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ADVERTISEMENT.

Having prefixed my name to the present edition

of Euler's Algebra, it may be proper to give some

account of the Translation ; which I shall do with

the greater pleasure, because it furnishes a fa-

vorable opportunity of associating my own labors,

with those of my distinguished pupil, and most

excellent friend, the late Francis Horner, M. P.

When first placed under my tuition, at the cri-

tical and interesting age of seventeen, he soon

discovered uncommon powers of intellect, and the

most ardent thirst for knowledge, united with a

docility of temper, and a sweetness of disposition,

which rendered instruction, indeed, a " delightful

task." His diligence and attention were such, as

to require the frequent interposition of some ra-

tional amusement, in order to prevent the in-

tenseness of his application from injuring a con-

stitution, which, though not delicate, had never

been robust.

Perceiving that the natural tendency of his

mind led to the exercise of reason, rather than to

the indulgence of fancy ; that he was particularly

interested in discussing the merits of some specious

theory, in exposing fallacies, and in forming legi-

timate inductions, from any premises, that were

a 2
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supposed to rest on the basis of truth : but finding

also, that, from imitation and habit, he had been

led to think too highly of those metaphysical

speculations, which abound in terms to which we

annex no distinct ideas, and which often require

the admission of principles, that are either unintel-

ligible, or incapable of proof; I recommended to

his notice Euler's Algebra, as affording an ad-

mirable exercise of his reasoning powers, and the

best means of cultivating that talent for analysis,

close investigation, and logical inference, which

he possessed at an early period, and which he after-

wards displayed in so eminent a degree. At the

same time, I was of opinion, that to translate a

part of that excellent work from the French into

English, when he wished to vary his studies, w'ould

improve liis knowledge of both languages, and be

the best introduction for him to the mathematics.

He was soon delighted with this occasional em-

ployment, which seemed to supply his mind with

food, that was both solid and nutricious ; and he

generally produced, two or three times a week, as

much as I could find time to revise and correct.

In the course of the first twelvemonth, he had

trraisiated so large a portion of the two volumes,

that it was determined to complete the whole, and

to publish it for the benefit of English students

:

but he returned to Scotland before the manuscript

was ready for the press ; and, therefore, the labor

of editing it necessarily devolved on me.

I wished to give this short history of the Trans-
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latioii at first, without any eulogium on his cha-

racter and talents, while living, of course ; but he

modestly, though, at the same time, resolutely

opposed it, saying that whatever merit or emolu-

ment might be attached to the work, it belonged

to me. The same proposal was made to him,

on publisliing the second edition * ; but he still

persisted in his former determination.

From the pleasure and instruction which he re-

ceived from Euler's Algebra, it was natural for

him to wish to know something more of the life

and character of that profound mathematician.

Having therefore in some measure satisfied his

curiosity, and collected the necessary materials,

by consulting the ordinary sources of information,

I advised him, by way of literary exercise, to draw

up a biographical Memoir on the subject. He
readily complied with my wishes ; and this may

be considered as one of his earliest productions.

Its merits would do credit, in my opinion, to any

writer; and therefore in appreciating them, the

reader will not deem any apology necessary on

account of the author's youth.

I have been led into this short detail of circum-

stances, first, because I disdain the contemptible

vanity of shining in what may be thought bor-

rowed plumes, and because I feel a melancholy

pleasure in speaking of my highly valued, and

* The care of correcting the press for this edition was en-

trusted to Mr. P. Barlow, being engaged myself, at that time,

in the laborious employment of editing the Bible.
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much lamented friend. The English nation will

long remember, and ever estimate, as they ought,

his manly eloquence in the senate ; his lofty spirit

of independence, which had no mixture of pride,

or affectation; his enlarged views and inflexi-

ble integrity; his vigilance and activity in the

discharge of public duties ; his fairness and li-

berality, his temperance and firmness in debate

;

his accurate, various, and extensive knowledge

;

the soundness of his argumentation, and the sa-

gacity with which he unveiled deception, without

coveting any triumph, oi- wishing to inflict dis-

grace ; and his calm, but dignified opposition,

which often confuted the errors, and exposed the

misapprehensions of his opponents ; but without

ever provoking resentment, or making an enemy.

All these qualities, however rare when united,

it is well known, he possessed; and, on this subject,

many members on both sides ofthe House of Com-

mons have borne the most ample testimony : but

those only who enjoyed the happiness ofbeing num-

bered among his intimate friends, could form any

adequate idea of the uncommon affectionateness of

his character; his lasting, disinterested, and sincere

attachments ; his gentle, unassuming manners

;

and his readiness, at all times, to do good, and to

relieve the distressed, without the slightest tincture

of vanity, or ostentation. In the discharge of his

duties as a son and a brother, it is almost needless

to add, that his conduct was most exemplary.

His loss as a public character will be long felt.
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and deplored ; and, in private life, it has produced a

chasm, that can never be filled up. To have had

some share in directing the studies, cultivating the

talents, and forming thetaste of such a man, will

always be to me a source of the greatest satisfac-

tion. That he should have fallen a victim to

lingering disease, in the prime of manhood, and

before he had reached the meridian of his bril-

liant and useful career, is truly deplorable
;
yet

we should be thankful for what we once possessed.

He is indeed gone ; but " though dead he still

liveth." All regret for his premature death is vain

;

and it should be remembered, that humble re-

signation to the Divine Will is one of the first

duties of every human being.

" His saltern accumulem doriis, et fungar inani

" Munere."

In this third edition, the two volumes have been

compressed into one ; the whole has been very

carefully revised and corrected ; the Notes will be

found at the foot of the pages, to which they

respectively belong ; the Questions for Practice,

which were omitted in the last edition, have been

restored ; and though it is scarcely possible to

print a mathematical work, of any extent, without

some errata; yet it is hoped, that few can be

named, which will be found more correct than the

present.

JOHN HEWLETT.
Hunter-street, March, 1822.



MEMOIR
OF THE

LIFE AND CHARACTER OF EULER,

BY THE LATE

FRANCIS HORNER, ESQ., M. P.

r
Leonaed EuxER was the son of a clergymanJn

the neighbourhood of Basil, and was born on the

1.5th of April, lyo;^. His natural turn for mathe-

matics soon appeared, from the eagerness and fa-

cility with which he became master of the elements

under the instructions of his father, by whom he

was sen4;>Jt9 the university of Basil at an early age.

There, - his abilities and his application were so

distinguished, that he attracted the particular no-

tice of John Bernoulli.! That excellent mathe-

matician seemed to loo1< forward to the youth's

future achievements in science, while his own
kind care strengthened the powers by which they

were to be accomplished. In order to superintend

his studies, which far.outstripped the usual routine

of the public lecture^ he gave him a private lesson

regularly once a week;; when they conversed to-

gether on the acquisitions, which the pupil had

been making since their last interview, considered

whatever difficulties might have occurred in his
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progress, and arranged the reading and exercises

for the ensuing week.

Under such eminent advantages, the capacity

of Euler did not fail to make rapid improvements;

and|n his seventeenth year,|the degree of Master

of Arts was conferred on hinft. On this occasion,

he received high applause for his probationary

discourse, the subject of which was a comparison

between the Cartesian and Newtonian systems.

His father, having all along intended him for

his successor, enjoined him now to relinquish his

mathematical studies, and to prepare himself by

those of theology, and general erudition, for the

ministerial functions. After some time, however,

had been consumed, this plan was given up. The
father, himself a man of learning and liberality,

abandoned his own views for those, to which the

inclination and talents of his son were of them-

selves so powerfully directed
;
persuaded, that in

thwarting the propensities of genius, there is a

sort of impiety against nature, and that there

would be real injustice to mankind in smothering

those abilities, which were evidently destined to

extend the boundaries of science. 'Leonard was

permitted, therefore, to resume his favorite pur-

suits ; and, at the age of nineteen, transmitting

two dissertations to the Academy of Sciences at

Paris, one on the masting of ships, and the other

on the philosophy of sound, he commenced that

splendid career, which continued, for so long a

period, the admiration and the glory of Europe.
_\

About the same time, he stood candidate for a
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vacant professorship in the university of Basil

;

but having lost the election, he resolved, in con-

sequence of this disappointment, to leave his na-

tive country; and in I727 he set out for Peters-

burg, where his friends, the young Bernoullis, had

settled about two years before, and where he

flattered himself with prospects of literary success

under the patronage of Catherine L] Those pro-

spects, however, were not immediately realised

;

nor was it till after he had been frequently and

long disappointed, that he obtained any prefer-

ment. His first appointment appears to have been

to the chair of natural philosophy ; and when

Daniel Bernoulli removed from Petersburg, Euler

succeeded him as professor of mathematics.

In this situation he remained for several years,

engaged in the most laborious researches, enrich-

ing the academical collections of the continent

with papers of the highest value, and producing

almost daily improvements in the various branches

of physical, and, more particularly, analytical

science. In 1741, he complied with a very press-

ing invitation from Frederic the Great, and re-

sided at Berlin till I766. Throughout this pe-

riod, he continued the same literary labors, di-

rected by the same wonderful sagacity and com-

prehension of intellect. As he advanced with his

own discoveries and inventions, the field of know-

ledge seemed to widen before his view, and new

subjects still multiplied on him for further specula-

tion. The toils of intense study, with him, seemed

only to invigorate his future exertions. Nor did
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the energies of Euler's mind give way, even when

the organs of the body were overpowered : for in

the year 1735, having completed, in three days,

certain astronomical calculations, which the aca-

demy called for in haste ; but which several ma-

thematicians of eminence had declared could not

be performed within a shorter period than some

months, the intense application threw him into a

fever, in which he lost the sight of one eyej

Shortly after his return to Petersburg, in I766,

he became totally blind. His passion for science,

however, suffered no decline ; the powers of his

mind were not impaired, and he continued as in-

defatigable as ever. Though the distresses of age

likewise were now crowding fast upon him, for he

had passed his sixtieth year
;
yet it was in this

latter period of his life, under infirmity, bodily

pain, and loss of sight, that he produced some of

his most valuable works ; such as command our

astonishment, independently of the situation of

the author, from the labor and originality which

they display. In fact, his habits of study and

composition, his inventions and discoveries, closed

only with his life. The very day on which he

died, he had been engaged in calculating the orbit

of Herschel's planet, and the motions of aerostatic

machines, llis death happened suddenly in Sep-

tember 1783, from a fit of apoplexy, when he was

in the seventy-sixth year of his age.]

»Such is the short history of this illustrious man..^^

The incidents of his life, like that of most other
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laborious students, afford very scanty materials for

biography; little more than a journal of studies

and a catalogue of publications : but curiosity may
find ample compensation in surveying the charac-

ter of his mind. An object of such magnitude,

so far elevated above the ordinary range of human

intellect, cannot be approached without reverence,

nor nearly inspected, perhaps, without some de-

gree of presumption. Should an apology be ne-

cessary, therefore, for attempting the following

estimate of Euler's character, let it be considered,

that we can neither feel that admiration, nor offer

that homage, which is worthy of genius, unless,

aiming at something more than the dazzled sensa-

tions of mere wonder, we subject it to actual ex-

amination, and compare it with the standards of

human nature in general.

Whoever is acquainted with the memoirs of

those great men, to whom the human race is in-

debted for the progress of knowledge, must have

perceived, that, while mathematical genius is di-

stinct from the other departments of intellectual

excellence, it likewise admits in itself of much di-

versity. The subjects of its speculation are become

so extensive and so various, especially in modern

times, and present so many interesting aspects, that

it is natural for a person, whose talents are of this

cast, to devote his principal curiosity and attention

to particular views ofthe science. When this hap-

pens, the faculties of the mind acquire a superior

facility of operation, with respect to the objects
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towards which they are most frequently directed,

and the invention becomes habitually most active

and most acute in that channel of inquiry.

The truth of these observations is strikingly

illustrated by the character of Euler. His studies

and discoveries lay not among the lines and figures

of geometry, those characters, to use an expres-

sion of Galileo, in which the great book of the

universe is written ; nor does he appear to have

had a turn for philosophising by experiment, and

advancing to discovery through tlie rules of in-

ductive investigation. The region, in which lie

delighted to speculate, was that of pure intellect.

He surveyed the properties and affections of

quantity under their most abstracted forms. With

the same rapidity of perception, as a geometrician

ascertains the relative position ofportions ofexten-

sion, Euler ranges among those of abstract quan-

tity, unfolding their most involved combinations,

and tracing their most intricate proportions. _ That

admirable system of mathematical logic and lan-

guage, which at once teaches the rules of just

inference, and furnishes an instrument for prose-

cuting deductions, free from the defects which

obscure and often falsify our reasonings on other

subjects ; the different species of quantity, whether

formed in the understanding by its own abstrac-

tions, or derived from modifications of the repre-

sentative system of signs; the investigation of the

various properties of these, their laws of genesis,

the limits of comparison among tlie different
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species, and the method of ap})lying all this to the

solution of physical problems ; these were the re-

searches on which the mind of Euler delighted to

dwell, and in which he never engaged without

finding new objects of curiosity, detecting sources

of inquiry, which had passed unobserved, and ex-

ploring fields of speculation and discovery, which

before were unknown.

The subjects, which we have here slightly enu-

merated, form, when taken together, what is called

the Modern Analysis : a science eminent for the

profound discoveries which it has revealed ; for

the refined artifices that have been devised, in

order to bring the most abstruse parts of mathe-

matics within the compass ofour reasoning powers,

and for applying them to the solution of actual

phaenomena, as well as for the remarkable degree

of systematic simplicity, with which the various

methods of investigation are employed and com-

bined, so as to confirm and throw light on one

another. The materials, indeed, had been col-

lecting for years, from about the middle of the

seventeenth century ; the foundations had been

laid by Newton, Leibnitz, the elder Bernoullis,

and a few others ; but Euler raised the superstruc-

ture : it was reserved for him to work upon the

materials, and to arrange this noble monument of

human industry and genius in its present sym-

metry. Through the whole course of his scientific

labors, the ultimate and the constant aim on which

he set his mind, was the perfection of Calculus
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aiul Analysis. Whatever physical inquiry he be-

gan with, this always came in view, and very fre-

([uently received more of his attention than that

which was professedly the main subject. His

ideas ran so naturally in this train, that even in

the perusal of VirgiPs poetry, he met with images

that would recall the associations of his more fa-

miliar studies, and lead him back, from the fairy

scenes of fiction, to mathematical abstraction, as

to the element, more congenial to his nature.

That the sources ofanalysis might be ascertained

in their full extent, as well as the various modifica-

tions of form and restrictions of rule that become

necessary in applying it to different views of

nature ; he appears to have nearly gone through a

complete course of philosophy. iThe theory of

rational mechanics, the whole range of physical

astronomy, the vibrations of elastic fluids, as well

as the movements of those which are incom-

pressible, naval architecture and tactics, the doc-

trine of chances, probabilities, and political arith-

metic, were successively subjected to the analytical

method ; and all these sciences received from him

fresh confirmation and further improvement.^

It cannot be denied that, in general, his at-

tention is more occupied with the analysis itself,

* A complete edition of his works, comprising the numerous

papers which he sent to the academies of St. Petersburg,

Berhn, Paris, and other pubhc societies, his separate Treatises

on Curves, the Analysis of Infinites, the differential and integral

Calculus, &c. would occupy, at least, forty quarto volumes.
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than with the subject to which he is applying it;

and that lie seems more taken up with his instru-

ments, than with the work, which they are to assist

him in executing. But this can hardly be made a

ground of censure, or regret, since it is the very-

circumstance to which we owe the present per-

fection of those instruments ; a perfection to which

he could never have brought them, but by the un-

remitted attention and enthusiastic preference

which he gave to his favorite object. If he now
and then exercised his ingenuity on a physical, or

perhaps metaphysical, hypothesis, he must have

been aware, as well as any one, that his conclusions

would of course perish with that from which they

were derived. What he regarded, was the proper

means of arriving at those conclusions ; the new

views of analysis, which the investigation might

open ; and the new expedients of calculus, to which

it might eventually give birth. This was his uni-

form pursuit ; all other inquiries were prosecuted

with reference to it ; and in this consisted the

peculiar character of his mathematical genius.

The faculties that are subservient to invention

he possessed in a very remarkable degree. His

memory was at once so retentive and so ready,

that he had perfectly at command all those nu-

merous and complex formulae, which enunciate

the rules and more important theorems of analysis.

As is reported of Leibnitz, he could also repeat

the ^neid from beginning to end; and could

trust his recollection for the lirst and last lines in
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every page of the edition, which he had been ac-

customed to use. These are instances of a kind

of memory, more frequently to be found where

the capacity is inferior to the ordinary standard,

than accompanying original, scientific genius.

But in Euler, they seem to have been not so much
the result of natural constitution, as of his most

wonderful attention ; a faculty, which, if we con-

sider the testimony of Newton * sufficient evi-

dence, is the great constituent of inventive power.

It is that complete retirement of the mind within

itself, during which the senses are locked up

;

that intense meditation, on which no extraneous

idea can intrude ; that firm, straight-forward pro-

gress of thought, deviating into no irregular sally,

which can alone place mathematical objects in a

light sufficiently strong to illuminate them fully,

and preserve the perceptions of " the mind's eye"
in the same order that it moves along.

Two of Euler's pupils (we are told by M. Fuss,

a pupil himself) had calculated a converging
series as far as the seventeenth term ; but found,

on comparing the written results, that they dif-

fered one unit at the fiftieth figure: they com-
municated this difference to their master, who
went over the whole calculation by head, and his

decision was found to be the true one.—For the

purpose of exercising his little grandson in the

extraction of roots, he has been known to form to

* This opinion of Sir Isaac Newton is recorded by Dr.
Pemberton.
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himself the table of the six first powers of all num-
bers, from 1 to 100, and to have preserved it

actually in his memory.

The dexterity which he had acquired in analysis

and calculation, is remarkably exemplified by

the manner in which he manages formulas of the

greatest length and intricacy. He perceives,

almost at a glance, the factors from which they

may have been composed ; the particular system

of factors belonging to the question under present

consideration ; the various artifices by which that

system may be simplified and reduced ; and the

relation of the several factors to the conditions of

the hypothesis. His expertness in this particular

probably resulted, in a great measure, from the

ease with which he performed mathematical in-

vestigations by head. He had always accustomed

himself to that exercise ; and having practised it

with assiduity, even before the loss of sight, which

afterwards rendered it a matter of necessity, he is

an instance to what an astonishing degree of per-

fection that talent may be cultivated, and how
much it improves the intellectual powers. No
other discipline is so effectual in strengthening

the faculty of attention ; it gives a facility of ap-

prehension, an accuracy and steadiness to the

conceptions ; and, what is a still more valuable

acquisition, it habituates the mind to arrangement

in its reasonings and reflections.

If the reader wants a further commentary on

its advantages, let him proceed to the work of
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Euler, of which we here offer a Translation ; and

if he has any taste for the beauties of method,

and of what is properly called composition^ we

venture to promise him the highest satisfaction

and pleasure. The subject is so aptly divided,

the order is so luminous, the connected parts

seem so truly to grow one out of the other, and

are disposed altogether in a manner so suitable to

their relative importance, and so conducive to

their mutual illustration, that, when added to the

precision, as well as clearness with which every

thing is explained, and the judicious selection of

examples, we do not hesitate to consider it, next

to Euclid's Geometry, the most perfect model of

elementary writing, of which the scientific world

is in possession.

When our reader shall have studied so much
of these volumes as to relish their admirable style,

he will be the better qualihed to reflect on the

circumstances under which they were composed.

They were drawn up soon after our author was

deprived of sight, and were dictated to his ser-

vant, who had originally been a tailor's apprentice

;

and, without being distinguished for more than

ordinary parts, was completely ignorant of mathe-

matics. But Euler, blind as he was, had a mind

to teach his amanuensis, as he went on with the

subject. Perhaps, he undertook this task by way

of exercise, with the view of conforming the

operation of his faculties to the change, which the

loss of sight had produced. Whatever was the

b 2
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motive, his Treatise had the advantage of being

composed under an immediate experience of the

method best adapted to the natural progress of a

learner's ideas : from the want of Avhich, men of

the most profound knowledge are often awkward

and unsatisfactory, when they attempt elementary

instruction. It is not improbable, that we may

be farther indebted to the circumstance of our

Author's blindness ; for the loss of this sense is

generally succeeded by the improvement of other

faculties. As the surviving organs, in particular,

acquire a degree of sensibility, which they did not

previously possess ; so the most charming visions

of poetical fancy have been the oifspring of minds,

on which external scenes had long been closed.

And perhaps a philosopher, familiarly acquainted

with Euler's writings, might trace some improve-

ment in perspicuity of method, and in the flowing

progress of his deductions, after this calamity had

befallen him ; which, leaving " an universal blank

of nature's works," favors that entire seclusion of

the mind, which concentrates attention, and gives

liveliness and vigor to the conceptions.

In men devoted to study, we are not to look for

those strong, complicated passions, which are con-

tracted amidst the vicissitudes and tumult ofpublic

life. To delineate the character of Euler, requires

no contrasts of coloring. Sweetness of disposition,

moderation in the passions, and simplicity of man-

ners, were his leading features. Susceptible of the

domestic affections, he was open to all their amiable



liULKR. XXI

impressions, and was remarkably fond of children.

His manners were simple, without being singular,

and seemed to flow naturally from a heart that

could dispense with those habits, by which many

must be trained to artificial mildness, and with the

forms that are often necessary for concealment.

Nor did the equability and calmness of his temper

indicate any defect of energy, but the serenity of a

soul that overlooked the frivolous provocations,

the petulant caprices, and jarring humours of

ordinary mortals.

Possessing a mind of such wonderful compre-

hension, and dispositions so admirably formed to

virtue and to happiness, Euler found no difficulty

in being a ChristiaU'': accordingly, " his faith was

unfeigned," and his love " was that of a pure and

undefiled heart." The advocates for the truth of

revealed religion, therefore, may rejoice to add to

the bright catalogue, which already claims a Bacon»

a Newton, a Locke, and a Hale, the illustrious

name of Euler. But, on this subject, we shall

permit one of his learned and grateful pupils * to

sum up the character of his venerable master.

" His piety was rational and sincere ; his devotion

" was fervent. He was fully persuaded of the

" truth of Christianity ; he felt its importance to

" the dignity and happiness of human nature

;

" and looked upon its detractors, and opposers, as

*' the most pernicious enemies of man.'*

The length to which this account has been ex-

* M. Fuss, Eulogy of M. L. Euler.
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tended may require some apology ; but the cha-

racter of Euler is an object so interesting, that,

when reflections are once indulged, it is difficult

to prescribe limits to them. One is attracted by

a sentiment of admiration, that rises almost to the

emotion of sublimity ; and curiosity becomes eager

to examine what talents and qualities and habits

belonged to a mind of such superior power. We
hope, therefore, the student will not deem this an

improper introduction to the work which he is

about to peruse ; as we trust he is prepared to

enter on it with that temper and disposition, which

will open his mind both to the perception of ex-

cellence, and to the ambition of emulating what

he cannot but admire.



ADVERTISEMENT BY THE EDITORS OF
THE ORIGINAL, IN GERMAN.

We present to the lovers of Algebra a work, of which a

Russian translation appeared two years ago. The object

of the celebrated author was to compose an Elementary

Treatise, by which a beginner, without any other assistance,

might make himself complete master of Algebra. The loss

of sight had suggested the idea to him, and his activity of

mind did not suffer him to defer the execution of it. For

this purpose M. Euler pitched on a young man, whom he

had engaged as a servant on his departure from Berlin, suf-

ficiently master of arithmetic, but in other respects without

the least knowledge of mathematics. He had learned the

trade of a tailor ; and, with regard to his capacity, was not

above mediocrity. This young man, however, has not only

retained what his illustrious master taught and dictated

to him, but in a short time was able to perform the most

difficult algebraic calculations, and to resolve with readiness

whatever analytical questions were proposed to him.

This fact must be a strong recommendation of the man-

ner in which this work is composed, as the young man who

wrote it down, who performed the calculations, and whose

proficiency was so striking, received no instructions whatever

but from this master, a superior one indeed, but deprived of

sight.

Independently of so great an advantage, men of science

will perceive, with pleasure and admiration, the manner in

which the doctrine of logarithms is explained, and its con-

nexion with other branches of calculus pointed out, as well
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as the methods which are given for resolving equations of

the third and fourth degrees.

Lastly, those who are fond of Diophantine problems will

be pleased to find, in the last Section of the Second Part, all

these problems reduced to a system, and all the processes of

calculation, which are necessary for the solution of them,

fully explained.



ADVERTISEMENT BY M. BERNOULLI, THE
FRENCH TRANSLATOR.

The Treatise of Algebra, which I have undertaken to

translate, was published in German, 1770, by the Royal

Academy of Sciences at Petersburg. To praise its merits,

would almost be injurious to the celebrated name of its

author ; it is sufficient to read a few pages, to perceive, from

the perspicuity with which every thing is explained, what

advantage beginners may derive from it. Other subjects

are the purpose of this advertisement.

I have departed from the division which is followed in

the original, by introducing, in the first volume of the

French translation, the first Section of the Second Volume

of the original, because it completes the analysis of de-

terminate quantities. The reason for this change is obvious

:

it not only favours the natural division of Algebra into de-

terminate and indeterminate analysis; but it was necessary

to preserve some equality in the size of the two volumes, on

account of the additions which are subjoined to the Second

Part.

The reader will easily perceive that those additions come

from the pen of M. De la Grange ; indeed, they formed one

of the principal reasons that engaged me in this translation.

I am happy in being the first to shew more generally to

mathematicians, to what a pitch of perfection two of our

most illustrious mathematicians have lately carried a branch

of analysis but little known, the researches of which are at-

tended with many difficulties, and, on the confession even of

these great men, present the most difficult problems that

they have ever resolved.
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I have endeavoured to translate this algebra in the style

best suited to works of the kind. My chief anxiety was to

enter into the sense of the original, and to render it with the

greatest perspicuity. Perhaps I may presume to give my
translation some superiority over the original, because that

work having been dictated, and admitting of no revision from

the author himself, it is easy to conceive that in many pas-

sages it would stand in need of correction. If I have not

submitted to translate literally, I have not failed to follow

my author step by step ; I have preserved the same divisions

in the articles, and it is only in so few places that I have

taken the liberty of suppressing some details of calculation,

and inserting one or two lines of illustration in the text, that

I believe it unnecessary to enter into an explanation of the

reasons by which I was justified in doing so.

Nor shall I take any more notice of the notes which I

have added to the first part. They are not so numerous as to

make me fear the reproach of having unnecessarily in-

creased the volume ; and they may throw light on several

points of mathematical history, as well as make known a

great number of Tables that are of subsidiary utility.

With respect to the correctness of the press, I believe it

will not yield to that of the original. I have carefully com-

pared all the calculations, and having repeated a great num-

ber of them myself, have by those means been enabled to

correct several faults beside those which are indicated in the

JErrata.
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ALGEBRA.

PART I.

Containing the Analysis o/"Determinate Quantities.

SECTION I.

Oftlie different Methods ofcalculating Simple Quantities.

CHAP. I.

0/* Mathematics in general.

ARTICLE I.

W HATEVER is capable of increase or diminution, is

called magnitude, or quantity.

A sum of money therefore is a quantity, since we may
increase it or diminish it. It is the same with a weight, and
other things of this nature.

2. From this definition, it is evident, that the different

kinds of magnitude must be so various, as to render it dif-

ficult to enumerate them : and this is the origin of the dif-

ferent branches of the Mathematics, each being employed
on a particular kind of magnitude. Mathematics, in general,

is the science ofquantity ; or, the science which investigates

the means of measuring quantity.

3. Now, we cannot measure or determine any quantity,

except by considering some other quantity of the same kind

as known, and pointing out their mutual relation. If it

were proposed, for example, to determine the quantity of a

sum of money, we should take some known piece of money,
B
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as a louis, a crown, a ducat, or some other coin, and shew
how many of these pieces are contained in the given sum.
In tlie same manner, if it were proposed to determine the

quantity of a weiglit, we should take a certain known weight;

for example, a pound, an ounce, &c. and then shew how
many times one of these weights is contained in that which
we are endeavouring to ascertain. If we wished to measure
any length or extension, we should make use of some known
length, such as a foot.

4. So that the determination, or the measure of mag-
nitude of all kinds, is reduced to this : fix at pleasure upon
any one known magnitude of the same species with that

which is to be determined, and consider it as the measure or

U7iit; then, determine the proportion of the proposed mag-
nitude to this known measure. This proportion is always

expressed by numbers; so that a number is nothing but the

proportion of one magnitude to another arbitrarily assumed
as the unit.

5. From this it appears, that all magnitudes may be ex-

pressed by numbers ; and that the foundation of all the

Mathematical Sciences must be laid in a complete treatise

on the science of Numbers, and in an accurate examination

of the different possible methods of calculation.

This fundamental part of mathematics is called Analysis,

or Algebra *.

6. In Algebra then we consider only numbers, which
represent quantities, without regarding the different kinds

of quantity. These are the subjects of other branches of

the mathematics.

, 7« Arithmetic treats of numbers in particular, and is the

science of' numbers properly so called; but this science ex-

tends only to certain methods of calculation which occur in

common practice: Algebra, on the contrary, comprehends
in general all the cases that can exist in the doctrine and
calculation of numbers.

* Several mathematical writers make a distinction between
Analysis and Algebra. By the term Analysis, they understand

the method of determining those general rules, wliich assist the

understanding in all mathematical investigations j and hy Algebra,

the instrument which this method emplojs for accomplishing

that end. This is the definition given by M. Bezout in the

preface to his Algebra, F. T. ;^
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CHAP. II.

Explanation of the Signs + Plus and — Minus.

8. When we have to add one given number to another,

this is indicated by the sign +, which is placed before the

second number, and is read phis. Thus 5 ->(- Q signifies

that we must add 3 to the number 5, in which case, evcr}^

one knows that the result is 8; in the same manner 12 + 7
make 19 ; 25 + 10 make 41 ; the sum of 25+ 41 is QQ, &c.

9. We also make use of the same sign + plus, to con-

nect several numbers together; for example, 7+5 + 9
signifies that to the number 7 we must add 5, and also 9,

which make 21. The reader will therefore understand what
is meant bv

8 + 5 + 13 + 1 1 + 1 + 3 + 10,

viz. the sum of all these nimibers, which is 51.

10. All this is evident; and we have only to mention,

that in Algebra, in order to generalise numbers, we re-

present them by letters, as a, b, c, d, &c. Thus, the ex-

pression a + 6, signifies the sum of two numbers, which we
express by a and b, and these numbers may be either very

great, or very small. In the same manner, /'-f ??i + 6 + a:,

.signifies the sum of the numbers represented by these four

letters.

If we know therefore the numbers that are represented by
letters, we shall at all times be able to find, by arithmetic,

the sum or value of such expressions.

11. When it is required, on the contrary, to subtract one

given number from another, this operation is denoted by the

sign — , which signifies minus, and is placed before the

number to be subtracted : thus, 8 — 5 signifies that the

number 5 is to be taken from the number 8 ; which being-

done, there remain 3. In like manner 12 — 7 is the same
as 5 ; and 20 — 14 is the same as 6, See.

12. Sometimes also we may have several numbers to

subtract from a single one ; as, for instance, 50—1 — 3 —
5 — 7 — 9. This signifies, first, take I from 50, and there

remain 49 ; take 3 from that remainder, and there will re-

main 46; take away 5, and 41 remain; take away 7, and
34 remain ; lastly, from that take 9, and there remain 25

:

this last remainder is the value of the expression. But as

the numbers 1, 3, 5, 7, 9, are all to be subtracted, it is the

b2
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same thing if we subtract their sum, which is 25, at once
from 50, and the remainder will be 25 as before.

lo. It is also easy to determine the value of similar ex-

pressions, in which both the signs + plus and — minus are

ibund. For example

;

12 — 3 — 5 + 2 — 1 is the same as 5.

We have only to collect separately the sum of the numbers
that have the sign + before them, and subtract from it the

sum of those tliat have the sign — . Thus, the sum of 12
and 2 is 14; and that of y, 5, and 1, is 9; hence 9 being

taken from 14, there remain 5.

14. [t will be perceived, from these examples, that the

order in which we write the numbers is perfectly indifferent

and arbitrary, provided the proper sign of each be preserved.

We might with equal propriety have arranged the expression

in the preceding article thus; 12 + 2 — 5 — 3—1, or

2 - 1 - 3 - 5 + 12, or 2 + 12 - 3 — 1 - 5, or in still

different orders ; where it must be observed, that in the ar-

rangement first proposed, the sign -j- is supposed to be placed

before the number 12.

15. It will not be attended with any more difficulty if, in

order to generalise these operations, we make use of letters

instead of real numbers. It is evident, for example, that

a — h — c -^ d — e,

signifies that we have numbers expressed by a and d, and
that from these numbers, or from their sum, we must sub-

tract the numbers expressed by the letters b, c, e, which
have before them the sifjn —

.

16. Hence it is absolutely necessary to consider what sign

is prefixed to each number : for in Algebra, simple quan-
tities are numbers considered with re<jard to the sio-ns Avhicb

precede, or affect them. Farther, we call those positive

gtiaiititics, before which the sign 4- is found ; and those

are called negative quantities, which are affected by the

sio-n —

.

17. The manner in which we generally calculate a per-

son's property, is an apt illustration of what has just been

said. For v/e denote what a man really possesses by positive

numbers, using, or understanding the sign -j- ; whereas his

debts are represented by negative numbers, or by using the

sign — . Thus, when it is said of any one that he has 100
crowns, but owes 50, this means that his real possession

amounts to 100 — 50 ; or, which is the same thing, + 100
— 50, that is to say, 50.

18. Since negative numbers may be considered as debts,

because positive numbers represent real possessions, we
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may say that negative numbers are less than nothing. Thus,
when a man has nothing of his own, and owes 50 crowns, it

is certain that he has 50 crowns less than nothing ; for if

any one were to make him a present of 50 crowns to pay his

debts, he would still be only at the point nothing, though
really richer than before.

19. In the same manner, therefore, as positive numbers
are incontestably greater than nothing, negative numbers
are less than nothing. Now, we obtain positive numbers by
adding 1 to 0, that is to say, 1 to nothing ; and by con-

tinuing always to increase thus from unity. This is the

origin of the scries of ninnbcrs called natural numhcrs ; the

following being the leading terms of this series:

0, +1, +2, +3, +4, +5, +6, +7, +8, +9, +10,
and so on to infinity.

But if, instead of continuing this series by successive ad-

ditions, we continued it in the opposite direction, by per-

petually subtracting unity, wc should have the following

series of negative numbers

:

0, -I, -2, -3, -4, -5, -6, -7, -8, -9,-10,
and so on to infinity.

20. All these numbers, whether positive or negative,

have the known appellation of whole numbers, or integers,

which consequently are either greater or less than nothing.

We call them integers, to distinguish them from fractions,

and from several other kinds of numbers, of which wc shall

hereafter speak. For instance, 50 being greater by an entire

unit than 49, it is easy to comprehend that there may be,

between 49 and 50, an infinity of intermediate numbers, all

greater than 49, and yet all less than 50. We need only

imagine two lines, one 50 feet, the other 49 feet long, and it

is evident that an infinite number of lines may be drawn, all

longer than 49 feet, and yet shorter than 50.

21. It is of the utmost importance through the whole of

Algebra, that a precise idea should be formed of those ne-

gative quantities, about which we have been speaking. I

shall, however, content myself with remarking here, that all

such expressions as

^. 1 _ 1, + 2 _ 2, + 3 - 3, + 4 - 4, &c.

are equal to 0, or nothing. And that

-}- 2 — 5 is equal to — 3

:

for if a person has 2 crowns, and owes 5, he has not only

nothing, but still owes 3 crowns. In the same manner,

7 — 12 is equal to — 5, and 25 — 40 is cc|ual to - 15.

22. The same observations hold true, when, to make the

expression more general, letters are used instead of numbers;
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thus 0, or nothing, will always be the value of + « — a;

but if Ave wish to know the value of •\- a — 0, two cases are

to be considered.

The first is when a is greater than b ; b must then be

subtracted from a, and the remainder (before which is

placed, or understood to be placed, the sign +) shews the

value sought.

The second case is that in which a is less than b : here a

is to be subtracted from b, and the remainder being made
negative, by placing before it the sign — , will be the value

sousrht.

CHAP. III.

Of the Multiplication o/' Simple Quantities.

23. When there are two or more equal numbers to be

added together, the expression oftheir sum may be abridged

:

lor example,

« + a is the same v>dth 2 x a,

a -{- a + a — 3 x a,

a-\-a-\-a-\-a--- 4! x a, and so on ; where x is the

sign of multiplication. In this manner we may form an idea

of multiplication ; and it is to be observed that,

2 X a signifies 2 times, or twice a
3 X « — - - 5 times, or thrice a
4xa----4 times a, &c.

24. If therefore a number expressed by a letter is to be

multiplied by any other number, we simply put that number
befoi'e the letter, thus;

a multiplied by 20 is expressed by 20«, and
b multiplied by 30 is expressed by 30b, &c.

It is evident, also, that c taken once, or Ir, is the same as c.

25. Farther, it is extremely easy to multiply such pro-

ducts again by other numbers ; for example:
2 times, or twice 3a, makes 6a
3 times, or thrice 46, makes 12Z'

5 times 7x makes 35^-.

and these products may be still multiplied by other numbers
at pleasure.

26. When the number by which we arc to multiply is

also represented by a letter, we place it inmiediatcly before

the other letter ; thus, in multiplying by a, the product is
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written ab\ und pq will be the product of the multiplication

of the number q hy p. Also, if we multiply this pq again

by a, we shall obtaiii aj)q.

27. It may be farther remarked here, that the order in

which the letters are joined together is indifferent ; thus ab

is the same thing as bu ; for h multiplied by a is the same
as a multiplied by h. To understand this, we have only to

substitute, for a and />, known numbers, as 3 and 4 ; and
the truth will be self-evident ; for 3 times 4 is the same as

4 times 3.

28. It will not be difficult to perceive, that when we sub-

stitute numbers for letters joined together, in the manner we
have described, they cannot be written in the same way by
putting them one after the other. For if we were to write

34 for 3 times 4, we should have 34 and not 12. When
therefore it is required to multiply common n\mibers, we
must separate them by the sign x , or by a point : thus,

3x4, or 3.4, signifies 3 times 4; that is, 12. So, 1 x 2 is

equal to 2; and 1x2x3 makes 6. In like manner,

Ix2x3x4x 56 makes 1344 ; and 1 x 2 X 3 x 4 x

5x6x7x8x9x10 is equal to 3G28800, &c.

29. In the same manner we may discover the value of an

expression of this form, 5.7.8.(ibcd. It shews that 5 must
be multiplied by 7, and that this product is to be again

multiplied by 8 ; that we are then to multiply this product

of the three numbers by a, next by b, then by c, and lastly

by d. It may be observed, also, that instead of 5.7.8, we
may write its value, 280 ; for we obtain this number when
we multiply the product of 5 by 7, or 35, by 8.

30. The results which arise from the multiplication of

two or more numbers are called products ; and the numbers,

or individual letters, are callcdjactors.

31. Hitherto we have considered only positive numbers,

and there can be no doubt, but that the products which we
have seen arise are positive also : viz. -\- a hy -\- h must
necessai'ily give -\-ab. But we must separately examine

what the multiplication of -\-a by —b, and of —a. by — b,

will produce.

32. Let us begin by multiplying —a by 3 or +3. Now,
since —a may be considered as a debt, it is evident that if

we take that debt three times, it must thus become three

times greater, and consequently the required product is

~oa. So if we multiply — a by +&, we shall obtain —ba,
or, which is the same thing, —ab. Hence we conclude,

that if a positive quantity be multiplied by a negative quan-
tity, the product will be negative ; and it may be laid down
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as a rule, that + by + niakes 4- or plus; and that, on the

contrary, + by — , or — by +, gives — , or vmius.

