y is a little more than 365D and (ii) 12M is a little more than 354D.
We partition time into hollow and full months, and take as given that (iii) this
is done in such a way that among N consecutive synodic months, there are more

17



full months than hollow months. From (iii) we get N · H+F
2 < N ·M < N · F ,

i.e.
291/2D < M < 30D,

namely, a mean synodic month is greater than 291/2 days and less than 30 days.
Assume that pY is nearly NM . Let N = 12p+ q, so NM = 12pM + qM , and
now,

12pM + 291/2qD < 12pM + qM < 12pM + 30qD,

so
12pM + 291/2qD < NM < 12pM + 30qD.

By (i) and (ii), Y − 12M is nearly 11D. Assume that the difference is small
enough that pY −12pM is nearly 11pD, so 12pM is nearly pY −11pD, and then

pY −NM + 1/2qD < 11pD < pY −NM + 30qD.

Because pY is nearly NM , this yields

291/2qD < 11pD < 30qD,

and therefore
291/2 : 11 < p : q < 30 : 11.

For a : b < c : d, the ratio (a + c) : (b + d) is called the mediant of the ratios
a : b, c : d. It is a fact that the mediant is greater than a : b and less than c : d.
Following Fowler [22, pp. 42–43], we first check

2 : 1 < 291/2 : 11 < 30 : 11 < 3 : 1.

The mediant of 2 : 1 and 3 : 1 is 5 : 2 < 291/2 : 11. The mediant of 5 : 2 and
3 : 1 is 8 : 3 < 291/2 : 11. The mediant of 8 : 3 and 3 : 1 is 11 : 4 > 30 : 11. The
mediant of 8 : 3 and 11 : 4 is 19 : 7, which satisfies 291/2 : 11 < 19 : 7 < 30 : 11.
Let

p = 19, q = 7, N = 12p+ q = 235.

Then in our model of the phenomena, 19Y is nearly 235M . This is the Metonic
cycle: in 19 years there are 110 hollow months and 125 full months, and 110H+
125F = 3190D+3750D = 6940D. See Geminus, Introduction to the Phenomena
VIII [20].

Let s be a second and let d = 24 · 60 · 60s = 86400s, called an ephemeris
day. Take as granted that Y is approximately 365.2421897d and that M is
approximately 29.53059d. We compute that the anthyphairesis of 365.2421897 :
29.53059 is

[12, 2, 1, 2, 1, 1, 17, 3, . . .]

Now, [12, 2, 1, 2] = 99 : 8, which corresponds to the octaeteris cycle of Cleo-
stratus: in 8 years there are 99 synodic months. Furthermore, [12, 2, 1, 2, 1, 1] =
235 : 19, which corresponds to the Metonic cycle: in 19 years there are 235
synodic months.

Aelian, Varia Historia, 10.7 [73, p. 319]:
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The astronomer Oenopides of Chios dedicated at Olympia the fa-
mous bronze tablet on which he had inscribed the movements of
the stars for fifty-nine years, what he called the Great Year. Note
that the astronomer Meton of the deme Leuconoe set up pillars and
recorded on them the solstices. He claimed to have discovered the
Great Year and said it was nineteen years.

Zeeman [74] talks about gear ratios of the Antikythera mechanism. There
is a sun gear with 64 teeth that meshes with a gear with 38 teeth that is paired
with a gear with 48 teeth. The gear with 48 teeth meshes with a gear with 24
teeth that is paired with a gear with 127 teeth. The gear with 127 teeth meshes
with a moon gear with 32 teeth. The gear ratios are 64 : 38, 48 : 24, 127 : 32,
and

64

38
· 48
24

· 127
32

=
254

19
.

A sidereal year is close to 365.25636d, and a sidereal month is close to 27.32166d,
and the anthyphairesis of 365.25636 : 27.32166 is

[13, 2, 1, 2, 2, 8, . . .].

Now, [13, 2, 1, 2, 2] = 254 : 19. (It is not a coincidence that 254 = 235 + 19.)
Proclus, Commentary on Plato’s Timaeus IV.91–92 [3, pp. 169–170]:

