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But there is frequently an infinite number of cases, in
which 2 may be assigned even in integer numbers; and the
determination of those cases shall form the subject of the
following chapter.

CHAP. VI.

OF the Cases in Integer Numbers, in which the Formula
ax® + b becomes a Square.

9. We have already shewn, Axrt. 63, how such formula
as « + bx + c2?, are to be transformed, in order that the
second term may be destroyed; we shall therefore confine
our present inquiries to the formula @x® + b, in which it is
required to find for » only integer numbers, which may
transform that formula into a square. Now, first of alf,
such a formula must be possible; for, if it be not, we shall
not even obtain fractional values of v, far less integer ones.

80. Let us suppose then «a® + b = y*; a and b being
integer numbers, as well as « and 7.

Now, here it is absolutely necessary for us to know, or to
have already found a case in integer numbers ; otherwise it
would be lost labor to seek for other similar cases, as the
formula might happen to be impossible.

We shall, therefore, suppose that this formula becomes a
square, by making » = #, and we shall represent that square
by g% so that ¢f* + b = g% where fand g are known num-
bers. Then we have only to deduce from this case other
similar cases; and this inquiry is so much the more im-
portant, as it is subject to considerable difficulties; which,
however, we shall be able to surmount by particular artifices.

81. Since we have already found ¢f™* + b = g2, and like-
wise, by hypothesis, ax* + b = 3, let us subtract the first
equation from the second, and we shall obtain a new one,
axt — af* = y* — g%, which may be represented by factors
in the following manner; a(x + /) x (x —f) = (y +2) x
(y—&), and which, by multiplying both sides by pg, be-
comes apq(x + f) X (x —f) = pgly +g) x (y —g). If
we now decompound this equation, by making ap(r +./) =
oy +9), and glo — ) = p(y — g, we may derive, from

these two equations, values of the two letters @ and 7. The
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Qb . apr +apf’
first, divided by ¢, gives y + & = Z—(I—Lf, and the se-

gr—qf

cond, divided by p, gives y — o = . Subtracting this

latter equation from the former, we have
= Wi=giz @+
P ’
2apg = (ap®— x4+ (ap*+q°) f5 therefore
2g i 8 . !
= — 29 = ] ﬂ+q 3f; from which we obtamn
ap*—q ap*—q
Req® @+ g _of
a’—~q (=g P
ter value, the first two terms, both containing the letter g,
may be put into the form ,:’_,‘((_%J”_*I-__;_'), and as the other two,

containing the letter £, may be expressed by

%)
~g

y=g+ And as, 1o this lat-

:
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terms will be reduced to the same denomination, and we
glap® +¢°)—afpq
(l])e—-{/z» )

82, This operation seems not, at first, to answer our pur-
pose ; since having to find integer values of v and g, we are
brought to fractional results ; and it would be required to
solve this new question,—What numbers are we to substitute
for p and g, in order that the fraction may disappear? A
question apparently still more difficult than our original one:
but here we may employ a particular artifice, that will
readily bring us to our object, which is as follows:

As every thing must be expressed in integer numbers, let

DL 1o}

=L 2+qg =m, and _-:p_qz =n, 1n order that we
Gr= =)

may have = ag — mf; and y = mg — naf:

Now, we cannot here assume m and 2 at pleasure, sinec
these letters must be such as will answer to what has been
already determined: therefore, for this purpose, let us con-
sider their squares, and we shall find

shall have y =

us make

20 9] < ~2 3
mt = %tfﬁp—q“ il , and
@’p* - up’q* +q*
P .
A L wd henee
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mt — an® =

apt+lap'gi gt —dap’qt
apt—Qap ¢t +g* -
@*pt—Lup gt gt
a*p—L2ap* g’ + ¢t

83. We see, thercfore, that the two numbers m and n
must be such, that m* = en® + 1. So that, as ¢ 1s a knrown
number, we must begin by considering the means of de-
termining such an integer number for n, as will make
@ 4 1 a square; for then m will be the root of that square ;
and when we have likewise determined the number f so,
that af* + 0 may become a square, namely &% we shall ob-
tain for « and gy the following values in mteger numbers;
x =ng — mf; y =mg — naf; and thence, lastly, az* +
b = vy

84'.y It is evident, that having once deterimined m and »,
we may write instead of them — m and — #, because the
square 2* still remais the same.