33. It remams to resolve the case in which — is mul-
tiplied by — ; or, for example, — a by —b. It is evident,

at first sight, with regard to the letters, that the product will

be ah ; but it is doubtful whether tlie sign +, or the sign —

,

is to be placed before it ; all we know is, that it must be one

or the other of these signs. Now, I say that it cannot be

the sign — : for — « by +6 gives — a/?, and — « by —h can-

not produce the same result as —a by -\-b\ but must pro-

duce a contrary result, that is to say, +//6; consequently,

we have the following rule : — multiplied by — produces

-f , that is, the same as -j- multiplied by + *.

* A further illustration of this rule is generally given by
algebraists as follows

:

First, we know that -fa multiplied by -^-h gives the product

-\-ab ; and if +fl be multiplied by a quantity less than b, as b— c,

the product must necessarily be less than ah ; in short, from ab

we must subtract the product of a, multiplied by c ; hence
a X (A— c) must be expressed hy nb—nc ; therefore it follows

that a X — c gives the product —ac.
If now we consider the product arising from the multiplication

of the two quantities (a

—

b), and (c

—

d), we know that it is less

than diat of {a — b) x c, or of ac — be ; in short, from this pro-

duct we must subtract that of (a — b) x d; but the product

(a — b) X (c — d) becomes ac — be — ad, together with the

product of — b x —d annexed; and the question is only what
sign we must employ for this purpose, whether -j- or — , Now
we have seen that from the product ac — be we must subtract

the product of (a — b) x d, that is, we must subtract a quantity

less than ad; we have therefore subtracted already too much
by the quantity bd ; this product must therefore be added

j

that is, it must have the sign -f prefixed ; hence we see that

—bx —d gives -\-bd for a product ; or — minus multiplied by
— minus gives -\- phis. See Art. 273, 274.

Multiplication has been erroneously called a compendious
method of performing addition: whereas it is the taking, or re-

peating of one given number as many times, as the number by
which it is to be multiplied, contains units. Thus, 9x3 means
that 9 is to be taken 3 times, or that the measure of multiplica-

tion is 3 ; again, 9 x k means that 9 is to be taken half a time,

or that the measure of multiplication is f . In multiplication

there are two factors, which are sometimes called the mul-
tiplicand and the multiplier. These, it is evident, may re-

ciprocally change places, and the product will be still the same:
for 9 X 3 = 3 X 9, and 9 x 4^ = i X 9. Hence it appears, that

numbers may be diminished by multiplication, as well as in-

creased, in any given ratio, which is wholly incont:istent with
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34. The rules which we have explained ai'e expressed

more briefly as follows :

Like signs, multiplied together, give + ; unlike or con-

trary signs give — . Thus, when it is required to multiply

the following numbers; -fa, —6, — c, -\-d; we have first

+ a multiplied by —b, which makes —ab; this by — c,

gives +(ifjc; and this by +cl, gives -\-abcd.

S5. The difficulties with respect to the signs being I'e-

moved, we have only to shew how to multiply numbers that

arc themselves products. If we were, for instance, to mul-
tiply the number ub by the number cf?, the product would
be abed, and it is obtained by multiplying first ab by c, and
then the result of that multiplication by d. Or, if we had
to multiply 36 by 12; since 12 is equal to 3 times 4, we

the nature of Addition ; for 9 x f = 4f , 9 x i = 1, 9 x i7w=
-ni-!r, &c. The same will be found true with respect to algebraic

quantities; a X b = ab, —9 x 3 = —27, that is, 9 negative in-

tegers multiplied by 3, or taken 3 times, are equal to — 27, be-

cause the measure of multiplication is 3. In the same manner,

by inverting the factors, o positive integers multiplied by — 9,

or taken 9 times negatively, must give the same result. There-

fore a positive quantity taken negatively, or a negative quantity

taken positively, gives a negative product.

From these considerations, we may illustrate the present sub-

ject in a different way, and shew, that the product of two ne-

gative quantities must be positive. First, algebraic quantities

may be considered as a series of numbers increasing in any

ratio, on each side of nothing, to infinity. Let us assume a

small part only of such a series for the present purpose, in

which the ratio is unity, and let us multiply every term of it by
2.

5, 4, 3, 2, 1, 0,-1, -2, -3, -4, -5,
-2, -2, —2, -2, —2, ~2, —2, -2, -2, -2, -2,

-10, -8, -6, -4, -2, 0, +2, +4, +6, +8, +10.

Here, of course, we find the series inverted, and the ratio dou-

bled. Farther, in order to illustrate the subject, we may con-

sider the ratio of a series of fractions between 1 and 0, as

indefinitely small, till the last term being multiplied by —2, the

product would be equal to 0. If, after this, the multiplier

having passed the middle term, 0, be multiplied into any negative

term,however small, between and — 1, on the other side of the

series, the product, it is evident, must be positive, otherwise the

series could not go on. Hence it appears, that the taking of a

negative quantity negatively destroys the very property of ne-

gation, and is the conversion of negative into positive numbers.

So that if + X — = —, it necessarily follows that — x — must
give a contrary product, that is, +. See Art. 176, 177.
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jsliould only multiply 36 first by 3, and then the product

108 by 4, in order to have the whole product of the mul-

tiplication of 12 by 36, which is consequently 432.

36. But if we wished to multiply Dab by ocd, we might

write 3cd x 5ab. However, as in the present instance the

order of the numbers to be multiplied is indifferent, it will

be better, as is also the custom, to place the common num-
bers before the letters, and to express the product thus:

5 X 'Sahcd, or loahcd; since 5 times 3 is 15.

So if we had to multiply X^jjqr by 1[xj/, we should obtain

12 X 1iJ}q}\vt/, or S^pqrxy.

CHAP. IV.

Of the Nature of zahole Numbers, or Integers, mt/i respect

to their Factors.

oT. We have observed that a product is generated by the

multiplication of two or more numbers together, and that

these numbers are called factors. Thus, the numbers

«, h^ c, d, are the factors of the product abed.

38. If, therefore, we consider all whole numbers as pro-

ducts of two or more numbers multiplied together, we shall

soon find that some of them cannot result from such a mul-

tiplication, and consequently have not any factors; while

others may be the products of two or more numbers mul-
tiplied together, and may consequently have two or more
factors. Thus 4 is produced by 2 x 2 ; 6 by 2 x 3 ; 8 by
2x2x2; 27 by 3 X 3 X 3 ; and 10 by 2 x 5, &c.

39. But on the other hand, the numbers 2, 3, 5, 7, 11,

13, 17, &c. cannot be represented in the same manner by
factors, unless for that purpose we make use of unity, and
represent 2, for instance, by 1 x 2. But the numbers
which are multiplied by 1 remaining the same, it is not

proper to reckon unity as a factor.

AH numbers, therefore, such as 2, 3, 5, 7, 11, 13, 17,

&c. which cannot be represented by factors, are called

simple, or prime numbers ; whereas others, as 4, 0, 8, 9, 10,

12, 14, 15, 16, 18, &c. which may be re})rcsented by
factors, are called composite muiibcrs.

iO. Simple or prime numbers deserve therei'ore par-

ticular attention, since they do not result irom the mul-
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tiplication of two or more numbers. It is also particularly

worthy of" observation, that if we write these numbers in suc-

cession as they follow each other, thus,

o, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, &c.*

we can trace no regular order ; their increments being some-

times greater, sometimes less ; and hitherto no one has been

able to discover whether they follow any certain law or not.

41. All composite numbers, which may be represented

by factors, result from the prime numbers above mentioned

;

that is to say, all their factors are prime numbers. For, if

we find a factor which is not a prime number, it may always

be decomposed and represented by two or more prime num-
bers. When we have represented, for instance, the number

* All the prime numbers from 1 to 100000 are to be found

in the tables of divisors, which I shall speak of in a succeeding

note. But particular tables of the prime numbers from 1 to

101000 have been published at Halle, by M. Kruger, in a Ger-

man work entitled '' Thoughts on Algebra;" M. Kruger had

received them from a person called Peter Jaeger, who had cal-

culated them. M. Lambert has continued these tables as far as

102000, and republished them in his supplements to the loga-

rithmic and trigonometrical tables, printed at Berlin in 1770;
a work which contains likewise several tables that are of great

use in the different branches of mathematics, and explanations

which it v/ould be too long to enumerate here.

The Royal Parisian Academy of Sciences is in possession of

tables of prime numbers, presented to it by P. Mercastel de

I'Oratoire, and by M. du Tour ; but they have not been pub-

lished. They are spoken of in Vol. V. of the Foreign Memoirs,

with a reference to a memoir, contained in that volume, by M,
Rallier des Ourmes, Honorary Counsellor of the Presidial Court

at Rennes, in which the author explains an easy method of

finding prime numbers.

In the same volume we find another method by M. Rallier des

Ourmes, which is entitled, " A new Method for Division, when
the Dividend is a Multiple of the Divisor, and may therefore be
divided without a Remainder ; and for the Extraction of Roots

when the Power is perfect." This method, more curious, in-

deed, than useful, is almost totally different from the common
one : it is very easy, and has this singularity, that, provided we
know as many figures on the right of the dividend, or the power,

as there are to be in the quotient, or the root, we may pass over

the figures which precede them, and thus obtain the quotient.

M. Rallier des Ourmes was led to this new method by refiecting

on the numbers terminating the numerical expressions of pro-

ducts or powers, a species of numbers which I have remarked

also, on other occasions, it would be useful to consider. F. T.
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30 by 5 X 6, it is evident that G not being a prime number,

but being produced by 2 x 3, we might have represented

30 by 5 X 2 X 3, or by 2 X 3 X 5 ; that is to say, by fac-

tors which are all prime numbers.

42. If we now consider those composite numbers which may
be resolved into prime factors, we shall observe a great dif-

ference among them; thus we shall find that some have

only two factors, that others have three, and others a still

greater number. We have already seen, for example,

that

4 is the same as 2 x 2,

8 - - - 2x2x2,
10 - - - - 2x5,
14 - - - - 2x7,
16 - - 2x2x2x2,

6 is the same as 2 x 3,

9 - - - - 3x3,
12 - - - 2x3x2,
15 - - - - 3x5,
and so on.

n (2x45,
i V is the same as -< 3 x 15, and lastly

;) (3x5.

43. Hence, it is easy to find a method for analysing any

number, or resolving it into its simple factors. Let there be

proposed, for instance, the number 360; we shall represent

it first by 2 x 180. Now 180 is equal to 2 x 90, and

90
45
15

So that the number 360 may be represented by these

simple factors, 2 x2x2x3x3x5; since all these

numbers multiplied together produce 3G0 *.

44. This shews, that prime numbers cannot be divided

by other numbers; and, on the other hand, that the simple

factors of compound numbers are found most conveniently,

and with the greatest certainty, by seeking the simple, or

prime numbers, by which those compound numbers are

divisible. But for this division is necessary ; we shall there-

fore explain the rules of that operation in the following

chapter.

* There is a table at the end of a German book of arithmetic,

published at Leipsic, by Poctius, in 172S, in which all the

numbers from 1 to 10000 are represented in this manner by

their simple factors. F. T.
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CHAr. V.

Of the Division o/" Simple Quantities.

45. When a number is to be separated into two, three, or

more equal parts, it is done by means of" division, which

enables us to determine the magnitude of one of those parts.

Wlien we wish, for example, to separate the number 12 into

three equal parts, we find by division that each of those

parts is equal to 4.

The following terms are made use of in this operation.

The number which is to be decompounded, or divided, is

called the dividend; the number of equal parts sought is

called the divisor; the magnitude of one of tliose parts,

determined by the division, is called the quotient: thus, in

the above example,

12 is the dividend,

3 is the divisor, and
4 is the quotient.

46. It follows from this, that if we divide a number by 2,

or into two equal parts, one of those parts, or the quotient,

taken twice, makes exactly the number proposed ; and, in

the same manner, if we have a number to divide by 3, the

quotient taken thrice must give the same number again. In
general, the multiplication of the quotient by the divisor

must always reproduce the dividend.

47. It is for this reason that division is said to be a rule,

which teaches us to find a number or quotient, which, being-

multiplied by the divisor, will exactly produce the dividend.

For example, if 35 is to be divided by 5, we seek for a

number which, multiplied by 5, will produce 35. Now,
this number is 7, since 5 times 7 is 35. The manner of

expression employed in this reasoning, is ; 5 in '^5 goes 7
times; and 5 times 7 makes 35.

48. The dividend therefore may be considered as a product,

of which one of the factors is the divisor, and the other the

quotient. Thus, supposing we have 63 to divide by 7, we
endeavour to find such a product, that, taking 7 for one of

its factors, the other factor multiplied by this may exactly

give 63. Now 7 x 9 is such a product, and consequently

i) is the quotient obtained when we divide 63 by 7.

49. In general, if we have to divide a number ah by «, it

is evident that the quotient will be 6 ; for a multiplied by b
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gives the dividend ah. It is clear also, that if wc had to

divide ah by (>, the quotient Avould be a. And in all ex-

amples of division that can be proposed, if we divide the

dividend by the quotient, we shall again obtain the divisor;

for as 24 divided by 4 gives 6, so 24 divided by 6 will

give 4.

50. As the whole operation consists in representing the

dividend by two factors, of which one may be equal to the

divisor, and the other to the quotient, tlie following ex-

amples will be easily vmderstood. I say first that the di-

vidend abc, divided by a, gives he ; for a, multiplied by he,

produces ahc : in the same manner ahe, being divided by h,

we shall have ac ; and ahe, divided by ae, gives b. It is

also plain, that IQ-mn, divided by 3???, gives A<n ; for ow,
multiplied by ^n, makes \%nn. But if this same number
12mw had been divided by 12, we should have obtained the

quotient vin.

51. Since every number a may be expressed by \a, or a,

it is evident that if we had to divide a, or 1«, by 1, the

quotient would be the same number a. And, on the con-

trary, if the same number a, or la, is to be divided by a,

the quotient will be 1.

52. It often happens that we cannot represent the di-

vidend as the product of two factors, of which one is equal

to the divisor ; hence, in this case, the division cannot be
performed in the manner we have described.

When we have, for example, 24 to divide by 7, it is at

first sight obvious, that the number 7 is not a factor of 24

;

for the product of 7 X 3 is only 21, and consequently too

small ; and 7x4 makes 28, which is greater than 24. We
discover, however, from this, that the quotient must be
greater than 3, and less than 4. In order therefore to de-

termine it exactly, we employ another species of numbers,
which are axWed fraetions, and which we shall consider in

one of the following chapters.

5o. Before we proceed to the use of fractions, it is usual

to be satisfied with the whole number which approaches

nearest to the true quotient, but at the same time paying

attention to the rcmamder which is left; thus we say, 7 in

24 goes 3 times, and the remainder is 3, because 3 times 7
produces only 21, which is o less than 24. We may also

consider the following examples in the same manner

:

G)34(5, that is to say, the divisor is 6, the

30 dividend 84, the quotient 5, and the

remainder 4.
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9)41(4, here tlic divisor is 9, the dividend

36 41, the quotient 4, and the reraain-

der 5.

5
The following rule is to be observed in examples where

thei'e is a remainder.

54. Multiply the divisor by the quotient, and to the pro-

duct add the remainder, and the result will be the dividend.

This is the method of proving the division, and of dis-

covering whether the calculation is right or not. Thus, in

the first of the two last examples, if we multiply 6 by 5,

and to the product 30 add the remainder 4, we obtain 34,

or the dividend. And in the last example, if we multiply

the divisor 9 by the quotient 4, and to the product 36 add
the remainder 5, we obtain the dividend 41.

55. Lastly, it is necessary to remark here, with regard to

the signs + plus and — minvs, that if we divide -{-ab by
-}-«, the quotient will be -]-b, v/hich is evident. But if we
divide -{-ab by —a, the quotient will be —6; because —a
X —b gives -\-ab. If the dividend is - ab, and is to be

divided by the divisor -fa, the quotient will be ~b; because

it is —6 which, multiplied by +a, makes — ab. Lastly,

if we have to divide the dividend —ab by the divisor —a,
the quotient will be +b; for the dividend —ab is the

product of —a by +Z'.

56. With regard, therefore, to the signs + and — , di-

vision requires the same rules to be observed that we have

seen take place in multiplication ; viz.

+ by + makes + ; + by — makes — ;

— by -f makes —
; —by — makes + :

or, in few words, like signs give phis, and unlike signs give

minus.

57. Tlius, when we divide 18/;^ by —Sp, the quotient is

— 6q. Farther

;

— SOxf/ divided by -\-6t/ gives —5x, and
— 5i-abc divided by —9b gives + 6ac ;

for, in this last example, —96 multiplied by -f6ac makes
— 6 X Qabc, or —54<abc. But enough has been said on the

division of simple quantities ; we shall tlierefore hasten to

the explanation of fractions, after having added some further

remarks on the nature of numbers, with respect to their

divisors.
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CHAP. VI.

Of the Properties o^ Integers, ^cith respect to their Divisors.

58. As we have seen that some numbers are divisible by
certain divisors, while others are not so ; it will be proper,

in order that we may obtain a more particular knowledge of

numbers, that this difference should be carefully observed,

both by distinguishing the numbers that are divisible liy

divisors from those which are not, and by considering the

remainder that is left in the division of the latter. For this

purpose let us examine the divisors

;

2, 3, 4, 5, 6, 7, 8, 9, 10, &c.

59. First let the divisor be 2 ; the numbers divisible by it

are, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, &c. which, it appears,

increase always by two. These numbers, as far as they can

be continued, are called even numbers. But there are other

numbers, viz.

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 8cc.

which are uniformly less or greater than the former by unity,

and which cannot be divided by 2, without the remainder 1

;

these are called odd numbers.

The even numbers are all comprehended in the general

expression 2fl ; for they are all obtained by successively sub-

stituting for a the integers 1, 2, 3, 4, 5, 6, 7, he. and hence

it follows that the odd numbers are all comprehended in the

expression 2a -f- 1, because 2a -|- 1 is greater by unity than

the even number 2a.

60. In the second place, let the number 3 be the divisor;

the numbers divisible by it are,

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, and so on

;

which numbers may be represented by the expression 3a

;

for oa, divided by 3, gives the quotient a without a re-

mainder. All other numbers which we would divide by 3,

will give 1 or 2 for a remainder, and are consequently of

two kinds. Those which after the division leave the re-

mainder 1, are,

1, 4, 7, 10, 13, 16, 19, &c.

and are contained in the expression 3a -|- 1 ; but the other

kind, where the numbers give the remainder 2, are,

2, 5, 8, 11, 14, 17, 20, &c.

which may be generally represented by 3a -|- 2 ; so that all

numbers may be expressed either by 3a, or by 3a -J- 1, or

by 3a + 2.
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Gl. Let us now suppose that 4 is the divisor under con-

sideration ; then the numbers which it divides are,

4, 8, 12, IG, 20, 9A, &c.

which increase uniformly by 4, and are comprehended in

the expression 4«. All other numbers, that is, those which

are not divisible by 4, may either leave the remainder 1, or

be greater than tlie former by 1 ; as,

1, 5, 9, 13, 17, 21, 25, &c.

and consequently may be comprehended in the expression

Ata -\-l: or they may give the remainder 2 ; as,

2, 6, 10, 14, 18, 22, 26, Sec.

and be expressed by 4« -j- 2 ; or, lastly, they may give the

remainder 3 ; as,

3, 7, 11, 15, 19, 23, 27, &c.
and may then be represented by the expression 4« -\- 3.

All possible integer numbers are contained therefore in

one or other of these four expressions;

4<a, 4a -{- 1, 4« + 2, 4« + 3.

62. It is also nearly the same when the divisor is 5;
for all numbers which can be divided by it are compre-
hended in the expression 5a, and those which cannot be
divided by 5, are reducible to one of the following ex-

pressions :

5a -f 1, 5a -i- 2, 5a + 3, 5a + 4

;

and in the same manner v/e may continue, and consider any
greater divisor.

63. It is here proper to recollect what has been already
said on the resolution of numbers into their simple factors

;

for every number, among the factors of which is found

2, or 3, or 4, or 5, or 7,

or any other number, will be divisible by those numbers.
For example ; 60 being equal to 2 X 2 x 3 x 5, it is

evident that 60 is divisible by 2, and by 3, and by 5 *.

* There are some numbers which it is easy to perceive
whether they are divisors of a given number or not.

1. A given number is divisible by 2, if the last digit is even

;

it is divisible by 4, if the two last digits are divisible by 4 ; it is

divisible by 8, if the three last digits are divisible by 8 ; and,
in general, it is divisible by 2", if the n last digits are divisible

by 2".

2. A number is divisible by 3, if the sum of the digits is di-

visible by 3 ; it may be divided by 6, if, beside this, the last

digit is even ; it is divisible by 9, if the sum of the digits may
be divided by 9.

3. Every number that has the last digit or 5, is divisible

by 5.

c
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64. Farther, as the general expression ahcd is not only

divisible by a, and b, and c, and d, but also by
ab, ac, ad, be, bd, cd, and by
abc, abd, acd, bed, and lastly by
abed, that is to say, its own value;

it follows that 60, or 2 x 2 x 3 x 5, may be divided not

only by these simple numbers, but also by those which are

composed of any two of thcra; that is to say, by 4, 6, 10,

15 : and also by those which are composed of any three of

its simple factors ; that is to say, by 12, 20, 30, and lastly

also, by 60 itself

65. When, therefore, we have represented any number,
assumed at pleasure, by its simple factors, it will be very

easy to exhibit all the numbers by %vliich it is divisible.

For we have only, first, to take the simple factors one by
one, and then to multiply them together two b}- two,

4. A number is divisible by 11, when the sum of the first

third, fifdi, S:c. digits is equal to the sum of the second, fourth,

sixth, tSrc. digits.

It would be easy to explain the reason of these rules, and to

extend them to the products of the divisors which we have just

now considered. Rules might be devised likewise for some other

numbers, but the application of them would in general be longer

than an actual trial of the division.

For example, I say that the number 53704689213 is divisible

by 7, because I find that the sum of tlie digits of the number
G'l-OOiSij^SS is divisible by 7; and this second number is formed,

according to a very simple rule, from the remainders found after

dividing the component parts of the former number by 7.

Thus, 53704689213 = 50000000000 + 3000000000 +
700000000 + + 4000000 + 600000 + 80000 + 9000 + 200
-|- 10 + 3 ; which being, each of them, divided by 7, will leave

the remainders 6, 4, 0, 0, 4, 2, 4, 5, 4, 3, 3, the number here
given.

If a, b, c, d, e, S:c. be the digits composing any number, the

number itself may be expressed universally thus; a + lOb +
10-c -f lO^d -\- 10*e, &c. to 10"s; where it is easy to perceive

that, if each of the terms a, 106, lO^'c, &c. be divisible by n, the

number itself a + 10b + lO^c, Sec. will also be divisible by n.

^ , .^ fl lOb 10"-c ^ . ^ . , „ . .

And, if — , , , &c. leave the remamders;?, a, r, &c. it is
n n n

obvious, that a + 106 + lO-c, &c. will be divisible by n, when

p + q -\- r, is divisible by n ; which renders the principle of the

rule sufficiently clear.

The reader is indebted to that excellent mathematician, the

late Professor Bonnycastle, for this satisfactory illustration of

M. Bernoulli's note.
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three by three, four by four, &c. till we arrive at the number
proposed.

66. It must here be particularly observed, that every

number is divisible by 1 ; and also, that every number is

divisible by itself; so that every number has at least two

factors, or divisors, the number itself, and unity: but every

number which has no other divisor than these two, belongs

to the class of numbers, which we have before called siviple,

or privie ninnbei'S.

Except these simple numbers, all other numbers have,

beside unity and themselves, other divisors, as may be seen

from the following Table, in which are placed under each

number all its divisors *.

TABLE.

1 2 3 4. 5 6|7 8 9 10 11 12 13 14 15 \6 17 18 19 20

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 2 5 2 7 2 3 2 11 2 13 2 3 2 17 2 19 2
4 3

6
4
8

9 5

10
3

4

6
12

7

14

5

15

4
8

16

3

6
9
18

4
5

10

20

1 2 2 3 2 4. 2 4 3 4 2 6 2 4 4 5 2 6 2 6

p. P. P. P. P. P. P. R P.

67. Lastly, it ought to be observed that 0, or nothing;

may be considered as a number which has the property of
being divisible by all possible numbers; because by what-
ever number a we divide 0, the quotient is always ; for it

must be remarked, that the multiplication of any number
by nothing' produces nothing, and therefore times a, or

Oa, is 0.

* A similar Table for all the divisors of the natural numbers,
from 1 to 10000, was published at Leyden, in 1767, by M,
Hem-y Anjema. We have likewise another table of divisors,

which goes as far as 100000, but it gives only the least divisor

of each number. It is to be found in Harris's Lexicon Tech-
nicum, the Encyclopedie, and in M. Lambert's Recueil, which
we have quoted in the note to p. 11. In this last work, it is

continued as far as 102000. F. T.

c2



20 ELEMENTS SECT. I.

CHAP. VII.

(yFractions in general.

68. When a number, as 7, for instance, is said not to be

divisible by another number, let us suppose by 3, this only

means, that the quotient cannot be expressed by an integer

number; but it must not by any means be thought that it

is impossible to form an idea of that quotient. Only
imagine a line of 7 feet in length ; nobody can doubt the

possibility of dividing this line into 3 equal parts, and of

forming a notion of the length of one of those parts.

69. Since therefore we may form a precise idea of the

quotient obtained in similar cases, though that quotient may
not be an integer number, this leads us to consider a par-

ticular species of numbers, cvi\\ei\ fractions, or broken num-
bers; of which the instance adduced furnishes an illustration.

For if Ave have to divide 7 by 3, we easily conceive the

quotient which should result, and express it by \- ; placing

the divisor under the dividend, and separating the two

numbers by a stroke, or line.

70. So, in general, when the number a is to be divided by

the number b, we represent the quotient by — , and call

this form of expression a fraction. We cannot therefore

give a better idea of a fraction —-, than by saying that it ex-

presses the quotient resulting from the division of the upper
number by the lower. We must remember also, that in all

fractions the lower number is called the denominator, and
that above the line the numerator.

71. In the above fraction |-, which Ave read seven thirds,

7 is the numerator, and 3 the denominator. We must also

i-ead ^, two thirds ; 1^, three fourths ; 1, three eighths ; ~i-^,

twelve hundredths; and ^, one half, &c.

72. In order to obtain a more pex-fect knowledge of the

nature of fractions, we shall begin by considering the case

in which the numerator is equal to the denominator, as in

— . Now, since this expresses the quotient obtained by

dividing a by a, it is evident that this quotient is exactly

unity, and that consequently the fraction — is of the same
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value as 1, or one integer ; for the same reason, all the Ibl-

lowing fractions,
i f + 5 6 7 8 Stp
T5 T' 4 » T' "6' T' T' "^^•

are equal to one another, each being equal to 1, or one
integer.

7S. We have seen that a fraction whose numerator is

equal to the denominator, is equal to unity. All fractions

therefore whose numerators are less than the denominators,

liave a value less than unity ; for if I have a number to

divide by another, which is greater than itself, the result

must necessarily be less than 1. If we cut a line, for ex-

ample, two feet long, into three parts, one of those parts will

undoubtedly be shorter than a foot: it is evident then, that

-i is less than 1, for the same reason ; that is, the numerator
2 is less than the denominator 3.

74'. If the numerator, on the contrary, be greater than the

denominator, the value of the fraction is greater than unity.

Thus
-I is greater than I, for | is equal to I- together with f.

Now
-I-

is exactly 1 ; consequently f is equal to 1 -|- f , that

is, to an integer and a half In the same manner, i is equal

to 1~, I-
to 1~, and |- to 2}. And, in general, it is sufficient

in such cases to divide the u]")per number by the lower, and
to add to the quotient a fraction, having the remainder for

the numerator, and the divisor for the denominator. If the

given fraction, for example, were |4j "^^ should have for the

quotient 3, and 7 for the remainder; whence we should

conclude that -f | is the same as 3/^^.

75. Thus we see how fractions, whose numerators are

greater than the denominators, are resolved into two mem-
bers ; one of which is an integer, and the other a fractional

number, having the numerator less than the denominator.

Such fractions as contain one or more integers, are called

improperJ'ractions, to distinguish them from fractions pro-

j)erly so called, which having the numerator less than the

denominator, are less than unity, or than an integer.

76. The nature of fractions is frequently considered in

another way, which may throw additional light on the sub-

ject. If, for example, we consider the fraction i, it is evident

that it is three times greater than J. Now, this fraction ~
means, that if we divide 1 into 4 equal parts, this will be the

value of one of those parts; it is obvious then, that by
taking 3 of those parts we shall have the value of the

fraction 1.

In the same manner we may consider every other fraction
;

for example, -/^ ; if we divide unity into 12 equal parts, 7 of

ihose pxu'ts will be equal to the fraction proposed.
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77. From this manner of considering fractions, the ex-

pressions numerator and denominator are derived. For, as

in the preceding fraction -^j the number under the line

shews that 12 is the number of parts into which unity is to

be divided ; and as it may be said to denote, or name, the

parts, it has not improperly been called the denominator.

Farther, as the upper number, viz. 7, shews that, in order

to have the value of the fraction, we must take, or collect, 7
of those parts, and therefore may be said to reckon or num-
ber them, it has been thought proper to call the number
above the line the numerator.

78. As it is easy to understand what A is, when we know
the signification of J, we may consider the fractions whose

numerator is unity, as the foundation of all others. Such
are the fractions,IIIIIIII 1 1 I iirf.

"a? T' T' T> ^J y S"' T' To» TT5 TzJ "'^'

and it is observable that these fractions go on continually

diminishing: for the more you divide an integer, or the

greater the number ofparts into which you distribute it, the less

does each of those parts become. Thus, — ^ is less than —^ ;

-P^Vo is less than -pi^; and t^^^o is less than -r^, &c.

79. As we have seen that the more we increase the de-

nominator of such fractions the less their values become, it

may be asked, whether it is not possible to make the de-

nominator so great that the fraction shall be reduced to

nothing.? I answer, no; for into whatever number of parts

unity (the length of a foot, for instance) is divided; let

those parts be ever so small, they will still preserve a certain

magnitude, and therefore can never be absolutely reduced

to nothing.

80. It is true, if we divide the length of a foot into 1000

parts, those parts will not easily fall under the cognisance of

our senses ; but view them through a good microscope, and

each of them will appear large enough to be still subdivided

into 100 parts, and more.

At present, however, we have nothing to do with what

depends on ourselves, or with what we are really capable of

performing, and what our eyes can perceive ; the question

is rather what is possible in itself: and, in this sense, it is

certain, that however great we suppose the denominator, the

fraction will never entirely vanish, or become equal to 0.

81. We can never therefore arrive completely at 0, or

nothing, however great the denominator may be ; and, con-

sequently, as those fractions must always preserve a cer-

tain quantity, wc may continue the scries of fractions in the

7Sth article without interruption. This circumstance has in-
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troduced tlic expression, that the denominator must be in-

Jinite, or infinitely great, in oi-der that the Traction may be
reduced to 0, or to notliing-; hence the word mfinite m
reahty signifies here, that we can never arrive at the end of

the series of the above-mentioned //•«c/io?z.y.

S2. To express this idea, according to the sense of it

above-mentioned, ,we make use of the sign oo , which con-

secjuently indicates a number infinitely great; and we may
therelbre say, that this fraction ^ is in reality nothing ; be-

cause a fraction cannot be i*educed to nothing, until the

denominator has been increased to injtnity.

83. It is the more necessary to pay attention to this idea of

infinity, as it is derived from the first elements of our know-
ledge, and as it will be of the greatest importance in the

following part of this treatise.

We may hei-e deduce from it a few consequences that are

extremely curious, and worthy of attention. The fraction ^
represents the quotient resulting from the division of the

dividend 1 by the divisor cc. Now, we know, that if we
divide the dividend 1 by the quotient ^, which is equal to

nothing, we obtain again the divisor co : hence we acquire

a new idea of infinity ; and learn that it arises from the

division of 1 by 0; so that we are thence authorised in

saying, that 1 divided by expresses a number infinitely

great, or go.

84. It may be necessary also, in this place, to correct tlie

mistake of those who assert, that a number infinitely great

is not susceptible of increase. This opinion is inconsistent

with the just principles which we have laid down; for ^
signifying a number infinitely great, and ^ being incon-

testably the double of -' , it is evident that a number, though
infinitely great, may still become twice, thrice, or any num-
ber of times greater *.

* There appears to be a fallacy in this reasoning, which con-

sists in taking the sign of infinit}' for infinity itself; and applying
the property effractions in general to a fractional expression,

whose denominator beai's no assignable relation to unity. It is

certain, that infinity may be represented by a series of units (that

is, by ^ = = 1-1-1 -1-1, &c.) or by a series of numbers

increasing in any given ratio. Now, though any definite part

of one infinite series may be the half, the third, &c. of a definite

part of another, yet still that part bears no proportion to the

whole, and the series can only be said, in that case, to go on to

infinity in a different ratio. But, farther, ^j oi" ^my other nu-
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CHAP. VIII.

Of the Properties o/" Fractions.

85. We have already seen, that each of the fractions,
2 5 4 !. 6 7 8 S,p
Ti TJ T> fJ T' T> TJ ^^^'

makes an integer, and that consequently they are all equal

to one another. The same equality prevails in the following

fractions,
2 4 6 8 10 12 firp
XJ ir» T5 T» "5 ' T ' <-"•>-.

each of them making two integers; for the numerator of

each, divided by its denominator, gives 2. So all the fractions
3 6 9 12 15 18 C^f.
7> 7J TJ 4 J T » T 5

'•'•»^>

are equal to one another, since o is their common value.

86. We may likewise represent the value of any fraction

in an infinite variety of ways. For if we multiply both the

nuinerator and the denominator of a fraction by the same
number, which may be assumed at pleasure, this fraction will

still preserve the same value. For this reason, all the

fractions 12145 6 7 8 TIO 0,„
2» ^j T» T' TO"? TT5 tTJ T-^^ T¥' T^J tX-^'

are equal, the value of each being g. Also,1234 5 6 7 'IOfi,y>
3> T' T' TTJ TT' "TT> "3T> TT' "5"y> ITTJ «^*^'

are equal fractions, the value of each being ^. The fractions
2 4 8 101214 I fi o
SI T' TTTJ XT' T-aJ "SXJ TTTJ '*-"^'

have likewise all the same value. Hence we may conclude,

in general, that the fraction -j- may be represented by any

of the following expressions, each of which is equal to y ; viz.

merator, having for its denominator, is, when expanded,
precisely the same as ^.

2 ...
Thus, T = -^—5» by division becomes

2—2)2 (1 + 1 + 1, &c. ad infinitum

2—2

2
2—2

2
2-2

2, &c.
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a 2a 3a ^a 5a 6a la

y 26' JV 46' 56' 66' 76'

87. To be convinced of this, we have only to write for the

value of the fraction -j- a certain letter c, representing by

this letter c the quotient of the division of a by 6 ; and to

recollect that the multiplication of the quotient c by the

divisor 6 must give the dividend. For since c multiplied by

6 gives a, it is evident that c multiplied by 26 will give "Zu,

that c multiplied by 36 will give oa, and that, in general, c

multiplied by mb will give ma. Now, changing this into an

example of division, and dividing the product ma by mh,

one of the factors, the quotient must be equal to the other

factor c; but ma divided by mh gives also the fraction

—
, , which is consequently equal to c; which is what was to

be proved ; for c having been assumed as the value of the

fraction -y, it is evident that this fraction is equal to the

ma 111/^
fraction —7, whatever be the value 01 m.

mo
88. We have seen that every fraction may be represented

in an infinite number of forms, each of which contains the

same value ; and it is evident that of all these forms, that

which is composed of the least numbers, will be most easily

miderstood. For example, we might substitute, instead of

|, the following fractions,
4 6 S 10 12 0,„
•6' T5 TT) Ty» T8> '-'-*-•

but of all these expressions |. is that of which it is easiest to

form an idea. Here therefore a problem arises, how a

fraction, such as ^2:? which is not expressed by the least

])ossible numbers, may be reduced to its simplest form, or to

its least terms; that is to say, in our present example, to ~.

89. It will be easy to resolve this problem, if we consider

that a fraction still preserves its value, when we multiply

both its terms, or its numerator and denominator, by the

same number. For from this it also follows, that if we
divide the numerator and denominator of a fraction by the

same number, the fraction will still preserve the same value.

This is made more evident by means of the general ex-

pression —, ; for if we divide both the numerator ma and
' mb
the denominator mb by the number m, we obtain the fraction

a ,
.

,

.
ma

-T-, Avhich, as was before proved, is equal to —r-
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90. In order therefore to reduce a given fraction to its

least terms, it is required to find a number, by which both

the numerator and denominator may be divided. Such a

number is called a common diviso)- ; and as long as we can

find a common divisor to the numerator and the denominator,

it is certain that the fraction may be reduced to a lower

form; Ijut, on the contrary, when we see that, except unity,

no other common divisor can be found, this shews that the

fraction is already in its simplest form.

91. To make this more clear, let us consider the fraction

_*_§^. We see immediately that both the terms are divisible

by % and that there results the fraction U ; which may also

be divided by 2, and reduced to i-J ; and as this likewise

has 2 for a common divisor, it is evident that it may be re-

duced to -—-. But now we easily pei'ceive, that the nume-
rator and denominator are still divisible by 3 ; performing

this division, therefore, we obtain the fraction |-, which is

equal to the fraction proposed, and gives the simplest ex-

pression to which it can be reduced ; for 2 and 5 have no

common divisor but 1, which cannot diminish these numbers
any farther.

92. This property of fractions preserving an invariable

value, whether we divide or multiply the numerator and
denominator by the same number, is of the greatest import-

ance, and is the principal foundation of the doctrine of

fractions. For example, we can seldom add together two

fractions, or subtract the one from the other, before we have,

by means of this property, reduced them to other forms;

that is to say, to expressions whose denominators are equal.

Of this we shall treat in the following chapter.

93. We will conclude the present, however, by remarking,

that all whole numbers may also be represented by fractions.

For example, 6 is the same as ~, because 6 divided by 1

makes 6 ; we may also, in the same manner, express the

mmiber 6 by the fractions \^, '-j?, ^-^, \^, and an infinite

number of others, which have the same value.

QUESTIONS FOR PRACTICE.

1. Reduce —;; r- to its lowest terms Ans. —

•

ca--f-a^x a-

^>s A- /j-i •>*- __ /)/r

2. Reduce ——r^r r. to its lowest terms. Ans. r-r- •

3. Reduce —,—7—-^ to its lowest terms. Ans. —r

—
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4. Reduce -7 1 to its lowest terms. An$.

5. Reduce -5 ; —.—. to its lowest terms.
a^—a'x— ax--Yx^

a— x

6. Reduce -^

—

. ,-. , t . r> ~T~i—i to its lowest terms.
c^x-\-Aa'x -\-^w.r -f

.1^

^'/W. ——; ^-1—
:,a x-\-ax A^ x^

CHAP. IX.

Ofilie Addition and Subtraction o/" Fractions.

94. When fractions have equal denominators, there is no

difficulty in adding and subtracting them ; for \ -{- \ is

equal to ?, and ± — ^ is ecjual to |. In this case, therefore,

either for addition or subtraction, we alter only the nume-

rators, and place the common denominator under the line,

thus

;

-^ + -rlis - To^ --Ik^ ^% is equal to ^|^ ;

14 - tV - fl + 44 is equal to ^^, or i|-;

i-% - ^ — 14 + ^-0 is equal to i|, or ± ;

also i. + I-
is equal to -3-5 o^ 1, that is to say, an integer ; and

2. — |. -{- i is equal to ^, that is to say, nothing, or 0.

95. But when fractions have not equal denominators, we

can always change them into other fractions that have the

same denominator. For example, when it is proposed to

add together the fractions j and 4-, we must consider that ^

is the same as |, and that
-f

is equivalent to ~ ; we have

therefore, instead of die two fractions proposed, ^ -[- |, the

sum of which is A. And if the two fractions were united by

die sign minus as | — -f
, we should have 1. — |, or ~.

As another example, let the fractions proposed be |^ -j- |.

Here, since |- is the same as |-, this value may be substituted

for I, and we may then say |^ + |- makes —, or 1|-.