Following the Demiurgic generation of the spheres and the proces-
sion of the seven bodies, and following their ensoulment and the
order instituted among them by the Father, and after their various
motions and the temporal measures of each of their periods and the
differences among the completions of their cycles, the account has
proceeded to the monad of time’s plurality and the single number in
terms of which every motion is measured – a measure by which all
the other measures have been encompassed and in terms of which
the entire life of the cosmos has been defined, as well as the diverse
articulation of bodies and the universal lifespan that takes place
across the all-perfect period. Now this number is one that must not
be thought about in a manner that corresponds to opinion – just
successively adding ten thousands upon ten thousands – for there
are people who are accustomed to speak this way. They take an ac-
curate figure for the completion of the Moon’s cycle and likewise for
the Sun and multiply both; then they multiply these by the complete
cycle for Mercury on top of this, and then that for Venus on top of
these, and then Mars to all that, and then similarly for Jupiter and
the remaining cycle for Saturn. On top of all that, they take the
complete cycle for the sphere of the fixed stars and make the single
and common complete cycle of the planets. Anyway, they could talk
about it in this manner, if in fact the times for the completion of
the cycles were prime to one another. If, however, they aren’t prime
to one another, then they will need to take their common measure
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and see how many times this number goes into each of the periods it
takes for the completion of a cycle. Then, taking the number of times
this goes into the smallest one, they multiply the larger number by
it. Conversely, taking the number of times this goes into the larger
number, they will need to multiply the smaller number by that. By
means of both of these operations of multiplication they will arrive
at the same period which is common to both of the complete cycles
– a period which is thus time measured by both of them. These are
the sorts of things that people like that say.

9 Aristarchus
Aristarchus, On the Sizes and Distances of the Sun and Moon, Proposition 13
[28, p. 397] asserts that 7921 : 4050 > 88 : 45. This can be obtained as follows
using continued fractions.

7921 = 4050 + 3871, 4050 = 3871 + 179, thus 7921
4050 = 1 + 3871

4050 and 4050
3871 =

1 + 179
3871 , so

7921

4050
= 1 +

3871

4050
= 1 +

1

1 +
179

3871

.

Next, 3871 = 21 · 179 + 112, 179 = 112 + 67, thus

3871

179
= 21 +

112

179
= 21 +

1

1 +
67

112

,

hence
7921

4050
= 1 +

1

1 +
1

21 +
1

1 +
67

112

Finally, 112 = 67 + 45, whence

7921

4050
= 1 +

1

1 +
1

21 +
1

1 +
1

1 +
45

67

.
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Then

1 +
1

1 +
1

21 +
1

1 +
1

1 + 0

=
88

45

is an approximation from below to 7921
4050 .

Proposition 15 [28, p. 407], asserts that 71755875 : 61735500 > 43 : 37. This
can be found as follows.

v0 = 71755875, v1 = 61735500.

Then

a0 = T (71755875, 61735500) = 1, v2 = 71755875− 1 · 61735500 = 10020375.

Then

a1 = T (61735500, 10020375) = 6, v3 = 61735500− 6 · 10020375 = 1613250.

Then

a2 = T (10020375, 1613250) = 6, v4 = 10020375− 6 · 1613250 = 340875.

Then

[a0, a1, a2] = 1 +
1

6 +
1

6

=
43

37
.

On the other hand,

71755875

61735500
= 1 +

1

6 +
1

6 +
340875

1613250

.

10 Ptolemy
Ptolemy, Almagest I.67.22 says the following [16, p. 91, Fragment 41]:

I have taken the arc from the northernmost limit to the most southerly,
that is the arc between the tropics, as being always 47◦ and more
than two-thirds but less than three-quarters of a degree, which is
nearly the same estimate as that of Eratosthenes and which Hip-
parchus also used; for the arc between the tropics amounts to almost
exactly 11 of the units of which the meridian contains 83.
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Theon of Alexandria, Commentary on Ptolemy’s Almagest, writes the fol-
lowing about this passage:

This ratio is nearly the same as that of Eratosthenes, which Hip-
parchus also used because it had been accurately measured; for Er-
atosthenes determined the whole circle as being 83 units, and found
that part of it which lies between the tropics to be 11 units; and the
ratio 360◦ : 47◦42′40′′ is the same as 83 : 11.

In fact, 360◦ : 47◦ 42′ 40′′ = 16200 : 2147, and using the Euclidean algorithm
we get 16200 : 2147 = [7, 1, 1, 5, 195], from which we get the approximations

7, 8, 15 : 2, 83 : 11, 16200 : 2147.

11 Theon of Alexandria
Theon of Alexandria, in his Commentary on Ptolemy’s Almagest, I.10, writes
[66, pp. 50–53]:

Conversely, let it be required to divide a given number by a number
expressed in degrees, minutes and seconds. Let the given number
be 1515◦ 20′ 15′′; and let it be required to divide this by 25◦ 12′ 10′′,
that is, to find how often 25◦ 12′ 10′′ is contained in 1515◦ 20′ 15′′.

These numbers are

1515◦ 20′ 15′′ = 1515+20 : 60+15 : 602, 25◦ 12′ 10′′ = 25+12 : 60+10 : 602.