But we have already shewn that, in order to find & and y
in integer numbers, so that ax® + b = g% we must first
know a case, such that af’* + b may be equal to g*; when
we have therefore found such a case, we must also endeavour
to know, beside the number @, the values of m and 2, which
will give an® 4+ 1 = m*: the methed for which shall be de-
scribed in the sequel, and when this 1s done, we shall have a
new case, namely, « = ng + mf, and y = mg + naf; also
az® + b =y

Putting this new case instead of the preceding one, which
was considered as known ; that is to say, writing ng + mf
for f; and mg + naf for g, we shall have new values of &
and g, from which, if they be again substituted for & and LA
we may find as many other new values as we please: so
that, by means of a single ease known at first, we may after-
wards determine an infinite number of others.

85. The manner in which we have arrived at this solution
has been very embarrassed, and scemed at first to lead us
from our object, since it brought us to complicated fractions,
which an accidenta] circumstance only enabled us to reduce :
it will be proper, therefore, to explain a shorter method,
which leads to the same solution.

86. Since we must have ax® + b = 37, and have already
found ¢f”"+ b = o the first equation gives us b=p*—ax?,
and the second gives b = g* — ¢f*; consequently, also,
Y —ar®=g"— qf’, and the whole is reduced to de-
termining the nnknown quantities « and 7, by means of the
known quantities fand g. It is evident, that for this pur-
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pose we need only make @ = fand y = g but it is also
evident, that this supposition would not furnish a new case
in addition to that already known. We shall, therefore,
suppose that we have already found such a number for n,
that an® + 1 is a square, or that an® + 1 = m*; which be-
ing laid down, we have m®* — an® = I ; and multiplying by
this equation the one we had last, we find also y* — ax® =
(g8 — af) x (m* —an®) =g"m’ —af 'm" — ag*'n* +a f'n’.
Let us now suppose y = gm + afh, and we shall have
&' + 2afgmn + & f*n® — ax® =

o°m® — af*m* — ag®n® + 0,

Q.00

i which the terms g?m? and a%f*m? are destroyed ; so that
there remains «x® = af*m® + ag*n® 4 2afomn, or »° =

m? 4- fimn + g'n’. Now, this formula is evidently a
square, and gives 2 = fm + gn. Hence we bave obtained
the same formulz for . and y as before.

87. It will be neecssary to render this solution more
evident, by applying it to some examples.

Question 1. To find all the integer values of w2, that
will make 222 — 1, a square, or give 22 — 1 = 3.

Here, we have ¢« =2 and 6 = — 1; and a satisfactory
case immediately presents itself, namely, that in which x=1
and 7 = 1: which givesus = 1 and g = 1. Now, 1t is
farther required to determine such a value of n, as will give
2n* + 1 = m?; and we see immediately, that this obtains
when = 2, and consequently m = 3; so that every casc,
which is known for f and g, giving us these new cases
2z = 5f + 2g, and y = 3¢ + 4, we derive from the first
solution, /= 1 and g = 1, the following new solutions:

= =l 5 29 169
y=g=1 7 41 239, &e.

88. Question 2. To find all the triangular numbers,

that are at the same time squares.

¢

24z . 5
Let = be the triangular root ; then —— is the triangle,
which is to be also a square ; and if we call 2 the root of this
P+ L
square, we have —— = a°: multiplying by 8, we have

~

4z* + 4z = 8x°; and also adding 1 to each side, we
have

) 4° + 4 + 1= (2% + 1) =82 + L

Hence the question is to make 8x® + 1 become a square ;
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for, if we find 82* + 1 = y*, we shall have y = 2z + 1,
and, consequently, the triangular root required will be
y—1

o

~

- —

Now, we have @ = 8, and 4 = 1, and a satisfactory case
nnmediately occurs, namely, /= 0 and @ = 1. ltis farther
cvident, that 8n2 + 1 = m* 1f we maken = 1, and m = 3;
therefore 2 = 3f + g, and y = 3¢ + 85 and since

y—1 . . ] g
= J——5—-, we shall have the following solutions :

2=f=0 1) 6] 85 | 204]1189
y=g=1 3| 17 | 99 | 5773363
~1
2

_:o|1i 8 | 49 | 2881681, &c.

89. Question 3. To find all the pentagonal numbers,
which are at the same time squares.

~2 ~
I~ 4

If the root be z, the pentagon will be = , which

2

(9]
we shall make equal to 2% so that 3z* — 2 = 22*; then
multiplying by 12, and adding unity, we have
362 — 122 + 1 = (62 — 1)* = 242® + 1; also, making

7 +1
24r* +1 =y, wehave y =62 — 1,and z = ‘/g .