Suppose farther, that the sum of i and ^ were required, I

say that it is -^ ; for ^ = -j^, and ^ = ^\ : therefore -^^

96. Wc may have a greater number of fractions to reduce
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to a common denominator ; for example, |, ^, |-, ±, |. In
this case, the whole depends on finding a number that shall

be divisible by all the denominators of those fractions. In

this instance, 60 is the number which has that property, and
which consequently becomes the common denominator. We
shall therefore have i°, instead of j ; 4-°, instead of ^ ; ±i-,

instead of | ; -|-|, instead of ^ ; and |-°, instead of |. If

now it be required to add together all these fractions |^,

^, ^1, ^l, and 44' ^^6 have only to add all the numerators,

and under the sum place the common denominator CO ; that

is to say, Ave shall have yJ , or 3 integers, and the fractional

remainder 4^.

97. I'he whole of this operation consists, as we before

stated, in changing fractions, whose denominators are un-

equal, into others whose denominators are e(|ual. In order,

therefore, to perform it generally, let -^ and -y be the frac-

tions pi'oposed. First, multiply the two terms of the

first fraction l)y d, and we shall have the fraction yj equal

to
-J-

; next multiply the two terms of the second fraction

by b, and we shall have an equivalent value of it expressed

be
by -T--. thus the two denominators are become equal. Now,

•^ bd ^

if the sum of the two proposed fractions be required, we

may immediately answer that it is —j—,— ; and if their clit-

..ad— bc
p , (. .

ference be asked, we say that it is —j-— . If the fractions

i- and ~, for example, were proposed, we should obtain, in

their stead, 4| and fl '> of which the sum is '/^' and the

difference |{- *.

1)8. To this part of the subject belongs also the question,

Of two proposed fractions which is the greater or the less ?

* The rule for reducing fractions to a common denominator

may be concisely expressed thus. Multiply each numerator

into every denominator except its own, for a new numerator,

and all the denominators together for the common denomi-

nator. When this operation has been performed, it will appear

that the numerator and denominator of each I'raction have been

multiplied by the same quantity, and consequently retain the

same value.
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for, to resolve this, we have only to reduce the two fractions

to the same denominator. Let us take, for example, the two

fractions \ and y; when reduced to the same denominator,

the first becomes 44, and the second {-f? where it is evident

that the second, or 4^, is the greater, and exceeds the former

Again, if the fractions 4 and |- be proposed, we shall have

to substitute for them ^* and ^{^ ; whence we may conclude

that I exceeds ^, but only by ^.^.

99. When it is required to subtract a fraction from an

integer, it is sufficient to change one of the units of that

integer into a fraction, which has the same denominator as

that which is to be subtracted ; then in the rest of the opera-

tion there is no difficulty. If it be required, for example, to

subtract ^ from .1, we write \ instead of 1, and say tliat ^
taken from f leaves the remainder I. So -^^, subtracted

from 1 , leaves v'^.

If it were required to subtract | from % we should write

1 and ^ instead of 2, and should then immediately see that

after the subtraction there must remain \i.

100. It happens also sometimes, that having added two

or more fractions together, we obtain more than an integer

;

that is to say, a numerator greater than the denominator

:

this is a case which has already occurred, and deserves

attention.

We found, for example [^Article 96], that the sum of the

five fractions f, f, f, 4^, and ^ was y^ , and remarked that

the value of this sum was 3|4 or 3^^ . Likewise, i + |-, or

^^ -\- -^, makes 4-1;, or 1 -jV- We have therefore only to

perform the actual division of the numerator by the deno-

minator, to see how many integers there are for the quotient,

and to set down the remainder.

Nearly the same must be done to add together numbers

compounded of integers and fractions; we first add the

fractions, and if the sum produces one or more integers, these

are added to the other integers. If it be proposed, for ex-

ample, to add 3j and 2|- ; we first take the sum of | and ~,

or of |- and t, which is ^, or 1^ ; and thus we find the total

sum to be 64.

QUESTIONS FOR PRACTICE.

1. Reduce — and — to a common denominator.
a c

9,cx ah
Am. — and —

ac ac
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a aA-b ,

% Reduce -r- and —^— to a common denommator.
c

ac ^ah-\-b-
Ans. -J- and

—

-.

be be

3. Reduce -^—, -^ , and d to fractions having a common

^cx 4Mb 6acd
denominator. ^72*. g^, g^ and -^ •

3 9,x 2.f

4. Reduce -r, -rr- and a 4- -^^ to a common denominator.
4 3 a

9a 8ax .12a--\-24;x
Ans.-z-^, 3-Tr-,and 1-5

12a' 12a 12a

^ , la- , x'^A-a^ -, . ^

5. Reduce ;z, — , and—;— , to a common denommator.
2 3 ' x-j-a

Qx-\-Sa 2a^.r-f2a^ Gx'-\-6a^

^'''' GH^' "^Qci ' 6x-l-6a
'

6. Reduce ^r-^ 7—, and — , to a common denominator.
2a'^ 2a' a

9.a"b 2a^c , 4a3£Z b ae 9.ad

^'''- 4^' 4^' ^"^ 4^ '

°' 2^^ 2^' ^"""^ 2^'

CHAP. X.

O/'^/ie Multiplication a??^? Division ©/"Fractions.

101. The rule for the multiplication of a fraction by an

integer, or whole number, is to multiply the numerator

only by the given number, and not to change the deno-

minator: thus,

2 times, or twice i makes ^, or 1 integer

;

2 times, or twice | makes ~; and

3 times, or thrice i makes i, or f

;

4 times -^^ makes ^, or lA, or 1~.

But, instead of this rule, we may use that of dividing the

denominator by the given integer, which is preferable, when

it can be done, because it shortens the operation. Let it be

required, for example, to multiply ^ by 3; if we multiply

the numerator by the given integer we obtain %^, which
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product vvc must reduce to |. But if we do not change

the numerator, and divide the denominator by the integer,

we find immediately |, or 2^, for the given product ; and,

in the same manner, -;|. multiphed by 6 gives y , or 3^.

102. In general, therefore, the product of the multiphca-

^ . a , . ac - , .
,

tion ot a fraction -y- by c is y ; and here it may be re-

marked, when the integer is exactly equal to the denominator,

that the product must be equal to the numerator.

r J taken twice, gives 1

;

So that < y taken thrice, gives 2

;

(^ I taken four times, gives 3.

And, in general, if we multiply the fraction -r- by the

number b, the product must be a, as we have already shewn

;

for since -j- expresses the quotient resulting from the di-

vision of the dividend a by the divisor b, and because it has

been demonstrated that the quotient multiplied by the divisor

will give the dividend, it is evident that j- multiplied by b

must produce a.

103. Having thus shewn how a fraction is to be mul-

tiplied by an integer ; let us now consider also how a Iraction

is to be divided by an integer. This inquiry is necessary,

before we proceed to the multiplication of fractions by frac-

tions. It is evident, if we have to divide the fraction i by
2, that the result must be | ; and that the quotient of |
divided by 3 is f. The rule therefore is, to divide the

numerator by the integer without changing the denominator.

Thus

:

i-|- divided by 2 gives — ;

ii divided by 3 gives ^tt ' ^w<i

4|- divided by 4 gives~ ; &.c.

104. This rule may be easily practised, provided the

numerator be divisible by the number proposed ; but very

often it is not: it must therefore be observed, that a fraction

may be transformed into an infinite number of other ex-

pressions, and in that number there must be some, by which

the numerator might be divided by the given integer. If

it were required, for example, to divide | by 2, we should

change the fraction into |, and then dividing the numerator

by 2, we should immediately have ^ for the quotient

souoht.
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In general, if it be proposed to divide the fraction -r

CLC

by c, we change it into -^— , and then dividing the nume-

rator ac by c, write -r- for the quotient sought.

105. When therefore a fraction -y- is to be divided by an

integer c, we have only to multiply the denominator by that

number, and leave the numerator as it is. Thus | divided

by 3 gives ^'-, and ,^,^ divided by 5 gives -^-q.

This operation becomes easier, when the numerator itself

is divisible by the integer, as we have supposed in article

103. For example, A divided by 3 would give, according

to our last rule, -^-^% but by the first rule, which is applica-

ble here, we obtain xV, an expression equivalent to ^, but

more simple.

106. We shall now be able to understand how one fraction

Qi C

-J-
may be multiplied by another fraction -y. For this pur-

f
pose, we have only to consider that -v means that c is di-

vided by d\ and on this principle we shall first multiply the

fraction -j- by c, which produces the result -y-; after which

etc
we shall divide by tZ, which gives -y-r.

Hence the following rule for multiplying fractions. Mul-
tiply the numerators together for a numerator, and the de-

nominators together for a denominator.

Thus I by ^ gives the product |^, or |

;

•I
by 4- makes t\- ;

|- by -rV produces ^t? or -r'^j ; &c.

107. It now remains to shew how one fraction may be

divided by another. Here we remark first, that if the two

fractions have the same number for a denominator, the

division takes place only with respect to the numerators;

for it is evident, that -rV are contained as many times in -r^

as 3 is contained in 9, that is to say, three times ; and, in

the same manner, in order to divide nV by tV, we have only

to divide 8 by 9, which gives |-. We shall also have 4o ^"^

U, 3 times; V^-„- in t-\%, 7 times; ^V i» ^' t' &c.

108. But when the fractions have not equal denominators,
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vvc must have recourse to the method already mentioned for

reducing them to a common denominator. Let there be,

for example, the fraction y to be divided by the fraction

c
—-. We first reduce them to the same denominator, and
a

there results rT to be divided by -77- ; it is now evident
od ^ do

that the quotient must be represented sin) ply by the division

of acZ by 6c; which gives y-.

Hence the following rule : Multiply the numerator of the

dividend by the denominator of the divisor, and the de-

nominator of the dividend by the numerator of the divisor

;

then the first product will be the numerator of the quotient,

and the second will be its denominator.

109. Applying this rule to the division of |- by f, we
shall have the quotient W ; also the division of \ by \ will

give -^^, or |, or 1| ; and ^i- by |- will give -^, or |-.

110. This rule for division is often expressed in a manner
that is more easily remembered, as follows : Invert the

terms of the divisor, so that the denominator may be in the

place of the numerator, and the latter be written under the

line ; then multiply the fraction, which is the dividend by
this inverted fraction, and the product will be the quo-
tient sought. Thus, I divided by \ is the same as i mul-
tiplied by \, which makes |^, or 1^. Also |- divided by \ is

the same as -|- multiplied by |, which is 14 ' ^i* tt divided

by 1^ gives the same as ^|. multiplied by y, the product of

which is ^^14, or
J-.We see then, in general, that to divide by the fraction f is

the same as to multiply by ^, or 2 ; and that dividing by
-f

amounts to multiplying by f , or by 3^ &c.

111. The number lOO divided by \ will give 200; and
1000 divided by \ will give 3000. Farther, if it were re-

quired to divide 1 by two j the quotient would be 1000

;

and dividing 1 by ^_^'^.^^, the quotient is 100000. This
enables us to conceive that, when any number is divided by
0, the result must be a numbej- indefinitely great ; for even
the division of 1 by the small fraction -,-g-^j^^^_g_ gives for

the quotient the very great number 1000000000.
112. Every number, when divided by itself, producing

unity, it is evident that a fraction divided by itselfnmst also

give 1 for the quotient ; and the same follows from our rule

:

for, in order to divide \ by
I.,

we must multiply \ by |, in

D
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which case we obtain \l, or 1; and if it be required to

divide -j- by t", we multiply -j- by — ; where the product

—J-
is also equal to 1.

113. \Ve have still to explain an expression which is

frequently used. It may be asked, for example, Avhat is the

half of 1^? This means, that we must multiply 1 by 4- So
likewise, if the value of i of

I-
were required, we should

multiply -1 by |-, which produces i^ ; and ^ of -^^ is the

same as -j'-^ multiplied by 1, which produces
^-J.

114. Lastly, we must here observe, with respect to the

signs -f- and — , the same rules that we before laid down for

integers. Thus -f-i multiplied by — y, makes —^; and
— ~ multiplied by — *-, gives -\--^- Farther —| divided

b}-^ -|-|-, gives —ii; and —A divided bv — ^, gives +-f|^,

or -fl-

QUESTIONS FOR PRACTICE.

1. Required the product of -^ and —

.

Ans. ^--

% Required the product of —, — , and -^. Ans. -^

6. Required the product ot — and —t—' ^>is.—\* a a-\-c a'-\-uc

4. Required the product of -;^ and -^ . Ans. —-'

5. Required the product of -u- and -7— Ans. '

^ ' 5 2a 5a

o. Requu-ed the product ot — , , and ---. Jns. 9cix.
Cl C rCt)

hx Cl

7. Required the product of Z* -j

—

'- and —

.

Ans.
ah-\-bx

X
yi ^J ^a

[
^2

8. Required the product of
^-—j and —r-,—

.

be b-\-c

Ans
x*-b*

6«c+ be'
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. ad
Ans. =rr •
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X-\-\ X — 1

9. Required the product of x\ , and -37-

x^—x

ir-\-ab

X 2-r

10. Required the quotient of -77 divided by -j^. Ans. \\.

11. Required the quotient of -y- divided by -,

12. Required the quotient of ^ ^ divided by .
•

5.v--\-6ax-\-a'^

13. Required the quotient of—-j— divided by .
.

Ans. —,—^

—

X'+ a-'
i

14. Required the quotient of— divided by y^. Ans. -ttx •

4x^ . 4.r
15. Required the quotient of-=- divided by 5x. Ans. ^Tk

x-\-\ ^x
16. Required the quotient of —T7— divided by -77

17. Required the quotient of

-

x j divided by

^x

jr+l
Ans. —.—

4x

Qcx

Id'
x— b

x'^— b^
18. Required the quotient of—;

—

orTTTn- ^i^i^^^ ^J "

x"-\-bx h
7-- Ans. X -\- —

x — b X

d2
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CHAP. XI.

O/" Square Numbers.

115. The product of a number, when multiplied by
itself, is called a sqziare ; and, for this reason, the number,
considered in relation to such a product, is called a srpiare

root. For example, when we multiply 12 by 12, the product

144 is a square, of which the root is 12.

The origin of this term is borrowed from geometry, which

teaches us that the contents of a square are found by mul-
tiplying its side by itself

116. Square numbers are found therefore by multiplica-

tion ; that is to say, b}'^ multiplying the root by itself: thus,

1 is the square of 1, since 1 multiplied by 1 makes 1 ; like-

wise, 4 is the square of 2 ; and 9 the square of 3 ; 2 also is

the root of 4, and 3 is the root of 9.

We shall begin by considering the squares of natural

numbers ; and for this purpose shall give the following small

Table, on the first line of which several numbers, or roots,

are ranged, and on the second their squares *.

Numbers.

Squares.

1

1

2

4

3

9

4

16

5

25

6

36

7 8

49 64

9

81

10

100

11

121

12

144

13

169

117. Here it will be readily perceived that the series of

square numbers thus arranged ims a singular property

;

namely, that if each of them be subtracted from that which

immediately follows, the remainders always increase by 2,

and form this series

;

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, &c.

which is that of the odd numbers.

118. The squares of fractions are found in the same

manner, by multiplying any given fraction by itself. For

example, the square of ^ is i,

* We have very complete tables for the squares of natural

numbers, published under the title " Tetragonometria Tabularia,

&c. Auct. J. Jobo Ludolfo, Amstelodami, 1690, in 4to." These

Tables are continued from 1 to 100000, not only for finding those

squares, but also the products of any two numbers less than

100000; not to mention several other uses, which are explained

in the introduction to the work. F. T.
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The square of

^} -?- &c.

We have only therefore to divide the square of the

numerator by the square of the denominator, and the

fraction which expresses that division will be the square of

the given fraction ; thus, |-|- is the square of |- ; and re-

ciprocally, |- is the root of ^.
119. When the square of a mixed number, or a number

composed of an integer and a fraction, is required, we have

only to reduce it to a single fraction, and then take the

square of that fraction. Let it be required, for example, to

find the square of 2^ ; we first express this number by |,
and taking the square of that fraction, we have y, or 6|,

for the value of the square of 2|. Also to obtain the square

of 3f , we say 31 is equal to y ; therefore its square is equal

to \^, or to lOy— . The squares of tlie numbers between
3 and 4, supposing them to increase by one fourth, are as

follow

:

Numbers. |3 3| 31 3i 1
4

Squares. |9 lOxV m 14A 16

From this small Table we may infer, that if a root contain

a fraction, its square also contains one. Let the root, for

example, be 1-/^ ; its square is 4^> or 2^-^^; that is to say,

a little greater than the integer 2.

130. Let us now proceed to general expressions. First,

when the root is «, the square must be aa ; if the root be
2a, the square is i<aa ; which shews that by doubling the

root, the square becomes 4 times greater ; also, if the root

be 3a, the square is 9aa ; and if the root be 4a, the square
is I6aa, Farther, if the root be a6, the square is aabb ; and
if the root be abc, the square is aahhcc ; or a^b'cK

121. Thus, when the root is composed of two, or more
factors, we multiply their squares together ; and reciprocally,

if a square be composed of two, or more factors, of which
each is a square, we have only to multiply together the

roots of those squares, to obtain the complete root of the

square proposed. Thus, 2304 is equal to 4 x 16 x 36,
the square root of which is 2 x 4 x 6, or 48 ; and 48 is

found to be the true square root of 2304, because 48 x 48
gives 2304.

122. Let us now consider what must be observed on this

subject with regard to the signs + and — . First, it is
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evident that if the root have the sign -{-, tliat is to say, if it

be a positive number, its square must necessarily be a positive

number also, because -\- multiplied by -- makes -\- : hence
the square of -j-a will be -{-aa : but if the root be a negative

number, as —a, the square is still positive, for it is -\- aa.

We may therefore conclude, that -[an is the square both of
-j-fl and of —a, and that consequently every square has two
roots, one positive, and the other negative. The square root

of 25, for example, is both -\-5 and —5, because —5 mul-
tiplied by —5 gives 25, as well as -f 5 by -f 5.

CHAP. XII.

Of Square Roots, and o/' Irrational Numbers resultingJrom
them.

123. What we have said in the preceding chapter amounts
to this ; that the square root of a given number is that num-
ber whose square is equal to the given number; and that

we may put before those roots either the positive, or the
negative simi.

124. So that when a square number is given, provided
we retain in our memory a sufficient number of square num-
bers, it is easy to find its root. If 196, for example, be the

given number, we know that its square root is 14.

Fractions, likewise, are easily managed in the same way.
It is evident, for example, that f is the square root of i|-

;

to be convinced of which, we have only to take the square
root of the numerator and that of the denominator.

If the number proposed be a mixed number, as 12-, we
reduce it to a single fraction, which, in this case, will be ti"

;

and from this we immediately perceive that |^, or 3i, must
cc the square root of 12-^.

125. But when the given number is not a square, as 12,
for example, it is not possible to extract its square root ; or

to find a number, which, multiplied by itself, will give the

product 12. We know, however, that the square root of 12
must be greater than 3, because 3x3 produces only 9

;

and less than 4, because 4x4 produces 16, which is more
than 12; we know also, that this root is less than 3?-, for we
have seen that the square of 3'-, or ^, is 12-|-; and we may
approach still nearer to this root, by comparing it with 3 ,\

;

for the square of "6^., or of4^, is V^*» «»" 12^4^ ; so that this
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fraction is still greater than the root required, tliough but very

Uttle so, as tlic tlifFercnce of the two scjuarcs is only ^tr'
126. We may suppose that as 'i'^ and '3

J-^ are iRunbers

greater than the root of 12, it niiglit be possible to add to 3

a fraction a Uttle less than -j^^, and precisely such, that the

squai-e of the sum would be equal to 12.

Let us therefore try with 31, since i is a little less than
-j-V*

Now 3^ is equal to y-, the square of which is ^^-^', and con-

sequently less by }^ than 12, which may be expressed by

'^y . It is, therefore, proved that 3| is less, and that 3 /^
is greater than the root required. Let us then try a num-
ber a little greater than 3f, but yet less than 3^ ; for ex-

ample, 3J-J. ; this number, which is equal to 1 ?-, has for its

square ~^-^; and by reducing 12 to this denominator, we
obtain VW which shews that 3-f^ is still less than the root of

12, viz. by ~-^ ; let us therefore substitute for -/^ rhe fraction

,^j-, which is a little greater, and see what will be the result of

the comparison of the square of 3-;^, with the proposed num-
ber 12, Here the square of 3^%- is —q-' ; and 12 reduced to

the same denominator is VeV ' ^^ ^^^^ ^-rr *^ ^^^^^ ^^'^ small,

though only by -pig-, whilst 'i-^-^- has been found too great.

127. It is evident, therefore, that whatever fraction is

joined to 3, the square of that sum m.ust always contain a

fraction, and can never be exactly equal to the integer 12.

Thus, although we know that the square root of 12 is greater

than 3/y, and less than 3^, yet Ave are unable to assign an
intermediate fraction between these two, which, at the same
time, if added to 3, would express exactly the square root of

12 ; but notwithstanding this, we are not to assert that the

square root of 12 is absolutely and in itself indeterminate

:

it only follows from what has been said, that this root, though
it necessarily has a determinate magnitude, cannot be ex-

pressed by fractions.

128. There is therefore a sort of numbers, which cannot be
assigned by fractions, but which are nevertheless determinate

quantities; as, for instance, the square root of 12: and we
call this new species of numbers, irrational numbers. They
occur whenever we endeavour to find the square root of a

number which is not a square ; thus, 2 not being a perfect

sqviare, the square root of 2, or the number which, multiplied

by itself, would produce 2, is an irrational quantity. These
numbers are also called surd quantities, or incommen-
surahles.

129. These irrational quantities, though they cannot be

expressed ])y fractions, are nevertheless magnitudes of which

we may form an accurate idea; since, however concealed
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the square root of 12, for example, may appear, we arc not
ignorant that it must be a number, which, when multipUed
by itself, would exactly produce 12; and this property is

sufficient to" give us an idea of the number, because it is in
our power to approximate towards its vakie continually.

130. As we are therefore sufficiently acquainted with
the nature of irrational numbers, under our present con-
sideration, a particular sign has been agreed on to express
the square roots of all numbers that are not perfect squares ;

which sign is written thus y^, and is read square root.
Thus, v' 12 represents the square root of 12, or the number
which, multiplied by itself, produces 12; and ^2 represents
the square root of 2 ; ^/3 the square root of 3 ; V^ that of
i; and, in general, Va represents the square root of the
number a. Whenever, therefore, we would express the
square root of a number, which is not a square, we need
only make use of the mark ^ by placing it before the
number.

131. The explanation which we have given of irrational
numbers will readily enable us to apply to them the known
methods of calculation. For knowing that the square root
of 2, multiplied by itself, must produce 2 ; we know also,

that the multiplication of V2hy ^/2 must necessarily pro-
duce 2 ; that, in the same manner, the multiplication of V3
by VS must give 3; that ^5 by V5 makes 5; that V^
by a/t makes |- ; and, in general, that Va multiplied by Va
produces a.

1S2. But when it is required to multiply »/a by vA, the
product is Vab ; for we have already shewn, that if a square
has two or more factors, its root must be composed of the
roots of those factors ; we therefore find the square root of
the product «6, which is \/«6, by multiplying the square
root of a, or Va, by the square root of h, or ^b; &c. It
is evident from this, that if b were equal to «, Ave should
have Vaa for the product of */a by ^b. But >^/aa is

evidently a, since aa is the square o^ a.

133. In division, if it were required, for example, to

a
divide ^a, by ^b, we obtain v'-y-; and, in this instance,

the irrationality may vanish in the quotient. Thus, having
to divide ^l^"^ hy 'v/8, the quotient is ^i/, which is re-
duced to ^|, and consequently to i, because -^- is the square
of |.

13 1. When the number before which we have placed the
radical sign ^> is itself a square, its root is expressed in the
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usual way ; thus, v/4 is the same as 2 ; ^^9 is the same as

3; v''36 the same as G; and Vl^i, the same as ^-, or 3v.

In these instances, the irrationahty is only apparent, and

vanishes of course.

135. It is easy also to multiply irrational numbers by or-

dinary numbers; thus, for example, 2 multiplied by ^5
makes 2,^/5; and 3 times \/2 makes 3\/2. In the second

example, however, as 3 is equal to ^9, we may also express

3 times ^2 by \/9 multiplied by a/-, or by v'lS ; also 2^a
is the same as x^4a, and S^/a the same as ^/9a ; and, in

o-eneral, b^a has the same value as the square root of bba,

or \/bba : whence we infer reciprocally, that when the num-
ber which is preceded by the radical sign contains a square,

we may take the root of that square, and put it before the

sign, as we should do in writing b^/a instead of ^bba.

After this, the following reductions will be easily under-

stood :

2^2^/8, or ^/(2.4)

yas, or ^/(3.4)

^/18, or s/(2.9)

^24, or v'(6.4)

v/32, or v'C--16)

v/75, or ,/(3.25)

>iseiqual to

2a/3

3v/2
2^/6
4a/2
[5^S

and so on

136. Division is founded on the same principles ; as

\/a a
divided by ^b gives —--,, ov xZ-r- In the same manner,

/a

Farther^

V8
72
V18
V2
xn2
v/3

2'

V2
3

^/3
13

V6

v/ g-? or ^4,

18

or 2

>- is equal to ^ v^-^, or V9, or 3

is equal to <

12
v^—, or 'v/4, or 2.

\/4 4— , or^/— ,or ^/2,

—g, or^/— , or v/3.

v/144 144
-yg—, or V-Q-, or v/^4,

or v/(6 X 4), or lastly 2^/6.
137. There is nothing in particular to be observed in ad-

dition and subtraction, because wc only connect the numbers

by the signs -\- and — : for example, \^2 added to v/3 is
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written ^2 -|- V3 ; and ^73 subtracted from V'S is written

-v/S - V3.
138. Wo may observe lastly, that in order to distinguish

the in*ational numbers, we call all other numbers, both in-

tegral and fractional, rational numbers ; so that, whenever
we speak of rational numbers, we understand integers, oi;

fractions.

CHAP. XIII.

(y Impossible, or Imaginary Quantities, xoh'ich arisefrom
the same source.

139. We have already seen that the squares of numbers,

negative as well as positive, are always positive, or affected

by the sign -\-; having shewn that —a multiplied by —a
gives -j-ao, the same as the product of -|- a by -\a: where-

fore, in the preceding chapter, we supposed that all the

numbers, of which it was required to extract the square

roots, were positive.

1 40. When it is required, therefore, to extract the root of

a negative number, a great difficulty arises ; since there is

no assignable number, the square of which would be a nega-

tive quantity. Suppose, for example, that we wished to

extract the root of — 4 ; we here require such a number as,

when multiplied by itself, would produce —4: now, this

number is neither -f2 nor —2, because the square both of

-|-2 and of —2, is -f 4, and not —4.
141. We must therefore conclude, that the square root of

a negative number cannot be either a positive number or a

negative number, since the squares of negative numbers also

take the sign plus : consequently, the root in question must
belong to an entirely distinct species of numbers ; since it

cannot be ranked either among positive or among negative

numbers.
142. Now, we before remarked, that positive numbers

are all greater than nothing, or 0, and that negative numbers
are all less than nothing, or ; so that whatever exceeds

is expressed by positive numbers, and whatever is less than

is expressed by negative numbers. The square roots of

negative numbers, therefore, are neither greater nor less

than nothing; yet we cannot say, that they are 0; for
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multiplied by produces 0, and consequently docs not give

a negative number.

143. And, since all numbers which it is possible to con-

ceive, are either greater or less than 0, or are itself, it is

evident that wc cannot rank the square root of a negative

number amongst possible numbers, and we must therefore

say that it is an impossible quantity. In this manner we are

led to the idea of numbers, which from their nature are im-

possible ; and therefore they fire usually called imaginary
quantities, because they exist merely in the imagination.

144. All such expressions, as v^ — 1, ^Z — 2, ^ — 3, a/ — ^,

&c. are consequently impossible, or imaginary numbers,

since they represent roots of negative quantities ; and of

such numbers we may truly assert that they are neither

nothing, nor greater than nothing, nor less than nothing;

which necessarily constitutes them imaginary, or impossible.

145. But notwithstanding this, these numbers present

themselves to the mind ; they exist in our imagination, and
we still have a sufficient idea of them ; since we know that

by ^— ^ is meant a number which, multiplied by itself,

produces — 4 ; for this reason also, nothing prevents us

from making use of these imaginary numbers, and employ-
ing them in calculation.

146. The first idea that occurs on the present subject is,

that the square of y—3, for example, or the product of

y—3 by a/— 3, must be —3; that the product of V —

1

by a/— 1, is — 1 ; and, in general, that by multiplying

V—a by v^—a, or by taking the square of v^ — « we ob-

tain — a.

147. Now, as —a is equal to -f-« multiplied by —1, and

as the square root of a product is found by multiplying to-

gether the roots of its factors, it follows that the root of a

times —1, or a/— a, is equal to ^a multiplied by V~ 1 i

but v''^ is ^ possible or real number, consequently the whole

impossibility of an imaginary quantity may be always re-

duced to V— 1 '•> for this reason, y' — 4 is equal to vi mul-
tiplied by V — 1, or equal to 2^—1,because ^/'^ is equal to

2; likewise —9 is reduced to ^9 X \/ — 1, or 3V — 1

;

and y/—16 is equal to 4v'— 1.

148. Moreover, as \/a multiplied by y^6 makes 's/ab, we
shall have \/6 for the value of a/ — 2 multiplied by -v/ — 3 ;

and v^4, or 2, for the value of the product of ^z — 1 by
V — 4. Thus we see that two imaginary numbers, mul-
tiplied together, produce a real, or possible one.

But, on the contrary, a possible number, multiplied by an
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impossible number, gives always an imaginary product:

thus, v/-3 by V-\-5, gives -/— 15.

149. It is the same with regard to division; for ^a

divided by ^/6 making -v/y, it is evident that ^-4 di-

vided by ^-1 will make V-{-4>, or 2; that ^/-\-3 divided

by ^— 3 will give ^-1; and that 1 divided by ^/-l

gives V-^, or V—l; because 1 is equal to V+1.

150. We have before observed, that the square root of

any number has always two values, one positive and the

other negative ; that V^, for example, is both -f2 and — 2,

and that, in general, we may take — ^a as well as + ^a
for the square root of a. This remark applies also to ima-

ginary numbers; the square root of —a is both -\-^— a

and — V— «; l^ut we must not confound the signs -f a"d

-, which are before the radical sign -/, with the sign which

comes after it.

151. It remains for us to remove any doubt, which may

be entertained concerning the utility of the numbers of

which we have been speaking ; for those numbers being im-

possible, it would not be surprising if they were thought

entirely useless, and the object only of an unfounded specu-

lation. This, however, would be a mistake; for the cal-

culation of imaginary quantities is of the greatest importance,

as questions frequently arise, of which we cannot imme-

diately say whether they include any thing real and possible,

or not ; but when the solution of such a question leads to

imaffinarv numbers, we are certain that what is required is

impossible.

In order to illustrate what we have s^d by an example,

suppose it were proposed to divide the number 12 into two

such parts, that the product of those parts may be 40. If

we resolve this question by the ordinary rules, we find for

the parts sought 6 +^/— 4 and 6 - \/— 4 ; but these num-

bers being imaginary, we conclude, that it is impossible to

resolve the question.

The difference will be easily perceived, if we suppose the

question had been to divide 12 into two parts which mul-

tiphed together would produce 35; for it is evident that

those parts must be 7 and 5.
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CHAP. XIV.

O/^ Cubic Numbers.

15f2. When a number lias been multiplied twice by itself,

or, which is the same thing, when the square of a number
has been multiplied once more by that number, we obtain

a product which is called a cube, or a cuhic number. Thus,
the cube of a is aaa, since it is the product obtained by
multiplying a by itself, or by a, and that square aa again
by a.

The cubes of the natural numbers, therefore, succeed
each other. in the followinsf order *

:

Numbers

Cubes

1

1

2

8

3

27

4

64

5

125

6

216

7 8 9 10

;>43 .512 729 lOOol

153. If we consider the differences of those cubes, as we
did of the squares, by subtracting each cube from that

which comes after it, we obtain the following series of

numbers

:

7, 19, 37, 61, 91, 127, 169, 217, 271.

Where we do not at first observe any regularity in them ;

but if we take the respective differences of these numbers, we
find the following series

:

12, 18, 24, 30, 36, 42, 48, 54, 60

;

in which the terms, it is evident, increase always by 6.

154. After the definition we have given of a cube, it will

not be difficult to find the cubes of fractional numbers;
thus,

I-
is the cube of i ; J^- is the cube of i ; and ^^ is the

cube of ~. In the same manner, we have only to take the

cube of the numerator and that of the denominator sepa-

rately, and we shall have ~L for the cube of ^.

155. If it be required to find the cube of a mixed num-
ber, we must first reduce it to a single fraction, and then

proceed in the manner that has been described. To find,

for example, the cube of li, we must take that of \, which

* We are indebted to a mathematician of the name of J. Paul
Buchner, for Tables published at Nuremberg in 1701, in which
are to be found the cubes, as well as the squares, of all numbers
from 1 to 12000. F. T.
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[viso the cube of li, or of the single fraction |,

; and tl:e cube of 3^, or of y , is ^-||:^, or

156. Since aaa is the cube of a, that of ah will be aaahhh ;

whence we see, that if a number has two or more factors, we
may find its cube by multiplying together the cubes of those

factors. For example, as 12 is equal to 3 x 4, Ave multiply

the cube of 3, which is 27, by the cube of 4, which is 64,

and we obtain 1728, the cube of 12 ; and farther, the cube

of %a is Sflofl, and consequently 8 times greater than the

cube of a : likewise, the cube of 3a is 9!laaa ; that is to say,

27 times greater than the cube of a.

157. Let us attend here also to the signs -|- and — . It

is evident that the cube of a positive number -}-« must also

be positive, that is -\-aaa\ but if it be required to cube a

negative number —-a, it is found by first taking the square,

which is -{-aa, and then multiplying, according to the rule,

this square by — o, which gives for the cube required —aaa.

In this respect, therefore, it is not the same -with cubic num-
bers as with squares, since the latter are always positive

:

whereas the cube of —1 is —1, that of —2 is —8, that of

—3 is —27, and so on.

CHAP. XV.

(yCube Roots, and of Irrational Numbers resultingfrom

them.

158. As we can, in the manner already explained, find

the cube of a given number, so, when a number is proposed,

we may also reciprocally find a number, which, multiplied

twice by itself, will produce that number. The number
here sought is called, with relation to the other, the cube

root ; so that the cube root of a given number is the number
whose cube is equal to that given number.

159. It is easy therefore to determine the cube root, when

the number proposed is a real cube, such as in the examples

in the last chapter ; for we easily perceive that the cube root

of 1 is 1 ; that of 8 is 2 ; that of 27 is 3 ; that of 64 is 4^

and so on. And, in the same manner, the cube root of —27
is -3 ; and that ol' - 125 is - 5.

Farther, if the proposed number be a fraction, as ^Vj *'^^
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cube root of it must be |; and that of //^ is |. Lastly,

the cube root of a mixed number, such as ^l^ must be i,

or 1|; because 2;4 is equal to f j.

160. But if the proposed number be not a cube, its cube

root cannot be expressed either in integers, or in fractional

numbers. For example, 43 is not a cubic number; there-

l()re it is impossible to assign any number, either integer or

fractional, Avhose cube shall be exactly 43. We may how-
ever affirm, that the cube root of that number is greater

than 3, since the cube of 3 is only 27; and less than 4,

because the cube of 4 is 64 : we know, therefore, that the

cube root required is necessarily contained between the

numbers 3 and 4.

161. Since the cube root of 43 is greater than 3, if we
add a fraction to 3, it is certain that we may approximate

still nearer and nearer to the true value of this root : but we
can never assign the number which expresses the value ex-

actly ; because the cube of a mixed number can never be

perfectly equal to an integer, such as 43. If we were to

suppose, for example, 3^, or ^ to be the cube root required,

the error would be ^; for the cube of -| is only ^±^, or

42|-.

162. This therefore shews, that the cube root of 43 can-

not be expressed in any vvay, either by integers or by frac-

tions. However, we have a distinct idea of the magnitude

of this root ; and therefore we use, in order to represent it,

the sign \/, which we place before the proposed number,
and which is read cube root, to distinguish it from the square

root, which is often called simply the root ; thus V43 means
the cube root of 43 ; that is to say, the number whose cube
is 43, or which, multiplied by itself, and then by itself again,

produces 43.

163. Now, it is evident that such expressions cannot

belong to rational quantities, but that they rather form a

particular species of irrational quantities. They have no-

thing in common with square roots, and it is not possible

to express such a cube root by a square root ; as, for ex-

ample, by v/12; foJ" the square of v^lS being 12, its cube

will be 12^12, consequently still irrational, and therefore it

cannot be equal to 43.

164. If the proposed number be a real cube, our ex-

pressions become rational. Thus, \/l is equal to 1 ; v/8 is

equal to 2 ; y27 is equal to 3 ; and, generally, </aaa is equal

to a.

165. If it were proposed to multiply one cube root, ^/a,

by another, l/b, the product must be \/ah ; for we know that
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the cube root of a product ab is found by multiplying to-

gether the cube roots of the factors. Hence, also, if we

divide \/a by \/b, the quotient will be^Z-^-.

166. We fai'ther perceive, that 2(/« is equal to ySa,
because 2 is equivalent to ^/S ; that S\/a is equal to v/27a,

b^a is equal to ^abbh; and, reciprocally, if the number
under the radical sign has a factor which is a cube, we
may make it disappear by placing its cube root before the

sign; for example, instead of\/(;4a we may write 4iya; and
5v/fl instead of^125a : hence yi6 is equal to 9,^/% because
16 is equal to 8 X 2.

167. When a number proposed is negative, its cube root

is not subject to the same difficulties that occurred in treating

of square roots ; for, since the cubes of negative numbers
are negative, it follows that the cube roots of negative num-
bers are also negative; thus \/— 8 is equal to —2, and
^/-27 to —3. It follows also, that ^-12 is the same as

—\/12, and that\/— « may be expressed by —I, a. Whence
we see that the sign — , when it is found after the sign of
the cube root, might also have been placed before it. We
are not therefore led here to impossible, or imaginary num-
bers, which happened in considering the square roots of
negative numbers.

CHAP. XVI.

O/"Powers in general.

168. The product Avhich we obtain by multiplying a
number once, or several times by itself, is called a poiccr.

Thus, a square which arises from the multiplication of a
number by itself, and a cube which we obtain by mul-
tiplying a number twice by itself, are powers. We say
also in the former case, that the number is raised to the
second degree, or to the second power; and in the latter,

that the number is raised to the third degree, or to the third

power.

169. We distinguish those powers from one another by
the number of times that the given number has been mul-
tiplied by itself. For example, a square is called the second
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power, because a certain given number has been muhiphed
by itself; and if a number has been multiplied twice by
itself we call the product the third power, which therefore

means the same as the cube; also if Ave multiply a number
three times by itself we obtain its fourth power, or what is

commonly called the biquadrate : and thus it will be easy

to understand what is meant by the fifth, sixth, seventh, &c.
power of a number. I shall only add, that powers, after

the fourth degree, cease to have any other but these numeral
distinctions.

170. To illustrate this still better, we may observe, in the

first place, that the powers of I remain always the same

;

because, whatever number of times we multiply 1 by itself,

the product is found to be always 1. We shall therefore

begin by representing the powers of 2 and of 3, which succeed
each other as in the following order

:

Powers. Of the number 2. Of the number 3.

1st 2 3
2d 4 9
3d 8 27
4th 16 81
5th 32 243
6th 64 729
7th 128 2187
8th 256 6561
9th 512 19683

10th 1024 59049
11th 2048 177147
12th 4096 531441
13th 8192 1594323
14th 16384 4782969
15th 32768 14348907
16th Q55m 43046721
17th 131072 129140163
18th 262144 387420489

But the powers of the number 10 are the most remark-
able : for on these powers the system of our ai'ithmetic is

founded, A few of them ranged in order, and beginning

with the first power, are as follow

:

1st 2d 3d 4th 5th 6th

10, 100, 1000, 10000, 100000, 1000000, &c.