Theon works out the approximation

1515◦ 20′ 15′′ : 25◦ 12′ 10′′ ∼ 60◦ 7′ 33′′.

We obtain this using the Euclidean algorithm. Theon’s calculation resembles
this but is different. We have

v0 = 1515◦ 20′ 15′′, v1 = 25◦ 12′ 10′′.

T (v0, v1) = 60, and

v2 = v0 − T (v0, v1) · v1
= 1515◦ 20′ 15′′ − 60 · (25◦ 12′ 10′′)
= 1515◦ 20′ 15′′ − 1500◦ − 60 · (12′ 10′′)
= 15◦ 20′ 15′′ − 60 · (12′ 10′′)
= 920′ 15′′ − 720′ − 60 · 10′′

= 200′ 15′′ − 60 · 10′′

= 200′ 15′′ − 10′

= 190′ 15′′.
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T (v1, v2) = 7, and

v3 = v1 − T (v1, v2) · v2
= 25◦ 12′ 10′′ − 7 · (190′ 15′′)
= 1512′ 10′′ − 7 · 190′ − 7 · 15′′

= 182′ 10′′ − 105′′

= 180′ 130′′ − 105′′

= 180′ 25′′.

T (v2, v3) = 1, and

v4 = v2 − T (v2, v3) · v3
= 190′ 15′′ − 1 · 180′ 25′′

= 10′ 15′′ − 25′′

= 9′ 75′′ − 25′′

= 9′ 50′′.

T (v3, v4) = 18, and

v5 = v3 − T (v3, v4) · v4
= 180′ 25′′ − 18 · (9′ 50′′)
= 18′ 25′′ − 18 · 50′′

= 18′ 25′′ − 900′′

= 3′ 925′′ − 900′′

= 3′ 25′′.

T (v4, v5) = 2, and

v6 = v4 − T (v4, v5) · v5
= 9′ 50′′ − 2 · (3′ 25′′)
= 3′.

T (v5, v6) = 1, and

v7 = v5 − T (v5, v6) · v6
= 3′ 25′′ − 1 · 3′

= 25′′.

T (v6, v7) = 7, and

v8 = v6 − T (v6, v7) · v7
= 3′ − 7 · 25′′

= 180′′ − 7 · 25′′

= 5′′.
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T (v7, v8) = 5, and

v9 = v7 − T (v7, v8) · v8
= 25′′ − 5 · 5′′

= 0.

This shows that

1515◦ 20′ 15′′ : 25◦ 12′ 10′′ = [60, 7, 1, 18, 2, 1, 7, 5].

Now,

[60, 7, 1, 18] = 9079 : 151 = 60◦ 7′ 32′′ 58′′′ 48′′′′ . . . ∼ 60◦ 7′ 33′′,

the approximation calculated by Theon.

12 Commentators
Nicomachus of Gerasa, Introduction to Arithmetic I.XIII.10–13 [17, pp. 206–
207]:

We shall now investigate how we may have a method of discern-
ing whether numbers are prime and incomposite, or secondary and
composite, relatively to each other, since of the former unity is the
common measure, but of the latter some other number also besides
unity; and what this number is.

Suppose there be given us two odd numbers and some one sets the
problem and directs us to determine whether they are prime and
incomposite relatively to each other or secondary and composite,
and if they are secondary and composite what number is their com-
mon measure. We must compare the given numbers and subtract
the smaller from the larger as many times as possible; then after
this subtraction subtract in turn from the other, as many times as
possible; for this changing about and subtraction from one and the
other in turn will necessarily end either in unity or in some one and
the same number, which will necessarily be odd. Now when the sub-
tractions terminate in unity they show that the numbers are prime
and incomposite relatively to each other; and when they end in some
other number, odd in quantity and twice produced,’ then say that
they are secondary and composite relatively to each other, and that
their common measure is that very number which twice appears.

For example, if the given numbers were 23 and 45, subtract 23 from
45, and 22 will be the remainder; subtracting this from 23, the re-
mainder is 1, subtracting this from 22 as many times as possible
you will end with unity. Hence they are prime and incomposite to
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one another, and unity, which is the remainder, is their common
measure.

But if one should propose other numbers, 21 and 49, I subtract
the smaller from the larger and 28 is the remainder. Then again I
subtract the same 21 from this, for it can be done, and the remainder
is 7. This I subtract in turn from 21 and 14 remains; from which I
subtract 7 again, for it is possible, and 7 will remain. But it is not
possible to subtract 7 from 7; hence the termination of the process
with a repeated 7 has been brought about, and you may declare the
original numbers 21 and 49 secondary and composite relatively to
each other, and 7 their common measure in addition to the universal
unit.

