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CHAY. VIL

Of a particulai Method, by whicl the Formula an: + 1
becomes a Square in Integers.

96. That which has been taught in the last chapter, can-
not be completely performed, unless we are able to assign for
any number a, a number 7, such, that an® + 1 may become
a square; or that we may have m* = an® + 1.

This equation would be easy to resolve, if we were satis-
fied with fractional numbers, since we should have only to

np . ..
make m =1 + —(51—; for, by this supposition, we have

Qp  n'p® . . .

m’ =1+ o/ 4k _p_ = an® + 1; in which equation, we
q q

may expunge 1 from both sides, and divide the other terms

by n: then multiplying by ¢°, we obtain 2pg +np*=ang® ;

and this equation, giving n = ——:—q -, would furnish an
LI

infinite number of values for »: but as # must be an integer

number, this method will be of no use, and therefore very

different means must be employed in order to accomplish

our object.

97. We must begin with observing, that if we wished
to have an® + 1 a square, in integer numbers, (whatever be
the value of «), the thing required would not be possible.

For, in the first place, it is necessary to exclude all the
cases, in which @ would be negative ; next, we must exclude
those also, in which # would be itself a square; because
then an® would be a square, and no square can become a
s(uare, in integer numbers, by being increased by unity. We
are obliged, therefore, to restrict our formula to the con-
dition, that @ be neither negative, nor a square; but when-
ever a is a positive number, without being a square, it is
possible to assign such an integer value of », that an” + 1
may become a square: and when one such value has been
found, it will be easy to deduce from it an infinite number
of others, as was taught in the last chapter: but for our
purpose it 1s sufficient to know a single one, even the least ;
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and this, Pell, an English writer, has taught us to find by
an ingenious method, which we shall here explain.

98. 'This method is not such as may be employed ge-
nerally, for any number o whatever ; it 1s applicable only to
cach particular case. o

We shall therefore begin with the easiest cases, and shall
first seek such a value of n, that 2rn° + 1 may be a square,
or that +/(2r* + 1) may become rational.

We immediately sce that this square root becomes greater
than n, and less than 2n.  If, therefore, we express this root
by 2 + p, it is obvious that p must be less than n; and we
shall have »/(%2° + 1) = n + p; then, by squaring,
* +1=n" + 2p + p*; therefore

w' =2p +p° —1,and 2 = p ++(2p° — 1).
The whole is reduced, therefore, to the condition of 2p* — 1
being a square; now, this is the case if p = 1, which gives
n =2, and v -+ 1)=8.

If this case had not been immediately obvious, we should
have gone farther; and since +/(p* — 1) 7 p*, and, con-
sequently, » 7 2p, we should have made n = 2p + ¢; and
should thus have had

P+qg=p+y/(2° —1),0rp+4+qg=v —1),
and, squaring, p* + 2pg + ¢° = 2p° — 1, whence

=g+ ¢ +1, ,
which would have given p = ¢ + +/(2¢° + 1); so that it
would have been necessary to have'2¢* + 1 a square; and
as this is the case, if we make ¢ = 0, we shall have p = 1,
and n = 2, as before. This example is sufficient to give an
idea of the method ; but it will be rendered more clear and
distinct from what follows.

99. Let a = 8, that is to say, let it be required to trans-
form the formula 3n° + 1 into a squarc. Here we shall
make ./(8n° + 1) = n + p, which gives

3n* +1=mn°+ 2np + p°, and 2n° = 2np + pi=1;

. 3 [
. p+/(8p° —2) :
whence we obtain n = —————5———=. Now, since
&

v (Bp* — ) exceeds p, and, consequently, » is greater

# This sign, 7, placed between two quantities, signifies that
the former is greater than the latter; and when the angular
point is turned the contrary way, as £, it signifies that the
former is less than the latter.
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~

757, p, let us suppose n = p + ¢, and we

or than

~

than

shall have

W42 =p+ /(Bp° - 2),0r

p+eg= V@ —-2);
then, by squaring p°+ 4pg +4¢* = 3p* — 2; so that
e =4pg44g° + 2, or p*= g + 2¢°+ 1, and

P = q +¥Y8y+1).
Now, this formula being similar to the one proposed, we
may make ¢ = 0, and shall thus obtain p = 1, and » = 1;
whence /(8n* 4+ 1) = 2.