171. In order to illustrate this subject, and to consider

it in a more general manner, we may observe, that the

E
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powers of any number, a, succeed eacli other in the fol-

lowinjx order

:

1st 2d 3d 4th 5th 6th

a, aa, aaa, aaaa, aaaaa, aaaaaa, &c.

But we soon feel the inconvenience attending this manner
of writing the powers, which consists in the necessity of re-

peating the same letter very often, to express high powers

;

and the reader also v\ould have no less trouble, if he were

obliged to count all the letters, to know what power is in-

tended to be represented. The hundredth power, for ex-

ample, could not be conveniently written in this manner;
and it would be equally difficult to read it.

172. To avoid this inconvenience, a much more com-
modious method of expressing such powers has been devised,

Avhich, from its extensive use, deserves to be carefully ex-

plained. Thus, for example, to express the hundredth

power, we simply write the number 100 above the quantity,

whose hundredth power we would express, and a little to-

wards the right-hand; thus a}^^ represents a raised to the

100th power, or the hundredth power of a. It must be

observed, also, that the name exponent is given to the num-
ber written above that whose power, or degree, it represents,

which, in the present instance, is 100.

173. In the same manner, cC- signifies a raised to the 2d
power, or the second power of «, which we represent some-

times also by aa, because both these expressions are written

and understood with equal facility ; but to express the cube, or

the third power aaa, we write a^, according to the rule, that

we may occupy less room ; so a^ signifies the fourth, a' the

fifth, and a^ the sixth power of//.

174. In a word, the different powers of a will be re-

presented by «, «-, a^^ a"^, a\ a'\ a', «", d^, «'% &c. Hence
we see that in this manner we might very properly have

written a^ instead of a for the fiirst term, to shew the order

of the series more clearly. In fact, a^ is no more than a, as

this unit shews that the letter a is to be written only once.

Such a series of powers is called also a geometrical pro-

gression, because each term is by one-time, or term, greater

than the preceding.

175. As in this series of powers each term is found

by multiplying the preceding term by a, which increases

the exponent by 1 ; so when any term is given, we may
also find the preceding term, if we divide by a, because this

diminishes the exponent by 1. This shews that tlie term

which precedes the first term «' must necessarily be
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— , or 1 ; and, if we proceed according to the exponents, wc
a

immediately conclude, that the term which precedes the first

must he «^'; and hence we deduce this remarkable property,

that (i^ is always equal to 1, however great or small the value

of the number a may be, and even when a is nothing; that

is to say, a*' is equal to 1.

176. We may also continue our scries of powers in a retro-

grade order, and that in two different ways ; first, by dividing

always by «; and secondly, by diminishing the exponent

by unity : and it is evident that, whether we follow the one

or the other, the terms are still perfectly equal. This

decreasing series is represented in both forms in the fol-

lowing Table, which must be read backwards, or from right

to left.

1st.

2d.

j

1 1 1 1

ana

1

aa

1

a
1

t

a
anaaaa naaao. aaaa

1 1

"a"

1 1

rt3

1 1

a 6 a-' a-* a-3 a-^ «-• a°^
177. We are now come to the knowledge of powers

whose exponents are negative, and are enabled to assign

the precise value of those powers. Thus, from what has

been said, it appears that

V is equal to
-J
om

1

&c.

178. It will also be easy, from the foregoing notation, to

find the powers of a product, ab ; for they must evidently be

«6, or a^b\ a'-b'; d^b\ a*b*, a^b\ &c. and the poM'ers of

fractions will be found, in the same manner ; for example.

those of -7- are
o

a}

1^'
a'

If' t.",'

a
^,&c.
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179. Lastly, we have to consider the powers of negative

numbers. Suppose the given number to be —a; then its

powers will form the following series

:

—a, -i-n", - a\ +a'S —a\ +0'', &c,

Where we may observe, that those powers only become
negative, whose exponents are odd numbers, and that, on
the contrary, all the powers, which have an even number
for the exponent, are positive. So that the third, fifth,

seventh, ninth, &c. powers have all the sign — ; and the

second, fourth, sixth, eighth, &c. powers are aifected by the

sign +.

CHAP. XVII.

Of the Calculation o/" Powers.

180. We have nothing particular to observe with regard

to the Addition and Subtraction of powers ; for we only

represent those operations by means of the signs + and —

,

when the powers are different. For example, a^ + a" is the

sum of the second and third powers of a ; and «* — «'* is

what remains when we subtract the fourth power of a from
the fifth ; and neither of these results can be abridged : but
when we have powers of the same kind or degree, it is

evidently unnecessary to connect them by signs ; as a^ + «'

becomes 2a^, &c.

181. But in the Multiplication of powers, several circum-

stances require attention.

First, when it is required to multiply any power of a by
rt, we obtain the succeeding power ; that is to say, the power
whose exponent is greater by an unit. Thus, a% multiphed

by «, produces a'; and a^, multiplied by «, produces a*.

In the same manner, when it is required to multiply by a
the powers of any number represented by a, having negative

exponents, we have only to add 1 to the exponent. Thus,
a.—^ multiplied by a produces a°, or 1 ; wliich is made more

evident by considering that a—^ is equal to — , and that the

product of -- by a being —, it is consequently equal to 1

;

likewise a—'' multiplied by a, produces «—
', or— ; and
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^_io multiplied by a, gives «—
^, and so on. [See Art.

175, 176.]

182. Next, if it be required to multiply any power of «

by a% or the second power, I say that the exponent becomes
greater by 2. Thus, the product of a^ by a' is a' ; that of
a' by a^ is a^ ; that of «

' by a"^ is «* ; and, more generally,

a" multiplied by a^ makes a"+*. With regard to negative

exponents, we shall have a', or a, for the product of a—^ by

a*; for a—^ being equal to — , it is the same as if we had

divided aa by a; consequently, the product required is

aa— , or a; also a— ', multiplied by a% produces a^\ or 1 ; and

a~", multiplied by a-, produces a—\
183. It is no less evident, that to multiply any power of

a by a^, we must increase its exponent by three units ; and
that, consequently, the product of a" by a^ is a""*'-\ And
whenever it is required to multiply' together two powers of

a, the product will be also a power of a, and such that its

exponent will be the sum of those of the two given powers.

For example, a^ multiplied by a' will make a^, and a'" mul-

tiplied by a^ will produce a^^, &c.

184. From these considerations we may easily determine

the highest powers. To find, for instance, the twenty-fourth

power of 2, I multiply the twelfth power by the twelfth

power, because 2-^ is equal to ^^^ X 2'". Now, we have

already seen that 2^2 is 4096 ; I say therefore that the num-
ber 16777216, or the product of 4096 by 4096, expresses

the power required, namely, 2-^.

185. Let us now proceed to division. We shall remark,

in the first place, that to divide a power of a by a, we must
subtract 1 from the exponent, or diminish it by unity ; thus,

a^ divided by a gives a^ ; and aP, or 1, divided by a, is equal

to a—^ or— ; also a—^ divided by a, gives a—'^.

186. If we have to divide a given power of a by a% we
must diminish the exponent by 2 ; and if by «% we must

subtract 3 units from the exponent of the power proposed ;

and, in general, whatever power of a it is required to divide

by any other power of a, the rule is always to subtract the

exponent of the second from the exponent of the first

of those powers: thus a^^ divided by aJ will give a^; a^

divided by a' will give a—' ; and a—^ divided by o* will

give a—'^.

187. From what has been said, it is easy to understand
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the method of" finding the powers of powers, this being
done by multiphcation. When we seek, tbr example, tlie

square, or the second power of a'^, we find «''; and in the
same manner we find a>- for the third power, or the cube, of
a*. To obtain the square of a power, we have only to double
its exponent ; for its cube, we must triple the exponent ; and
so on. Thus, the square of a ' is a-" ; the cube of a is a^'' ;

the seventh power of a ' is a^", &c.
188. The square of a", or the square of the square of a,

being a*, we see why the fourth power is called the h'lqua-

drate: also, the square of a^ being a'', the sixth power has
received the name of the square-cubed.

Lastly, the cube of a^ being cfi, we call the ninth power
the cuho-cuhc: after this, no other denominations of this

kind have been introduced for powers; and, indeed, the two
last ai'e very little used.

CHAP. XVIII.

(yRoots, ii)ith rdution to Powers m general.

189. Since the square root of a given number is a num-
ber, whose square is equal to that given number; and since
the cube root of a given number is a number, whose cube is

equal to that given number; it follows that any number
whatever being given, we may always suppose such roots of
it, that the fourth, or the fifth, or any other power of them,
respectively, may be equal to the given number. To distin-

guish these different kinds of roots better, we shall call the
square root, the second root ; and the cube root, the third
root; because according to this denomination we may call

thefourth root^ that whose biquadrate is equal to a given
number; and the fifth root, that whose fifth power is equal
to a given number, &c.

190. As the square, or second root, is marked by the sign

Vi and the cubic, or third root, by the sign ^, so the fourth
root is represented by the sign ^ ; the fifth root by the sign

^ ; and so on. It is evident that, according to this method
of expression, the sign of the square root ought to be*/:
but as of all roots this occurs most frequently, it has been
aj^reed, for the sake of brevity, to omit the number 2 as the
sign of this root. So that when the radical sign has no num
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ber prefixed to it, this always shews that the scjuare root is

meant.

191. To explain this matter still better, we shall here

exhibit the different roots of the number a, with their re-

spective values

:

l/al l3d / \a,

s/a ^ is the < '1th > root of < a,

^a\ /5th\ ia,

and so on.

So that, conversely,

The 2d \ ' T a/«") ( (h

The 3d / \ Z^a f \ a,

The 4th V power of ^ ^a V is equal to < «,

The 5th I I k^\ f
"^

The 6th ^ ^a ; \ a, and so on.

192. Whether the number a therefore be great or small,

we know what value to affix to all these roots of different

degrees.

It must be remarked also, that if we substitute vmity for a,

all those roots remain constantly 1 ; because all the powers

of 1 have unity for their value. If the number a be greater

than 1, all its roots will also exceed unity. Lastly, if that

number be less than 1, all its roots will also be less than

unity.

193. When the number a is positive, we know from what

was before said of the square and cube roots, that all the

other roots may also be determined, and will be real and
possible numbers.

But if the number a be negative, its second, fourth, sixth,

and all its even roots, become impossible, or imaginary num-
bers ; because all the powers of an even order, whether of

positive or of negative numbers, are affected by the sign -\- :

whereas the third, fifth, seventh, and all its odd roots, become
negative, but rational ; because the odd powers of negative

numbers are also negative.

194. We have here also an inexhaustible source of new
kinds of surds, or irrational quantities; for whenever the

number a is not really such a power, as some one of the

foregoing indices represents, or seems to require, it is im-

possible to express that root either in whole numbers or in

fractions ; and, consequently, it must be classed among the

numbers which are called irrational.
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CHAP. XIX.

Of' the Method of representing Irrational Numbers by
Fractional Exponents.

195. We have shewn in the preceding chapter, that the

square of any power is found by doubling the exponent of

that power; or that, in general, the square, or the second

power, of a', is a-" ; and the converse also follows, viz. that

the square root of the power a"' is o", which is found by
taking half the exponent of that power, or dividing it

by 2.

196. Thus, the square root of u" is «', or a\ that of a^

is rt"; that of c^ is a^ ; and so on: and, as this is general,

the square root of a^ must necessarily be a% and that of o.^

must be a'' ; consequently, we shall in the same manner
1 I

have ti^ for the square root of a'. Whence we see that a^
is equal to s/(i\ which new method of representing the

square root demands particular attention.

197- We have also shewn, that, to find the cube of a

power, as c", we must multiply its exponent by 3, and con-

sequently that cube is a'".

Hence, conversely, Avhen it is required to find the third,

or cube root, of the power a^", we have only to divide that

exponent by 3, and may therefore with certainty conclude,

that the root required is a : consequently a^ or o, is the

cube root of a^ ; a" is the cube root of a^ ; a^ of a^ ; and
so on.

198. There is nothing to prevent us from applying the

same reasoning to those cases, in which the exponent is not

divisible by 3, or from concluding that the cube root of a^

is «S ^nd that the cube root of «* is u^, or a'^ ; conse-
I

quently, the third, or cube root of a, or a^, must be aJ:

whence also, it appears, that a^ is the same as s/a.

199. It is the same with roots of a higher degree: thus,
I

the fourth root of a will be a^, which expression has the

2-

same value as v/« ; the fifth root of a will be o s
, which is

consequently equivalent to i^a ; and the same observation

may be extended to all roots of a higher degree.
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200. We may therefore entirely reject the radical signs at

present made use of, and employ m their stead the fractional

exponents which we have just explained: but as we have

been long accustomed to those signs, and meet with them in

most books of Algebra, it might be wrong to banish them

entirely from calculation ; there is, however, sufficient reason

also to employ, as is now frequently done, the other method

of notation, because it manifestly corresponds with the nature

of the thing. In fact, we see immediately that a^ is the

squai'e root of a, because we know that the square of a^,

JL . i- .

that is to say, a^ multiplied by a ^, is equal to a^, or a.

201. What has been now said is sufficient to shew how
we are to understand all other fractional exponents that may

occur. If we have, for example, «% this means, that we
must first take the fourth power of «, and then extract its

4

cube, or third root ; so that a ^ is the same as the common
3_

expression l/a^. Hence, to find the value of a+, we must

first take the cube, or the third power of a, which is «', and

then extract the fourth root of that power; so that a+ is the

— •
1 ^

same as y'a^, and a^ is equal to^a*, &c.

202. When the fraction which represents the exponent

exceeds unity, we may express the value of the given quan-

tity in another way : for instance, suppose it to be a'' ; this

quantity is equivalent to a"^, which is the product of a^ by
J_ JL . ... — .

a^ : now a^ being equal to ^a, it is evident that a"^ is

1_0 l^

equal toa'-v/a^; also a^ , or a^^, is equal to a^ s/a; and
IS 2 1 r

a +
, that is, «^*, expresses a^ ^a?. These examples are suf-

ficient to illustrate the great utility of fractional exponents.

203. Their use extends also to fractional numbers : for if

there be given— , we know that this quantity is equal to

— ; and we have seen already that a fraction of the form

— may be expressed by a—" ; so that instead of —r- we

__ I

may use the expresssion a * ; and, in the same man-



58 ELEMENTS SECT. I.

ner, -— is equal to a \ Again, if the quantity -jr-j be

proposed; let it be transformed into this, —, which is the

3_

product of fl^ by a + ; now this product is equivalent to

-1 J-

«+, or to a^-^, or lastly, to a\/a. Practice will render similar

reductions easy.

204. We shall observe, in the last place, that each root

may be represented in a variety of ways; for Va being the

same as a^, and i being transformable into the fractions, ^,

ji T' "To 5 T-2? ^c- it is evident that ^a is equal to y«% or to

y a', or to "/a*, and so on. In the same manner, ^a, which

is equal to a'^, will be equal to v/a-, or to ^a^, or to V^^-
Hence also we see that the number a, or a^, might be repre-

sented by the following radical expressions

:

Va", ^a\ ^a\ ^a^ &c.

205. This property is of great use in multiplication and
division ; for if we have, for example, to multiply ^u by \/o,

we write v^a' for l/i(^ and ^«^ instead of^a ; so that in this

manner we obtain the same radical sign for both, and the

multiplication being now performed, gives the product ^a^.

The same result is also deduced from a^~^, which is the
I _i^

product of a^ multiplied by a ^
; for 4- ~l~ t ^^ T' ^^^^ conse-

-L

quently the product required is a'',or^a^.

On the contrary, if it were required to divide ^Uf or
j^ j_ _ j^ 1^

o^, by \/«, or a% we should have for the quotient a^ ^,

3 2 I_

or aJ % that is to say, «^, or ^a.

QUESTIONS FOR PRACTICE RESPECTING SURDS.

1. Reduce 6 to the form of v/5. A7is. \/S6.

2. Reduce a -|- 6 to the form of ^bc.
Ans. ^/{aa -\- 9.ab -\- bb).

3. Reduce ,
—— to the form of Vd. Ans. a/ -n—bVc bbc

4. Reduce a' and 6* to the common index 4-.

Ans. a F, and 6^'^
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5. Reduce \^48 to its simplest form. A ns. 4>v'ii.

G, Keduce a/ (a^x — a^x') to its simplest form.

Ans. a V (ax — xx'')

.

7. Reduce v^^^—^ to its simplest form.

8. Add v/G to 2^/6; and y^8 to s/50.
Ans. 3\/6; and 7\/2.

9. Add ^/ 4a and :{/«'' together. Ans. (a + 2) A/a.

~6l i "c^- 6-4- c-

10. Add — ^ and -t-|
^ together. Jw*. t^t-

11. Subtract A/4a from ^t/a*'. Ans. {a— 9,) V a.

7!a
, T

12. Subtract -7- from

—

6 c

, b"—c' 1

oc

,x . . , 2ai, 9"£Z
-

, 2a^d
13. Multiply v/ 3^

l^y n/ 2Zr-
^*"-~ *

14. Multiply \/cl by ^ab. Aiis.^(a'b'cF).

15. Multiply -v/(4a - 3a:) by 2«.

y-ins. V(16a^ — ISrt'jc).

16. Multiply -^V{a — x) by (c - ^)'/a.r.

ac—ad „
^/i5. —^;-^— \/(a-.r— ar^).

17. Divide a^ by a^ ; and a" by a'".

S TO — n

Ans. a' ^
; and a~^'

. . ^ ac — ad , „ „^, «^ ,y .

18. Divide —^T— Vi.a'x — ax-)\>y ^s/ya - x).

Ans. (c — d) Vax.
19. Divide a^ — ad — b ^r d^J hby a —s/h.

Ans. a -{-\/b — d.

20. What is the cube of v/ 2 ? Ans. ^8.
21. What is the square of 3^6c'.? Ans. 'dc^/b'^c.

a 2a
22. What is the fourth power of ^\/-^j7 ?

/ a^

^^*'
46*(c-'-26c+6*)"

23. What is the square of 3 -f v/5 .? ^m. 14 +6^5.

24. What is the square root of a^ ? Ans. a^ \ or ^/a'.

25. What is the cube root of ^ {uP- — x"") .?

Ans. Via'' ~ x"").
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26. What multiplier will render a -f-
y' 3 rational ?

Ans. a — \/3.

27. What multiplier will render ^a— Vb rational?

Ans. ^/a-\- Vb.
528. What multiplier will render the denominator of the

fraction —jzr-,— 72; rational ? Jns. \/l— V^-

CHAP. XX.

Of the different Methods o/'Calculation, and of'their mutual
Connexion.

206. Hitherto we have only explained the diflPerent me-
thods of calculation : namely, addition, subtraction, mul-
tiplication, and division ; the involution of powers, and the

extraction of roots. It will not be improper, therefore, in

this place, to trace back the origin of these different methods,

and to explain the connexion which subsists among them

;

in order that we may satisfy ourselves whether it be

possible or not for other operations of the same kind to

exist. This inquiry will throw new light on the subjects

which we have considered.

In prosecuting this design, we shall make use of a new
character, wliich may be employed instead of the expression

that has been so often repeated, is equal to; this sign is =,
which is read is equal to : thus, when I write a =. b, this

means that a is equal to b: so, for example, 3 x 5 =r 15.

207. The first mode of calculation that presents itself to

the mind, is undoubtedly addition, by wliich we add two
numbers together and find their sum : let therefore a and b

be the two given numbers, and let their sum be expressed

by the letter c, then we shall have a -{- b = c; so that when
we know the two numbers a and b, addition teaches us to

find the number c.

208. Preserving this comparison a -\- b = c,\et us reverse

the question by asking, how we are to find the number b,

when we know the numbers a and c.

It is here required therefore to know what number must
be added to a, in order that the sum may be the number c :

suppose, for example, a = Q and c — 8 ; so that we must
have 3 -|- 6 = 8 ; then b will evidently be found by sub-
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tractlng 3 from 8 : and, in general, to find b, we must sub-

tract a from c, whence arises b =. c — a\ {oxhy adding a to

both sides again, we have b-{-n=c — a-\-a, that is to say,

=: c, as we supposed.

i209. Subtraction therefore takes place, when we invert

the question which gives rise to addition. But the number
which it is required to subtract may happen to be greater

than that from which it is to be subtracted ; as, for example,

if it were required to subtract 9 from 5 : this instance there-

fore furnishes us with the idea of a new kind of numbers,

which we call negative numbers, because 5 — 9 = — 4. -

210. When several numbers are to be added together,

which are all equal, their sum is found by multiplication, and

is called a product. Thus, ah means the product arising

from the multiplication of a by /;, or from the addition of the

number r/, b number of times; and if we represent this pro-

duct by the letter c, we shall have ah — c\ thus multiplica-

tion teaches us how to determine the number c, when the

numbers a and h are known.
211. Let us now propose the following question: the

numbers a and c being known, to find the number h. Sup-

pose, for example, a z= 3, and c = 15; so that 36 = 15,

and let us inquire by what number 3 must be multiplied, in

order that the product may be 15 ; for the question pro-

posed is reduced to this. This is a case of division ; and the

number required is found by dividing 15 by 3; and, in

general, the number b is found by dividing c by a ; from

which results tha equation h = —

.

212. Now, as it frequently happens that the number c

cannot be really divided by the number a, while the letter/;

must however have a determinate value, another new kind

of numbers present themselves, which are csWedL Jractions.

For example, suppose a = 4, and c — o, so that 4/* = 3

;

then it is evident that h cannot be an integer, but a fraction,

and that we shall have 6 =: ^.

213. We have seen that multiplication arises from ad-

dition; that is to say, from the addition of several equal

quantities : and if we now proceed farther, we shall perceive

that, from the multiplication of several equal quantities to-

gether, powers are derived; which powers are represented in

a general manner by the expression a''. This signifies that

the number a must be multiplied as many times by itself,

minus 1, as is indicated by the number h. And we know
from what has been already said, that, in the present in-
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stance, a is called the root, h the exponent, and a'' the

]>o\ver.

214. Farther, if we represent this power also by the letter

c, we have u'' — c, an equation in which three letters a, b, c,

are found ; and we have shewn in ti'eating of powers, how
to find the power itself, that is, the letter c, when a root a
and its exponent b are given. Suppose, for example, fl = 5,

and b r= 3, so that c zn 5^ : then it is evident that we must
take the third power of 5, which is 125, so that in this case

c = 125.

215. We have now seen how to determine the power c, by
means of the root a and the exponent b ; but if we wish to

reverse the question, we shall find that this may be done in

two ways, and that there are two different cases to be con-

sidered : for if two of these three numbers a, b, c, were given,

and it were required to find the third, we should immediately
perceive that this question would admit of three different

suppositions, and consequently of three solutions. We have
considered the case in which a and b were the given num-
bers, we may therefore suppose farther that c and <'/, or c

and b, are known, and that it is required to determine the

third letter. But, before we proceed any farther, let us point

out a very essential distinction between involution and the

two operations which lead to it. When, in addition, we re-

versed the question, it could be done only in one way ; it

was a matter of indifference whether we took c and a, or c

and b, for the given numbers, because we might indifferently

write a -\- b, or b + «; and it was also the same with mul-
tiplication ; we could at pleasure take the letters a and b for

each other, the equation ob = c being exactly the same as

ba = c: but in the calculation of powers, the same thing

does not take place, and we can by no means write b" in-

stead of «*; as a single example will be sufficient to il-

lustrate : for let a = 5, and 6 = 3; then we shall have
rt* = 53 — 125; but 6" = 3^ = 243: which are two very

different results.

216. It is evident then, that we may propose two ques-

tions more : one, to find the root a by means of the given

power c, and the exponent b; the other, to find the ex-

ponent b, supposing the power c and the root a to be
known.

217. It may be said, indeed, that the former of these

questions has been resolved in the chapter on the extraction

of roots ; since if 6 := 2, for example, and a"- =. c, we know
by this means, that a is a number whose square is equal to

Cy and consequently that « = ^c. In the same manner, if
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h = 3 and a' = c, wc know that tlic cube of a must be equal

to the given number r, and consequently that a =z l/c. It

is therefore easy to conckide, generally, from this, how to

determine the letter <i by means of the letters c and b ; for

we must necessarily have a — l/c.

218. We have already remarked also the consequence

which follows, when the given number is not a real power;

a case which very frequently occurs ; namely, that then the

required root, a, can neither be expressed by integers, nor

by fractions ; yet since this root must necessarily have a de-

terminate value, the same consideration led us to a new kind

of numbers, which, as we observed, are called surds., or irra-

tional numbers ; and which we have seen are divisible into

an infinite number of different sorts, on account of the great

variety of roots. Lastly, by the same inquiry, we were led

to the knowledge of another particular kind of numbers,

which have been called tmaginary numbers.

219. It remains now to consider the second question,

which was to determine the exponent; the power c, and the

root a, both being known. On this question, which has not

yet occurred, is founded the important theory of Logarithms,

the use of which is so extensive through the whole compass

of mathematics, that scarcely any long calculation can be

carried on vathout their assistance ; and v/e shall find, in

the following chapter, for which we reserve this theory, that

it will lead us to another kind of numbers entirely new, as

they cannot be ranked among the irrational numbers before

mentioned.

CHAP. XXL

O/" Logarithms m general.

220. Resuming the equation «* — c, we shall begin by
remarking that, in the doctrine of Logarithms, we assume

for the root n, a certain number taken at pleasure, and sup-

pose this root to preserve invariably its assumed value.

This being laid down, we take the exponent b such, that

the power a'" becomes equal to a given number c ; in

which case this exponent b is said to be the logarithm of the

number c. To express this, we shall use the letter L. or

the initial letters log. Thus, by b = 'L. c, or b =. log. c,
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we mean that h is equal to tlie logarithm of the number r,

or that the logarithm of c is h.

221. We see then, that the value of the root a being
once established, the logarithm of any number, c, is nothing-

more than the exponent of that power of a, which is equal
to c : so that c being =: a'', b is the logaritinn of the power-
a''. If, for the present, we suppose h =z 1, we have 1 for

the logarithm of «', and consequently log. « = 1 ; but if we
suppose b — 2, we have 2 for the logarithm of a'- ; that is to

say, log. a^ =. 2, and we may, in the same manner, obtain

log. a^ zz'^:, log. «^ = 4 ; log. u^ — 5, and so on.

222. If we make 6 = 0, it is evident that will be the

logarithm of «" ; but r/° = 1 ; consequently log. 1=0, what-
ever be the value of the root a.

Suppose 6 zr — 1, then —1 will be the logarithm of

a—' ; but a~^ = —
; so that we have log. — = — 1, and in

a ^ a

the same manner, we shall have lo^r- —r =: — 2 ; log. —-

= — 3 ; log. ^- = — 4, &c.

223. It is evident, then, how we may represent the loga-

rithms of all the powers of a, and even those of fractions,

which have unity for the numerator, and for the denominator

a power of a. We see also, that in all those cases the loga-

rithms are integers ; but it must be observed, that if b were

a fraction, it would be the logarithm of an irrational num-
ber: if we suppose, for example, 6 ~ i, it follows, that i is

I

the logarithm of d^, or of a/c ; consequently we have also

log. v^a := i; and we shall find, in the same manner, that

log. ^a — i, log. ^a = i-, &c.

224. But if it be required to find the logarithm of another

number c, it will be readily perceived, that it can neither

be an integer, nor a fraction ; yet there must be such an ex-

ponent 6, that the power «* may become equal to the num-
ber proposed ; we have therefore b ~ log. c ; and generally,

a^-" = c.

225. Let us now consider another number d, whose loga-

rithm has been represented in a similar manner by log. d;

so that a^'' =::: d. Here if we multiply this expression by
the preceding one a^" = c, we shall have a^''^^'^ =z cd;

hence, the exponent is always the logarithm qfthe power

;

consequently, log. c -\- log. d = log. cd. But if, instead of

multiplying, we divide the former expression by the latter.
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we shall obtain a^-<^'~^-'' = — ; and, consequently, log. c —

log. d = log.
-J.

226. This leads us to the two principal properties of loga-

rithms, which are contained in the equations log: c -|- log. d

— loo". cd, and foif. c — lo^. d = lo^. —r- The former of

these equations teaches us, that the logarithm of a product,

as cd, is found by adding together the logarithms of the

factors ; and the latter shews us this property, namely, that

the logarithm of a fraction may be determined by sub-

tractino- the loajarithm of the denominator from that of the

numerator.

227. it also follows from this, that when it is required to

multiply, or divide, two numbers by one another, vve have

only to add, or subtract, their logarithms ; and this is what

constitutes the singular utility of logarithms in calculation

:

for it is evidently much easier to add, or subtract, than to

multiply, or divide, particularly when the question involves

large numbers.

228. Logarithms are attended with still greater advan-

tages, in the involution of powers, and in the extraction of

roots ; for i^ d — c, we have, by the first property, log. c +
log. c = log. cc, or c'^ ; consequently, log. cc ~ 2 log. c ; and,

in the same manner, we obtain log: C = 3 log. c; log. c*=
4 log. c; and, generally, log. c'' = n log. c. If we now sub-

stitute fractional numbers for n, we shall have, for example,
I

log. c% that is to say, log. ^/c, — Uog. c; and lastly, if we
suppose n to represent negative numbers, we shall have log.

c-^, or log. — , = — log. c; log. c—% or log. —, =~-2log.

c, and so on ; which follows not only from the equation

log. c'* = 71 log. c, but also from log. 1 rr 0, as we have

ah'eady seen.

229. If therefore we had Tables, in which logarithms

were calculated for all numbers, we might certainly derive

from them very great assistance in performing the most

prolix calculations ; such, for instance, as require frequent

multiplications, divisions, involutions, and extractions of

roots: for, in such Tables, we should have not only the"

logarithms of all numbers, but also the numbers answering

to all logarithms. If it were required, for example, to find

the square root of the number c, we must first find the loga-

F
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rithm of c, that is, log. c, and next taking the half of that

logarithm, or i-Io^- c, we should have the logarithm of the

square root recjuired : we have therefore only to look in the

Tables for the number answering to that logarithm, in order

to obtain the root required.

230. We have already seen, that the numl)ers, 1, 2, 3, 4,

5, 6, &c. that is to say, all positive numbers, are logarithms

of the root a, and of its positive powers ; consequently,

logarithms of numbers greater than unity : and, on the con-

trary, that the negative numbers, as — 1, — 2, &c. are loga-

rithms of the fractions —, -r, , &c. which are less than unity,
a a^ •'

but yet greater than nothing.

Hence, it follows, that, if the logarithm be positive, the

number is always greater than vmity : but if the logarithm

be negative, the number is always less than unity, and yet

greater than ; consequently, we cannot express the loga-

rithms of negative numbers : we must therefore conclude, that

the logarithms of negative numbers are impossible, and that

they belong to the class of imaginary quantities.

231. In order to illustrate this more fully, it will be

proper to fix on a determinate number for the root a. Let
us make choice of that, on which the common Logarithmic

Tables are formed, that is, the number 10, which has been

preferred, because it is the foundation of our Arithmetic.

But it is evident that any other number, provided it were

greater than unity, would answer the same f)urpose: and
the reason why we cannot suppose a r= unity, or 1, is

manifest; because all the powers a'' would then be con-

stantly equal to unity, and could never become equal to

another given number, c.

CHAP. XXIL

Of the Logarithmic Tables now in use.

232. In those Tables, as we have already mentioned, we
begin with the supposition, that the root a is = 10 ; so that

the logarithm of any number, c, is the exponent to which wc
must raise the number 10, in order that the power resulting

from it may be equal to the number c ; or if we denote the

logarithm of c by L.c, we shall always have lO'" = c.
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233. We have already observed, that the logarithm of

the number 1 is always 0; and we have also 10^' = 1 ; con-

sequently, log. 1 = 0; log. 10=1; log. 100 = 2; log.

1000 = 3 ; log. 10000 = 4 ; log. 100000 = 5 ; log. 1000000
= 6. Farther, log. -'^ = — 1 ; Zog-. .^ = - 2 ; log. -j-^Vo

= - 3 ; log. -j-^i-y^ = — 4 ; log. tWooo = - 5 ; log.

—JL— = — 6.joooooo .

234. The logarithms of the principal numbers, therefore,

are easily determined ; but it is much more difficult to find

the logarithms of all the other intervening numbers ; and
yet they must be inserted in the Tables. This however is

not the place to lay down all the rules that are necessary for

such an inquiry ; we shall therefore at present content our-

selves with a general view only of the subject.

235. First, since log. 1=0, and log. 10 = 1, it is evident

that the logarithms of all numbers between 1 and 10 must be
included between and unity ; and, consequently, be greater

than 0, and less than 1. It will therefore be sufficient to

consider the single number 2 ; the logarithm of which is

certainly greater than 0, but less than unity : and if we repre-

sent this logarithm by the letter x, so that log. 2 = ^, the

value of that letter must be such as to give exactly 10' = 2.

We easily perceive, also, that x must be considerably
1

less than \, or which amounts to the same thing, 10^
is greater than 2 ; for if we square both sides, the square of

I

10^ = 10, and the square of 2 = 4. Now, this latter is

much less than the former: and, in the same manner, we
I

see that x is also less than --
; that is to say, 10^ is greater

I

than 2 : for the cube of 10^ is 10, and that of 2 is only 8.

But, on the contrary, by making a; = ^, we give it too small

a value; because the fourth power of 10+ being 10, and

that of 2 being 16, it is evident that 10^ is less than 2.

Thus, we see that x, or the log. 2, is less than i, but greater

than i- : and, in |the same manner, we may determine, with
respect to every fraction contained between i and i, whether
it be too great or too small.

In making trial, for example, with y, which is less than |,
and greater than i, 10', or lOf, ought to be = 2 ; or the

seventh power of 10^, that is to say, 10% or 100, ought to

be equal to the seventh power of 2, or 128; which is con-

sequently greater than 100. Wo see, therefore, that ~ is

less than log. 2, and that log. 2, which was found less than
•-, is however greater than i,

r2
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Let us try another fraction, which, in consequence of

what we have already found, n)ust be contained between y
and -L. Such a fraction between these limits is -^; and it is

therefore required to find whether 10 '
^ = 2 ; if this be the

case, the tenth powers of those numbers are also equal : but
J?

the tenth power of 10' " is 10^ = 1000, and the tenth power

of 2 is 1024) ; we conclude therefore, that 10' ° is less than

2, and, consequently, that ^,^ is too small a fraction, and
therefore the log. 2, though less than

-f,
is yet greater

than T?^.

^36. This discussion serves to prove, that log. 2 has a

determinate value, since we know that it is certainly greater

than -j%, but less than {-; we shall not however proceed any
farther in this investigation at present. Being therefore still

ignorant of its true value, we shall represent it by x, so that

log. 2=0:'; and endeavour to shew how, if it were known,
we could deduce from it the logarithms of an infinity of

other numbers. For this purpose, we shall make use of

the equation already mentioned, namely, log. ccl = log. c +
log. f/, which comprehends the property, that the logarithm

of a product is found by adding together the logarithms of

the factors.

237. First, as log. 2 = x., and log. 10 = 1, we shall have
log. 20 = ^ + 1, log. 200 = o^ + 2
log. 2000 r= ^ + 3, log. 20000 = ^ + 4
log. 200000 = .r + 5, log. 2000000 = a? f 6, &c.

2o8. Farther, as log. c^ — 2 log. c, and log. c' z= 3 log. c,

and log. c* = 4 log. c, &c. we have

log^4< = 2.c; log. 8 = 3x; log. 16 = 4<x; log. 32 = Bx;
log. 64 = 6x, &,c. Hence we find also, that

log. 40 = 2^^ + 1, log. 400 = 2^ + 2
lo^. 4000 = 2x-\-2, log. 40000 = 2^? + 4, &c.

log. 80 = 3t + 1, log. 800 z= 3^ + 2
log. 8000 = 3^ = 3, log. 80000 = 3x + 4, &c.

log. 100 = i'X + 1, log. 1600 = 4^+2
log. 16000 = 4x + 3, log. 160000 = 4vr + 4, &c.

239. Let us resume also the other fundamental equation,

log. ~j — log. c — log. d, and let us suppose c = 10, and

fZ = 2 ; since log. 10 = 1, and log. 2 = x, we shall have
log. '^°, or lug. 5=1 — X, and shall deduce from hence the

following equations

:
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locr. 50 = 2 - r, loir. 500 = 3 - a:

locr. 5000 = 4>~ X, lo^. 50000 = 5 - :r, &c.

log. 25 = 2 - 2t, %. 125 =z 3 - 3a;

fo^. 625 = 4 — 4r, fog-. 8125 := 5 - 5a;, &c.

%. 250 = 3 - 2.r, /o^. 2500 =: 4 — ^a-

log. 25000 r= 5 - 2jr, /o^. 250000 = 6 - 2:r, &c.

log. 1250 = 4 — 3x, log. 12500 = 5-3^
/o^-. 125000 = 6 - 3:1', /og-. 1250000 = 7 - 3:r, 8cc.

Zo^. 6250 = 5 - 4:r, 7cg-. 62500 = 6 - 4:r

log. 625000 = 7 - 4.r, /og. 6250000 = 8 - 4^', &c.

and so on.

240. If we knew the logarithm of 3, this would be the

means also of determinina' a number of other logarithms ; as

appears from the following examples. Let the log. 3 be

represented by the letter ?/ : then,

log. 30 = 7/ + 1, log. 300 = ?/ + 2
log. 3000 = ?/ + 3, loo;. 30000 = 7/ + 4, &c.

foo^. 9 = 2^, %. 27 = %/, log. 81 = 4j/, &c. we shall

have also,

log. 6 = {V -\~2/, log. 12 = 2:r -}- ;/, log. 18 = a- -j- 2?/,

log. 15 =: Zo^. 3 -f~ ^^i§'"
5 — ^ ~f" i — '^^

241. We have already seen that all numbers arise from

the multiplication of prime numbers. If therefore we only

knew the logarithms of all the prime numbers, we could find

the logarithms of all the other numbers by simple additions.

The number 210, for example, being formed by the factors

2, 3, 5, 7, its logarithm will be log. 2 + log. 3 -1- log. 5 +
log-. 7. In the same manner, since 360 = 2 x 2 x 2 x
3'x 3 X 5 = 2^ X 3" X 5, we have log. 360 = 3 log. 2 +
2 log. 3 n'- ^og. 5. It is evident, therefore, that by means
of the logarithms of the prime numbers, we may determine

those of all others ; and that we must first apply to the

determination of the former, if we would construct Tables

of Loaarithms.

CHAP. XXIII.

Of the Method ofexpressing Logarithms.

242. We have seen that the logarithm of 2 is greater than

-j^g, and less than i-, and that, consequently, the exponent of

10 must fall between those two fractions, in order that the

power may become 2. Now, although we know this, yet
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whatever fraction we assume on this condition, the power
resulting from it will be always an irrational number, greater

or less than 2 ; and, consequently, the logarithm of 2 cannot

be accurately expressed by such a fraction: therefore we
must content ourselves with determining the value of that

logarithm by such an approximation as may render the

error of little or no importance; for which purpose, we
employ what are called decimalJractions, the nature and
properties of which ought to be explained as clearly as

possible.

243. It is well known that, in the ordinary way of writing

numbers by means of the ten figures, or characters,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

the first figure on the right alone has its natural signification

;

that the figures in the second place have ten times the value

which they would have had in the first ; that the figures in

the third place have a hundred times the value ; and those

in the fourth a thousand times, and so on : so that as they

advance towards the left, they acquire a value ten times

greater than they had in the preceding rank. Thus, in the

number 1765, the figure 5 is in the first place on the right,

and is just equal to 5 ; in the second place is 6 ; but this

figure, instead of 6, represents 10 x 6, or 60 : the figure 7
is in the third place, and represents 100 x 7, or 700 ; and
lastly, the 1, which is in the fourth row, becomes 1000; so

that we read the given number thus;

One thousand, seven hundred, and sixty-five.

244. As the value of figures becomes always ten times

greater, as we go from the right towards the left, and as it

consequently becomes continually ten times less as we go
from the left towards the right ; we may, in conformity with

this law, advance still farther towards the right, and obtain

figures whose value will continue to become ten times less

than in the preceding place : but it must be observed, that

the place where the figures have their natural value is

marked by a point. So that if we meet, for example, with

the number 36*54892, it is to be understood in this manner:
the figure 6, in the first place, has its natural value ; and the

figure 3, which is in the second place to the left, means 30.