Martianus Capella, The Marriage of Philology and Mercury, VII, 785 [61,
p. 306]:

If two numbers are composite to one another, a greater and a smaller,
how can their largest and their smallest common measure be found?
From the larger number let the smaller be subtracted as often as
possible; then let whatever amount is left from the former [larger]
number be subtracted from the smaller number as often as possible.
The amount of the difference will be the greatest measure of these
numbers. Take the numbers 350 and 100. Let one hundred be
subtracted as often as possible from 350, which is three times. The
remainder is 50. From the other number of the pair, one hundred, let
50 be subtracted; the remainder is 50. This number is the greatest
common measure of 350 and 100; for fifty times two is one hundred,
and fifty times seven is 350. From this calculation it becomes clear
how one finds, of all the numbers which measure two numbers, their
greatest common measure.

Iamblichus, Commentary on Nicomachus’s Arithmetic II.98–99 [70, p. 97]:

98. Il est au contraire possible d’être second en soi sans l’être en
relation. Si deux impairs sont pris au hasard pour déterminer s’ils
sont premiers ou seconds entre eux et, s’ils sont seconds, pour voir
quelle mesure leur est commune, nous retrancherons toujours alter-
nativement le petit du grand, autant de fois qu’il est possible, et le
nombre restant du petit terme du début, et ainsi de suite, jusqu’à
finir soit à l’unité, soit à un nombre quelconque, d’où plus aucune
soustraction n’est possible, et ce nombre sera la mesure commune
de ceux du début, qui seront dits seconds entre eux, tels 15 envers
35: leur mesure commune est cinq.

99. En revanche, l’unité désigne ces nombres comme premiers et non
composés entre eux chaque fois que l’opération s’achève en elle: elle
est la seule mesure commune des nombres de ce type.
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Domninus of Larissa, Encheiridion 20–31 [54, pp. 111–115]:

20. Every number, when compared to an arbitrary number with
regard to the multitude of monads in them, is either equal to it, or
unequal. If they are equal to one another, their relationship to one
another will be unique and not further distinguishable. For in the
case of equality, one thing cannot be in this fashion and the other
thing in that fashion, since what is equal is equal in one single and the
same way. If, however, they are unequal, ten different relationships
can be contemplated concurrently.

21. But before giving an account of these, we must state that it is
true for every pair of numbers that the lesser is either a part, or
parts, of the greater number, since, if it measures the greater one,
it is a part of the greater number, such as in the case of 2 which
measures 4 and 6, of which it is a half or a third part, respectively.
If it does not measure it, it is parts of it, such as in case of 2, which,
not measuring 3, is two thirds of it, or in the case of 9, which, not
measuring 15, is three fifths of it.

22. Having stated this as a preliminary, we say that if those two
numbers which lie before us for inspection are unequal, the lesser
either measures the greater, or it does not.

23. If it measures it, the greater number is a multiple of the lesser
one, and the lesser number is a submultiple of the greater one, as in
the case of 3 and 9, since 9 is a multiple of 3, being its triple, and 3
is a submultiple of 9, being its subtriple.

24. If it does not measure the greater number, and if one subtracts
it from it once or several times, it will leave behind something less
than itself whch will, by necessity, be either a part, or parts, of the
number. For it will leave behind either a monad or some number.

25. If it leaves behind a monad, it obviously leaves behind a part of
itself. For the monad is part of every number, since every number
is a combination of monads.

26. If it leaves behind some number, it will be either a part of itself,
or parts. For it is true for every pair of numbers that the lesser is
either a part, or parts, of the greater.

27. Now then, if the lesser number is subtracted once from the
greater, and it leaves behind a number less than itself which is a part
of it, then the greater number will be superparticular to the lesser,
while the lesser number will be subsuperparticular to the greater, as
in the case of 2 and 3. For 3 is superparticular to 2, since it includes
it and a half of it (therefore, it is also called sesquialter of it), while
2 is subsesquialter to 3. And the same is the case with 6 and 8, as
8 is sesquitertian to 6, while 6 is subsesquitertian to 8.
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28. If the remainder is parts of the lesser number, then the greater
number will be superpartient, while the lesser number will be sub-
superparticular to the greater, as in the case of 3 and 5. For 5 is
superpartient to 3, since it includes it and two thirds of it (therefore,
it is also called superbitertian of it), while 3 is subsuperbitertian to
5. And the same is the case with 15 and 24, as 24 is supertriquantan
of 15, since it includes it and three fifths of it, while 15 is subsuper-
triquintan of 24.