Since @ = 24, and b = 1, we know the case /= 0, and

g = 1; and as we must have 24n% + 1 = ", we shall make

7 =1, which gives m = 55 so that we shall have r=5f+g
1

and y = 5g + 24f; and not only = = 'ZL%_—, but also

1—y

“= % because we may write y = 1 — 6z: whence we
find the following results :
g =77 =0 1 10 ‘ 300 | 930
g + l 2 < 2401
Tl
orz=-—5Z=0|-3 | -8 | —222 | =800, &e.

90. Question 4. To find all the integer square num-
bers, which, if muitiplied by 7 and increaséd by 2, become
squares.
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It is here required to have Ta® + 2 = 7, or ¢ = 7, and
b = 2; and the known case immediately occurs, that is to
say, v = 1; so that @ = f'=1, and y =g =3. If we
next consider the equation 7n* + 1 = m®, we easily find
also that » = 3 and m = 8; whence z = 8 + 3g, and
Y =18g + 21, We shall therefore have the following
resuits :

i

=117}
=8 |45 | 717, &e.
91. Question 5. To find all the triangular numbers, that
are at the same time pentagons.
Let the root of the triangle be p, and that of the pentagon
p+p _37—q
D SRan?

~

I
AN

U

X

¢: then we must have , or 3¢ — g = p*4p;
and, in endeavouring to find ¢, we shall first have
2
, +
= lg 4+ ‘_”Lg_].’ and
, . P +p 1+ /(12 +12p+ 1)
g=%T vzt 3])301'9-: G 4 5
Consequently, it is required to make 12p® + 12p + 1 be-
come a square, and that in integer numbers. Now, as
there is here a middle term 12p, we shall begin with making
r—1 .
=5 by which means we shall have 12p*=3a>—06x +93,

and 12p = Go —6; consequently, 12p* +12p +1=32°-2;
and it is this last quantity, which at present we are required
to transform into a square.
If, thercfore, we make 32* — 2 = 2% we shall have
? 1 ]. 7
= .1T’ and ¢ = %/ ; so that all depends on the formula

82*— 2=y"; and here we have =38, and 6=—2. Farther,
we have a known case,2 = f= 1, andy = g = 1; lastly,
in the equation m* = 3n° + 1, we have n = 1,and m = 2;
therefore we find the following values both for 2 and z, and
for p and ¢:
Yirst, v = & + g, and y = 2g + 3 then,
= 11

w= =0 3 41
y=g=1 \ 5 19 71
p=0 1 5 20
qg = »3’- | 1 '—3—0 12
or g=0}| —% 3| —-%
because we have also ¢ = 1——’

'
(=]

q
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2. Hitherto, when the given formula contained a second
term, we were obliged to expunge it, but the method we
have now given may be applied, without taking away that
second term, in the following manner. 3

Let a2’ + bx + ¢ be the given formula, which must be a
square, %%, and let us suppese that we already know the case
aft + bf + ¢ = g%

Now, if we subtract this equation from the first, we shall
have a(a* — f*) + b(z — f) = y* — g*, which may be ex-
pressed by factors in this manner:

(@ = f) x (ax + af + ) = (y —0) X (y +8)s
and if we multiply both sides by pg, we shall have

pgle = f) (@x + af + 0) = pg (¥ — 8) x (¥ +8)
which equation may be resoived into these twe,

L p(z = f) = ¢(y — )
2. qlax + af + 0) = ply + 2)-
Now, multiplying the first by p, and the second by ¢, and
subtracting the first product iromthe second, we obtain
(¢q* — p)z + (ag® + p)f + b5 = 2gpg,
pg g +phf b
ag*— p* ag®—p* g —p¥
But the first equation is ¢(y — &) = ple =) = . . . ..
p( Repg Ry b
ag*—p*  aqg’—p*  ag*—p
Qep*  Rafpq _bpg
ag*—p*  af—pt g —p
L+r 2afpg bpq
Yy =po(—— — e et e
¥y= ag*—p*  ag*—p*  ag*—p*
Now, in order to remove the fractions, let us make, as

which gives @ =

-); sothaty — g =

-; and, consequently,

2 p* 2
before, gfl_n-l-}? ., = m, and __z[g . = n; and we shall have
ag®—p* aqg:—p
2uq*° B m+1 .
R — ___:f‘]__z, and f’ = 0+ ; therefore
ag*—p ag®—p Qu
b 1
x = ng — mf— .—(—T%ai—)’ and y = mg — naf' — Lbn;

in which the letters m and 2 must be such, that, as before,
m* = an® + 1.