But the figure 5, which comes after the point, expresses

only -^ ; and the 4 is equal only to -j-Jo ' the figure 8 is

equal to
-j-o''o o ' ^'^^ figure 9 is equal to -rol-o o ' ^^^ ^^^^

figure 2 is equal to t-ooVoo^- ^^ see then, that the more
those figures advance towards the right, the more their
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values diminish, and at last, those values become so small,

that they may be considered as nothing *.

245. This is the kind of numbers which we call dccmnl
fractions^ and in this manner logarithms are represented in

the Tables. The logarithm of 2, for example, is expressed

by 0*3010300; in which we see, 1st. That since there is

before the point, this logarithm does not contain an integer;

2dly, that its value is A -i-r§^+-roW + t^°-oo + . owo^
+ 7-owq o-o + -re-o o°o o^o- We might have left out the t^yo

last ciphers, but they serve to shew that the logarithm in

question contains none of those parts, which have 1000000
and 10000000 for the denominator. It is however to be

understood, that, by continuing the series, we might have

found still smaller parts ; but with regard to these, they are

neglected, on account of their extreme minuteness.

246. The logarithm of 3 is expressed in the Table by
0"4771213; we see, therefore, that it contains no integer,

and that it is composed of the following fractions : -^ -j- -^^-^

_j_ 7 _ I I I 1. I I _l_ 3 "U„|
"

1 I O O O I I o b O O I I O O O O O I 1 O O O O O O \^ lOOOOOOO* --'"^

we must not suppose that the logarithm is thus expressed

with the utmost exactness ; we are only certain that the error

is less than ..^-^^J^.^^-^ ; which is certainly so small, that it

may very well be neglected in most calculations.

247. According to this method of expressing logarithms,

that of 1 must be represented by 0*0000000, since it is

really = 0: the logarithm of 10 is I'OOOOOOO, where it evi-

dently is exactly z: 1 : the logarithm of 100 is 2-0000000,

or 2. And hence we may conclude, that the logarithms of

all numbers, which are included between 10 and 100, and

* The operations of arithmetic are performed with decimal

fractions in the same manner nearly, as with whole numbers;,

some precautions only are necessary, after the operation, to

place the point properly, which separates the whole numbers
from the decimals. On this subject, we may consult almost any
of the treatises on arithmetic. In the multiplication of these

fractions, when the multiplicand and multiplier contain a great

number of decimals, the operation would become too long, and
would give the result much more exact than is for the most
part necessary ; but it may be simplified by a method, which is

not to be found in many authors, and which is pointed out by
M. Marie in his edition of the mathematical lessons of M. de la

Caille, where he likewise explains a similar method for the

division of decimals. F. T.
The method alluded to in this note is clearly explaUicd in

Boiniycastle's Arithmetic.
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consequently composed of two figures, are comprehended
between 1 and 2, and therefore must be expressed by 1 plus

a decimal fraction, as log. 50 = 1-6989700 ; its value there-

fore is unity, plus 4^-)r -r|-o + -ro^.o + toIo-o -p t-o-o'o o-o :

and it will be also easily perceived, that the logarithms of

numbers, between 100 and 1000, are expressed by the integer

2 with a decimal fraction: those of numbers between 1000
and 10000, by 3 plus a decimal fraction : those of numbers
between 10000 and 100000, by 4 integers plus a decimal

fraction, and so on. Thus, the log. 800, for example, is

2-9030900 ; that of 2290 is 33598355, &c.

248. On the other hand, the logarithms of numbers which
are less than 10, or expressed by a single figure, do not con-

tain an integer, and for this reason we find before the

point: so that we have two parts to consider in a logarithm.

First, that which pi-ecedes the point, or the integral part

;

and the other, the decimal fractions that are to be added to

the former. The integral part of a logarithm, which is

usually called tlie cliaracierisiic, is easily determined from
what we have said in the preceding article. Thus, it is

0, for all the numbers which have but onefigure ; it is 1,

for those which have two; it is 2, for those which have
three; and, in general, it is always one less than the number
of figures. If therefore the logarithm of 1766 be required,

we already know that the first part, or tliat of the integers,

is necessarily 3.

249. So reciprocally, we know at die first sight of the

integer part of a logarithm, how many figux-es compose the

number answering to that logarithm ; since the number of
those figures always exceed the integer part of tiie logarithm

by unity. Suppose, for example, the number answering to

the logarithm 6-4771213 were required, we know imme-
diately that that number must have seven figures, and be
greater than 1000000. And in flict this number is 3COG0OO

;

for log. 3000000 = log. 3 -j- log. 1000000. Now log. 3 =
0-4771213, and log, 1000000 = 6, and the sum of those two
logarithms is 6-4771213.

250. The principal consideration therefore with respect

to each logarithm is, the decimal fraction which follows the

point, and even that, when once known, serves for several

numbers. In order to prove this, let us consider the loga-

rithm of the number 365 ; its first part is undoubtedly 2

;

with respect to the other, or the decimal fraction, let us at

present represent it by the letter .r; we shall have log. 365
•=z^-^x\ then multiplying continually by 10, we shall
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have log. 3G50 = 3 -fx ; log. 36500 = 4 -[- .r ; log. 365000
= 5 + ^) and so on.

But we can also go back, and continually divide by 10;

which will give us log. 36*5 = \ -\- x-, log. 3*65 = + .r

;

log. 0-365 = - 1 + :i ; log. 0-0365 = - 2 -|- or ; log. 0-00365
= — 3 -|- a:, and so on.

251. All those numbers then which arise from the figures

365, whether preceded, or follo\yed, by ciphers, have always

the same decimal fraction for the second part of the loga-

rithm : and the whole difference lies in the integer before

the point, which, as Ave have seen, may become negative

;

namely, when the number proposed is less than 1. Now, as

ordinary calculators find a difficulty in managing negative

numbers, it is usual, in those cases, to increase the integers

of the logarithm by 10, that is, to write 10 instead of

before the point ; so that instead of —1 we have 9 ; instead

of —2 we have 8 ; instead of —3 we have 7, &c. ; but then

we must remember, that the characteristic has been taken

ten units too great, and by no means suppose that the num-
ber consists of 10, 9, or 8 figures. It is likewise easy to

conceive, that, if in the case we speak of, this characteristic be

less than 10, we must write the figures of the number after

a point, to shew that they are decimals : for example, if the

characteristic be 9, we must begin at the first place after a

point ; if it be 8, we must also place a cipher in the first

row, and not begin to write the figures till the second : thus

9-5622929 would be the logarithm of 0-365, and 8-5622929
the log. of 0*0365. But this manner of writing logarithms

is principally employed in Tables of sines.

252. In the common Tables, the decimals of logarithms

are usually carried to seven places of figures, the last of

which consequently represents the lo oo'oooo pai'tj and we
are sure that they are never erroneous by the whole of this

part, and that therefore the error cannot be of any import-

ance. There are, however, calculations in which we require

still greater exactness ; and then we employ the large Tables

of Vlacq, where the logarithms are calculated to ten decimal

places *.

* The most valuable set of tables we are acquainted with are

those published by Dr. Hutton, late Professor of Mathematics
at the Royeil Military Academy, Woolwich, under the title of,

" Mathematical Tables ; containing common, hyperbolic, and
logistic logarithms. Also sines, tangents, &c. to which is pre-

fixed a large and original history of the discoveries and writings

relating to those subjects."
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253. As the first part, or characteristic of a logarithm, is

subject to no difficulty, it is seldom expressed in the Tables

;

the second part only is written, or the seven figures of the

decimal fraction. There is a set of English Tables in which

we find the logarithms of all numbers from 1 to 100000,

and even those of greater numbers ; for small additional

Tables shew what is to be added to the logarithms, in pro-

portion to the figures, which the proposed numbers have

more than those in the Tables. We easily find, for ex-

ample, the logarithm of 379456, by means of that of 37945
and the small Tables of which we speak *.

254. From what has been said, it will easily be perceived,

how we are to obtain from the Tables the number corre-

sponding to any logarithm which may occur. Thus, in mul-

tiplying the numbers 343 and 2401 ; since we must add

*The English Tables spoken of in the text are those which were

publishetl by Sherwin in the beginning of the last century, and
have been several times reprinted ; they are likewise to be found

in the tables of Gardener, which are commonly made use of by

astronomers, and which have been reprinted at Avignon. With
respect to these Tables it is proper to remark, that as they do not

carry logarithms farther than seven places, independently of the

characteristic, we cannot use them with perfect exactness except

on numbers that do not exceed six digits ; but when we employ
the great Tables of Vlacq, which carry the logarithms as far as

ten decimal places, we may, by taking the proportional parts,

work, without error, upon numbers that have as many as nine

digits. The reason of what we have said, and the method of

employing these Tables in operations upon still greater numbers,

is well explained in Saunderson's " Elements of Algebra,"

Book IX. Part II.

It is farther to be observed, that these Tables only give the

logarithms answering to given numbers, so that when we wish

to get the numbers answering to given logarithms, it is seldom

that we find in the Tables the precise logarithms that are given,

and we are for the most part under the necessity of seeking for

these numbers in an indirect way, by the method of interpola-

tion. In order to supply this defect, another set of Tables was
published at London in 1742, under the title of " The Anti-

logarithmic Canon, &c. by James Dodson." He has arranged

the decimals of logarithms from 0,0001 to 1,0000, and opposite

to them, in order, the corresponding numbers carried as far as

eleven places. He has likewise given the proportional parts

necessary for determining the numbers, which answer to the

intermediate logarithm.s that are not to be found in the

Table. F. T.
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together the logarithms of those numbers, the calculation

wm be as follows

:

log. 343 = 2-5352941 ) i , .

log. 2401 = 3-3803922 j''^^^^^

5-9156863 their sum
log. 823540 = 5-9156847 nearest tabular log.

16 difference,

which in the Table of Differences answers to 3 ; this there-

fore being used instead of the cipher, gives 823543 for the

product sought : for the sum is the logarithm of the product

required ; and its characteristic 5 shews that the product is

composed of 6 figures ; which are found as above

255. But it is in the extraction of roots that logarithms

are of the greatest service ; we shall therefore give an ex-

ample of the manner in which they are used in calculations

of this kind. Suppose, for example, it were required to

extract the square root of 10. Here we have only to divide

the logarithm of 10, which is 1-0000000 by 2; and the

quotient O'SOOOOOO is the logarithm of the root required.

Now, the number in the Tables which answers to that

logarithm is 3' 16228, the square of which is very nearly

equal to 10, being only one hundred thousandth part too

great *.

* In the same manner, we may extract any other root, by
dividing the log. of the number by the denominator of the index

of the root to be extracted; that is, to extract the cube root,

divide the log. by S, the fourth root by 4, and so ou for any

other extraction. For example, if the 5th root of 2 were re-

quired, the log. of 2 is 0-3010300: therefore

5)0-3010300

0-0602060 is the log. of the root, which

by the Tables is found to correspond to l-i497 j and hence we
have \/2 = 1*1497. When the index, or characteristic of the

log. is negative, and not divisible by the denominator of the

index of the root to be extracted ; then as many units must be

borrowed as will make it exactly divisible, carrying those units

to the next figure, as in common division.
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SECTION IL

SECT. II.

Of tJie different Methods of calculating Compound
Quantities.

CHAP. I.

. Ofthe Addition o/'Compound Quantities.

256. Wlien two or more expressions, consisting of several

terms, are to be added together, the operation is frequently

represented merely by signs, placing each expression be-

tween two parentheses, and connecting it with the rest by
means of the sign +. Thus, for example, if it be required,

to add the expressions a -\- h -\- c and d -[- c -j-y^ we repre-

sent the sum by

(a-f /» + c)+(cZ-f e-f/).

257. It is evident that this is not to perform addition,

but only to represent it. We see, however, at the same
time, that in order to perform it actually, we have onlv to

leave out the parentheses; for as the number d -[- e -!-^is

to be added to a -f 6 -J- c, we know that this is done by
joining to it first -j- d, then -\ e, and then -{J"; which therefore

gives the sum a-\~h -\- c -\- d -^ e -|-y; and the same method
is to be observed, if any of the terms are affected by the

sign — ; as they must be connected in the same way, by
means of their proper sign.

258. To make this more evident, we shall consider an
example in pure numbers, proposing to add the expression

15 — 6 to 12 — 8. Here, if we begin by adding 15, Ave

shall have 12 — 8 -|- 15 ; but this is adding too much, since

we had only to add 15 — 6, and it is evident that 6 is the

number which we have added too much ; let us therefore

take this 6 away by writing it with the negative sign, and
we shall have the true sum,

12 — 8-1-15 - 6;

which shews that the sums are found by writing all the

terms, each witii it^ proper sign.
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259. If it were required therefore to add the expression

d— e —y to a — b-{- c, -we should express the sum thus,

a — b -^ c -{- d — e —f\
remarking, however, that it is of no consequence in what

order we write these terms ; for their places may be changed

at pleasure, provided their signs be preserved ; so that this

sum might have been written thus,

c — e - r cb —,/*-r d — b.

260. It is evident, therefore, that addition is attended

with no difficulty, whatever be the form of the terms to be

added : thus, if it were necessary to add together the ex-

pressions ^Li? -}- 6 -/^ — 4 log. c and 5^^ — 7c, we should

write them
9,a^ + 6^/6 — 4 log. c + 5'S/a — 7c,

either in this or in any other order of the terms ; for if the

signs are not changed, the sum will always be .the same.

261. But it frequently happens that tlie sums represented

in this manner may be considerably abridged, as is the case

when two or more terms destroy each other ; for example, if

we find in the same sum the terms -\- a — a, or 3a— 4a-f ^•

or wlien two or more terms may be reduced to one, &c.

Thus, in the following examples

:

3a + 2a = 5a, lb — Qh = ~^^b
-Qc-\- 10c = -f 4c

;

M- ^d = M
5a — 8a = - 3a, -lb -\- b = - Qb

-3c - 4c = - 7c, -M - 5d= - 8d
2a - 5a 4- a = — 2a, -Sb - 5l) + ^b = — 6b.

Whenever two or more terms, therefore, are entirely the

same with I'egard to letters, their sum may be abridged;

but those cases must not be confounded with such as these,

2a" + 3a, or 26^ — 6\. which admit of no abridgment.

282. Let us consider now some other examples of re-

duction, as the following, which will lead us immediately to

an important truth. Suppose it were required to add to-

gether the expressions a A^b and a — 6 ; our rule gives

a -\- b -{- a — b; now a -\- a — 2a, and b — 6=0; the sum
therefore is 2a : consequently, if we add together the sum of

two numbers (a + b) and their difference (a — 6), we obtain

the double of the greater of riiose two numbers.

This will be better understood perhaps from the following

examples

:

3a-26-c a^-2a'6+ 2a6^

56-6c+ a - a"b-{-2ab^~b'

4a+36 -7c a^-Sa^b+^^ab'^—b^
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4a2-3^4- 2c a*+ 2ab -\- b'

3a-+26 -12c ^a^'—^a-b+W

7a^_ 6+lOc -^a'b+^ab+W

CHAP. II.

Of the Subtraction o/* Compound Quantities.

263. If we wish merely to represent subtraction, we en-

close each expression within two parentheses, joining, by the

sign — , the expression which is to be subtracted, to that

from which we have to subtract it.

When we subtract, for example, the expression d — e

+yfrom the expression a — 6 -f- c, we write the remainder

thus

:

(^a^b + c)- {d-e +/)

;

and this method of representing it sufficiently shews which

of the two expressions is to be subtracted from the other.

264. But if we wish to perform the actual subtraction, we
must observe, first, that when we subtract a positive quantity

+ b from another quantity a, we obtain a— b: and secondly,

when we subtract a negative quantity — b from a, we obtain

a + b; because to free a person from a debt is the same as

to give him something.

265. Suppose now it were required to subtract the ex-

pression b — d from a — c. We first take away b, which

gives a — c — b: but this is taking away too much by the

quantity d, since we had to subtract only b — d; we must
therefore restore the value of d, and then shall have

a — c — b -\- d;

whence it is evident that the terms of the expression to be

subtracted must change their signs, and then be joined, with

those contrary signs, to the terms of the other expression.

266. Subtraction is therefore easily performed by this

rule, since we have only to write the expression from which

we are to subtract, joining the other to it without any change

beside that of the signs. Thus, in the first example, where

it was required to subtract the expression d — e +yfrom
a — b -{- c, we obtain a — b + c — d -\r e —f.
An example in numbers will render this still more clear;
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for if wc subtract 6 — 2 -f 4 from 9 - 3 + 2, we evidently

obtain

9_ 3 _|_2 — 6 + 2-4 = 0;

for 9 ~3 + 2 = 8; also, 6-2 + 4 = 8; and 8 - 8 = 0.

267. Subtraction being therefore subject to no difficulty,

we have only to remark, that if there are found in the re-

mainder two or more terms, which are entirely similar with

regard to the letters, that remainder may be reduced to

an abridged form, by the same rules which we liave given

in addition.

268. Suppose we have to subtract a — h from « + 6

;

that is, to take the difference of two numbers from their

sum : we shall then have {a + /;) — (a — 6) ; but a ~ a

= 0, and 6 + 6 = 26 ; the i-emainder sought is therefore

2b ; that is to say, the double ot the less of the two

quantities.

269. The following examples will supply the place of

further illustrations

:

— a^+ ab+ b"

2a2

Sa—U+ Scla' + Sa'-b + Sab'^+ b^

2b + ic-6a\a'—5a%+ Sab"--b^

9a—6b+c. 1 6ft-b+2bK

^a +2^b
^a—3^b

5^b..

CHAP. III.

Ofthe Multiplication o/'Compound Quantities.

270. When it is only required to represent multiplication,

we put each of the expressions, that are to be multiplied

together, within two parentheses, and join them to each

other, sometimes without any sign, and sometimes placing

the sign x between them. Thus, for example, to represent

the product of the two expressions a — h -\- c and d — e +^
we write

(a-6 + c)x(J-e+/)
or barely, (a — 6 + c) {d -^ e +y

)

which method of expressing products is much used, because

it immediately exhibits the factors of which they are com-

posed.

271. But in order to shew how multiplication is actually

performed, we may remark, in the first place, that to mul-

tiply, for example, a quantity, such as a — 6 + c, by 2,
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each term of it is separately multiplied by that number; so

that the product is

2a — 25 f 2c.

And the same tiling takes place with regard to all other

numbers ; for if d were the nimiber by which it was required

to multiply the same expression, we should obtain

od — Oil -\- cd.

272. In the last article, we have supposed d to be a

positive number ; but if the multiplier were a negative num-
ber, as —e, the rule formerly given must be applied; namely,

that unlike signs multipliecl together produce — , and like

signs f . Thus we should have
— aei be — ce.

273. Now, in order to shew how a quantity, A, is to be
mulliplied by a compound quantity, d -~ e; let us first con-

sider an example in numbers, supposing that a is to be mul-
tiplied by 7 — 3. Here it is evident, that we are required

to take the quadruple of a : for if we first take A seven

times, it will then be necessary to subtract 3a from that

product.

In general, therefore, if it be required to multiply a by
d ~ e, vfQ multiply the quantity a first by d, and then by e,

and subtract this last product from the first : whence results

dA — eA.

If we now suppose a = « — i, and that this is the quantity

to be multiplied by d — e; we shall have
f^A — ad — bd
CA — ne — be

whence dA — ca =: ad — bd — ae -\-be is the product re-

quired.

274. Since therefore we know accurately the product
{a — b) x{d— e), we shall now exhibit the same example of

multiplication under the following form :

a — b

d — e

ad — bd — a<? -f he.

Which shews, that we must multiply each term of the upper
expression by each term of the lower, and that, with regard

to the signs, we must strictly observe the rule before given

;

a rule which this circumstance would completely confirm, if

it admitted of the least doubt.

275. It will be easy, therefore, according to this method,
to calculate the following example, which is, to multiply

a-\-bhy a —b;
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a-\-b

a—b

a''-\-ab

-ab-b""

Product a^ — b^.

276. Now, we may substitute for a and b any numbers
whatever ; so that the above example will furnish the fol-

lowing theorem ; viz. The sum of two numbers, multiplied

by their difference, is equal to the difference of the squares

of those numbers : which theorem may be expressed thus

:

{a-\-b)x{a-b)-a^ - b\

And from this another theorem may be derived ; namely,

The difference of two square numbers is always a product,

and divisible both by the sum and by the difference of the

roots of those two squares ; consequently, the difference of

two squares can never be a prime number *.

277. Let us now calculate some other examples

:

S«-3 4a^-6a+9
a-|-2 2« -1-3

2«*-3«
4«-6

8a='-12«"-|-18a
12«^-18«+ 27

2a-+ «-6 Sa^+n

3«"-2a6
2« -46

a^-^ab^

a*-a'b^

Qa^ — 4a-^
—12a'6H-8«6^

a^-\-a'b^

-a'b^-a*b^

6«3_16a'6+8afr^ a^-a*b'

* This theorem is general, except when the difference of the

two numbers is only 1, and their sum is a prime; then it is

evidtnt that the difference of the two squares will also be a

prime: thus, 6^-5' = 11, 7- - 6^ = 13, 9^ - 8^ = 17, &c.
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a*-\-2a^b-\-2a^b°-

-2a^b^4>a''b^^4<al^

a*-\-b*

20"-Sab—

W

3a^- 2ab-\-b'

6a*~9a'b-l^°'b'

^"b'-Sab^-^U*

6a*-13a^b - 4a'Z»^+5a6^- 46^

a'^-\-b'-\-c'^—ab— ac— bc

a-\-b^c

a^-\-ab--\-ac-— a"b— a^c-'abc

a'b-\-b^ -\-bc''-ab'-abc-¥c
a^c-\- b'^c -\-c^ —abc— ac" — bc^

a^—3abc-\-h'-\-c^

278. When we have more than two quantities to mul-
tiply together, it will easily be vmderstood that, after having

multiplied two of them together, we must then multiply

that product by one of those which remain, and so on:
but it is indifferent what order is observed in those mul-
tiplications.

Let it be proposed, for example, to find the value, or

product, of the four following factors, viz.

I. II. III. IV.
{a-\-b) {a'' -\- ah -\- b') (a - b) (a' ~ ab -\- b"")

.

1st. The product of the fac- 2d. The product of the fac-

tors I. and II. tors III. and IV.

a'-\-ab-\-b'' a^-ab^¥
a-\- b a — b

a^-\-a'ib-\-ab''

-\-a!'b-\-ab''-\-b'

a'+^a'b-J(-2ab'-\-b'

o'— a^b^ob^
—ob-\-ab- — b^

a^—2ab-\-^aV—b^
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It remains now to multiply the first product I. II. by this

second product III. IV.

a^-\-2a'b-\-2ab'-\-b^

a?^^db-\-^ab^-b^

a^+2a%+ 2a'^b''+a^b^

2a*b" + 4«36^+ 4a-6* + 2a¥
- aW-^a^b'^-^ab'-b^

a^~b^

which is the product required.

279. Now let us resume the same example, but change

the order of it, first multiplying the factors I. and III. and

then II. and IV. together.

a-\-b a'+ab+b-
a—b d''^ab-\-b'^

a'^+ ab
—ab—b~

a*+a^b+ a^b^

— a^b—wb^— ab^

a^b'-{-ab^ + b*

a^-\-a-b"+ b*

a^-b""

Then multiplying the two products I. III. and II. IV.

—a^b'-a'b^—b^

a^-b^

which is the product required.

280. We may perform this calculation in a manner still

more concise, by first multiplying the I^'. factor by the IV"".

and then the 11^. by the III'^

a'-ab+ b^ a-+ab-\-b''

a +b a —b

a^— a^b+ ab^ a?-\- a^b+ ab^

a''b—ab^-i-b^ -a'^b-ab'^— b^
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It remains to multiply the product I. IV. by that of II.

and III.

the same result as before.

281. It will be proper to illustrate this example by a

numerical application. For this purpose, let us make a=3
and b =:% we shall then have a -\- b zz 5, and a — b =:\\
farther, a* = 9, ab =: 6, and b^ z=. ^•. therefore «* -\- ab -\-

6^ rr 19, and a^ — a6 + 6^ = 7 : so that the product re-

quired is that of 5 X 19 X 1 x 7, which is 665.

Now, aP = 729, and b^ = 64>; consequently, the product

required is a^ — b^ zz 665, as we have already seen.

CHAP. IV.

Of the Division o/"Compound Quantities.

282. When we wish simply to represent division, we
make use of the usual mark of fractions ; which is, to write

the denominator under the numerator, separating them by a

line ; or to enclose each quantity between parentheses, placing

two points between the divisor and dividend, and a line be-

tween them. Thus, if it were required, for example, to

divide a -|- 6 by 6 + d, we should represent the quotient

thus ; —r-,, according to tlie former method ; and thus,
c-\-a

(a + b) ^(c + d)

according to the latter, where each expression is read a + b

divided by c -\- d.

283. When it is rec^uired to divide a compound quantity

by a simple one, we divide each term separately, as in the

following examples :

(6rt - 86 f 4t) -f- .2 = 3a - 46 + Sc-

Id" - 2ah) -^a = (t -2b
(a^ - 2a^b + '6ub') ^ a = ff - 2ab + 36*



CHAP. IV. OV ALGlilillA. 85

(4a2 _ 6a'c + 8abc) -^ 2a = 2a — Sac + ^bc

X^a^hc — 12ab'-c + IBabc^) -^ Sabc zz 3a ~ 4>b + 5c.

284. If it should happen that a term of the dividend is

not divisible by the divisor, the quotient is represented by a

fraction, as in the division of a -f- Z> by «, which gives 1 -f-

— . Likewise, («' ~ ab + b") -^ a'' = 1 j

—

-.

a a a

In the same manner, if we divide 2a -j- 6 by 2, we ob-

tain « 4" "q" • ^"^ ^ere it may be remarked, that we may

write 46, instead of -^, because {- times b is equal to -^ ; and,

in the same manner, -^ is the same as jO, and —^ tlie same
o o

as f6, &c.

285. But when the divisor is itself a compound quantity,

division becomes more difficult. This frequently occurs

where we least expect it ; and when it cannot be performed,

we must content ourselves with representing the quotient by
a fraction, in the manner that we have already described.

At present, we will begin by considering some cases in which

actual division takes place.

286. Suppose, for example, it were required to divide

(ic — be by a — 6, the quotient must here be such as, when
multiplied by the divisor a — b, will produce the dividend

ac — be. Now, it is evident, that this quotient must in-

clude c, since without it we could not obtain ac; in order

therefore to try whether c is the whole quotient, we have

only to multiply it by the divisor, and see if that mul-

tiplication produces the whole dividend, or only a part of

it. In the present case, if we multiply a — b hy c, we
have ac — be, which is exactly the dividend; so that c is

the whole quotient. It is no less evident, that

(a- -\- ab) -^ {a ^b) = a;

(3«" — 2a6) ^ (3a - 2/;) - «;

(6a^ - 9a6) -f- (2a - 3^^) - 3a, &c.

287. We cannot fail, in this way, to find a pcV.t of the

quotient; if, therefore, what we have found, when mul-

tiplied by the divisor, does not exhaust the dividend, we
have only to divide the remainder again by the divisor, in

order to obtain a second part of the quotient ; and to con-

tinue the same method, until we have found the whole.

Let us, as an example, divide a^ -f Sab -f- ^b"- by a -\- b.
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It is evident, in the first place, that the quotient will include

the term o, since otherwise we should not obtain a". Now,
from the multiplication of the divisor a -\- b by a, arises

a" -f- ab ; which quantity being subtracted from the dividend,

leaves the remainder, 2ab -[- 2b^ ; and this remainder must
also be divided hy a-\-b, where it is evident that the quo-

tient of this division must contain the term 9,b. Now, 26,

multiplied by a -|- h, produces ^ab -(- 26- ; consequently,

a -j- 26 is the quotient required ; which multiplied by the

divisor a -\- b, ought to produce the dividend a^ -\- Sab -{-

26^. See the operation.

a-l-6)a^+3a6+26X«+26
a--\- ab

^ab-\-^b^

2a6-|-26^

0.

288. This operation will be considerably facilitated by
choosing one of the terms of the divisor, which contains the

highest power, to be written first, and then, in arranging the

terms of the dividend, begin with the highest powers of that

first term of the divisor, continuing it according to the

powers of that letter. This term in the preceding example

was a. The following examples will render the process

more perspicuous.

a—b)a^- 3a'b-\-3ab^- b\a^- ^ab-\-b"~

a?— d^b

2«"64-2rt6"

ab'-h''

ab'-ly-

a-i-b)a'-—b\a— h

d'-\-ab

-ab-b"-
-ab-b"-



CHAP. IV. OF ALGEBRA.

3a-r26)18««- 8&"{6a+46
18a'-12a6

87

l^ab-Sb^

0.

a-^b)a^-{-b\a"-ab+ b^

a^-i-a'-b

-a'b-\- b^

—a^b—ab"-

ab^+b^

0.

2a- b)8a^- 6'(4.a*

+

^ab+ 6^

8a' -4a^^

4a^6 - b^

^d^b-^ab"

^ab" - b"

^ah'-b^

a^^^ab+ 6^)a*—4a36+ 6a^6*- 4a63

+

b*(a'-2a6+ 6^

a'^^^a^b+ a^b^

-2a3J+5a26^-4a6=»
-2a36+4a*6'—2a6'

a^b^-^ab'^+b*

a^b'-^ab^+ b*

0.
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or-2ab+ W)a*+ 4a^b'+ 1 66*(«^+ 2a6+ 46^

2a^b + l6b^

2a^b-4>a'b^+8abi

16b*

4a^6'^-8a6Hl6//
4a'6^-8a63+i66*

0.

2rt>6-2a'62 + 46*

9,a?b-^a''b' + ^ab^

^a'b'-4>ab' +W
9.a'b-~A'ab^ +W

0.

1 —^x -r 0,') 1 - 5^ + 1 0*-- 1 Oo:"' + 5.r*-^( 1 - S^r + 3^- —a*
1—2x+ ^2

3^2_7^3^5_^4
3^-— 6.r^-i-3jr*

-x^+2x'-x^

CHAP. V.

Of the Resolution o/'Fractions into Infinite Series*.

289» When the dividend is not divisible by the divisor,

* The Theory of Series is one of the most important in all the

mathematics. The scries considered in this chapter were dis-
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the quotient is expressed, as we have already observed, by a

fraction : thus, if we have to divide 1 by 1 — a, we obtain

the fraction . This, however, does not prevent us from

attempting the division according to the rules that have been

given, nor from continuing it as far as we please ; and we
shall not fail thus to find the true quotient, though under
different forms.

290. To prove this, let us actually divide the dividend 1

by the divisor 1 — a, thus

:

or

i—a)\ *
^^+l-a

I—

a

remainder a

1-1 /»^ 1 * (\\a\
'''

(M«l !_.,,

\-a

a
a- a*

remainder a-

To find a greater number of forms, we have only to con-

tinue dividing the remainder ft'^ by 1 —a;

l-a)a^ * («'-f
a

I—

a

covered by Mercator, about the middle of the last century ; and
soon after, Newton discovered those which derived from the ex-
traction of roots, and which are treated of in Chapter XII. of this

section. This theory has gradually received improvements from
several other distinguished mathematicians. The works ofJames
Bernoulli, and the second part of the " Differential Calculus"

of Euler, are the books in which the fullest information is to be
obtained on these subjects. There is likewise in the Memoirs
of Berlin for 1768, a new method by M. de la Grange for re-

solving, by means of infinite series, all literal equations of any
dimensions whatever. F. T.
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a*
then, l—a)a^ * (d^ A

<r - «"•

and again, \—a)a* * (a^ \- -

a^, &c.

291. This shews that the fraction may be exhibited
1 —a '

under all the following forms

:

a a^
I. 1 + . II. 1 + a + ;]—

«

'

1 -a

III. 1 +a + a" + —^. IV. 14-a+a*+a3+ -^;

V. 1 + a + a^ + «' + a^ + -^, &c.
1 —a

Now, by considering the first of these expressions, which

is I + ~^ > and remembering that 1 is the same as »

we have
a 1

—

a a I— a 4- a 1

l+T =:—.+
I— a 1— a 1—

a

I—

a

1 —

a

If we follow the same process, with regard to the second

expression, 1 + a + , that is to say, if we reduce the

integral part 1 + a to the same denominator, 1 — a, we

shall have , to which if we add + , we shall have

1— «»-!-«* . 1

, that is to say, .

a?
In the third expression, 1 + a + «- h , the integers

J 0^
reduced to the denominator 1 — a make ; and if we

1—a
o? 1

add to that the fraction , we have ,'cas before ; .
1—a 1 —a

'

therefore all these expressions arc equal in value to
,

1—a
the proposed fraction.
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292, This being the case, we may continue the series as

far as we please, without being under the necessity of per-

forming any more calculations ; and thus we shall have

I /jS

= 1 -(- a + a^ -t- rt' -I- a* -t-
«'' + a** -f- a' -H

1—

c

1—

«

or we might continue this farther, and still go on without

end; for which reason it may be said that the proposed

fraction has been resolved into an infinite series, which is,

1 +a4-rt2 j^.u3 j^a^ + a^ + a^ + «7 + ^s ^ ^9 +fliO-f.rt"+ a'% &c.

to infinity : and there are sufficient grounds to maintain,

that the value of this infinite series is the same as that of the

fraction .

\ —a
293. What we have said may at first appear strange

;

but the consideration of some particular cases will make it

easily understood. Let us suppose, in the first place, a:=.\;

our series will become 1 -f- 1 -j- 1 -f- 1 -|- 1 -{- 1 -f- 1, &c

;

and the fraction , to which it must be equal, becomes ^.

Now, we have before remarked, that ^ is a number infinitely

great; which is therefore here confirmed in a satisfactory

manner. See Art. 83 and 84.

Again, if we suppose a — 2, our series becomes 1 -}- ^ +
4 _L 8 -[- 16 -{- 32 -j- 64, &c, to infinity, and its value must

be the same as -—^, that is to say —- = — 1 ; which at first

sight will appear absurd. But it must be remarked, that if

we wish to stop at any term of the above series, we cannot do
so without annexing to it the fraction which remains. Suppose,

for example, we were to stop at 64, after having written

1 + 2 + 4 H- 8 -f 16 + 32 "I- 64, we must add the fraction

1^8 128
:r—7., or —-. or —128; we shall therefore have 127— 128,
1— 2' —1
that is in fact —1.
Were we to continue the series without intermission, the

fraction would be no longer considered ; but, in that case,

the series would still go on.

294. These are the considerations which are necessary,

when we assume for a numbers greater than unity ; but if

we suppose a less than 1, the whole becomes more intel-

ligible : for example, let a = i- ; and we shall then have

Y^ = Y^i —~=-^i which will be equal to the following

series 1 4- /+ l\ l. -^ _,.'^ -f- y_ + ^^ -f- ^4_, &c. to in-
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finity. Now, if we take only two terms of this series, we

shall have 1 + i, and it wants ~ of being equal to = = 2.
J. — it

If we take three terms, it wants ^ ; for the sum is 11. If

we take four terms, we have 1^, and the deficiency is only

~. Therefore, the more terms we take, the less the diiference

becomes; and, consequently, if we continue the series to

infinity, there will be no difference at all between its sum

and the value of the fraction , or 2.
1
-«'

295. Let « = i; and our fraction :; will then be ~
^ \—a

~ =
I-

rr li, which, reduced to an infinite series, be-

comes 1 -f2- + i-+^-f^ + -i-^., 8u;. which is conse-

quently equal to .

Here, if we take two terms, we have li, and there wants
i. If we take three terms, we have \^, and there will still

be wanting —• If we take four terms, we shall have I44,

and the difference will be y^ ; since, therefore, the error

always becomes three times less, it must evidently vanish

at last.

296. Suppose a rz ^ ; we shall have —— = \ _ ^ = 3,

= 1 + T + ^ + -/t + TT + m. &c. to infinity ; and here,

by taking first I4, the error is li ; taking three terms,

which make 2^, the error is ~ ; taking four terms, we have

2^, and the error is 4y.

297. If a z=. -L, the fraction is
;
= — = I ^ ; and the

series becomes 1 -\- ^ -\- -re
-\- -^ + xtz^ ^^' '^'^^ ^'"^^ ^^o

terms are equal to li^, which gives -j"^ for the error ; and
taking one term more, we have 1~, that is to say, only an
error of ^.

298. In the same manner we may resolve the fraction

-—— , into an infinite series by actually dividing the nu-

merator 1 by the denominator 1 + «, as follows *.

* After a certain number of terms have been obtained, the

law by which the following terms are formed will be evident

;

so that the series may be carried to any length without the

U'ouble of continual division, as is shewn in this example.
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— a

a"

w + m

a?

— a'--a*

a*

«H a'

_«\ 8

c +inf fi- A.O,
1

&c.

....^..v,^ .. . ., ^ . is equal to the

series,

1 — « -f- a^ — o^ + o* — a^ + «^ — aT, &c.

299. If we make a = 1, we have this remarkable com-

parison :

-— =:i = l-l + l-l4-l--l+l-l, &c. toin-
1 +a
infinity ; which appears rather contradictory ; for if we stop

at— 1, the series gives ; and if we finish at + 1, it gives 1

;

but this is precisely what solves the difficulty ; for since we
must go on to infinity, without stopping either at — 1 or at

+ 1, it is evident, that the sum can neither be nor 1, but

that this result must lie between these two, and therefore

bei*
300. Let us now make a = j;, and our fraction will be

=

—

~ = i, which must therefore express the value of the

series 1 - i. + 2. + -i, +^ - ^L. + ^, &c. to infinity ; here

if we take only the two leading terms of this series, we have

4, which is too small by ^; if we take three terms, we have

1, which is too much by -p'^ ; if we take four terms, we have

|, which is too small by ^, &c.

* It may be observed, that no infinite series is in reality equal

to the fraction from which it is derived, unless the remainder be
considered, which, in the present case, is alternately +| and
— I; that is, +i when the series is 0, and — f when the series

is 1, which still gives the same vnlue for the whole expression.

Vid. Art. 293.
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301. Suppose again a — ^, our fraction will then be =
—— = l, which must be equal to this series 1 — i. -|- 2. —

-L- + ^ — -j^i^ + yi^, &c. continued to infinity. Now,
by considering only two terms, we have ~, which is too small

by ~ ; three terms make |-, which is too much by -^ ; four

terms give ^, which is too small by ^-^-^, and so on.

302. The fraction may also be resolved into an in-

finite series another way ; namely, by dividing 1 by « + 1

,

as follows

:

^ . 1 1 i .a+ 1) 1 * ( T+ T' &c.

' + «

a
I

a
1 _ 1

a a"

1

a-

1 1
1. —

8ir *

Consequently, our fraction , is equal to the infinite

1 1 1 1 1 i
C T

series -^ —^ rH—r
k^ &c. L,et us make

a a- or cr a? aP

« = 1, and we shall have the series 1 — 1 + 1 — 1 + 1 —
1, &c. = i^, as before: and if we suppose a = 2, we shall

have the series i- - i- + | - -^ + 3V - -5^, &c. = i.

* It is unnecessary to carry the actual division any farther,

as the series may be continued to any length, from tlie law ob-

servable in the terms already obtained ; for the signs are alter-

nately plus and minus, and any subsequent term may be
obtained by multiplying that immediately preceding it by
I
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303. In the same manner, by resolving the general fraction

c
into an infinite series, we shall have,

, i.\ * / <^ be b'c b^c

' ^ a a^ or a*

a

be

a
be b'c

a a"-

b"'C

a-

b'^e b^e

d^
"*

a?

b'c
~~ ~^

Whence it appears, that we may compare with the

c be b'c b^e ^ o -^
series 1-\—j -^, &c. to intinity.

Cv G/ Cv Ct

Let a = 2, b = % e = 3, and we shall have

c 3
= 4 = 4: = I - 3 + 6 - 12, &c.

a-\-b 2+4
1{ a zz 10, 6 = 1, and c =: 11, we shall have
c 11= =1 = -LJL LL- 4- ' ' _ I I

, Arc

Here if we consider only one term of the series, we have

44^, which is too much by ~ ; if we take two terms, we
have -i*^, which is too small by -^4^; ifwe take three terms,

we have -[gg^ , which is too much by ^qVo? &c.