29. If the lesser number is subtracted more often than once from
the greater, and it leaves behind a number less than itself which is
part of it, then the greater number will be multiple-superparticular,
while the lesser number will be submultiple-superparticular to the
greater, as in the case of 2 and 5. For 5 is multiple-superparticular to
2, since it includes it twice and a half of it (therefore, it is also called
duplex-sesquialter of it), while 2 is subduplex-sesquialter to 5. And
the same is the case with 6 and 26, as 26 is quadruplex-sesquitertian
to 6, while 6 is subquadruplex-sesquitertian to 26.

30. If the remainder is parts of the lesser number, then the greater
number is multiple-superpartient, while the lesser number is submultiple-
superpartient to the greater, as in the case of 3 and 8. For 8 is duplex-
superbitertian to 3, while 3 is subduplex-superbitertian to 8. And
the same is the case with 10 and 34, as 34 is triplex-superbiquintan
of 10, while 10 is subtriplex-superbiquintan of 34.

31. And these are the so-called ten relationships of inequality, to
which the ancients also referred as ratios:

1. multiple,

2. submultiple,

3. superparticular,

4. subsuperparticular,

5. superpartient,

6. subsuperpartient,

7. multiple-superparticular,

8. submultiple-superparticular,

9. multiple-superpartient,

10. submultiple-superpartient.

This is the theory of numbers with regard to one another according
to the multitude underlying them.

For example, take 1386 and 238. Then 1386 = 5 ·238+196, in particular 238
is not part of 1386. Then 238 = 1 · 196 + 42, 196 = 4 · 42 + 28, 42 = 1 · 28 + 14,
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28 = 2·14+0, showing that gcm(1386, 238) = 14. 1386 = 99·7 and 119 = 17·14,
so 119 : 1386 = 17 : 99.

Boethius De institutione Arithmetica libri duo, Book I, Chapter 18 [26,
pp. 21–22, §2], “On finding those numbers that are secondary and composite
with respect to each other [and numbers that are] prime and incomposite rela-
tive to others”:

The method by which we can find such numbers, if someone pro-
poses them to us and declares that it is not known whether they are
commensurable in any measure or [whether] the unit alone measures
each, is this. Should two unequal numbers be given, it will be nec-
essary to subtract the smaller from the greater, and if what remains
is greater, subtract the smaller from the greater again; [but] if it
is smaller, subtract it from the greater [number] that remains, and
this should be done until [either] unity finally prevents any further
diminution, or, if each of the numbers proposed is odd, some number
[is reached that is] necessarily odd; but you will see that the number
which is left is equal to that [odd] number. And so it is that if this
subtraction should, in turn, reach one, the numbers are said to be
prime to each other necessarily and they are conjoined by no other
measure except unity alone. If, however, the end of the subtraction
arrives at some [odd] number as was said above, it will be a number
that measures each sum, and we call the same number that remains
the common measure of each.
Take two proposed numbers with respect to which we do not know
whether some common measure measures them; let these be 9 and
29. Now we make an alternate subtraction. Let the smaller be
subtracted from the greater, that is, 9 from 29, and 20 is left; let
us now again subtract the smaller, that is, 9 from 20, and 11 is left;
I again subtract 9 from the remainder [i.e., 11] and 2 remains. If I
subtract this from 9, 7 is left, and if I again take 2 from 7, 5 remains;
and from this another 2 and 3 remains, which after it is diminished
by another 2 leaves only unity. Again, if I subtract one from two,
the end of the subtraction is fixed at one, which shows that there is
no other common measure of these two numbers, namely 9 and 29.
Therefore, we will call these numbers prime to each other.
But should other numbers be proposed in the same situation, that
is 21 and 9, they could be investigated since they would be mutually
related. Again I subtract the quantity of the smaller number from
the greater, that is, 9 from 21, and 12 remains. From 12 I take 9 and
3 remains, which if subtracted from 9 leaves 6; and if 3 were taken
from 6, 3 would be left, from which 3 cannot be subtracted for it
is equal to it. For 3, which was reached by continually subtracting,
cannot be subtracted from 3, since they are equal. Therefore, we
shall pronounce them commensurable, and 3, which is the remainder,
is their common measure.
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Asclepius of Tralles [65, pp. 44, 78], I.ρε
John Philoponus [34]
Scholia for Book VII [32].

13 Latin writers
Al-Nayrizi, Commentry on Euclid’s Elements, extant in a Latin translation by
Gerard of Cremona [13, pp. 190–191], states Elements VII.2.