100. Let ¢ = 5, that we may have to make a square of
the formula 52°+ 1, the root of which is greater than 2n.
We shall therefore suppose :

G 1) =2 + pyor 541 = 4n°4-dnp - p;
whence we obtain
n® =dnp +p°—1,and n = P 4/ (5p°— 1).

Now, /(5p®— 1) 7 2p; whence it follows that n 7 4p; for
which reason, we shall make n =4p + ¢, which gives
Ep+4-q =y (5p* — 1), or 4p*+ 4pg + ¢° = 5p° — 1, and
p’=4pg+ ¢°+ 1; so that p = 2¢-4-+/(5¢° + 1); and as
g = 0 satisfics the terms of this equation, we shall have
p =1, and » = 4; therefore /(52" 1) = 9.

101 Let us now suppose @ = 6, that we may have to
consider the formula Gn°~-1, whose root 1s likewise con-
tained between 2n and Sn.  We shall, thercfore, make
~/(6r° + 1) = 2n» 4~ p, and shall have

Gn -1 = dn’- dnp 4 p°, or = dnp +-p* — 1;

SBp° —2 2+ +/(Gp* —
OP" =2 or = BE VP

2)
and, thence, n = p + S .

>
~

so that 2 7 2p.
If; therefore, we make » = 2p -} ¢, we shall have
dp + 27 = 2p + +/(6p° — 2), or
2p + 29 = v (6p°— 2);
the squares of which are 4p°+ 8pg 4 4g*= 6p* — 2; so
that 2p° = 8pg + 4¢° + 2,and p° =4pg + 2¢° + 1. Lastly,
p =2 + v(6g° + 1). Now, this formula resembling the

first, we have ¢ = 0; whereforc p = 1, » = 2, and
V({n*4-1) = 5.
102. Let us procced farther, and take ¢« = 7, and

T4 1 = m*; here we see that m 7 2n; let us therefore
make m = 2n - p, and we shall have
A A
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T4 1 = 4n°+ 4np +p*,or 3n* = dnp 4 p* — 1;

2 /(Tp*— ’

which gives n = Méu At present, since 2 7 4p,

and, consequently, greater than p, let us make n = p + g,

and we shall have p + 8¢ =/ (7p* — 3); then, squaring

both sides, p* + 6pg + 9¢* = Tp* — 3, so that

Gp* = 6pg + 9¢> + 8, or * = g + 3¢* + 1; whence
[~ Q 8

we get p = MK?)QL) Now, we have here 1)7—3(1‘;

and, consequently, p7¢; so that making p = g + 7, we

shall have ¢ + 2r =+/(7¢* + 2); the squares of which are

q* + 4qr + 4 =7g* + 25 then G¢* = dgr + 4r* — 2,
=4 o/ (Tr*—3)

or 3g* = 2qr + 2* — 1; and, lastly, g =

a
J
Since now ¢ 77, let us suppose ¢ = + s, and we shall
have
2 + 8s = v/ (Tr* — 3); then
4> 4 12rs + 9s* = Tr* — 3, or
Sr* = 1%s 4+ 9s* + 3, or
7> = 4rs - 3s* 4+ 1, and
r = 2 + /(s + 1.
Now, this formula is like the first; so that making s = 0,
we shall obtain » =1, ¢ =1, p=2, and n =3, or
m = 8. :

But this calculation may be considerably abridged in
the following manner, which may be adopted also in other
cases.

Since Tn* + 1 = m?, it follows that m £ 3n.

1f, therefore, we suppose m = 8n — p, we shall have

T 41 = 9n* — Onp - p*, or * = Gup — p* -} 1;

Sptv/ (1P +2)

whence we obtain n = 5 ; so that n 2 3p; for
this reason we shall write n = 8p — 2¢; and, squaring, we
shall have 9p* -- 12pg + 4¢* = Tp* 4+ 2; or

2p* = 12pg — 4¢* + 2, and p* = Opg — 2> + 1,
whence results p = 8¢ 44/ (7¢g* -~ 1). Here, we can at
once make ¢ = 0, which gives p=1,n =3, and m = 8,
as before. '

103. Let ¢ = 8, so that 8n* 4+ 1 = m? and m £ 8n.

Here, we must make m == 8n — p, and shall have

8n* + 1 = 9n* — Gnp -+ p2% or n* = 6up — p* 41
whence 7 = 8p +4/(8p* + 1), and this formula being al-
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ready similar to the one proposed, we may make p = 0,
which gives n = 1, and m = 8.