304. When there are more than two terms in the divisor,

we may also continue the division to infinity in the same

* Here again the law of continuation is manifest ; the signs

being alternately -j- and — , and each succeeding term is

formed by multiplying the foregoing one by —

.
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manner. Thus, if the fraction ^ were proposed, the
I —a-\-a-

*^

infinite scries, to which it is equal, will be found as follows

;

1 -aha-) 1 ^= *(!+«, &c.

1 — « + a-

a— a^

a—a^+ a^

a"

a^—a'-\-a^

We have therefore the equation

;—1 =: ] + a — a^ — a^ + a^ + a'', &c. ; where, if we
1—a+a
make a zn 1 , we have 1 = 1 +1— 1 — 1 + 1 + 1 — 1 —
1, &c. which series contains twice the series found above
1 — 1 + 1 — 1+1, &c. Now, as we have found this to

be 4? it is not extraordinary that we should find ^, or 1, for

the value of that which we have just determined.

By making = 4, we shall have the equation — = i =
1 4_ I I _ ' _L J _1_ ' _ ' &c* "^ "a T To" T -6-4 1" -TTT TTa) ^^'

If a = j_, we shall have the equation — =y= 1+4- —

J- — ^ + _-i-_, &c. and if we take the four leading terms

of this series, we have 'gV? which is only ^^^ less than ^.

Suppose again a = !, we shall have — =|-=l+i —

^ - — + tttVj &c. This series is therefore equal to the

preceding one ; and, by subtracting one from the other, we
obtain ~ — _7_ _ i.s_ -|- _6_3_.^ &c, which is necessarily mO.

305. The method, which v,e have here explained, serves

to resolve, generally, all fractions into infinite series ; which

is often found to be of the greatest utility. It is also re-
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markablc, that an infinite scries, thougli it never ceases, may
have a determinate value. It should likewise be observed,

that, from this branch of mathematics, inventions of the

utmost importance have been derived ; on which account the

subject deserves to be studied with the greatest attention.

QUESTIONS FOR PRACTICE.

(toe

1. Resolve into an infinite series.
a — x

2^2 y.3 ^^4

Ans. X A -I—^ -|—7,&c.
a a- w"

2. Resolve —;— into an infinite series.
a-\-x

I) X X^ X'^

Ans. — X (1 — — H r- — ^+,&c.)

3. Resolve —--, into an infinite series.
x-\-b

a? . ^ .
6' b" ^ ,

Ans. — x(l --{—T 3+J&C.)

\-\-x
4. Resolve into an infinite series.

\—x
Ans. 1 -f 2r -f 2^'

-I- 2.r3 -J- 2x\ &c.

or . • n
5. Resolve ^—;—r- into an innmte series.

{a-\-xy

, , 2x
, 3x' 4<x' ^

Ans. 1 -h -T T' ^c-

CHAP. VI.

Of the Squares o/'Compound Quantities.

306. When it is required to find the square of a com-

pound quantity, we have only to multiply it by itself, and

the product will be the square required.

For example, the square of a + 6 is found in the following

manner

:
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a+b
a-{-b

ab-\-b'

a''-\-9>ab-{-b''

307. So that when the root consists of two terms added
together, as a + b, the square comprehends, 1st, the squares

of each term, namely, a^ and b- ; and 2dly, twice the pro-

duct of the two terms, namely, 2ah : so that the sum a- -f-

^ab -- b- is the square of « -|- Z>. Let, for example, a iz: 1 0,

and b= S; that is to say, let it l^e required to find the square

of 10+ 3, or 13, and we shall have 100 + 60 -\~ 9, or 169.

308. We may easily find, by means of this formula, the

squares of numbers, however great, if we divide them into

two parts. Thus, for example, the square of 57, if we con-

sider that this number is the same as 50 -|- 7, will be found
= 2500 -f 700 f 49 = 3249.

309. Hence it is evident, that the square of a -|- 1 will be
«« -|- 2« -|- 1 : and since the square of a is a^, we find the

square of a H- 1 by adding to that square 2a -{- I; and it

must be observed, that this 2a -j- 1 is the sum of the two
roots a and a -\- I.

Thus, as the square of 10 is 100, that of 11 will be 100

-f 21 : the square of 57 being 3249, that of 58 is 3249 +
115 = 3364; the square of 59 = 3364 -f 117 = 3481 ; the

square of 60 = 3481 + 119 = 3600, &c.

310. The square of a compound quantity, as a -{- b, is

represented in this manner {a + by. We have therefore

(a + by = aa + 2ab \- b", whence we deduce the following-

equations :

{a^\y= a~-{'^a^\ ; («-}-2r= a^-|-4a4-4;

(a-l-3)^=a^6a-l-9; {a\-^y=a'-\-Sa-\-\G-, &c.

311. If the root hea — b, the square of it is a* — 2ab -\-

ft*, which contains also the squares of the two terms, but in

such a manner, that we must take from their sum twice the

product of those two terms. Let, for example, a = 10, and
o = — 1, then the square of 9 will be found equal to 100 —
20 -I- 1 = 81.

312. Since we have the equation {a — by — a- — Q,ab-\-

b% we shall have (« — 1)' =. a^ — 2a + 1. The square of

« — 1 is found, therefore, by subtracting from a' the sum of

the two roots a and a — 1, namely, 2a — 1. Thus, for



CHAP. VI. OF ALGEBRA. 99

example, if « = 50, we have a^ = 2500, and 2a — 1 = 99

;

therefore 49^ = 2500 - 99 = 2401.

313. What we have said here may be also confirmed and

illustrated by fractions ; for if we take as the root |- -j- |- =
1, the square will be, ^ + ^ + 44 = l-f- =: 1.

Farther, the square of i- -
-f
= i will be i. — i, + 2.

— _i_

314. When the root consists of a greater number of terms,

the method of determining the square is the same. Let us

find, for example, the square of a + 6 + c

:

a-\-b-^c

a-j-^-j-c

a^-\-ab-\-ac

ab-\-b^-\-bc

ac-\-bc-\-c'^

a^-fSai4-2«e+6"-f-26c+c'

We see that it contains, first, the square of each term of

the root, and beside that, the double products of those terms

multiplied two by two.

315. To illustrate this by an example, let us divide the

number 256 into three parts, 200 + 50 + 6 ; its square

will then be composed of the following parts

:

200" = 40000
50"- = 2500
6^= 36

2 (50 X 200) = 20000
2 ( 6 X 200) = 2400
2 ( 6 X 50) = 600

65536 =-.256 X 256, or 256\

316. When some terms of the root are negative, the

square is still found by the same rule; only Ave must be

careful what signs we prefix to the double products. Thus,

{a -b - df = a^+ 6^ + c^ - 2a& - 2ac + 26c ; and if

we represent the number 256 by 300 — 40 — 4, we shall

have.

h2
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Positive Parts. Negative Parts,

3002 _ 90000 2 (40 x 300) = 24000
40= = 1600 2 ( 4 X 300) - 2400

2(40x4)= 320
42 = 16 - 26400

91936
26400

65536, the square of 256 as before.

CHAP. VII.

Ofthe Extraction o/^ Roots applied to Compound Quantities.

317. In order to give a certain rule for this operation, we
must consider attentively the square of the root r/-|-i, which

is a-^ -\- 9,ab -\- />% in order that we may reciprocally find the

root of a given square.

318. We must consider therefore, first, that as the squai-e,

a* -f- 9,ab -|- &% is composed of several terms, it is certain

that the root also will comprise more than one term ; and
that if we write the terms of the square in such a manner,
that the powers of one of the letters, as a, may go on con-

tinually diminishing, the first term will be the square of the

first term of the root; and since, in the present case, the

first term of the square is a", it is certain that the first term
of the root is a.

319. Having therefore found the first term of the root,

that is to say, a, we must consider the rest of the square,

namely, 2ab -\- 6'^, to see if we can derive from it the second

part of the root, which is b. Now, this remainder, 2ab -{-

b'', may be represented by the product, (2a -\- b)b ; where-

fore the remainder having two factors, (2« -|- 6), and b, it is

evident that we shall find the latter, Z>, which is the second

part of the root, by dividing the remainder, 2ab -{- b^, by
2a-\-b.

320. So that the quotient, arising from the division of the

above remainder by 2a -f- b, is the second term of the root

required ; and in this division we observe, that 2a is the

double of the first term a, which is already determined : so

that although the second term is yet unknown, and it is

necessary, for the present, to leave its place empty, we may
nevertheless attempt the division, since in it we attend only
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to the first term Sa ; but as soon as the quotient is found,

which in tlic present case is /i, we must put it in the vacant

place, and thus render the division complete.

321. The calculation, therefore, by which we find the

root of the square a^ -j- ^ah -\~ b", may be represented thus

:

a'--\-2ab^b\a-\-b
«2

^a-\-b) ^ab-\-b'

QabJrb"

0.

322. We may, also, in the same manner, find the square

root of other compound quantities, provided they are squares,

as will appear from the following examples

:

a^+ 6ab + 9b" (a+ 36
a"

2a-j-3Z») 6ab-^m
Qabi-db-

4!a"— iab + b' {^a~b

ki-b) —^ab\-b"
—4>ab-\-b''

0.

S)p'+ 24/;<7+ 1 Qq' (Sjj + 4r/

9p-

^4>pq-{-16q-

25ar'-60.r+ 36 (5a:-6
25.r"

lO.r-6) -60r + 36
-()0r + 36

0.
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323. When there is a remainder after the division, it is a

proof that the root is composed of more than two terms.

We must in tliat case consider the two terms ah'eady found

as forming the first part, and endeavour to derive the other

from the remainder, in the same manner as we found the

second term of the root from the first. The following ex-

amples will render this operation more clear.

a^+2ab—^c--2bc+b'''+ c" {a+b-c
a*

2a+ b) 2ab-2ac-2bc+ b^+ c''

2ab +6"

2a-{-2b—c) —2ac-2bc + c^

-2ac-2bc^c'-

0.

2a*+ a) 2aH3a'
2a^-\- a"

ga*+2a+l) 2a^+2a+l
2«^+ 2«+l

0.

2a'-2ab) -4>a^b-\-8ab'+W
-4rt^^>-f4a'62

2a'-4a6-2&'0 -^a'b'+ Sab^-^-^b*

-4a^b' + 8ab'+4>h*

0.
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2a^-6a'b+ 3ab^) 6a*b^-20a'>b^+15a''b^

6a^b''— 18aib^+ 9^%*

2a^-6a-'b-\-6ab--b^) — 2a^P+ 6a-'b*—6ab'+ b('

- 2aW+ 6a''b*—6ab'+ b^

324. We easily deduce from the rule which we have ex-

plained, the method which is taught in books of arithmetic

for the extraction of the square root, as will appear from the

following examples in numbers

:

529 (23
4

2304 (48

16

43) 129
129

88) 704
704

0. 0.

4096 (64
36

9604 (98

81

124) 496
496

188) 1504
1504

0. 0.

15625 (125

1

998001 (999
81

22) 56
44

189) 1880
1701

245) 1225
1225

1989) 17901
17901

0. 0.

325. But when there is a remainder after all the figures

have been used, it is a proof that the number proposed is
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not a square ; and, consequently, that its root cannot be
assigned. , In such cases, the radical sign, which we before

employed, is made use of. This is written before the quan-
tity, and the quantity itself is placed between parentheses,

or under a line : thus, the square root of a^ -\- hr is repre-

sented by ^/(a' -f Z>-), or by ^/a" -f- b~\ and V(l — •^'')> o^

v/ 1 — J^S expresses the square root of 1 — .r^. Instead of

this radical sign, we may use the fractional exponent {,

and represent the square root of a^ -\- h"^ for instance, by

CHAP. VIII.

Ofthe Calculation o/^ Irrational Quantities.

326. When it is required to add together two or more
irrational quantities, this is to be done, according to the

method before laid down, by writing all the terms in suc-

cession, each with its proper sign : and, with regard to ab-
breviations, we must remark that, instead of ^a -f- V^, for

example, we may write 2 ^a ; and that ^a — ^a = 0,

because these two terms destroy one another. Thus, the

quantities S -}- -v/^ and 1 -f ^% added together, make
4 + 2^/2, or 4 -i- V8 ; the sum of 5 + a/3 and 4 - v3,
is 9; and that of 2v/3 -\- 3^2 and v3 — V^, is 3^3 -f-

2-V/2.

327. Subtraction also is very easy, since we have only to

add the proposed numbers, after having changed their signs

;

as will be readily seen in the following example, by sub-
tracting the lower line from the upper.

4- v/2-|-2V3-3v/5-l-4v/6
l + 2v/2 -2v/3-5/5 + 6s/6

3-3v/2-i-4^/3-1-2v/5-2a/6.

328. In multiplication, we must recollect that s/n mul-
tiplied by v« produces a ; and that if the numbers which
follow the sign ^/ are different, as a and Z>, we have ,s/ah for

the product of ^a multiplied by ^/h. After this, it will be
easy to calculate the following examples

:
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l + v/2 4-j-2v/2

1H-a/2 2- ^2

l-l-v/2 8 + 4^2
v^S+S -4^2-4

l + 2v/2H-2-3f2v/2. 8-4 = 4.

329. What we have said applies also to imaginary quan-
tities; we shall only observe farther, that ^f—a multiplied

by \/ -a produces —a. If it were required to find the

cube of" — 1 + / - 3, we should take the square of that

number, and then multiply that square by the same number;
as in the following operation :

v/-3
^/_3-3

1-27 -3 -3=: -2- 2v' -3
-1+ V-3

2-1- 2v/ -3
_2v/-3-{-6

2+6=8.

330. In the division of surds, we have only to express the
proposed quantities in the form of a fraction ; which may be
then changed into another expression having a rational de-
nominator ; for if the denominator be a -f VZ», for example,
and we multiply botli this and the numerator by a — ^h, the
new denominator will be a" ~ h, in which there is no radical

sign. Let it be proposed, for example, to divide 3 + 2^2
3 t- 2 a/ 2

^y ^+ 'v/^: we shall first have - "'^ ; then multiplying

the two terms of the fraction by 1 - V2, we shall have for

the numerator

:

3-f-272
1- v'2

3+2 V 2

~3v/2-4

3- v/2-4=r— v/2»l ;
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and for the denominator

:

l-v/2

--v/2-2

l-2=-l.
/2 1

Our new fraction therefore is —~—— ; and if we again

multiply the two terms by —1, we shall have for the nu-

merator v/2+ 1, and for the denominator 4-1. Now, it is

easy to shew that V^ + 1 is equal to the proposed fraction

; for v'S -j- 1 being multiplied by the divisor
1 + \/ -^

1 + v2, thus,

1+^/2
1+V2

l + '/2

V24-2

we have 1+2^2+ 2=3+2^2.

Another example. Let 8 ~ 5 V- be divided by 3 - 2 V2.
. 8-5v'2 ^ . . , . -

This, in the first instance, is ^ ,^ ; and multiplying the

two terms of this fraction by 3 + 2^2, we have for the

numerator,
8-5^2
3+2 -v/2

24-15v/2
16v/2-20

24.+v/2-20=4+ ^2;

and for the denominator,

3-2v/2
3 + 2^2

9-6v/2
6v/2-8

9-8=1.
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Consequently, tlie quotient will be 4-|--v/2. The truth of

this may be proved, as before, by multiplication ; thus,

4+ V2
3-V2
12 + 3v/2
-8v^2-4

12-5^/2- 4= 8 -5v/3.
331. In the same manner, we may transform irrational

fractions into others, that have rational denominators. If

we have, for example, the fraction -—^—->,,and multiply its

numerator and denominator by 5 + 2^/6, we transform it

into this, = =5 + 2 ^/6 ; in like manner, the fraction

2 ,. ^ 2 + 2^/—3 1+ >v/-3—
^rT~Z—n assumes this torm, .

= ?— 1 + V—

3

' —4 —

2

also r \. = ^-— = 11 + 2^/30.
\/b—^/o 1

332. When the denominator contains several terms, we
may, in the same manner, make the radical signs in it vanish

1
one by one. Thus, if the fraction — be pro-

posed, we first multiply these two terms by •lO -j- -s/2

. ,o J 1 • , r • v/10 + ^/2+^3 ,

-\- a/o, and obtam the fraction —;-

—

y; ; then
5— 2v/o

multiplying its numerator and denominator by 5 + 2v/6, we
have 5^10 + 11 v'2 + 9^/3 + ^^60.

CHAP. IX.

Of Cubes, and of the Extraction of Cixhe Roots.

333. To find the cube of a + 6, we have only to multiply
its square, a^ + ^ab + b% again by a + b, thus

;

a'+ ^ab+ b"

a +b

c(?^%i^b + ab^

a^b+ ^ab^ + b'

and the cube will be n^-\-Qa^b+ Sab^ + //'
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We sec therefore that it contains the cubes of the two
jiai'ts of the root, and, beside that, Qo-b + Qab- ; which
(juantity is equal to (3ab) x (a -f- i) ; that is, the triple pro-

duct of the two parts, a and b, multiplied by their sum.
334. So that whenever a root is composed of two terms, it

is easy to find its cube by this rule : for example, the num-
ber 5=3+2; its cube is therefore 27 + 8+ (18x5) = 125.

And if 7 + 3 = 10 be the root ; then the cube will be
343 + 27 + (63 x 10) = 1000.

To find the cube of 36, let us suppose the root 36 = 30
-j- 6, and we have for the cube required, 27000 + 216 -{-

(540 X 36) = 46656.

335. But if, on the other hand, the cube be given, namely,

a^ + 3a"b + 'dcdf + b^-, and it be required to find its root,

we must premise the following remarks

:

First, when the cube is arranged according to the powers
of one letter, we easily know by the leading term «^, the

first term a of the root, since the cube of it is a? ; if, there-

fore, we subtract that cube from the cube proposed, we ob-

tain the remainder, Qa"b + 3«6^ + 6\ which must furnish

the second term of the root.

336. But as we already know, from Art. 333, that the

second term is +6, we have principally to discover how it

may be derived from the above remainder. Now, that re-

mainder may be expressed by two factors, thus, (3a^ + 2>ab

+ 6^) X (6) ; if, therefore, we divide by 3a'' + 3«& + b\
we obtain the second part of the root -\-b, which is re-

quired.

337. But as this second term is supposed to be un-

known, the divisor also is unknown ; nevertheless we have
the first term of that divisor, which is sufficient : for it is

3a^, that is, thrice the square of the first term already found ;

and by means of this, it is not difficult to find also the other

part, 6, and then to complete the divisor before we perform
the division ; for this purpose, it will be necessai'y to join to

3a- thrice the product of the two terms, or 3aZ>, and b^, or

the square of the second term of the root.

338. Let us apply wliat we have said to two examples of

other given cubes.

aH12a" + 48a + 64 0/-I-4

3rt' -I- 12fl + 16) 12«
'+ 48« + 64

12fl'-t-48(/ + 64

0.
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3a' —6a' -h 10"^) - (j«^ + I5rt"— 20a'
— 6fl''-f-12fl'- Ha'

?,a '- 1 2r/'^ -)- 1 2rt2 + Sa^~6a + 1 ) :5rt '- 1 2a ' h- 1 5a''—6a -h 1

^5«'— ]2«3-(-15rt-—6«+I

339. The analysis which we have given is the foundation

of the common rule for the extraction of the cube root in

numbers. See the following example of the operation in the

number 2197

:

2197(10 + 3 = 13
1000

300 1197

90
9

399 1197

0.

Let us also extract the cube root of 34965783 :

34965783(300 + 20 + 7, or 327
27000000

270000
18000

400

288400

307200
6720

49

313969

7965783

5768000

2197783

2197783

0.
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CHAP. X.

Ofthe higher Powers o/' Compound Quantities.

340. After squares and cubes, we must consider hip;her

powers, or powers of a greater number of degrees ; which

are generally represented by exponents in the manner which

we before explained : we have only to remember, when the

root is compound, to enclose it in a parenthesis: thus,

(a + by means that a + 6 is raised to the fifth power, and

(a — by represents the sixth power of a — 6, and so on.

We shall in this chapter explain the nature of these powers.

341. Let a + bhe the root, or the first power, and the

higher powers will be found, by multiplication, in the fol-

lowing manner

:

(a+by =a+k
a+ b

a^ + ab

ab+b'-

(a+by:-a^+9,ab+ F-

a +b

a^+^n'b + ab"

a^b + ^ab'- +¥

{a + by =a'-^Sa-b + 3ab^-^-b^

a -4-6

a^ + Qa'b-^Sa'b'-t-ab^

a^b-tQa^b' + QaP+b*

(a-^by = a^ + 'ia^b -f 6a^b^ + 4«63 -*-
6*

a -i-b

a' H- 4tf*6

+

6aW- + 4<a'^b^ -i-ab*

a*b+ 4«36" + 6a^b^ + ^b^ -t- b'

a ' + 5a'b -^ 1 Oa'b' -h 1 Oab'' + 5ab*+ b^
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(a 4- A)5 = a-' + 5a^h + 1 Oa^h' + 10«-// -+- 5«i* + //

a -i-b

«o+5a%+ 10a^^»"+ \Oa^h'+ 5a'b* + « '^

a^b + 5a*62+ 10a'^6^+ lOa-6^ i- 5a6^ + ft*"'

(« + bf~a^ + 6a% -h 15a*b'' + SOa'i ' + 15a' 6^ + 6ab' + ^»6^ &c.

342. The powers of the root a — b are found in the same
manner; and we shall immediately perceive that they do

not differ from the preceding, excepting that the 2d, 4th,

6th, &c. terms are affected by the sign minus.

(a — by —a —b
a —b

a^ — ah
-ab-^-b"

{a-bfzza'--^ab-^¥
a —b

a3-2aZ»f ab"-

— a"b\-2ab~~b'

{a- bf= a^-\-Qa'b-^ Qab'-b^
a —b

a''-3a^b-\'3a'b''— ab'

- a^b-\-Qa^b^-Sab'-\-b*

(a- by=a*- 4!a'b-\-6a%^- 4a6^+6*
a —b

a5- 4!a%-\-6a'b^ - 4«^6^4- ab*

- a*b4-4ia^b''-6a"b^-\-4!ab*-b^

{a-byz=:a''-5a*b+10a^b^-l0a'b^-^5ab^-b'
a —b

- a^bi- 5a*b''-10a'b^-{-10a^b^-5ab^+b<'

{a-bf-aP-Qa^+ lBa'b'-- 20a'b' + 15a'b^—6ab'-^b% &c.

Here we see that all the odd powers of b have the sign

— , while the even powers retain the sign +• I'^ic reason
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of this is evident ; for since - 6 is a term of the root, the

powers of tliat letter will ascend in the following series, —h,

-f6-, —b\ -\b*, —b\ -{-b% &c. which clearly shews that

the even powers must be affected liy the sign -{-, and the

odd ones by the contrary sign —

.

343. An important question occurs in this place ; namely,

how we may find, without being obliged to perform the same

calculation, all the powers either of a + ^-'^ or a — b.

We must remark, in the first place, that if v/e can assign

all the powers of a -,- b, those of a — b are also found ;

since we have only to change the signs of the even terms,

that is to say, of the second, the fourth, the sixth, &c. The
business then is to establish a rule, by which any power of

a-\-b, however high, may be determined without the necessity

of calculating all the preceding powers.

344. Now, if from the powers which we have already de-

termined we take away the numbers that precede each term,

which are called the coefficients, we observe in all the terms

a singular order : first, we see the first term a of the root

raised to the power which is required ; in the following

terms, the powers of a diminish continually by unity, and

the powers of b increase in the same proportion ; so'that the

sum of the exponents of a and of b is always the same, and

always equal to the exponent of the power required ; and,

lastly, we find the term b by itself raised to the same power.

If therefore the tenth power of a + b were required, we are

certain that the terms, without their coefficients, would suc-

ceed each other in the following order ; a^^, a-b, a%", ii'b^,

a%\ a'b\ a'b% w-b\ (fb% ab^, b'^.

345. It remains therefore to shew how we are to de-

termine the coefficients, which belong to those terms, or the

numbers by which they are to be multiplied. Now, with

respect to the first term, its coefficient is always unity ; and,

as to the second, its coefficient is constantly the exponent of

the power. With regard to the other terms, it is not so

easy to observe any order in their coefficients ; but, if we

continue those coefficients, we shall not fail to discover the

law by which they are formed; as will appear from the

following Table.
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Powers. Coefficients.

1st ----- - 1, 1

2d ----- - 1, 2, 1

3d - - - - - 1, 8, 3^ 1

4th ----- 1, 4, 6, 4, 1

5th - . - - 1, 5, 10, 10, 5, 1

6th - - - 1, 6, 15, 20, 15, 6, 1

7th - - - 1, 7, 21, 35, 35, 21, 7, 1

8th - - 1, 8, 28, 56, 70, 56, 28, 8, 1

9th - - 1, 9, 36, 84, 126, 126, 84, 36, 9, 1

10th 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, &c.
We see then that the tenth power of a -f- 6 will be «'° +

10a^b-{- 4^5a%-+ VIOaVr + 210a%*+ 252a^6^-j- 2l0a'b*^+
l^Oa^b' -J- ^Ba'b"^ -f lOab^ + ¥">.

346. Now, with regard to the coefficients, it must be ob-
served, that for each power their sum must be equal to the

number 2 raised to the same power ; for let a =: 1 and b r=

1, then each term, without the coefficients, will be 1 ; con-

sequently, the value of the power will be simply the sum of
the coefficients. This sum, in the preceding example, is 1024,
and accordingly (1 -{- 1 f^ = 2^° — 1024. It is the same
with respect to all other powers ; thus, we have for the

1st 1-1-1 = 2^:21,

2d 1-L24-1 = 4= 2\
3d l-j-3-f3^-l=8= 2\
4th lH-4-j-6+ 4-f1=16= 2',

5th l-l-5-j-lO-l-lO-j- 5-1-1 =82=2^
6th 1-1-64-15-1-20-1-15-1-6^-1=64=2'^,

7th 1-f7-F^-21-f-35-!-35+21-|-7H-l = 128=27, &c.

347. Another necessary remark, with regard to the co-

efficients, is, that they increase from the beginning to the
middle, and then decrease in the same order. In the even
powers, the greatest coefficient is exactly in the middle;
but in the odd powers, two coefficients, equal and greater
than the others, are found in the middle, belonging to the
mean terms.

The order of the coefficients likewise deserves particular
attention ; for it is in this order that we discover the means
of determining them for any power whatever, without cal-

culating all the preceding powers. We shall here explain
this method, reserving the demonstration however for the
next chapter.

348. In order to find the coefficients of any power pro-
posed, the seventh for example, let us Avrite the following
fractions one after the other

:

2. 6^ 5 + 3 2 I

1 J 2> T' +•' T' 6"' T*
I
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In this arrangement, we perceive tliat the numerators begin

by the exponent of the power required, and that they

diminish successively by unity; while the denominators

follow in the natural order of the numbers, 1, 2, 3, 4, &c.

Now, the first coefficient being always 1, the first fraction

gives the second coefficient; the product of the first two
fractions, multiplied together, represf^nts the third coefficient;

the product of the three first fi'actions represents the fourth

coefficient, and so on. Thus, the

1st coefficient is 1 = ]

7
2d - - - - y =7

7. 6
3d . - . . —

^

=S1

7.6.5
''^'

r-2T3 =^'

7.6.5.4
^'^ 12 3 4

=^^

1.2.3.4.5 - "^

7th
7. 6. 5. 4. S.

2

_
' 1.2.3.4.5.6 ~ '

„ , 7.6.5 .4.3.2 . 1
^'^' 1.2.3.4.5.677= ^

349. So that we have, for the second power, the fractions

^, i; whence the first coefficient is 1, the second 4 — 2, and
the third 2 x ^ = 1.

The third power furnishes the fractions 4, l, i- ; where-
fore the

1st coefficient = 1

;

2d = f = 3

;

3d n 3.^ = 3; and 4th = f . | . 4- = 1.

We have, for the fourth power, the fractions 4, |, ~, ^,
consequently, the

1st coefficient = 1

;

2d ± = 4; 3d 4.. 1 = 6;
4th 4 . i . 4 = 4 ; and 5th 4 . 4 . 4 . 4 = 1.

350. This rule evidently renders it unnecessary to find

the coefficients of the preceding powers, as it enables us to

discover immediately the coefficients which belong to any
one proposed. Thus, for the tenth power, we write the

fractions V°, l> y, h h h h h h -tV> ^ means of which we
find the
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1st coefficient = 1

;

2d = V° = 10

;

7th = 252. ^ = 210

;

3d = 10 . I- = 45

;

8th r= 210 . ^ = 120;
4th = 45 . 1 = 120 ; 9th =: 120 . |- = 45

;

5th = 120.1 = 210; 10th r: 45.|-=10;
6th = 210 . I = 252; and 11th = 10 . -J^- = 1.

351. We may also write these fractions as they are,

without computing their value; and in this manner it is

easy to express any power of a -{- b. Thus, (a + 6)^°° =
100 99 100 . 99 . 98

100 99 98 . 97+
1 Q 3 4

^^^^' +, &c. * Whence the law of the

succeeding terms may be easily deduced.

CHAP. XI.

Ofthe Transposition of the Letters, on which the demon-
st7-ation of the preceding Rule is founded.

352. If we trace back the origin of the coefficients which
we have been considering, we shall find, that each term is

presented, as many times as it is possible to transpose the

letters, of which that term is composed ; or, to express the

same thing differently, the coefficient of each term is equal to

the number of transpositions which the letters composing
that term admit of. In the second power, for example, the

term ah is taken twice, that is to say, its coefficient is "Z ;

and in fact we may change the order of the letters which
compose that term tA\^ice, since we may write ab and ha.

* Or, which is a more general mode of expression,

«.(w-l).(n-2) „_3 n . (w - 1) . (^ - 2) . (« - 3)

1.2.3
^ 1.2.3.4

a--^h'kc
»-(^-l)-(»-2)-(^-3) 1

1.2.3. 4 n
This elegant theorem for the involution of a compound quantity

of two terms, evidently includes all powers whatever ; and we
shall afterwards shew how the same may be applied to the ex-
traction of roots.

t2
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Tlie term an, on the contrary, is found only once, and here

the order of the letters can undergo no change, or trans-

])osition. In the third power of a + ^, the term aab may
be written in three different ways; thus, aab, aba, baa; the

coefficient therefore is 3. In the fourth power, the term arb

or aaab admits of four different arrangements, aaab, auba,

abaa, baaa ; and consequently the coefficient is 4. The term
aabb admits of six transpositions, aabh, abba, haba, abab,

bbaa, baab, and its coefficient is 6. It is the same in all

other cases.

353. In fact, if we consider that the fourth power, for

example, of any root consisting of more than two terms, as

(a + 6 + c + dy, is found by the multiplication of the four

factors, {a { b + c -\- d) {a -\- b -\- c -\- d) (a + 6 + c + (?)

{a -\- b -\- c + d), we readily see, that each letter of the first

factor must be multiplied by each letter of the second, then

by each letter of the third, and, lastly, by each letter of the

fourth. So that every term is not only composed of four

letters, but it also presents itself, or enters into the sum, as

many times as those letters can be differently arranged with

respect to each other ; and hence arises its coefficient.

354. It is therefore of great importance to know, in how
many different ways a given number of letters may be ar-

ranged ; but, in this inquiry, we must particularly consider,

whether the letters in question are the same, or different

:

for when they are the same, there can be no transposition of

them ; and for this reason the simple powers, as a\ a^, a\
&c. have all unity for their coefficients.

355. Let us first suppose all the letters different; and,

beginning with the simplest case of two letters, or ab, we
immediately discover that two transpositions may take place,

namely, ab and ba.

If Ave have three letters, abc, to consider, we observe that

each of the three may take the first place, while the two

others will admit of two transpositions ; thus, if a be the first

letter, we have two arrangements abc, acb ; if Z> be in the first

place, we have the arrangements bac, bra ; lastly, if c oc-

cupy the first place, we have also two arrangements, namely,

cah, cba ; consequently the whole number of arrangements

is 3 X 2 =r 6.

If there be four letters abed, each may occupy the first

place ; and in every case the three others may form six

different arrangements, as we have just seen; therefore the

whole number of transpositions is 4 x 6 = 24 = 4 x 3 x

2x1.
If we have five letters, abcde, each of the five may be the
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Krst, and tiic four others will admit of twenty-four trans-

positions ; so tiiat the whole number of transpositions will

be 5 X 24 = -120 = 5x4x3x2x1.
356. Consequently, however great the number of letters

may be, it is evident, provided they are all different, that we

may easily determine the number of transpositions, and that

we may for this piu'pose make use of the following Table :

Number of Letters. Number of Transpositions.

1 . _ 1 = 1.

2 _ _ 2. 1 =J 2.

3 _ _ 3. 2 . 1=6.
4 _ _ 4,. 3.\ 2!, 1 = 24.

5 _ - 5. 4. 3 . 2 . 1 = 120.

6 _ 6,,5,. 4.,3., 2!, 1 = 720.

7 _ 7.,6 .5..4,,3, 2 1 = 5040.

8 8 ..7.,6,. 5., 4. 3.\ 2!, 1 = 40320.

9 - 9.8.,7.,6.. 5,. 4,. 3,, 2,. 1 = 362880.

10 10 . 9 . 8 ,. 1

.

, 6 .5,, 4,.3 . 2,. 1 .::: 3628800.

357. But, as we have intimated, the numbers in this

Table can be made use of only when all the letters are dif-

ferent ; for if two or more of them are alike, the number of

transpositions becomes much less ; and if all the letters are

the same, we have only one arrangement : we «haU there-

fore now sheAv how the numbers in the Table are to be

diminished, according to the number of letters that are

alike.

358. When two letters are given, and those letters are

the same, the two arrangements are reduced to one, and

consequently the number, which we have found above, is

reduced to the half; that is to say, it must be divided by 2.

If we have three letters alike, the six transpositions are re-

duced to one ; whence it follows that the numbers in the

Table must be divided by 6 = 3 . 2 . 1 ; and, for the same

reason, if four letters are alike, we must divide the numbers

found by 24, or 4 . 3 . 2 . 1, &c.

It is easy therefore to find how many transpositions the

letters aaabhc, for example, may undergo. Ihey are in

number 6, and consequently, if they were all different, they

would admit of 6. 5. 4. 3. 2.1 transpositions; but since

a is found thrice in those letters, we must divide that num-
ber of transpositions by 3 . 2 . 1 ; and since b occurs twice,

we must again divide it by 2.1: the number of trans-
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.,.,,, ^ ,6.5.4.3.2.1
positions required will therefore be —-—-—=—-—-— z= 5 .

4 . 3 = 60.

359- We may now readily determine the coefficients of
all the terms of any power ; as for example of the seventh
power (a + by.

The first term is «', which occurs only once ; and as all

the other terms have each seven letters, it follows that the
number of transpositions for each term would be 7 . 6 . 5 .

4 . 3 . 2 . 1, if all the letters were different ; but since in the
second term, a^b, we find six letters alike, we must divide

the above product by6.5.4.3.2. 1, whence it follows

that the coefficient is —k—-—-—^—^—^— =. —

.

In the third term, a^b", we find the same letter a five

times, and the same letter b twice; we must therefore

divide that number first by 5.4.3.2.1, and then by

oi 1, ui- ^ • 7.6.5.4.3.2.1
2.1; whence results the coefficient -=—:

—

5.4.3.2.1.2.1
7.6

"1.2*
The fourth term a*b^ contains the letter a four times, and

the letter b thrice ; consequently, the whole number of the
transpositions of the seven letters, must be divided, in the
first place, by 4 . 3 . 2 . 1, and, secondly, by 3 . 2 . 1, and

. rn-^u 7.6.5.4.3.2.1 7.6.5
the coeincient becomes = =

4.3.2.1.3.2.1 1.2.3'
7 6 5 4

In the same manner, we find ,
'

' '
. for the coefficient

i . J<i . 3 . 4
of the fifth term, and so of the rest ; by which the rule before
given is demonstrated *.-

360. These considerations carry us farther, and shew us

* From the Theory of Combinations, also, are frequently de-
duced the rules that have just been considered for determining
the coefficients of terms of the power of a binomial 3 and this is

perhaps attended with some advantage, as the whole is then re-
duced to a single formula.

In order to perceive the difference between permutations and
combinations, it may be observed, that in the former we inquire
in how many different ways the letters, which compose a certain
formula, may change places j whereas, in combinations it is"

only necessary to know how many times these letters may be
taken or multiplied together, one by one, two by two, three by
three, &c.
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also how to find all the powers of" roots composed of more
than two terms *. We shall apply them to the third power
of a -\- b -\- c ; the terms of which must be formed by all

the possible combinations of three letters, each term having

for its coefficient the number of its transpositions, as shewn.

Art. 352.

Here, without performing the multiplication, the third

power of(a + b+ c) will be, a^ + Qa^b + 3a*c + 3ab^ +
6abc + Sac^ -f b^ + 3b- + Qbc" -f c\

Suppose a = 1, 6 rz 1, c =: 1, the cube of 1 -f- 1 -}- Ij or

of 3, will be 1 -{-S^3-\- 3 + 6 + 34-1+ 3 + 3 + 1 = 27;

Let us take the formula abc; here we know that the letters

which compose it admit of six permutations, namely abc, acb, bac^

ben, cab, cba : but as for combinations^ it is evident that by taking

these three letters one by one, we have three combinations,

namely, a, b, and c; iftwo by two, we have three combinations,

ab, ac, and be ; lastly, if we take them three by three, we have

only the single combination abc.

Now, in the same manner as we prove that w different things

admit of 1 x 2 x 3 x 4—?i different permutations, and that if

r of these n things are equal, the number of permutations is

1 X 2 X 3 X 4~w.
; so likewise we prove that n things may be taken

Ix2x3x -r ^ » J-

?jx(nl)— X(k—2)—(n—r-+-l)
, ^ . ,

r bv r, -^ number or times ; or that
^ ' Ix2x3--r

we may take r of these n things in so many different ways.

Hence, if we call n the exponent of the power to which we wish

to raise the binomial a + b, and r the exponent of the letter b

in any term, the coefficient of that term is always expressed

1 ux- 1 "X(w-l) x(w-2)— (»— r+1) .

by the formula ^^ —^^ -. Thus, m the
''

1 x2x3 r

example, article 359, where n = 7, we have fl^6* for the third

term, the exponent r = 2, and consequently the coefficient =
7 x6
:;
—- : for the fourth term we have r — 3, and the coefficient
1 X2
7x6x5= ,
—-—-, and so on : which are evidently the same results as
1x2x3 ' ^

the permutations.

For complete and extensive treatises on the theory of com-
binations, we are indebted to Frenicle, De Montmort, James
Bernoulli, &c. The two last have investigated this theory,

with a view to its great utility in the calculation of proba-

bilities. F. T.
* Roots, or quantities, composed of more than two terms, are

called polynomials, in order to distinguish them from binomials^

or quantities composed of two terms. F. T.
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which result is accurate, and confirms the rule. But if we
had supposed « = !,/; = !, and c —- 1, we should have

found for the cube of 1 + 1 — 1, that is of 1,

l_(_3_34.3-6 + 3 + l-;3 + 3-l=:l, which

is a still farther confirmation of the rule.

CHAP. XII.

Of' the Expression o/^' Irrational Powers hy Infinite Series.

361. As we have shewn the method of finding any power

of the root « + 6, however great the exponent may be, we
are able to express, generally, the power of a + 6? whose

exponent is undetermined ; for it is evident that if we repre-

sent that exponent by n., we shall have by the rule already

given (Art. 348 and the following)

:

n , n n—\ , n n—\
{a + hr =r «" + - a -^6 4- - . _^a"-^6^ +_ . -^.

n— 2 ,,., n n—l n—2 w—

3

-a"-^b' + — .
—— .

—— .
——«"-*6* + &c.