93. The formulee which we have obtained for @ and y,
are still mixed with fractions, since sowme of their terms con-
tain the letter 63 for which reason they do not answer our
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purpose. But if from those values we pass to the suceeeding
ones, we eonstantly obtain integer numbers; which, indeed,
we should have obtained much more casily by nieans of the
numbers p and g that were introduced at the beginning.
In fact, it we take p and ¢, so that p* = ag® + 1, we shall
have ag® — p*=—1, and the fractions will disappear.  For
then 2 =—2epq + f(aq® + p*) + bg*, and y= —g(ag®+p?)
+ 2afpq + bpg; but as in the known case, af* + Of + ¢
= g% we find only the second power of g, it is of no eonse-
quence what sign we give that letter; if, therefore, we
write —g Instead of +g, we shall have the formulae

x = 2pqg + f(ag® + p» + 0g?% and
y=glq* + p*) +24pq + bpg,
and we shall thus be certain, at the samc time, that
ar? - br + ¢ = 2.

Let it be required, as an example, to find the hexagonal
numbers that are also squares.

We must have Qe* —a =g% or a =2,b =~ 1, and
¢ = 0, and the known case will evidently be * = = 1, and
y = é’f =] 1.

Farther, in order that we may have p? = 29% + 1, we
nmust have ¢ = 2, and p = 8; so that we shall have
v =12¢ + 17— 4, and y = 17g + 24f — 6; whenee re-
sult the following values: *

e=f=1][|25] 841
g/:g=1|35 1189, &e.

94. Let us also eonsider our first formula, in which the
second term was wanting, and examine the cases which make
the formula a2? + 0 a square in integer numbers.

Let ax? 4+ b = y*, and it will be required to fulfil two
conditions :

1. We must know a case in which this equation exists ;
and we shall suppose that case to be expressed by the equa-
tion af? + 0 = g*.

2. We must know such values of m and n, that
m* = an® + 1; the method of finding which will be taught
in the next chapter.

From that results a new case, namely, « = ng + nf;
and y = mg + anf this, also, will lead us to other similar
cases, whiech we shall represent in the following manner :

x=f|a]|B]|cC E
y=glriajr 1, 84,
inwhicha=ung +ny; B=nP +mA [c=nQ +mB |D=nr +mc
and r=mg+anf | Q=mp+ analr=mqQ+ ansls =mRr 4 ane,&e.

D
S
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and these two series of numbers may be easily continued to
any length.

95. It will be observed, however, that here we can-
not continue the upper series for x, without having the
under one in view; but it is easy to remove this incon-
venience, and to give a rule, not only for finding the upper
series, without knowing the other, but also for determinmng
the latter without the former.

The numbers which may be substituted for 2 succced
each other in a certain progression, such that each term (as,
for cxample, £), may be determined by the two preceding
terms ¢ and b, without having recourse to the terms of the
second series & and s. In fact, since E = ns + mp =

n(mr + anc) + m(nr + mc) =
"Qmmr + an‘c + m’c, and nR = D — Mmc,

we therefore find

E = 2mp — m*c + an’c, or

E = 2mD — (m® — an*)c; or lastly,

r = 2mp — ¢, because m* = an® + 1,
and m® — an* = 1; from which it is evident, how each term
is determined by the two which precede it.

It is the same with respect to the second series ; for, since
T = ms + and, and D = nR + mc, we have
T = ms 4+ an’r 4 amnc. Farther, § = mR 4 anc, so
that anc, — s — mr; and if we substitute this value of anc,
we have T = 2ms — r, which proves that the second pro-
gression follows the same law, or the same rule, as the first.

Let it be required, as an example, to find all the integer
numbers, &, such, that 222 — 1 = »*.

We shall first have /=1, and g=1. Then m*=2n" +1,
if n =2, and m = 3; therefore, since A = ng + mf'= 5,
the first two terms will be 1 and 5; and all the succeeding
ones will be found by the formula E = 6p — ¢: that is to
say, each term taken six times and diminished by the pre-
ceding term, gives the next. So that the numbers & which
we require, will form the following series:

1, 5, 29, 169, 985, 5741, &c.

This progression we may continuc to any length; and if

we choose to admit fractional terms also, we might find an

infinite number of them by the method which has been
already explained *.

* See the appendix to this chapter at Art. 7, of the additions
by De la Grange.