104. We may proceed, in the same manner, for every
other number, «, provided it be positive and not a square,
and we shall always be led, at last, to a radical quantity,
such as +/(at* + 1), similar to the first, or given formula,
and then we have only to suppose ¢ = 0; for the irra-
tionality will disappear, and by tracing back the steps, we
shall necessarily find such a value of n, as will make an* + 1
a square.

Sometimes we quickly obtain our end; but, frequently

ralso, we are obliged to go through a great number of
operations. 'This depends on the nature of the number
a; but we have no principles, by which we can foresee
the number of operations that it will be necessary to per-
form. The process is not very long for numbers below 13,
but when e = 18, the calculation becomes much more
prohix ; and, for this reason, it will be proper Lere to resolve
that case. »

105. Let therefore @ = 13, and let it be required to
find 182> + 1 = m* Here, as m* 7 9n*, and, consequently,
m 7 8n, let us suppose m = 8n + p; we shall then have
130> + 1 = 9n* + Gup + p*, or 4n* = 6np + p* — 1, and

a (189* —4
n = UMI—O—F———@, which shews that n 7 £p, and there-

4
fore much greater than p. 1If, therefore, we make n=p+g,
we shall have p+4¢g= v (18p*—4); and, taking the squares,
18p* — 4 = p* + 8pg + 1G¢*;
so that 12p* = 8pg + 16¢* + 4, or 8p* = g + 4¢* + 1,
iV (18g*+3 3
usq_%)) Here, p7%q, orp 7 q; we
shall proceed, therefore, by making p = ¢ + r, and shall
thus obtain 2¢ + 3 = v/(18¢*> + 8); then
189* + 3 = 4¢* + 12¢r + B, or
9¢* = 12qr 4 9r» — 8, or
Sg* = dgr + 8r* — 1;
24 v (13r*—8)
3 :
r+3r
3
g =7 + s, and we shall thus have » + 3s =,/(18* — 8);
or 187* — 8 =1r* 4 Grs + 9s*, or 12r* = 6rs + 9s* + 3, or
49* = Qrs 4+ 8s* + 1; whence we obtain

and p =

which gives ¢ =

Again, since ¢ 7 , or ¢ 77, we shall make

AAZ
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/(13s* 4+ 4
7':S+\ (/ij———H. But here 1'78

, or r 7 s; where-

fore let » = s + ¢, and we shall have 3s 4 4¢ = /(13s*+ 4),

and 13s* + 4 = 9s* + Qbst + 16¢*;
so that 45> = 24st 4+ 16> — 4, and s* = Gts | 44> — 1
therefore s = 8¢ + /(15> — 1). Here we have

1 $ 73t -+ 3¢ty or s 7 6t 5

we must therefore make s = 6¢ + % ; whence
3t + u= /(18— 1), and 13 — 1 = 9> 4 Gtu 4 223
then 44* = 6w + «* + 1; and, lastly,

3w+ /(18> +4) Gu
=— oty T and 7 u.

4

If, thercfore, we make ¢ = » + v, we shall have
w4+ 4v = A/ (1312} 4), and 130>+ 4 = 2* 4 Suwv - 162*;
therefore 12> = Suw + 1602 — 4, or Su*=2uv+40v* — 1;
v+ \/(13’01—3)
e

Let us, therefore, make # = v + @, and we shall have

Q + 8x = +/(180v* — 3), and
18v* — 8 = 4v* + 12 + 9x*; or

9v* = 120x + 92* + 3, or 3v* = dvx -+ 32° + 1, and

Q+ v/ (182%+3) .
v=—"g ; so that v 7 32, and 7 a.

4o
lastly, » = s OV % 7 55 0L 2 7 0.