(« - b)" = fl" -
n

1

n-2
3^3 +

n

T
n - I

' 2

3 '12 3 ' 4

362. If the same power of the root a — b were required,

we need only change the signs of the second, fourth, sixth,

&c. terms, and should have

n n—l „,„ 71 n — l

'
1 2 1 2

. —;- . -~-a"—'^b* - &c.
3 4

363. These formulas are remarkably useful, since they

serve also to express all kinds of radicals ; for we have shewn
that all irrational quantities may assume the form of powers

I I

whose exponents are fractional, and that '^a — a^, \/a = o ^

,

I

and s/a = «+, &c. : Ave have, therefore,

%/{a + 6) = [a + bf ; V{a + b) = {a + b)^ ;

and ^{a + b) - (a + 6)i, &c.

Consequently, if we wish to find the square root of a + Z*,

we have only to substitute for the exponent n the fraction i,

in the general formula, Art. 361, and we shall have first, for

the coeflficients.
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n _ n—\ ,^~^_ 7i — 3_ ?i — 4

T~^' ~2~ ~ '^'
f}

"^ ~ 6-' 4 — "" T' "~5~ =

~
T-o ' —7^— — " A- Then, a" = o-i z= A/a and a"-^=

1 1 ,
'

o
; a"—''rr ; a — 'rr

^ , &,c. or we might express

those powers of « in the following manner : a" = y'a; «"—

i

_ ^/a ^^_,_ _ fl." _ VV/
_ ^^_3 _ a^' _ v;«._ ^^_^ _ a" _

"~
fl

' ~ «"• ~ a^
' ~

a^
"" a^

' ~"
a*
~

a''
'

364. This being laid down, the square root of a + 6 may
be expressed in the following manner

:

^(. + A) = ^« + 4*^ - i . i*'— + 4 . i.|i^^

%Q^. If fl therefore be a square number, we may assign

the value of v^a, and, consequently, the square root of

a + b may be expressed by an infinite series, without any
radical sign.

Let, for example, a = c^, we shall have a/o = c; then

b b' b' ¥
A/Cc^ + 6) r= c + 4 . - - T--^ + tV • -^ - tIt • -^'

&c.

We see, therefore, that there is no number, whose square

root we may not extract in this manner ; since every number
may be resolved into two parts, one of which is a square re-

presented by C-. If, for example, the square root of 6 be

required, we make 6 rr 4 + 2, consequently, c^ n 4, c =: 2,

Z» = 2, whence results

V6 = 2 + 4 - -J^ + Vt - t-s'tt. &c-

If we take only the two leading terms of this series, we
shall have 2^ = 1, the square of which, y, is i greater

than 6 ; but if we consider three terms, we have ^ -1^ = 4f>

the square of which, VtV' ^^ ^^^^^ iVt too small.

366. Since, in this example, ~ approaches very nearly to

the true value of a/ 6, we shall take for 6 the equivalent

quantity -' — i- ; thus e- = y ; c = | ; 6 = i ; and cal-

culating only the two leading terms, we find a/6 = 4 + 4^ .

j^ I

-j^ = i - i
. -7- = I - _'^ = +4 ; the square of which
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fraction being V;,^? ^t exceeds the square of ^/6 only

Now, making G = ^^^' — -^~, so that c = ^^ and b —
— _L_. ; and still taking only the two leading terms, we

have V6=±^ + ±.^' — 4-9 I 4 O O 4.g

4 9 i"o
2.0

I

I 60

— ^^y, the square of which is y^YT*^^' '< ^n^ 6, when re-

duced to the same denominator, is = VsT^^e^" ' ^'^^ error

therefore is only y^i^o-
367. In the same manner, we may express the cube root of

a-\-b by an infinite series; for since \/{a-\'h) = («-^-^)j-, we
shall have in the general formula, ?ir=y, and for the coefficients,

n ^ n—\
J
w—2 _ 01—

Q

^ « —

4

7=t;-2- = -t; ~q~ - ~ ^'> ~^ = - r'-> -J-
=

— 4t» ^^' ^^^5 ^^\\^ regard to the powers of a, we shall have

^^a l/a ^a „
a'* = l/a ; a"-' rr — ; «"-^ =^ ; a"-^ = ^r, &c. then

a cr a^

368. If a therefore be a cube, or « = c^, we haveV« = c,

and the radical signs will vanish ; for we shall have
h b" h^ b*

/ ^o -j- u; — c -p 3 . ^o 9 • p5 I T^ • ^ 2 4 3- ^u

-}-,&C.

369. We have therefore arrived at a formula, which will

enable us to find, b?/ apjjroxirnatmi, the cube root of any
number ; since every number may be resolved into two parts,

as c^ -j- b, the first of which is a cube.

If we wish, for example, to determine the cube root of 2,

we represent 2 by 1 + 1» so that c = l and 6 = 1; con-

sequently, 1/2 ~ 1 + y — ± + rT> &c. The two leading

terms of this series make Ij- = ±, the cube of which |-i is

too great by ^ : let us therefore make 2 :=. ^ ~ —, we
have c = y and b = — i|^, and consequently s/2 — A +
i . —^i • these two terms give ±. •— J^ = 5-L, the cube of

9"

which is rTTm '
b"^' ^ = ttt4tf> so that the error is

_7.^7^^_.; and in this way we might still approximate, the

faster in proportion as wc take a greater number of terms *.

* In the Pliilosophical Transactions for 1694^, Dr. Halley has

given a very elegant and general method for extracting roots of
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CHAP. XIII.

Of the Resolution o/"Negative Powers.

370. We have already shewn, that — may be expressed

by a—^ ; we may therefore express —7 also by {a + h)—^ ;

so that the fraction ——j may be considered as a power of

a + J, namely, that power whose exponent is — 1 ; from
which it follows, that the series already found as the value

of (a + ^)" extends also to this case.

371. Since, therefore —r^ is the same as ia -{- 6)—^, let

us suppose, in the general formula, [Art. 361.] « rr— 1;

and we shall first have, for the coefficients, — ~ — 1

;

' i

n- 1 w—

2

?i-3 „ » T r. 1—r— r= — 1 ; „ = — 1 ;
—-— = — I , &c. And, tor the

2 3 4

powers of a, we have a" z: a— ^ z: — ; a"-' = «—- =z

1 h ¥ ¥ b* b' ,.. ^ .
I.— r4—s ri—r f, &c. which is the same

a a" a^ a* a^ a^'

series that we found before by division.

372. Farther, t-j-jTo being the same with {a + ^)— ""? let

any degree whatever by approximation 3 where he demonstrates

this general formula,

'^("'" - ^^ = ^3i« + v/((^^i:iy.±-^^^JZ^„—).

Those who have not an opportunity of consulting the Philo-

sophical Transactions, will find the formation and the use of this

formula explained in the new edition of Lemons Elementaires

de Mathematiqucs by M. D'Abbe de la Caille, published by
M. L'Abbe Marie. F. T. See also Dr. Mutton's Math. Dic-

tibnarv.
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US reduce this quantity also to an infinite series. For this

purpose, we must suppose n = — 2, and we shall first have,

n ^ n—\ _ ^
n-^ _ _ 4

for the coefficients, — z:: — ~; —-^- _ —
^r ' ~ct~ — t '

^-^—- — — ^y &c. ; and, for the powers of «, we obtain «"=

_L . fjn-i _ _L . a"-^ = _L • a«-3 = — , &c. We have

1 1 2.6 2 . 3_^ _
therefore (a + 6)-"- = ^-^, = -a^

' T^^^ I .^ . a'

o.SA.b' 2.3.4.5.6* c TVT . o 2.3 _ 2.3.4

i-:2:3:^'+t:2^a^-
'^"- ''""' ^ = '' r^-^' 1-72:3

= ^' 12151 = ^' ''''^- ^""^ consequently, ^-^, = "^ - ^

373. Let us proceed, and suppose w r= — 3, and we shall

have a series expressing the value of j—Tms' ^^ ^^ («+ ^)~^-

?i w—

1

w—

2

Here the coefficients will be — = — 4; ~~^ — — %'•> ""g"

= __
I, &c. and the powers of a become, a" = -^^ ; fl—^ =

1 1 , . , . 1 13.6— • ««-* = —
-, &c. which gives

,
-

. ,,.. = -7 — :, r + -

3.4.6- 3.4.5.63 3.4.5.6.6*_ 1 n^^r^l in^\i^
i:2:^5~TX3:7e"^1.2.3.4.a7-a3~^ «* "^ *" a5~^"a6+^^
6* 6' 6^ „^-21— +28-g, &c.

If now we make 7i = — 4 ; we shall have for the co-

n n—\ n — 9.__ ^
n—

3

efficients — = — 4; —g— = — I ^ —g~ — " t' ^ — "~

1 1 1

.J,
&c. And for the powers, «" =^ ^ ;

«""' =
;^ ;

«"^" = ^'

^x-3 -_ — .
Qii'i — -whence we obtain,

1 _ 1 46
,

4.5.6^ 4.5.6.6^ _ 1 _ 4 ^4.

^^ 6^ 6* 6^

374. The different cases that have been considered
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enable us to conclude with certainty, that we shall have,

generally, for any negative power of a -f 6

;

1 _ 1 m.b m.(m— l).b'- m:{m—l).(in—2).b^

(a+6)'" a'" «'"+' ' f2.a"'+-^ 2.3.a'"+3

&c. And, by means of this foi'mula, we may ti'ansform all

such fractions into infinite series, substituting fractions also,

or fractional exponents, for m, in order to express irrational

quantities.

375, The following considerations will illustrate this sub-
ject still farther : for we have seen that,

1 \ h h"- V" h^ b^

a-{-b

If, therefore, we multiply this series by « + 6, the pro-

duct ought to be = 1 ; and this is found to be true, as will

be seen by performing the multiplication

:

1 b b^ ¥ b^ ¥
a Or (V'

— ^ +
a'
—

a^
-f, &c.

a-\-b

a a-

-
6'

-
a'

-1-, &c.

b b^

~^ a a"
+

a'
+
¥
a'
— , &c.

where all tlie terms but the first cancel each other.

376. We have also found, that

1 I 9J) , 3¥ 4£_ 5¥ _ 6¥

And if we multiply this series by (« + 6)2, the product
ought also to be equal to 1. Now, {a -\- by = a^ _j_ o^^

-|- 6% and
1 2b S¥ W 5¥ 6¥
^ ~ '~af^'aF~liF'^~J~~^

+cr,&c.

26 W 4¥ 5¥_ __ 6¥_

V^"^ ^+~^^ ;^+'&c-

,
¥ 9.¥

,
3¥ 4<¥

, ,

' a- a' ^ a* a^
'
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which gives 1 for the product, as the nature of the thing

required.

377. If we multiply the series which we found for the

value of \jyi i
by a -j- 6 only, the product ouglit to an-

swer to the fraction , or be equal to the series already

r J ,
i b

,
b" b' b* /, . ^

tound, namely, --] -h r, &c. and this the
-^^ a a"- a? a'' a^

actual multiplication will confirm.

a + b

1 26 Sb' 46' 5b^

a a- a^ a* a^

b 26- 36^ 46*

\ b ¥ V" b^
— H ^ r+ -r-, &c. as requn-ed.

SECTION III.

O/"Ratios a7icZ Proportions.

CHAP. I.

(yArithmetical Ratio, or of the Difference between two
Numbers.

378. Two quantities are either equal to one another, or

they are not. In the latter case, where one is greater

than the other, we may consider their inequality under two

different points of view : we may ask, how much one

of the quantities is greater than the other ? Or we may ask,

Iww many times the one is greater than the other? The
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results which constitute the answers to these two questions

are both called relations, or ratios. We usually call the

former an arithmetical ratio, and the latter a geometrical

ratio, without however these denominations having any con-

nexion with the subject itself. The adoption of these ex-
pressions has been entirely arbitrary.

379. It is evident, that the quantities of which we speak
must be of one and the same kind ; otherwise we could not
determine any thing with regard to their equality, or in-

equality : for it would be absurd to ask if two pounds and
three ells are equal quantities. So that in what follows,

quantities of the same kind only are to be considered;

and as they may always be expressed by numbers, it is of
numbers only that we shall treat, as was mentioned at the

beginning.

380. When of two given numbers, thei'efore, it is re-

quired how much the one is greater than the other, the

answer to this question determines the arithmetical ratio of

the two numbers ; but since this answer consists in giving
the difference of the two numbers, it follows, that an arith-

metical ratio is nothing but the difference between two
numbers ; and as this appears to be a better expression, we
shall reserve the words ratio and relation to express geo-
metrical ratios.

381. As the difference between two numbers is found by
subtracting the less from the greater, nothing can be easier

than resolving the question how much one is greater than
the other: so that when the numbers are equal, the dif-

ference being nothing, if it be required how much one of the

numbers is greater than the other, we answer, by nothing

;

for example, 6 being equal to 2 x 3, the difference between
6 and 2 X 3 is 0.

382. But when the two numbers are not equal, as 5 and
3, and it is required how much 5 is greater than 3, the
answer is, 2 ; which is obtained by subtracting 3 from 5.

Likewise 15 is greater than 5 by 10; and 20 exceeds 8
by 12.

383. We have therefore three things to consider on this

subject; 1st. the greater of the two numbers; 2d. the less;

and 3d. the difference : and these three quantities are so con-
nected together, that any two of the three being given, we
may always determine the third.

Let the greater number be a, the less b, and the difference

d; then rf will be found by subtracting b from a, so that

d — a — b; whence we see how to find d, when a and b are

ffiven.
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384. But if the difference and the less of the two num-
bers, that is, if (Z and b were given, we might determine the

greater number by adding together the difference and the

less number, which gives a = 6 4- d ; for if we take from

b + d the less number b, there remains d, which is the

known difference : suppose, for example, the less number
is 12, and the difference 8, then the greater number will

be 20.

385. Lastly, if beside the difference d, the greater num-
ber a be given, the other number b is found by subtracting

the difference fi'om the greater number, which gives b =: a
— d ; for if the number a — tZ be taken from the greater

number a, there remains d, which is the given difference.

386. The connexion, therefore, among the numbers, o,

b, d, is of such a nature as to give the three following re-

sults: 1st. d = a — b; 2d. a = b + d; 3d. b — a — d;

and if one of these three comparisons be just, the others

must necessarily be so also : therefore, generally, if :^ = cc-l-

7/, it necessarily follows, that y = z — .r, and cc t^ z — y.

387. With regard to these arithmetical ratios we must
remark, that if we add to the two numbers a and b, any
number c, assumed at pleasure, or subtract it from them, the

difference remains the same ; that is, if d is the difference

between a and 6, that number d will also be the difference

between a \- c and 6 + c, and between a — c and b — c.

Thus, for example, the difference between the numbers 20
and 12 being 8, that difference will remain the same, what-

ever number we add to, or subtract from, the numbers 20
and 12.

388. The proof of this is evident : for if « — ^ =: cZ, we
have also {a \- c) — (6 + c) = cZ; and likewise [a — c) —
(b — c)— d.

389. And if we double the two numbers a and 6, the dif-

ference will also become double ; thus, when a — b :n d, we
shall have 2a — 2Z) zz Qd; and, generally, na — nb = nd,

whatever value we give to Ji.
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CHAP. II.

OfArithmetical Proportion

.

390. When two arithmetical ratios, or relations, are equal,

this equality is called an arithmetical proportion.

Thus, when a — b = d and p — q = d, so that the dif-

ference is the same between the numbers p and q as between

the numbers a and b, we say that these four numbers form

an arithmetical proportion ; which we write thus, a — b =
p —

q., expressing clearly by this, that the difference between

a and b is equal to the difference between p and q.

391. An arithmetical proportion consists therefore of four

terms, which must be such, that if we subtract the second

from the first, the remainder is the same as when we sub-

tract the fourth from the third ; thus, the four numbers 12,

7, 9, 4, form an arithmetical proportion, because 12 —
7 = 9-4.

392. When we have an arithmetical proportion, as a — b

•=z p ~ q, we may make the second and third terms chanj^e

places, writing a — p = b ~ q: and this equality will be

no less true ; for, since a — b = p — q, add b to both sides,

and '^ve have a =i b -\- p — q: then subtract p from both

sides, and we have a — p =: b — q.

Ir the same manner, as 12 — 7 = 9 — 4, so also 12 —
9 = 7-4*.

393. We may in every arithmetical proportion put the

second term also in the place of the first, if we make the

same transposition of the third and fourth ; that is, if a —
b z=: p — q, we have also b — a = q ~ p; for b — a is

the negative of « — &, and q — p is also the negative of

p — q; and thus, since 12 — 7=2 — 4, we have also,

7 - 12 = 4 - 9.

394. But the most interesting property of every arith-

metical proportion is this, that the sum of the second and

third term is always equal to the sum of the first and fourth.

This property, which we must particularly consider, is ex-

pressed also by saying that the sum of the means is equal

to the sum of the extremes. Thus, since 12 - 7 = 9 — 4,

we have 7 + 9 = 12 + 4; the sum being in both cases 16.

* To indicate that those numbers form such a proportion'

some authors write them thus : 12 . 7 : : 9 . 4-.
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395. In order to demonstrate this principal property, let

a — b-=p — q; then if we add to both h -\- g, we have
a -{- q =. b -\- p; that is, the sum of the first and fourth

terms is equal to the sum of the second and third : and in-

versely, of four numbers, a, b, p, q, are such, that the sum
of the second and third is equal to the sum of the first and
fourth ; that is, if b -^ p zz a -^ q, we conclude, without a

possibility of mistake, that those numbers are in arithmetical

proportion, and that a — b = p -• q; for, since a -{- q = b

4- p, if we subtract from both sides b -\- q^ we obtain a — b

= p — q.

Thus, the numbers 18, 13, 15, 10, being such, that the

sum of the means (13 -|- 15 = 28) is equal to the sum of

the extremes (18 + 10 = 28), it is certain that they also

form an arithmetical proportion ; and, consequently, that

18 - 13 = 15 - 10.

396. It is easy, by means of this property, to resolve the

following question. The first three terms of an arithmetical

proportion being given, to find the fourth ? Let a, b, p, be
the first three terms, and let us express the fourth by q,

which it is required to determine, then a -\- q = b -\- p; by
subtracting a from both sides, we obtain q — b -{- p — a.

Thus, the fourth term is found by adding together the

second and third, and subtracting the first from that sum.

Suppose, for example, that 19, 28, 13, are the three first

given terms, the sum of the second and third is 41 ; and
taking fi'om it the first, which is 19, there remains 22 for the

fourth term sought, and the arithmetical proportion will be

represented by 19 - 28 = 13 — 22, or by 28 - 19 = 22
- 13, or, lastl}^, by 28 - 22 = 19 - 13.

397. When in arithmetical proportion the second term is

equal to the third, we have only three numbers ; the pro-

perty of which is this, that the first, minus the second, is

equal to the second, minus the third ; or that the difference

between the first and second number is equal to the dif-

ference between the second and third : the three numbers

19, 15, 11, are of this kind, since 19 — 15 rz 15 — 11.

398. Three such numbers are said to form a continued

arithmetical proportion, which is sometimes written thus,

19 : 15 : 11. Such proportions are also called arithmetical

progressions, particularly if a greater number of terms

follow each other according to the same law.

An arithmetical progression may be either increasing, or

decreasing. The former distinction is applied when the

terms go on increasing ; that is to say, when the second ex-

ceeds the first, and tiie third exceeds the second by the
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same quantity; as in the numbers 4, 7, 10; and the de-

creasincr progression is that in which the terms go on always

diminishing by the same quantity, such as the numbers

9, 5, 1.

399. Let us suppose the numbers a, b, c, to be in aritli-

metical progression ; then a — b = b — c, whence it follows,

from the equality between the sum of the extremes and that

of the means, that 2Z» ~ a -|- c ; and if we subtract a from
both, we have 2b — a = c.

400. So that when the first two terms a, b, of an arith-

metical progression are given, the third is found by taking

the first from twice the second. Let 1 and 3 be the first

two terms of an arithmetical progression, the third will be

2x3 — 1 = 5; and these three numbers 1, 3, 5, give the

proportion

1-3 = 3-5.
401. By following the same method, we may pursue the

arithmetical progression as far as we please ; we have only

to find the fourth term by means of the second and third,

in the same manner as we determined the third by means of

the first and second, and so on. Let a be the first term, and
Z> the second, the third will be 26 — a, the fourth 46 — 2a
— 6 = 36 — 2^, the fifth 66 - 4« - 26 + a = 46 - 3a,

the sixth 86 — 6a — 36 + 2a = 56 — 4a, the seventh 106
- 8a - 46 4- 3a = 66 - 5a, &c.

CHAP. IIL

O^*Arithmetical Progressions.

402. We have already remarked, that a series of numbers
composed of any number of terms, which always increase, or

decrease, by the same quantity, is called an m-'ithmetical

progression.

Thus, the natural numbers written in their order, as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, &c. form an arithmetical pro-

gression, because they constantly increase by unity; and
the series 25, 22, 19, 16, 13, 10, 7, 4, 1, &c. is also such a

progression, since the numbers constantly decrease by 3.

403, The number, or quantity, by which the terms of an
arithmetical progression become greater or less, is called the

k2
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difference; so that when the first term and the difference

are given, we may continue the arithmetical progression to

any length.

For example, let the first term be 2, and the difference 3,

and we shall have the following increasing progression

:

2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &c. in which each term

is found by adding the difference to the preceding one.

404. It is usual to write the natural numbers, 1, 2, 3, 4,

5, &c. above the terms of such an arithmetical progression,

in order that we may immediately perceive the rank, which

anv term holds in the progression, which numbers, when

written above the terms, are called indices ; thus, the above

example will be written as follows

:

Indices. 1234.5 6 7 8 91
Jrith.Prog. 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, &c.

where we see that 29 is the tenth term.

405. Let a be the first term, and d the difference, the

arithmetical progression will go on in the following order

:

12 3 4 5 6 7

a, a±d, a±2d, a — Sd, 6!±4fZ, a±5d, a + 6d, &c.

according as the series is increasing, or decreasing, whence

it appears that any term of the progression might be easily

found, without the necessity of finding all the preceding

ones, by means only of the first term a and the difference d ;

thus, for example, the tenth term will be a ± 9d, the hun-

dredth term a ± 9dd, and, generally, the 7ith term will be

a ±: (n — l)d.

406. When we stop at any point of the progression, it is

of importance to attend to the first and the last term, since

the index of the last term will represent the number of

terms. If, therefore, the first term be a, the difference (7,

and the number of terms n, we shall have for the last term

a ±: {n — l)d, according as the series is increasing or de-

creasing, which is consequently found by multiplying the

difference by the number of terms minus one, and adding,

or subtracting, that product from the first term. Suppose,

for example, in an ascending arithmetical progression of a

hundred terms, the first term is 4, and the difference 3 ; then

the last term will be 99 X 3 -1- 4 = 301.

407. When we know the first term a, and the last ;::, with

the number of terms ?«, we can find the difference fZ; for,

since the last term z — a ±. {n — l)ri, if we subtract a from

both sides, Ave obtain z — a zz {ii — \)d. So that by taking

the difference between the first and last term, we have the

product of the difference multiplied by the number of terms

innius 1 ; we have therefore only to divide z — ahy n — 1
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in order to obtain the required value of the difference d,

which will be . This result furnishes the following
n—\

rule: Subtract the first term from the last, divide the re-

mainder by the number of terms minus 1, and the quotient

will be the common difference : by means of which we may
write the whole progression.

408. Suppose, for example, that we have an increasing

arithmetical progression of nine terms, whose first is % and

last 26, and that it is required to find the difference. We must

subtract the first term 2 from the last 26, and divide the re-

mainder, which is 24, by 9 — 1, that is, by 8 ; the quotient

3 will be equal to the difference required, and the whole

progression will be

:

12 3 4 5 7 8 9

2, 5, 8, 11, 14, 17, 20, 23, 26.

To give another example, let us suppose that the first

term is 1, the last 2, the number of terms 10, and that the

arithmetical progression, answering to these suppositions,

is required; we shall immediately have for the difference

2-1 . .

-jYj
= 4' ^^'^ thence conclude that the progression is

:

1 2 3 4 5 6 7 8 9 10
1 1i 1i 13 14 IS 16 17 11. O
^} ^g-J -"^Q-J ^sr» ^9"? ^9^' 5^9 ^ g"' ^T> •*'

Another example. Let the first term be 2|., the last term
12i, and the number of terms 7 ; the difference will be

—;-—~ = -~- =: 1^ = 1|-|., and consequently the pro-

gression : 12 3 4 5 6 7
Oi 4, I Kl 3 7 5 Qi ^C\^9 lOi

. 409. If now the first term «, the last term z, and the dif-

ference d, are given, we may from them find the number of

terms n; for since z — a = {n — [)d, by dividing both

sides by d, we have —-=— z=. 7i — 1 ; also n being greater by
CI

1 than n — 1, we have n = ^^—^ \- 1 j consequently the

number of terms is found by dividing the difference between
the first and the last term, or z —a,hy the difference of the

progression, and adding unity to the quotient.

For example, let the first term be 4, the last 100, and the

100— 4
difference 12, the number of terms will be —r-^ 1- 1 =: 9

;
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and these nine terms will be,12345678 9

4, 16, 28, 40, 52, 64, 76, 88, 100.

If the first term be 2, the last 6, and the difference ly, the

4
number of terms will be — + 1 = 4 ; and these four terms

will be,

12 3 4.

2, 3|, 41, 6.

Again, let the first term be 3^, the last 1^, and the dif-

ference \±, the number of terms will be ^ ^ ^ -)- 1 = 4;
'9"

which are,
Qi 4,7 fii 71
"T> ^9"' "9"5 'T*

410. It must be observed, however, that as the number
of terms is necessarily an integer, if we had not obtained

such a number for w, in the examples of the preceding

article, the questions would have been absurd.

Whenever we do not obtain an integer number for the

Z— 05 ... .

value of—r—, it will be impossible to resolve the question

;

and consequently, in order that questions of this kind may
be possible, z — a must be divisible by d.

411. From what has been said, it may be concluded, that

we have always four quantities, or things, to consider in an
arithmetical progression

:

1st. The first term, a; 2d. The last term, z ;

3d. The difference, d ; and 4th. The number of terms, n.

The relations of these quantities to each other are such,

that if we know three of them, we are able to determine the

fourth ; for,

1. If «, d, and m, are known, we have 2 n a ± (w — l)c/.

2. If Zf d, and n, are known, we have

a = s — (w — 1)^.

3. If a, X. and w, are known, we have d — 1

.

71—1

4. If a, 2, and d^ are known, we have n = —=— 4- 1.
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CHAP. IV.

Ofthe Summation o/"Arithmetical Progressions.

412. It is often necessary also to find the sum of an
arithmetical progression. This might be done by adding

all the terms together ; but as the addition would be very

tedious, when the progression consisted of a great number
of terms, a rule has been devised, by which the sum may be
more readily obtained.

413. We shall first consider a particular given progression,

such that the first term is 2, the difference 3, the last term

29, and the number of terms 10
;

1234 56 7 8 910
2, 5, 8, 11, 14, 17, 20, 23, 26, 29.

In this progression we see that the sum of the first and
last term is 31 ; the sum of the second and the last but one

31 ; the sum of the third and the last but two 31, and so on:

hence we conclude, that the sum of any two terms equally

distant, the one from the first, and the other from the last

term, is always equal to the sum of the first and the last

term.

414. The reason of this may be easily traced; for if we
suppose the first to be «, the last z^ and the difference cZ, the

sum of the first and the last term is a -|~ ^ ' ^^^l the second

term being a -\- d, and the last but one z •— d, the sum of

these two terms is also a -\- z. Farther, the third time being

a -\- 2^, and the last but two z — 2(i, it is evident that these

two terms also, when added together, make a -{ z\ and the

demonstration may be easily extended to any other two
terms equally distant from the first and last.

415. To determine, therefore, the sum of the progression

proposed, let us write the same progression term by term,

inverted, and add the corresponding terms together, as

follows

:

2+ 5+ 8+ 11 + 14+ 17+20+23+26+29
29+26+23+20+17 + 14+ 11+ 8+ 5+ 2

31+31 +31+31+31+31+31+31 + 31+31

This series of equal terms is evidently equal to twice the

sum of the given progression: now, the number of those
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equal terms is 10, as in the progression, and their sum con-

sequently is equal to 10 x 31 = 310. Hence, as this sum
is twice the sum of the arithmetical progression, the sum re-

quired must be 155.

416. If we proceed in the same manner with respect to

any arithmetical progression, the first term of which is a, the

last z, and the number of terms n ; writing under the given

progression the same progression inverted, and adding term

to term, we shall have a series of w terms, each of which will

be expressed hy a -{- z; therefore the sum of this series will

be 9t{<i -j- z), which is twice the sum of the proposed arith-

metical progression ; the latter, therefore, will be repre-

sented by ^—

.

417. This result furnishes an easy method of finding the

sum of any arithmetical progression ; and inay be reduced to

the following rule

:

Multiply the sum of the first and the last term by the

number of terms, and half the product will be the sum of

the whole progression. Or, which amounts to the same,

multiply the sum of the first and the last term by half the

number of terms. Or, multiply half the sum of the first and

the last term by the whole number of terms.

418. It will be necessary to illustrate this rule by some

examples.

First, let it be required to find the sum of the progression

of the natural numbers, 1, 2, 3, &c. to 100. This will be,

by the first rule, -^-^ = -^^^°^ = 5050.

If it were required to tell how many strokes a clock strikes

in twelve hours ; we must add together the numbers 1, 2, 3,

as far as 12 ; now this sum is found immediately to be

12 X 13 = 6 X 1 3 =: 78. If we wished to know the sum of
2

the same progression continued to 1000, we should find it to

be 500500 ; and the sum of this progression, continued to

10000, would be 50005000.

419. Suppose a person buys a horse, on condition that for

the first nail he shall pay 5 pence, for the second 8 pence, for

the third 11 pence, and so on, always increasing 3 pence more
for each nail, the whole number of which is 32 ; required

the purchase of the horse .'*

In this question it is required to find the sum of an

aiithmctical progression, the first term of which is 5, the

difference 3, and the lumibcr of terms 32 ; we must there-
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fore begin by determining the last term ; which is found by
the rule, in Articles 406 and 411, to be 5 + (31 x 3) = 98

;

103x32
after which the sum required is easily found to be ^

r= 103 X 16; whence we conclude that the horse costs 1648
pence, or 61. lis. 4d

420. Generally, let the first term be a, the difference d,

and the number of terms n ; and let it be required to find,

by means of these data, the sum of the whole progression.

As the last term must be a ± {n — \)d, the sum of the first

and the last will be 2a ± (71 — \)d; and multiplying this

sum by the number of terms n, we have 2wa ± n(n — l)d;

. n(n—\)d
the sum required therefore will be 7ia + -^ .

Now, this formula, if applied to the preceding example,

or to a zz 5, d = S, and n = S2, gives 5 x 32 -J-

32 31 3
'-^-^— = 160 + 1488 = 1648; the same sum that we

obtained before.

421. If it be required to add together all the natural

numbers from 1 to n, we have, for finding this sum, the first

term 1, the last term n, and the number of terms n; there-

_ , . , . n''-\-n n{n+ 1)
tore the sum required is —^ = ^ . It we make n

— 1766, the sum of all the numbers, from 1 to 1766, will

be 883, or half the number of terms, multiplied by 1767 —
1560261.

422. Let the progression of uneven numbers be proposed,

1, 3, 5, 7, &c. continued to n terms, and let the sum of it be

required. Here the first term is J, the difference 2, the

number of terms w; the last term will therefore be 1 -j-

(n — 1)2 = 2/< — 1, and consequently the sum required

= n".

The whole therefore consists in multiplying the number
of terms by itself; so that whatever number of terms of this

progression we add together, the sum will be always a square,

namely, the square of the number of terms; which we shall

exemplify as follows

:

Indices, 1 2 3 4 5 G 7 8 9 10, &c.

Progress. 1, 3, 5, 7, 9, H, 13, 15, 17, 19, &c.

Sum. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, &c.

423. Let the first term be 1, the difference 3, and the

number of terms n; we shall have the progression 1, 4, 7,

10, &c. the last term of which will be l-f-(«—1)3=3m-2;
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Avhercfore the sum of the first and the last term is Q71 — ]

,

and consequently the sum of this progression is equal to

n(S}i ~ \) Sti^—71 - ._ r.« 1= —-— ; and 11 we suppose 71 = 20, the sum

will be 10 X 59 = 590.

424. Again, let the first term be 1, the difference c?, and
the number of terms n ; then the last term will be 1 +
{71 — \)d; to which adding the first, we have 2 + (w — \)d,

and multiplying by the number of terms, we have 2« -f

n{n — l)d; whence we deduce the sum of the progression

n(n — l)d
n-\- ^ .

And by making d successively equal to 1, 2, 3, 4, &c.,

we obtain the following particular values, as shewn in the

subjoined Table.

7i{n—l) n^-\-n
If fZ = 1, the sum is n +

^
= —-—

2?i(//-l)
d = 2, - - - .i + \ ^ = n^

3n(n - 1 ) Qn^—n
d = Q, - - - n-{- ^ —

^

4«(7i-l)
(/ = 4, - - - n-{ —^—^ - ^n" ~ n

5n{ii—\) 5n-~3n
d = 5, - - - n-\- =

-^

—

d = 6, .+^^^^=.3.^-2.
Inhi— 1 ) 7n- - 5ii

d=l, - - - n + 0—= Y~
8n(n - 1

)

d = 8y - - - n -i ^
= 4»- — on

, ^ dn(n—l) 9n--ln
d=9, - - - w + -g =

^

fZ = 10, - - . n + ^ = oti" - 4h

QUESTIONS FOR PRACTICE.

1. Required the sum of an increasing arithmetical pro-

gression, having 3 for its first term, 2 for the common dif-

ference, and the number of terms 20. Ans. 440.
2. Required the sum of a decreasing arithmetical pro-
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gression, having 10 for its first term, | for the common dif-

ference, and the number of terms 21. Ans. 140.

3. Required the number of all the strokes of a clock in

twelve hours, that is, a complete revolution of the index.

Ans. 78.

4. The clocks of Italy go on to 24 hours; how many

strokes do they strike in a complete revolution of the index ?

Jns. 300.

5. One hundred stones being placed on the ground, in a

straight line, at the distance of a yard from each other, how

far will a person travel who shall bring them one by one to

a basket, Avhich is placed one yard from the first stone ?

Ans. 5 miles and 1300 yards.

CHAP. V.

Of F'lgurate *, or Polygonal Numbers.

425. The summation of arithmetical progressions, which

begin by 1, and the difference of which is 1, 2, 3, or any

* The French translator has justly observed, in his note at the

conclusion of this chapter, that algebraists make a distinction

between figurate and polygonal numbers; but as he has not en-*

tered far upon this subject, the following illustration may not

be unacceptable.

It will be immediately perceived in the following Table, that

each series is derived immediately from the foregoing one,

being the sum of all its terms from the beginning to that place

;

and hence also the law of continuation, and the general term of

each series, will be readily discovered.

Natural 1, 2, 3, 4, 5 - - n general term
n.(n+ l)

Triangular 1, 3, 6, 10, 15 - - —^^

—

n.(n+ l) . (n+2)
Pyramidal 1, 4, 10, 20, 35 - - -^-^

^ ^
^

'

Triangular-1
, ^ _ „_ ^„ n.{n + l).{n+ 2).(n+ 3)

pyramidal J^'
^' 1^' ^^' '^ ' oJa

And, in general, the figurate number of any order m will be ex-»

pressed by the formula,

M.(w+ 1) . (n+2) . («+ 3) - - (ra+ wi— 1)

YJl "; 3 \ 4 '-
- m

Now, one of the principal properties of these numbers, and
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Other integer, leads to the theory of polygonal numbers,

which are formed by adding together the terms of any such

progression.

426. Suppose the difference to be 1 ; then, since the first

term is 1 also, we shall have the arithmetical progression, 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, &c. and if in this pro-

gression we take the sum of one, of two, of three, Sec. terms,

the following series of numbers will arise :

1, 3, 6, 10, 15, 21, 28, 3(i, 45, 55, 66, &c.

forlzzl, l-j-2 = 3, 1-f 2-f 3 = 6, 1
-f

2-| 3-f 4 = 10, &c.

Which nuiribers are called triangidar, or trigonal num-
bers, because we may always arrange as many points in the

form of a triangle as they contain units, thus

:

13 6 10 15

427. In all these triangles, we see how many points

each side contains. In the first triangle there is only one

point ; in the second there are two ; in the third there are

three ; in the fourth there are four, &c. : so that the tri-

angular numbers, or the number of points, which is simply

called the triangle, are arranged according to the number of

points which the side contains, which number is called the

side; that is, the third triangular number, or the third

triangle, is that whose side has three points; the fourth,

that whose side has four ; and so on ; which may be repre-

sented thus:

A\^hich Fermat considered as very interesting, {see his notes on

Diophanhis, page 16), is this: that if from the «th term of any

series the {n — \) term of the same scries be subtracted, the re-

mainder will be the nt\\ term of the preceding series. Thus, in

. w.(w+ l) . («4-2);
the third series above given, the nin term is —
consequently, the {n — \) term, by substituting (ra— 1) instead

oi n, is ^ —— -\ and if the latter be subtracted from

. , . tt.(n— 1) 1 . , . , , r.

the former, the remainder is , which is the nth term ot

the preceding order of numbers. The same law will be observed

between two consecutive terms of any one of these sums.
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Side . . . ... ....

Triangle

\
428. A question therefore presents itself here, whicli is,

how to determine the triangle when the side is given .? and,

after what has been said, this may be easily resolved.

For if the side be w, the triangle will be 1 4 2 -f 3 -f 4-] n,

; 1 . . . n'^-\ n
Now, the sum ol this progression is —~ ; consequently

the value of the triangle is —^— *.

n :=. 1,

Thus, if -< o' /the triangle is

\n = 4,

and so on : and when n = 100, the triangle will be 5050.

429. This formula —^— is called the general formula of

triangular numbers; because by it we find the triangular

number, or the triangle, which answers to any side indicated

by n.

This may be transformed into ^— ; which serves also

to facilitate the calculation ; since one of the two numbers n,

or w-{- 1, must always be an even number, and consequently

divisible by 2.

12 X 13
So, if w = 12, the triangle is —-— = 6 x 13:=:78 ; and

15 X 16
if « = 15, the triangle is —^— = 15 x 8 = 120, &c.

430. Let us now suppose the difference to be 2, and we
sliall have the following arithmetical progression

:

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, &c.

the sums of which, taking successively one, two, three, four

terms, &c. form the tbllowing series

:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, &c.

* M. de Joncourt published at the Hague, in 1762, a Table
of trigonal numbers answering to ail the natural numbers from

1 to 20000 ; which Tables are found useful in facilitating a

great number of arithmetical operations, as the author shews in

a very long introduction. F. T.
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the terms of which are called quadrangnlar numbers, or

squares; since they represent the squares of the natural

numbers, as we have already seen ; and this denomination

is the more suitable from this circumstance, that we can

always form a square with the number of points which those

terms indicate, thus

:

1, 4, 9, 16, 25,

431. We see here, that the side of any square contains

precisely the number of points which the square root in-

dicates. 'Ihus, for example, the side of the square 16 con-

sists of 4 points ; that of the square 25 consists of 5 points

;

and, in general, if the side be n, that is, if the number of the

terms of the progression, 1, 3, 5, 7, &c. which we have
taken, be expressed by w, the square, or the quadrangular
number, will be equal to the sum of those terms ; that is to

n^i as we have already seen. Article 422; but it is un-
necessary to extend our consideration of square numbers any
farther, having already treated of them at length.

432. If now we call the difference 3, and take the sums
in the same manner as before, we obtain numbers which are

called pentagons, or pentagonal numbers, though they can-

not be so well represented by points *.

* It is not, however, that we are unable to represent, by
points, polygons of any number of sides ; but the rule which I

am going to explain for this purpose, seems to have escaped all

the writers on algebra whom I have consulted.