Gericke [23, p. 105] comments on Campanus, Book VII.
Campanus [9, pp. 230–231], Elements VII, Definitions:

(i) Unitas est qua unaqueque res dicitur una.
(ii) Numerus est multitudo ex unitatibus composita.
(iii) Naturalis series numerorum dicitur in qua secundum unitatis
additionem fit ipsorum computatio.
(iv) Differentia numerorum appellatur numerus quo maior habundat
a minore.
(v) Numerus primus dicitur, qui sola unitate metitur.
(vi) Numerus compositus dicitur, quem alius numerus metitur.
(vii) Numeri contra se dicuntur primi, qui nullo modo excepta sola
unitate numerantur.
(viii) Numeri ad invicem compositi sive communicantes dicuntur,
quos alius numerus quam unitas metitur nullusque eorum est ad
alium primus.
(ix) Numerus per alium multiplicare dicitur qui totiens sibi coacer-
vatur quotiens in multiplicante est unitas.
(x) Productus vero dicitur qui ex eorum multiplicatione crescit.
(xi) Numerus alium numerare dicitur qui secundum aliquem multi-
plicatus illum producit.
(xii) Pars est numerus numeri minor maioris cum minor maiorem
numerat. Et qui numeratur numerantis multiplex appellatur.
(xiii) Denominans est numerus secundum quem pars sumitur in suo
toto.
(xiv) Similes dicuntur partes que ab eodem numero denominantur.
(xv) Prima et simpla numeri pars est unitas.
(xvi) Quando duo numeri partem habuerint communem, tot partes
maioris dicetur esse minor quotiens eadem pars fuerit in minore, tote
vero quotiens ipsa fuerit in maiore.
(xvii) Numeri ad numerum dicitur proportio minoris quidem ad
maiorem in eo quod maioris pars est aut partes. Maioris vero ad
minorem secundum quod eum continet et eius partem vel partes.
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(xviii) Cum fuerint quotlibet numeri continue proportionales dicetur
proportio primi ad tertium sicut primi ad secundum duplicata, ad
quartum vero triplicata.

(xix) Cum continuate fuerint eedem vel diverse proportiones, dicetur
proportio primi ad ultimum ex omnibus composita.

(xx) Denominatio dicitur proportionis minoris quidem numeri ad
maiorem pars vel partes ipsius minoris que in maiore sunt. Maioris
autem ad minorem totum vel totum et pars vel partes prout maior
superfluit.

(xxi) Similes sive una alii eadem dicuntur proportiones que eandem
denominationem recipiunt. Maior vero que maiorem. Minor autem
que minorem.

(xxii) Numeri vero quorum proportio una, proportionales appellan-
tur.

(xxiii) Termini sive radices dicuntur quibus in eadem proportione
minores sumi impossibile est.

Campanus [9, p. 231], Elements VII.1:

Si a maiore duorum numerorum minor detrahatur donec minus eo
supersit, ac deinde de minore ipsum reliquum donecminus eo relin-
quatur, itemque a reliquo primo reliquum secundum quousque minus
eo qui ante relictum numeret usque ad unitatem, eos duos numeros
contra se primos esse necesse est.

Campanus [9, p. 232], Elements VII.2:

Propositis duobus numeris ad invicem compositis maximum numerum
communem eos numerantem invenire. (Corollarium) Unde manifes-
tum est quia omnis numerus duos numeros numerans numerat nu-
merum maximum ambos numerantem.

Campanus [9, p. 233], Elements VII.3:

Propositis tribus numeris ad invicem compositis maximum numero-
rum eos communiter numerantium invenire.

Campanus [9, p. 234], Elements VII.4:

Omnium duorum numerorum inequalium minor maioris aut pars est
aut partes.

Rommevaux [55]
Jordanus Nemorarius, De elementis arithmetice artis III.14 [8, pp. 87–88]:
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Si sint duo numeri contra se primi minorque de maiore aliquotiens de-
trahatur, aut relinquetur unitas aut numerus ad detractum primus.

Ut a et b sint contra se primi detrahatur a de b quotienslibet sitque
detractum c et residuum d. Dico quod d est primus ad a vel est uni-
tas. Si enim esset commensurabilis cum a, ponatur communis men-
sura e numerabitque e etiam c per xxiiiam primi. Qui quia numerat
d palam quia numerabit et b. Sicque a et b erunt communicantes.
Quod est contra ypothesim.

Book I, Proposition 23 says that if b = (1/d)a and c = (1/e)b then c =
(1/(d · e))a.

Jordanus Nemorarius, De elementis arithmetice artis III.15 [8, p. 88]:

Cum fuerint duo numeri contra se primi et minore de maiore quoad
potest detracto residuum a prius detracto detrahatur, continua facta
dectractione unitatem relinqui est necesse. Quod si unitas residua
fuerit, positos numeros incommensurabiles esse conveniet.