Let us now suppose v = 2 + y, and we shall have
r + 8y = /(182> 4 3), and
132* + 3 = a* 4 Gy + 9y*, or
122" = Gay + 99> — 3, and
42? = 2y + 3y* — 1; whence

y4 v (18> — 4)
= T

and, consequently, # 7 y. 'We shall, therefore, make
v =y + =, which gives
8y + 4z = v(18y* — 4), and
13y* — 4 = 9y* + 2zy 4- 1622, or

4y? = 242y 4 1622 + 4; therefore
y?= Gys 4 42° + 1, and
y = 8z+4 /(13224 1).

This formula being at length similar to the first, we may
take z = 0, and go back as follows :
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=" v=v+ao= 3| ¢g= r+s= 171,
o=l t =ut+uv= 5| p= qg-r =109,
r=y+z=1s =6t+u=83 | n= p+q =180,

v=a+y=2|r=s+¢t=2388 |m=38n+ p =049

So that 180 is the least number, after 0, which we can
substitute for n, in order that 132° + 1 may become a
square.

106. This example sufficiently shews how prolix these
calculations may be in particular cases; and when the num-
bers in question are greater, we are often obliged to go
through ten times as many eperations as we had to perform
for the number 18.

As we cannot foresee the numbers that will require such
tedious calculations, we may with propricty avail ourselves
of the trouble which others have taken; and, for this pur-
pose, a Table is subjoined to the present chapter, in which
the values of m and % are calculated for all numbers, «, be-
tween 2 and 100; so that in the cases which present them-
selves, we may take from it the values of m and n, which
answer to the given number a.

107. It is proper, however, to remark, that, for certain
numbers, the letters m and » may be determined generally ;
this is the case when a is greater, or less than a square, by
1 or 25 it will be proper, therefore, to enter into a particular
analysis of these cases.

108. In order to this, let @ = ¢* — 2; and since we must
have (¢ — 2)n? 4+ 1 = m?, it is clear that m £ en ; thercfore
we shall make m = en — p, from which we have

(e* — 2w+ 1 = e*n* — Z2enp + p*, or
2n? = 2enp — p? 4 1; therefore

_ et (epr —2p*4-R)
2

make p = 1, this quantity becomes rational, and we have

w=¢ and m = ¢* — 1.

For example, let @« = 23, so that ¢ = 5; we shall then
have 25n* 41 = m?*, if n = 5, and m = 24. The reason
of which is evident from another consideration; for if, in
the case of ¢« = ¢* — 2, we make # = ¢, we shall have
an®+ 1 = ¢* — ¢* + 1; which is the square of ¢* — 1.

109. Let @ = ¢* — 1, or less than a squarc by unity.
Tirst, we must have (¢ — 1)n* + 1 = m*; then, because,
as before, m £ en, we shall make m = en — p; and this
being done, we have !

(e =1Dn*F-1=¢’n’—L2enp +p°, or n°=2np—p° +1;

) ; and 1t 1s evident that if we
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wherefore n=ep + +/(e*p?—p*+ 1). Now, the irrationality
disappeared by supposing p = 1; so that » = 2, and
m = 2° — 1. 'This also is evident; for, since « = ¢* — 1,
and n = 2¢, we find

an® 4+ 1 = 4et — 4e* + 1,

or equal to the square of 2 —1. For example, let ¢ =24,
or ¢ = 5, we shall have n = 10, and

24n7 + 1 = 2401 = (49) ¥,

110. Let us now suppose @ = ¢* + 1, or « greater than
a square by unity. Here we must have

(e? 4 2+ 1 = m2,

and m will evidently be greater than cn. Let us, thercfore,
write m = ¢n + p, and we shall have

(¢ + Dn*+1=¢e*n® + 2np+p°, or n?= Qenp 4-p*—1;

whenee #n = ¢p + &/ (¢°pZ + p? — 1). Now, we may make
p = 1, and shall then have n =2¢; therefore m*=Q¢* +1;
which is what ought to be the result from the consideration,
that ¢ = ¢” 4 1, and 2 = 2¢, which gives
an®+ 1 = 4e* + 4¢° 4 1, the square of 2¢° + 1. TFor ex-
ample, let @ = 17, so that ¢ = 4, and we shall have
17’ + 1 =m*; by making » = 8§, and m = 38.