Sit maior a, detractus b, residuus c. Qui si fuerit unitas, constat
propsitio. Si autem numerus idem detrahatur quotiens potest de b
et relinquatur d qui vel erit unitas vel numerus primus ad c. Itemque
d de c detrahatur quotiens potest eritque residuum minus d sitque e
quod vel erit unitas vel numerus primus ad d per premissam. Qui si
detrahatur a d remanebit minus eo. Et quia hec diminutio non potest
fieri in infinitum quod quidem esst si semper remaneret numerus ad
detractum primus, restat ut unitas relinquatur. Patet igitur pars
prima. Reliquum indirecte. Si enim ponerentur commensurabiles,
numerum eos numerantem unitatem numerare convinceres per xiiam
primi.

Johannes de Muris, Quadripartitum numerorum I.8 [42, pp. 154–155]:

Propositis tibi duobus numeris inequalibus, si an eos communis men-
sura metiatur agnoscere jubearis, sic age:

Aufer minorem de majori, vicibus alternatis, quousque detractio re-
ciproca in aliquo numero steterit, si non usque pervenerit unitatem.
Et quicumque numerus relictus fuerit ante nichil, ut nunc unitas
numerus permutatur, pro communi maxima mensura procul dubio
teneatur. Quod si aliquis numerus preter unitatem subtractionem
finierit, ipse mensuram lucratus est et ipsos numeros secundarios et
compositos fore non dubites. Si vero sola unitas superstes egreditur,
ipsos esse contra se primos omni necessitate conclude.

Aliter ad idem. Cum omnis divisio sit quedam subtractio, non
tamen convertitur, sicut omnis multiplicatio additio est et non con-
tra. Datis duobus numeris inequalibus, divide majorem per mi-
norem, et per residuum, si quod fuerit, divide divisorem et iterum

31



residuum per minorem, quousque in tali alternata divisione nichil
finaliter restiterit dividendum. Et si perventum fuerit usque ad
unum, contra se primi numeri propositi constiterunt. Si vero aliquis
numerus ante nichil evaserit, ipsos quidem numeros datos esse ad
invicem compositos attestatur.

Theinred of Dover, De legitimis ordinibus pentachordorum et tetrachordorum
I.xviii [60, pp. 176–181]

Prosdocimo [33]
Nicole Oresme [25]

14 Leonardo of Pisa
Leonardo of Pisa, The Book of Squares, Proposition 22 [59, p. 93]: “I wish to
find in a given ratio the two differences among three squares.” That is, given
a, b ∈ Z≥1, to find x, y, z ∈ R>0 such that

y2 − x2

z2 − y2
=

a

b
;

see [59, p. 101]. Suppose that a and b are relatively prime, b > a, and let
v, w ∈ Z≥1 satisfy

bv − aw = 1;

such v, w can be found using (7). Then let

u = avw + a · w(w + 1)

2
− b · v(v + 1)

2
.

As v and w are relatively prime, it follows from this that u ∈ Z, and one checks
that

2u = v(aw − 1) + (aw2 − 1).

Hence u ∈ Z≥0, and if a > 1 then u ∈ Z≥2. Now,

(u+ 1) + · · · (u+ v) =
uv

bv − aw
+

v(v + 1)

2

=
avw · v + av · w(w+1)

2 − bv · v(v+1)
2

bv − aw
+

v(v + 1)

2

=
avw · v + av · w(w+1)

2 − aw · v(v+1)
2

bv − aw

=
avw(v + w)

2
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and

(u+ v + 1) + · · ·+ (u+ v + w)

=uw + vw +
w(w + 1)

2

=
avw · w + aw · w(w+1)

2 − bw · v(v+1)
2

bv − aw
+ vw +

w(w + 1)

2

=
bvw(v + w)

2
,

thus
a

b
=

(u+ 1) + · · · (u+ v)

(u+ v + 1) + · · ·+ (u+ v + w)
.

But
(2p− 1)2 = 1 + 1 · 8 + 2 · 8 + · · · (p− 1) · 8,

whence

8 · ((u+ 1) + · · · (u+ v)) =

1 +

u+v∑
j=1

8j

−

1 +

u∑
j=1

8j


= [2 · (u+ v + 1)− 1]2 − [2 · (u+ 1)− 1]2

= (2u+ 2v + 1)2 − (2u+ 1)2

and

8 · ((u+ v + 1) + · · ·+ (u+ v + w))

=

1 +

u+v+w∑
j=1

j

−

1 +

u+v∑
j=1

j


=[2 · (u+ v + w + 1)− 1]2 − [2 · (u+ v + 1)− 1]2

=(2u+ 2v + 2w + 1)2 − (2u+ 2v + 1)2.

Therefore, taking

x = 2u+ 1, y = 2u+ 2v + 1, z = 2u+ 2v + 2w + 1,

we have
y2 − x2

z2 − y2
=

a

b
.

For a = 5 and b = 29, we do the Euclidean algorithm with v0 = 29 and
v1 = 5. Then

a0 = T (29, 5) = 5, v2 = 29− T (29, 5) · 5 = 4.

Then
a1 = T (5, 4) = 1, v3 = 5− T (5, 4) · 4 = 1.
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Then
a2 = T (4, 1) = 4, v4 = 4− T (4, 1) · 1 = 0,

so N = 3, vN = 1, vN+1 = 0. By (4),(
p0 p−1

q0 q−1

)
=

(
a0 1
1 0

)
=

(
5 1
1 0

)
and then (

p1 p0
q1 q0

)
=

(
p0 p−1

q0 q−1

)(
a1 1
1 0

)
=

(
6 5
1 1

)
,

and then (
p2 p1
q2 q1

)
=

(
p1 p0
q1 q0

)(
a2 1
1 0

)
=

(
29 6
5 1

)
.

But by (7) it holds that v0qN−2 − v1pN−2 = (−1)NvN . Here, pN−2 = p1 =
6, qN−2 = q1 = 1, thus 29·(−1)−5·(−6) = 1, and thus 29·(−1+5)−5·(−6+29) =
1, i.e.

bv − aw = 1, v = 4, w = 23.

Then
u = 5 · 4 · 23 + 5 · 23 · 24

2
− 29 · 4 · 5

2
= 1550.

Then

x = 2u+1 = 3101, y = 2u+2v+1 = 3109, z = 2u+2v+2w+1 = 3155.

Summarizing,
31092 − 31012

31552 − 31092
=

5

29
.

15 Chinese mathematics
Suan shu shu, problem 7 [15, pp. 111–112]:

The rule for simplifying fractions says: Take the numerator and sub-
tract it (successively) from the denominator; also take the denom-
inator and subtract it (successively) from the numerator; (when)
the amounts of the numerator and denominator are equal, this will
simplify it (the fraction will be simplified). Another rule for simpli-
fying fractions says: if it can be halved, halve it; if it can be divided
by a certain number, divide by it. Yet another rule says: Using
the numerator of the fraction, subtract it (successively) from the
denominator; using the remainder as denominator, subtract it (suc-
cessively) from the numerator; use what is equal to (both) numerator
and denominator as the divisor; then it is possible to divide both the
numerator and denominator by this number. If it is not possible (lit.
if there is not enough) to subtract but it can be halved, halve the
denominator and also halve the numerator. 162/2016, simplified, is
9/112.
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The Nine Chapters on the Mathematical Art, I.6 [44, p. 64]:

If [the denominator and numerator] can be halved, halve them. If
not, lay down the denominator and numerator, subtract the smaller
number from the greater. Repeat the process to obtain the GCD
(dengshu). Reduce them by the GCD.

Liu Hui in his commentary writes, “To reduce a fraction by the GCD means
to divide. Subtract the smaller number from the greater repeatedly, because
the remainders are nothing but the overlaps of the GCD, therefore divide by
the GCD.”

On the Chinese remainder theorem see Libbrecht [43].

16 Conclusions
The Euclidean algorithm belongs to the intersection of Books VII–IX and Books
V, VI, X of the Elements. We have mentioned works about the second set. For
Books VII–IX we have the following to say.

Euclid, Elements VII.20 [30, p. 320]:

The least numbers of those which have the same ratio with them
measure those which have the same ratio the same number of times,
the greater the greater and the less the less.

Elements VII.20 is equivalent to the statement that if a number measures
a product of two numbers and is relatively prime to one of the two numbers
then it measures the other number. Taisbak [63, p. 9, Chapter 1] says about
Elements VII.20,

as cited above it sounds trivial, at most somewhat impenetrable. Al-
most all the arithmetical theorems of the Elements have that stamp
of impenetrability to a modern reader, and my experience is that
they open only to the patient reader and even then only to one who
is prepared to give up his preconceived opinions as to what Euclid’s
theory of proportions is all about.

Euclid, Elements VII.30 [30, p. 331]:

If two numbers by multiplying make some number, and any prime
number measure the product, it will also measure one of the original
numbers.

This theorem is commented on by Pengelley and Richman [52].
It would also be worthwhile to survey the occurence of the Euclidean algo-

rithm in Arabic mathematical works. Saidan [58] summarizes the Arithmetic
of Abu al-Wafa. Saidan [58, p. 371] states that in Arithmetic II.3 (pp. 160–173
in Saidan’s edition of the Arabic text), the Euclidean algorithm is used to find
common denominators of fractions.

Burnett [6]
Vitrac [71]
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