111. Lastly, let @ = ¢* + 2, or greater than a square by
2 Here, we have (¢ + 2n® + 1 =w*, and, as before,
m 7 en; therefore we shall suppose m = e + p, and shall
thus have :

e’n® + 2n° + 1 =e°n® + Lenp + p?, or
2n° = 2epn + p° — 1, which gives

cp+ A/(e’p’ +3p7 —2)
h= -

2

TLet p =1, we shall find 2 =¢, and m = ¢ 4 1; and, in
fact, since a=e*+42, and n=e¢, we have an*+-1=c*4+2¢* +1,
whieh is the square of ¢* + 1.

For example, let @ = 11, so that ¢ = 8; we shall find
11z° 4+ 1 =m*, by making » =3, and m = 10. If we

# In this case, likewise, the radical sign vanishes, if we make -
p = 0: and this supposition incontestably gives the least possible
numbers for m and », namely, » = 1, and m = ¢; thatis to say,
if e = 5, the formula 2427+ 1 beconmes a square by making
it == 1; and the root of this square will be m =e=5. F.T.
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supposed @ = 83, we should have ¢ = 9, and
83n? + 1 =m®, where n = 9, and m = 82 *.

* Qur author might have added here another very obvious
9]

case, which is when a is of the form e? == ——¢; for then by mak-
(4

ing n = ¢, our formula an?® 4 1, becomes ¢°¢c? == 2ce 4 1 =
(ec = 1)°. I was led to the consideration of the above form,
{rom having observed that the square roots of all numbers in-
eluded in this formula are readily obtained by the method of
continued fractions, the quotient figures, from whieh the fractions
are derived, following a certain determined law, of two terus,
readily observed, and that whenever thisis the case, the method
which is given above is also applied with great facility. And as
a great many numbers are included in the above form, I have
been induced to place it here, as a means of abridging the
operations in those particular cases, ]
The reader is indebted to Mr. P. Barlow of the Royal Aca-
demy, Woolwieh, for the above note ; and also for a few more
in this Sccond Part, whieh are distinguished by the signature, B.
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TasrE, shewing for each value of ¢ the least numbers m and 7,
that will give m® = an* + 1%; or that will render ans 4 1
a square.

@ n m a Vi) m
2 ) 3 (753 9100 66249
3 1 2 || 54 66 485
5 4 9 || 55 12 89
6 2 5 || 56 2 15
" 3 g Il 57 20 151
3 1 s | 58 2574 196083
10 G 19| o H 2
11 3 10 -
: 01 61 | 226153980 (1766319049
12 - 7| 62 8 63
13 | 180 | 649 | cq ] 5
14 4 i
15 L 4 1 65 16 129
17 8 33 || 66 8 65
18 4 17 || 67 5967 18842
19 39 170 | 68 4 39
20 2 9 | 69 956 7775
21 12 55 || 70 30 251
92| 42| 197 |7 413 3180
23 5 24 1 72 9 17
24 1 5|l 73 267000 2981249
26 10 51 || 74 430 3699
27 5 2 || 75 3 26
98 24 127 || 76 6630 57799
929 | 1820 | 9801 || 7 40 351
20 9 11 | 78 6 53
3 273 | 1520 || 7S 9 &0
39 3 17 | 80 1 9
33 4 23
i . as | 82 18 163
35 1 6 |22 o -
Rl — | 84 6 55
57| 12 73 1 85 80996 285769
38 6 37 | 86 1122 10105
39 4 25 87 3 23
40 3 19 | gg 9] 197
41 | 320 1 2049 g9 | © 53000 500001
42 % 13 90 9 19
43 | 5311 8482 | g) 168 1574
44 | 301 199 | g9 120 1151
45 | 2+ | 161 | gg 1260 12151
46 | 3588 | 24335 | g4 291064 2143295
47 7 48 || 95 4 39
48 1 7| 96 SHNI 49
50 | 14 99 || 97 | 6377552 | 62809638
51 7 50 || 98 10 99
52| 90| 649 | 99 1 10

# See Article 8 of the additions by De la Grange,