I begin with drawing a small polygon that has the number of

sides required ; this number remains constant for one and the

same series of polygonal numbers, and it is equal to 2 jdus the

difference of the arithmetical progression from which tlie series

is produced. I then choose one of its angles, in order to draw
from the angular point all the diagonals of this polygon, which,

with the two sides containing the angle that has been taken, are

to be indefinitely produced ; after that, I take these two sides,

and the diagonals of the first polygon on the indefinite lines,

each as often as I choose ; and draw, from the corresponding

points marked by the compass, lines parallel to the sides of the

first polygon ; and divide them into as many equal parts, or by
as many points as there are actually in the diagonals and the

two sides produced. This rule is general, from the triangle up
to the polygon of an infinite number of sides : and the division
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Indices, ] 2 3 4 5 7 8 &c.

Arith. Prog. 1, 4, 7, 10, 13, 16, 19, 22, 25, &c.

Pentagon, 1, 5, 12, 22, 35, 51, 70, 92, 117, &c.

the indices shewino- the side of each pentat^^on.

433. It follows from this, that if we make the side w, the

'Sn"—n n{'dn-\)
pentagonal number will be —^— =

-^ .

Let, for example, n = 7, the pentagon will be 70 ; and if

the pentagon, whose side is 100, be required, we make n =
100, and obtain 14950 for the number sought.

434. If Ave suppose the difference to be 4, we arrive at

hexagonal numbers, as we see by the following progressions

:

Indices, 12 3 4 5 6 7 8 9 &c.

Arith. Prog. 1, 5, 9, 13, 17, 21, 25, 29, 33, &c.

Hexagofi, 1, 6, 15, 28, 45, 66, 91, 120, 153, &c.

where the indices still shew the side of each hexagon.

435. So that when the side is 7i, the hexagonal number is

2;r — n = n{^ti — 1) ; and we have farther to remark, that

all the hexagonal numbers are also triangular ; since, if we
take of these last the first, the third, the fifth, &c. we have

precisely the series of hexagons.

436. In the same manner, we may find the numbers

which are hcptagonal, octagonal, &c. It will be sufficient

therefore to exhibit the following Table of formula? for all

numbers that are comprehended under the general name of

polygonal numbers.

Supposing the side to be represented by w, we have

for the

Triangle

Square

vson

2nH0?i

Sn"—n n(Sn—\)
~"2 ^ 2 •

4>n^— %n ^
vigon - ^ = 2w^ - n = n{}Zn — 1 ).

viiffon -
5n'^-Qn n{rm.-3)

of these figures into triangles might furnish matter for many
curious considerations, and for elegant transformations of the

general formulae, by which the polygonal numbei's are ex-

pressed in this chapter ; but it is unnecessary to dwell on them

at present. F. T.
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viiigon ^ = 3?r — 2;? = ?<(!}?« — 2).

ixfiTon
'7n^— 5n_7i{1[n — 5)~

o •

Sn''—6n
xgon ^

— = 47j' — 3;i = m(4w — 3).

xjgon

2

9n--ln _ ni9n-'7)

2 ~ 2 '

xiigon - ^ = on- — 4w = w(5?i — 4).

18n^— 16??. „ ^ « .
xxgon

^^
= 9n — 8;i = 7^9" — 8).

237i^-21?i n(23?i-21)
xxvgon- -^

= ^ .

{m — 2)w'^— (w— 4)?? ^
•^a^ 2

437. So that the side being ti, the w-gonal number Avi]l

, , ,
(»^-2)/^*— (m-4)n

,

be represented by ^ ; whence we may de-

duce all the possible polygonal numbers which have the side

n. Thus, for example, if the bigonal numbers were re-

quired, we should have w = 2, and consequently the number
sought = n ; that is to say, the bigonal numbers are the

natural numbers, 1, 2, 3, &c.*

If we make 771 = 3, we have —^— for the triangular num-

ber required.

If we make m = 4, we have the square number ;/*, &c.

438. To illustrate this rule by examples, suppose that

the xxv-gonal number, whose side is 36, were required ; we

* The general expression for the j?z-gonal number is easily

derived from the summation of an arithmetical progression,

whose first term is 1, common difference d, and number of terms

n ; as in the following series ; viz. 1 -}- (1 +^) -|-(1 -\-^d) -t- , &c.

,^ „ 1 ,. 1 . 1 • 11 (2-i-Cn— l).d)n
(1 -(- (7? — 1 ).d) , the sum 01 which is expressed by ^ ;

but in all cases(f=m —2, therefore substituting this value fort/, the

. , 2n + (n"'—n).{m—2) (771— 2)7i'^— (771— 4^)71

expression becomes — = - —
as in the formula.
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look first in the Table for the xxv-gonal number, wliose

side IS w, and it is round to be . Ihen makinsr n

= 36, we find 14526 for the number sought.

439. Question. A person bought a house, and he is

asked how much he paid for it. He answers, that the 365""

gonal number of 12 is the number of crowns which it cost

him.

In order to find this number, we make in — 365, and
n = 12 ; and substituting these values in the general formula,

we find for the price of the house 23970 crowns *.

* This chapter is entitled '* Of Figurate or Polygonal Num-
bers." It is not however without foundation that some al-

gebraists make a distinction between fig//raie numbers and poli/-

gonal numbers. For the numbers commonly called Jii^iirale are
all derived from a single arithmetical progression, and each
series of numbers is lormed from it by adding together the
terms of the series which goes before. On the other hand,
every series of /)o(?/^Yma/ numbers is produced from a differeni,

arithmetical progression. Hence, in strictness, we cannot speak
of a single series of figurate numbers, as being at the same time
a series of polygonal numbers. This will be made more evident

by the following Tables.

TABLE OF FIGURATE NUMBERS.

Constant numb ers - - 1. 1. 1. 1. 1. ] . (S.'c.

Natural ----- i. 2. 3. 4. 5. 6 . &c.
Triangular - - - - 1. 3. 6. 10. 15. 21 &c.
Pyramidal - - - - 1. 4. 10. 20. 35. 56 . &c.
Triangular-pyramidal - ]

.

.5. 15. .35. 70. 12(5 . &c.

TABLE OF POLYGONAL NUMIOCRS.

DifF. of the progr. Numbers
1 triangular 1. 3. 6. 10. 15. &c.
2 square - - 1. 4. 9. 16. 25. &c.
3 pentagon - 1. 5. 12. 22. 35. &c.

4 hexagon - 1. 6. 15. 28. 45. &c.

Powers likewise fc rm particular series of numbers. The first

two are to be found among the figurate numbers, and the third

among the polygonal ; which will appear b\' successively sub-
stituting for a the numbers 1, 2, 3, &c.

TABLE OF POWERS.

a"

a'

a'

1. 1. 1. 1. &c.
2. 3. 4. 5. &c.

4. 9. 16. 25. &c.

8. 27. 64. 125. &c.

16. 81. 256, 625. &c.

L
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CHAP. VI.

(y Geometrical Ratio.

440. The Geometrical ratio of two numbers is found by
resolving the question, Hozv many times is one of those

numbers greater than the other ? This is done by dividing

one by the other; and the quotient will express the ratio

required.

441. We have here three things to consider; 1st, the

first of the two given numbers, which is called the antecedent

;

2dly, the other number, which is called the consequent

;

3dly, the ratio of the two numbers, or the quotient arising

from the divisioa of the antecedent by the consequent. For
example, if the relation of the numbers 18 and 12 be re-

quired, 18 is the antecedent^ 12 is the consequent, and the

ratio will be '^ =^ ^1 ; whence we see that the antecedent

contains the consequent once and a half.

442. It is usual to represent geometrical relation by two
points, placed one above the other, between the antecedent

and the consequent. Thus, a : h means the geometrical

relation of these two numbers, or the ratio of a to h.

We have already remarked that this sign is employed to

represent division *, and for this reason we make use of it

here ; because, in order to know the ratio, we must divide

a by 6; the relation expressed by this sign being read

simply, a is to h.

443. Relation therefore is expressed by a fraction, whose
numerator is the antecedent, and whose denominator is the

consequent ; but perspicuity requires that this fraction

should be always reduced to its lowest terms : which is

done, as we have already shewn, by dividing both the

numerator and denominator by their greatest common di-

visor. Thus, the fraction W becomes |, by dividing both

terms by 6.

The algebraists ofthe sixteenth and seventeenth centuries paid

great attention to these different kinds of numbers and their

mutual connexion, and they discovered in them a variety of

curious properties; but as their utility is not great, they are now
seldom introduced into the systems of mathematics. F. T.

* It will be observed that we have made use of the symbol

-f- for division, as is now usually done in books on this subject.
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444. So that relations only differ accordino- as tlieir fatios

are different; and there are as many different kinds of geo-
metrical relations as we can conceive different ratios.

The first kind is undoubtedly that in which the ratio

becomes unity. This case happens wlien the two numbers
are equal, as in o :

'3
: : 4 : 4 : : a : a; the ratio is here 1,

and for this reason we call it the relation of equality.

Next follow those relations in which the ratio is another
whole number. Thus, 4< : 2 the ratio is 2, and is called

double ratio ; 12 : 4 the ratio is 3, and is called triple ratio

:

2 !• : 6 the ratio is 4, and is called quadruple ratio, &c.
We may next consider tiiose relations whose ratios are

expressed by fractions; such as 12 : 9, where the ratio is |,
or 1 i

; and 18 : 27, where the ratio is 4, &.e. We may also

distinguish those relations in v^hich the consequent contains
exactly twice, thrice, &c. the antecedent: such are the re-

lations 6 : 12, 5 : 15, &c. the ratio of wliich some call sub-
duple, subtriple, &c. ratios.

Farther, we call that ratio rational which is an expressible

number ; the antecedent and consequent being integers, such
as 11 : 7, 8 : 15, &c. and we call that an irrational or su7-d

ratio, Avhich can neither be exactly expressed by integers, nor
by fractions, such as >^/ 5 : 8, or 4 : ^-'3.

445. Let a be the antecedent, b the consequent, and d
the ratio, we know already that a and b being given, we

find d zz
-J-

' if the consequent b were given with the ratio,

we should find the antecedent a — bd, because hd divided
by b gives d: and lastly, when the antecedent a is given, and

the ratio d, we find the consequent b = -^ ; for, dividing

the antecedent a by the consequent — , we obtain the quo-

tient d, that is to say, the ratio.

446. Every relation a : b remains the same, if we mul-
tiply or divide the antecedent and consequent by the same
number, because the ratio is the same : thus, for example,

let d be the ratio of a : b, we have d — -~t~; now the ratio
o

of the relation na : nh is also — = rf, and that of the relation
no

a b
^ , na— : — IS likewise —r =: d.

71 n nb

447. When a ratio has been reduced to its lowest term*.
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it is easy to perceive and enunciate the relation. For ex-

ample, when the ratio -7- has been reduced to the fraction

V ...—, we say a : b =: p : g, ov a : b : : p : g, which is read, a is

to b as p is to g. Thus, the ratio of 6 : 3 being ^, or 2, we
say 6 : 3 : : 2 : 1. We have likewise 18 : 12 : : 3 : 2, and

24 : 18 : : 4 : 3, and 30 : 45 : : 2 : 3, &c. But if the ratio

cannot be abridged, the relation will not become more evi-

dent ; for we do not simplify it by saying 9 : 7 : : 9 . 7.

448. On the other hand, we may sometimes change the

relation of two very great numbers into one that shall be

more simple and evident, by reducing both to their lowest

terms. Thus, for example, we can say, 28844 : 14422 : :

2 : 1 ; or, 10566 : 7044 : : 3 : 2; or, 57600 : 25200 : :

16 : 7.

449. In order, therefore, to express any relation in the

clearest manner, it is necessary to reduce it to the smallest

possible numbers; which is easily done, by dividing the two
terms of it by their greatest common divisor. Thus, to re-

duce the relation 57600 : 25200 to that of 16 : 7, we have

only to perform the single operation of dividing the num-
bers 57600 and 25200 by 3600, which is their greatest

common divisor.

450. It is important, therefore, to know how to find the

greatest common divisor of two given numbers; but this

requires a Rule, which we shall explain in the following

chapter.

CHAP. VII.

Of the Greatest Common Divisor oftwo given Numbers.

451. There are some numbers which have no other com-

mon divisor than unity ; and when the numerator and

denominator of a fraction are of this nature, it cannot be

reduced to a more convenient form *. The two numbers

48 and 35, for example, have no common divisor, though

each has its own divisors ; for which reason, we cannot

express the relation 48 : 35 more simply, because the division

of two numbers by 1 does not diminish them.

* In this case, the two numbers are said to be prime to each

other. See Art. 66.
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452. But when the two numbers have a common divisor,

it is found, and even the greatest which they have, by the

following Rule

:

Divide the greater of the two numbers by the less ; next,

divide the preceding divisor by the remainder ; what remains

in this second division will afterwards become a divisor for

a third division, in which the remainder of the preceding

divisor will be the dividend. We must continue this opera-

tion till we arrive at a division that leaves no remainder

;

and this last divisor will be the greatest common divisor of

the two given numbers.

Thus, for the two numbers 576 and 252.

252) 576 (2

504

72) 252 (3

216

36) 72 (2
72

0.

So that, in this instance, the greatest common divisor

is 36.

453. It will be proper to illustrate this rule by some other

examples ; and, for this purpose, let the greatest common
divisor of the numbers 504 and 312 be required.

312) 504 (1

312

192) 312 (I

192

120) 192 (1

120

72) 120
72

(1

48) 72
48

24) 48 (2

48

0.
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So that S-i is the greatest common divisor, and con-

sequently the relation 504 : 312 is reduced to the form
L>1 : 13.

454. Let the relation 625 : 529 be given, and the greatest

common divisor of these two numbers be required.

529) 625 (1

529

96) 5^29
1

480
[5

49) 96 (

49
.1

47) 49 1

47

-^)

(1

47
46

1) 2 (2

2

0.

Wherefore 1 is, in this case, the greatest common divisor,

and consequently v\e cannot express the relation 625 : 529
b}' less numbers, nor reduce it to simpler terms.

455. It may be necessary, in this place, to give a demon-
stration of the foregoing Rule. In order to this, let a be

the greater, and b the less of the given numbers; and let d
he one of their common divisors ; it is evident that a and b

being divisible b}^ (!, we may also divide the quantities,

a — b, a — 26, a — 36, and, in general, a — nb by d.

456. Tlie converse is no less true : that is, if the numbers
b and a — nb are divisible by d, the number a Avill also be

divisible by d; foy nb being divisible by f7, we could not

divide a — nb hy d, if a were not also divisible by d.

457. We observe farther, that if d be the greatest common
divisor of two numbers, b and a — nb, it will also be the

greatest common divisor of the two numbers a and b ; for if

a greater common divisor than d could be found for these

numbers a and 6, that number would also be a common
divisor of b and a — nb; and consequently d would not be

the greatest common divisor of these two numbers : but we
nAVQ supposed d the greatest divisor common to b and
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a — nh ; therefore d imist also be tlie greatest common
divisor of a and b.

458. These things being laid down, let us divide, ac-

cording to the rule, the greater number a by the less b
;

and let us suppose the quotient to be 7i ; tlien the remainder

will he a — nb, which must necessarily be less than b ; and
this remainder a — nb having the same greatest common
divisor with b, as the given numbers a and b, we have only

to repeat the division, dividing the preceding divisor b by
the remainder a — nb ; and the new remainder which we
obtain will still have, with the preceding divisor, the same
greatest common divisor, and soon.

459. We proceed, in the same manner, till we arrive at a

division without a remainder; that is, in which the remainder

is nothing. Let therefore p be the last divisor, contained

exactly a certain number of times in its dividend ; this

dividend will evidently be divisible by p, and will have the

form mp ; so that the numbers p and mp are both divisible

by p : and it is also evident that they have no greater

common divisor, because no number can actually be di-

vided by a number greater than itself; consequently, tiiis

last divisor is also the greatest common divisor of the given

numbers a and b.

460. We will now give another example of the same rule,

requiring the greatest common divisor of the numbers 1728
and 2304. The operation is as follows

:

1728) 2304 (1

1728

576) 1728 (3

1728

0.

Hence it follows that 57o is the greatest common divisor,

and that the relation 1728 : 2304 is reduced to 3 : 4; that

is to say, 1728 is to 2304 in the same relation as 3 is to 4.



1.5li j:lements ^k,ct. in.

CHAP. VIII.

O/'Geonietrical Proportions.

461. Two geometrical relations are equal when their

ratios are equal ; and this equality of two relations is called

a geometrical proportion. Thus, for example, we write

a : b zz c : d, or a : b : : c : d, to indicate that the relation

a : b '\s equal to the relation c : d; but this is more simply

expressed by saying a is to & as c to d. The following is

such a proportion, 8 : 4 : : 12 : 6 ; for the ratio of the re-

lation 8 : 4 is ^, or 2, and this is also the ratio of the re-

lation 12 : 6,

462. So that a : b : : c : d being a geometrical proportion,

the ratio must be the same on both sides, consequently

~r-= —J-;
and, reciprocally, ifthe fractions -z-~ —j} we have

u : b : : c : d.

463. A geometrical proportion consists therefore of four

terms, such, that the first divided by the second gives the

same quotient as the third divided by tlie fourth ; and hence

we dc(kice an important property, conniion to all geometrical

proportions, which is, that the product of the first and the

last term is always equal to the product of the second and
third ; or, more simply, that the product of the extremes is

equal to the product of the means.

464. Ill order to demonstrate this property, let us take

Q C
the geometrical proportion a : b : : c : d, so that -j- = —

^

Now, if we multiply both these fractions by b, we obtain

be
a = -y, and multiplying both sides farther by d, we have

ad zz he ; but ad is the product of the extreme terms, and

be is that of the means, which two products are found to be

equal.

465. Reciprocally, if the four numbers a, b, e, d, are such,

that the product of the two extremes, a and d, is equal to

the product of the two means, b and c, we arc certain that

they form a geometrical pioportion : for, since ad — bcy wc
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have only to divide both sides by bd^ which gives us -j-j =
be a c
-r-p or —j- — '

, ) and consequently a : o : : c : a.

466. The four terms of a geometrical proportion, as

a : b : : c : d, may be transposed in different ways, without

destroying the proportion ; for the rule being always, that

the product of the extremes is equal to the product of the

means, or ad rz be, we may say,

1st. b : a : : d : c; 2d]y. a : c : : b : d;

3dly. d : b : : c : a; 4thly. d : c : : b : a.

467. Beside these four geometrical proportions, we may
deduce some others from the same proportion, a : b : : c : d;

for we may say, a -\- b : a : : c -\- d : c, or the first term,

plus the second, is to the first, as the third, plus the fourth,

IS to the third ; that is, a -[- b : a : : c -{• d : c.

We may farther say, the first, minus the second, is to the

first, as the third, minus the fourth, is to the third, or a —
b : a :: c — d : c. For, if we take the product of the ex-

tremes and the means, we have ac — be :=: ac — ad, which
evidently leads to the equality ad ~. be.

And, in the same manner, we may demonstrate that a +
b : b : : c -\- d : d; and that a — b : b : : e — did.

468. All the proportions which we have deduced from
a : b : : c : d may be represented generally as follows

:

ma -j- nb : pa -\- qb : : mc -j- 7id : pc -{- qd.

For the product of the extreme terms is mjyac -f- npbe +
mqud -\- nqbd; which, since ad =: be, becomes mpac -f- npbe
-|- mqbc + nqbd; also the product of the mean terms is

mpac -\- mqbc -Y npud -\- nqbd ; or, since ad = be, it is

7)ipac + mqbc + npbe + nqbd ; so that the two products are

equal.

469. It is evident, therefore, that a geometrical pro-

portion being given, for example, 6 : 3 : : 10 : 5, an infinite

number of others may be deduced from it. We shall, how-
ever, give only a few :

3: 6:: 5: 10; 6 : 10 : : 3 : 5 ; 9 : 6 : : 15 : 10 ;

3 :
3'

: : 5 : 5 ; 9 : 15 : : 3 : 5 ; 9 : 3 : : 15 : 5.

470. Since in every geometrical proportion the product of
the extremes is equal to the product of the means, we may,
when the three first terms are known, find the fourth from
them. Thus, let the three first terms be 24 : 15 : : 40 to

the fourth term : here, as the product of the means is 600,
the fourth term multiplied by the first, that is by 24, must
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also make 600; consequently, by dividing 600 by i24 the

quotient 25 will be the fourth term re(|uired, and the whole

proportion will be 24 : 15 : : 40 : 25. In general, there-

fore, if the three first terms are a : b : : c ; we put d for

the unknown fourth letter; and since ad = be, we divide

be
both sides by «, and have d = — ; so that the fourth term

a

. he . .

is — , which is found by multiplying the second term by the

third, and dividing that product by the first.

471. This is the foundation of the celebrated Rule of
Three in Arithmetic ; for in that rule we suppose three

numbers given, and seek a fourth, in geometrical pro-

portion with those three; so that the first may be to the

second, as tlie third is to the fourth.

472. But here it will be necessary to pay attention to some
particular circumstances. First, if in two proportions the

first and the third terms are the same, as in « : & : : c : c?,

and a :^f: : c : ff,
then the two second and the two fourth

terms will also be in geometrical proportion, so that b : d : :

J'- g't for the first proportion being transformed into this,

a : c : : b : d^ and the second into this, a : c : .f: g, it fol-

lows that the relations b : d andy": g are equal, since each

of them is equal to the relation a : c. Thus, for example,

if 5 : 100 : : 2 : 40, and 5 : 15 : : 2 : 0, we must have 100 :

40 : : 15 : 6.

47-3. But if the two pro))ortions are such, that the mean
terms are the same in both, I say that the first terms will be

in an inverse proportion to the fourth terms : that is, if

a : b : : c : d, and/ : b : : c : g, it follows that a \f: : g : d.

Let the proportions be, for example, 24 : 8 : : 9 : 3, and
6 : 8 : : 9 : 12, we have 24 : 6 : : 12:3; the reason is evi-

dent ; for the first proportion gives ad = be ; and the second

gi\esjg' — be ; therefore ad =^gi and a : f : : g : d, or a :

g::f:d. ...
474. Two proportions being given, we may always pro-

duce a new one by separately multiplying the first term of

the one by the first term of the other, the second by the

second, and so on with respect to the other terms. Thus,

the proportions a : b : : c : d^ and e : f: ' g h will furnish

this, ac : bf'- ' eg : dh ; for the first giving ad = be, and the

second giving eh =,fg-, we have also adch =: bcfg ; but now
adeh is the product of the extremes, and bcfg is the product

of the means in ihe new proportion: so that the two products

being pc|ual, the projiorlion is true.
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475. Ltt the two proportions be 6 : 4 : : 15 : 10 and 9 :

12 : : 15 : 20, their combination will give the j)roportion

6 X 9 : 4 X 12 :: 15 X 15 : 10 X 20,

or 54 : 48 : : 225 : 200,

or 9 : 8 : : 9 : 8.

476. We shall observe, lastly, that if two products are

ci\uvi\, ad = h(., Mc may reciprocally convert this equality

into a geometrical proportion ; for we shall always have one

of the factors of the first product in the same pi'oportion to

one of the factors of the second product, as the other factor

of the second j^roduct is to the other factor of the first pro-

duct : that is, in the present case, a : c : : b : d, or a : b : :

c : d. Let 3 x 8 = 4 x 6, and we may form from it this

proportion, 8 : 4 : : 6 : 3, or this, 3 : 4 : : 6 : 8. Likewise,

if 3 X 5 = 1 X 15, we shall have 3 : 15 : : 1 : 5, or 5 . 1 : :

15 : 3, or 3 : 1 : : 15 : 5.

CHAP. IX.

Ohservat'iuns on the Rules o/Troportion and their Utility.

477. This theory is so useful in the common occurrences

of life, that scarcely any person can do without it. There

is always a proportion between ])rices and commodities ; and

when difl'erent kinds of money are the subject of exchange,

the whole consists in determining their mutual relations.

The examples furnished by these reflections will be very

proper for illustrating the principles of proportion, and

shewing their utility by the application of them.

478. If we wished to know, for example, the relation

between two kinds of money ; suppose an old lo^iis d''or and

a ducat: we must first know the value of those pieces when
compared Avith others of the same kind. Thus, an old

louis being, at Berlin, worth 5 rixdollars and 8 drachms, and

a ducat being worth 3 rixdollars, we may reduce these two

values to one denomination ; cither to rixdollars, which

gives the proportion IL : ID : : 5fR : 3Rj or : : 16 : 9; or

to drachms, in which case we have IL : ID : : 128 : 72 : :

16:9; which proportions evidently give the true relation of

the old louis to the ducat ; for the equality of the products

of the extremes and the means gives, in both case.-, 9 louis
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= 16 ducats; and, by means of this comparison, we may
cliange any sum of old louis into ducats, and vice-versa.

Thus, suppose it were required to find how many ducats

there are in 1000 old louis, we have this proportion

:

Lou. Lou. Due. Due.
As 9 : 1000 : : 16 : 1777|-, the number sought.

If, on the contrary, it were required to find how many old

louis d'or there are in 1000 ducats, we have the following

proportion

:

Due. Due. Lou.

As 16 : 1000 : : 9 : 5621- louis. Ans.

479. At Petersburg!! the value of the ducat varies, and
depends on the course of exchange ; which course determines

the value of the ruble in stivers, or Dutch halfpence, 105 of

which make a ducat. So that when the exchange is at 45
stivers per ruble, we have this proportion

:

As 45: 105:; 3: 7;

and hence this equality, 7 rubles n 3 ducats.

Hence again we shall find the value of a ducat in rubles

;

for

Du. Du. Ru.

As 3 : 1 : : 7 :
2i rubles

;

that is, 1 ducat is equal to 2i- rubles.

But if the exchange were at 50 stivers, the proportion

would be,

As 50 : 105 : : 10 : 21

;

which would give 21 rubles =: 10 ducats ; whence 1 ducat

r= S^^^Q rubles. Lastly, when the exchange is at 44 stivers,

we have

As 44 : 105 : : 1 : 2i^ rubles

;

which is equal to 2 rubles, 38^'^ copecks.

480. It follows also from this, that we may compare dif-

ferent kinds of money, which we have frequently occasion to

do in bills of exchange.

Suppose, for example, that a person of Petersburgh has

1000 rubles to be paid to him at Berlin, and that he wishes

to know the value of this sum in ducats at Berlin.

The exchange is at 47^; that is to say, one ruble makes
47^ stivers ; and in Holland, 20 stivers make a florin ; 2^-

Dutch florins make a Dutch dollar: also, the exchange of

Holland with Berlin is at 142; that is to say, for 100 Dutch
dollars, 142 dollars are paid at Berlin ; and lastly, the ducat

is worth 3 dollars at Berlin.

481. To resolve the question proposed, let us proceed
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step by step. Beginning therefore with the stivers, since

1 ruble =z 47 ^ stivers, or 2 rubles = 95 stivers, we shall

have
Ru. Ru. Stiv.

As 2 : 1000 : : 95 : 47500 stivers;

then again,

Stiv, Stiv. Flor.

As 20 : 47500 : : 1 : 2375 florins.

Also, since 2^ florins =: 1 Dutch dollar, or 5 florins = 2
Dutch dollars ; we shall have

Flor. Flor. D.D.
As 5 : 2375 : : 2 : 950 Dutch dollars.

Then, taking the doUai-s of Berlin, according to the ex-

change, at 142, we shall have

D.D. D.D. Dollars.

As 100 : 950 :: 142 : 1349 dollars of Berhn.

And lastly,

Del. Dol. Du.
As 3 : 1349 : : 1 : 449^ ducats,

which is the number sought.

482. Now, in order to render these calculations still more
complete, let us suppose that the Berlin banker refuses,

under some pretext or other, to pay this sum, and to accept

the bill of exchange without five per cent, discount; that is,

paying only 100 instead of 105. In that case, we must
make use of the following proportion :

As 105 : 100 : : 449| : 428^f ducats;

which is the answer under those conditions.

483. We have shewn that six operations are necessary in

making use of the Rule of Three; but we can greatly

abridge those calculations by a rule which is called the Rule

of Reduction, or Double Rule of Three. To explain which,

we shall first consider the two antecedents of each of the six

preceding operations :

1st. 2 rubles

2d. 20 stivers

3d. 5 Dutch flor.

4th. 100 Dutch doll.

5th. 3 dollars

6th. 105 ducats

95 stivers.

1 Dutch florin.

2 Dutch dollars.

142 dollars.

1 ducat,

100 ducats.

If we now look over the preceding calculations, we shall

observe, that we have always multiplied the given sum by
the third terms, or second antecedents, and divided the pro-

ducts by the first: it is evident, therefore, that we shall
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arrive at tlie same results bv nuiltiplyiiig at once the sum
proposed by the product of all the third terms, and dividing

by the product of all the first terms : or, which amounts to

the same tiling, that we have only to make the following

proportion : As the product of all the first terms, is to the

given number of rubles, so is the product of all the second
terms, to the number of ducats payable at Berlin.

48^. This calculation is abridged still more, when
amongst the first terms some are found that have common
divisors with the second or third terms ; for, in this case, we
destroy those terms, and substitute the quotient arising from
the division by that common divisor. The preceding ex-

ample will, in this manner, assume the following form.

As (2.20.5.100.3 105) : 1000 : : (95.2.142.100) :

1000.95.2.142.100 , ^ ,,• i

o on '" 1 nfT^fn

"

^ ^ alter cancelling the common di-

visors in the numerator and denominator, this will become

10 1^ 1¥^
' ^^

"^

= " Vt ° = '^^Si 5- ducats, as before.

485. The method which must be observed in using the

Rule of Reduction is this-: we begin with the kind of money
in question, and compare it with another which is to begin

the next relation, in which we compare this second kind

with a third, and so on. Each relation, therefore, begins

with the same kind as the preceding relation ended with;

and the operation is continued till we arrive at the kind of

money which the answer requires ; at the end of which we
must reckon the fractional remainders.

486. Let us give some other examples, in order to facilitate

the practice of this calculation.

If ducats gain at Hamburgh 1 per cent, on two dollars

banco ; that is to say, if 50 ducats are worth, not 100, but

101 dollars banco; and if the exchange between Hamburgh
and Konigsberg is 119 drachms of Poland; that is, if 1

dollar banco is equal to 119 Polish drachms; how many
Polish florins are equivalent to 1000 ducats ?

It being understood that 30 Polish drachms make 1

Polish florin,

Here 1 : 1000 : : 2 dollars banco

100 — 101 dollars banco
1 _ 119 Polish drachms

;3() _ 1 Polish florin :

therefore.
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1000.2.101.119
(100.30) : 1000 : : (2.101.119)

= 80124- Polish florins. Jns.

100.30

2.101.119

3
487. We will propose another example, which may still

farther illustrate this method.

Ducats of Amsterdam are brought to Leipsic, having in

the former city the value of 5 flor. 4 stivers current ; that is

to say, 1 ducat is worth 104 stivers, and 5 ducats are worth

26 Dutch florins. If, therefore, the a^lo of the bank at

Amsterdam is 5 per cent. ; that is, if 105 currency are equal

to 100 banco; and if the exchange from Leipsic to Am-
sterdam, in bank money, is 133^ per cent. ; that is, if for

100 dollars we pay at Leipsic 133i dollars ; and lastly, 2
Dutch dollars making 5 Dutch florins; it is required to

determine how many dollars we must pay at Leipsic, ac-

cording to these exchanges, for 1000 ducats ?

By the rule,

5 : 1000 : : 26 flor. Dutch curr.

105 — 100 flor. Dutch banco
400 — 533 doll, of Leipsick

5 — 2 doll, banco

;

therefore

As (5.105.400.5) : 1000 : : (26.100.533.2) :

1000.26.100.533.2 4.26.533 ^^^^ , „

-^J05T00:5— ^ -""21- = ^^^^ ^^""^^' '^' ""^^-

ber sought.

CHAP. X.

O^Compound Relations.

488. Compound Relations are obtained by multiplying

the terms of two or more relations, the antecedents by the

antecedents, and the consequents by the consequents ; we
then say, that the relation between those two products is

compounded of the relations given.

Thus the relations a : b, c : d, e : J] give the compound
relation ace : bdf*.

* Each of these tliree ratios is said to be one of the roofs of
the compound ratio.
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489. A relation continuing always the same, when we
divide both its terms by the same number, in order to

abridge it, we may greatly facilitate the above composition

by comparing the antecedents and the consequents, for the

purpose of making such reductions as we performed in the

last chapter.

For example, we find the compound relation of the fol-

lowing given relations thus:

lielations given.

12 : 25, 28 : 33, and 55 : 5G.

Which becomes

(12.28.55) : (25.33.56) z:: 2 : 5

by cancelling the common divisors.

So that 2 : 5 is the compound relation required.

490. The same operation is to be performed, when it is

required to calculate generally by letters ; and the most re-

markable case is that in which each antecedent is equal to

the consequent of the preceding relation. If the given re-

lations are

a : b

b : c

c : d
d : e

€ : a
the compound relation is 1 : 1

.

491. The utility of these principles will be perceived,

when it is observed, that the relation between two square

fields is compounded of the relations of the lengths and
the breadths.

Let the two fields, for example, be A and B ; A having

500 feet in length by 60 feet in breadth ; the length of B
being 360 feet, and its breadth 100 feet ; the relation of the

lengths will be 500 : 360, and that of the breadths 60 : 100.

So that we have

(500.60) : (360.100) =5:6
Wherefore the field A is to the field B, as 5 to 6.

492. Again, let the field A be 720 feet long, 88 feet

broad ; and let the field B be 660 feet long, and 90 feet

broad ; the relations will be compounded in the following

manner

:

Relation of the lengths 720 : 660
Relation of the breadths 88 : 90

and by cancelling, the

Relation of the fields A and B is 16 : 15.
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493. Farther, if it be required to compare two rooms
with respect to the space, or contents, wc observe, tiiat that

relation is compounded of tliree relations ; namely, that oi'

the lengths, bx*eadths, and heiglits. Let there be, for ex-
ample, a room A, whose length is 36 feet, breadth 16 feet,

and height 14 feet, and a room li, whose length is 42 feet,

breadth 24 feet, and height 10 feet; wc shall have these

three relations

:

For the length 36 : 42
For the breadth 16 : 24
For the height 14 : 10

And cancelling the common measures, these become 4:5.
So that the contents of the room A, is to the contents of the

room B, as 4 to 5.

494. When the relations which we compound in this

manner are equal, there result multipllcate relations. Namely,
two equal relations give a duplicate ratio, or 7-atio of ihc

squares; three equal relations produce the triplicate ratio,

or ratio of the cubes; and so on. For example, the re-

lations a : h and a : b give the compound relation «- : Z>"

;

wherefore we say, that tiie squares are in the duplicate ratio

of their roots. And the ratio a : b multiplied twice, giving
the ratio a^ : b", we say that the cubes are in the triplicate

ratio of their roots.

495. Geometry teaches, that two circular spaces are in the
duplicate relation of their diameters ; this means, that they
are to each other as the scjuares of their diameters.

Let A be such a space, having its diameter 45 feet, and
B another circular space, whose diameter is 30 feet ; the first

space will be to the second as 45 x 45 is to 30 x 30 ; or,

compounding these two equal relations, as 9 : 4. Therefore
the two areas are to each other as 9 to 4.

496. It is also demonstrated, that the solid contents oi

spheres are in the ratio of the cubes of their diameters : so

that the diameter of a globe. A, being 1 foot, and the
diameter of a globe, B, being 2 feet, the solid content of A
will be to that of B, as 1"

;
2-^

; or as 1 to 8, Ifj therefore,'

the spheres are formed of the same substance, the latter wili

weigh 8 times as much as the former.

497. It is evident that we may in this manner find tlu>

weight of cannon balls, their diameters, and the weight of
one, being given. For example, let there be the ball A,
Avhose diameter is 2 inches, and weight 5 pounds ; and if the
Aveight of another ball be required, wliose diameter is 8
inches^ we have this proportion,

9/^
: 8* : : 5 : 320 pounds,
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wliich gives the weight of the ball B : and for another ball

C, whose diameter is 15 inches, we should have,

2^ : 15^ : : 5 : 210911b.

(I c
498. When the ratio of two fractions, as -7- : —r? is re-

b a
quired, we may always express it in integer numbers ; for

we have only to multiply the two fractions by hd, in order

to obtain the ratio ad : be, which is equal to the other ; and

ci c
from hence results the proportion -j- '• —j ' ' ad : be. If,

therefore, ad and be have common divisors, the ratio may be
reduced to fewer terms. Thus 14 : |4 : : (15.36) : (24.25)

: : 9 : 10.

499. If we wished to know the ratio of the fractions

— and -y-, it is evident that we should have — : -7- : : i :

a b a b

a ; which is expressed by saying, that two fractions, which
have unity for their numerator, are in the 7-cciprocal., or in-

verse ratio of their denominators : and the same thins is

said of two fractions which have any common numerator ; for

c e— : -J- : : b : a. But if two fractions have their deno-
a b

minators equal, as — : — , they are in the direct ratio of

the numerators ; namely, as a : b. Thus, ^ : ^ : : ~-^ : -^^,

or 6 : 3 : : 2 : 1, and V° : '-^' : : 10 : 15, or 2 : 3.

500. It has been observed, in the free descent of bodies,

that a body falls about 16 English feet in a second, that in

two seconcis of time it falls from the height of 64 feet, and in

three seconds it falls 144 feet. Hence it is concluded, that

the heights are to each other as the squares of the times;

and, reciprocally, that the times are in the subduplicate ratio

of the heights, or as the square roots of the heights *.

If, therefore, it be required to determine how long a stone

will be in falling from the heifjht of 2304 feet; we have 16 :

2304 : : 1 : 144, the square of the time; and consequently

the time required is 12 seconds.

501. If it be required to determine how far, or thrcrugh

* The space, through which a heavy body descends, in the la-

titude of London, and in the first second of time, has been found

by experiment to be IG^V English feet ; but in calculations

where great accuracy is not required, the fraction may be

omitted.
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what height, a stone will pass by descending for the space of
an hour, or 3600 seconds ; we must say,

As V : 3600= : : 16 : 207360000 feet,

the height required.

Which being reduced is found equal to 39272 miles ; and
consequently nearly five times greater than the diameter of
the earth.

502. It is the same with regard to the price of precious

stones, which are not sold in the proportion of their weight

;

every body knows that their prices follow a much greater

ratio. The rule for diamonds is, that the price is in the
duplicate ratio of the weight ; that is to say, the ratio of
the prices is equal to the square of the ratio of the weights.

The weight of diamonds is expressed in carats, and a carat

is equivalent to 4 grains ; if, therefore, a diamond of one
carat is worth 10 livres, a diamond of 100 carats will be
worth as many times 10 livres as the square of 100 contains

1 ; so that we shall have, according to the Rule of Three,

As 1 : 10000 : : 10 : 100000 liv. Ans.

There is a diamond in Portugal which weighs 1680 carats;

its price will be found, therefore, by making
1- : 1680^ : : 10 : 28224000 livres.

503. The posts, or mode of travelling, in France, furnish
sufficient examples of compound ratios ; because the price is

regulated by the compound ratio of the number of horses,

and the number of leagues, or posts. Thus, for example,
if one horse cost 20 sous per post, it is required to find how
much must be paid for 28 horses for 4|^ posts.

We write first the ratio of the horses - - 1 : 28
Under this ratio we put that of the stages - 2 : 9

And, compounding the two ratios, we have - 2 : 252

Or, by abridging the two terms, 1 : 126 : : 1 liv. to 126 fr.

or 42 ci'owns.

Again, If I pay a ducat for eight horses for 3 miles, how
much must I pay for thirty horses for four miles? The
calculation is as follows :

8 : 30
3 : 4

By compounding these two ratios, and abridging,

1 : 5 : : 1 due. : 5 ducats ; the sum required.

504. The same composition occurs when workmen are to

be paid, since those payments generally follow the ratio

M 2
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compounded of the number of workmen and that of the days

which they have been employed.

li", for example, 25 sous per day be given to one mason,
and it is required what must be paid to 24 masons who have

worked for 50 days, we state the calculation thus

:

1 : 24
1 : 50

1 : 1200 : : 25 : 30000 sous, or 1500 francs.

In these examples, five things being given, the rule which
serves to resolve them is called, in books of arithmetic, The
Rule of Five, or Double Rule of Three.

CHAP. XI.

O/' Geometrical Progressions.

505. A series of numbers, which are always becoming a

certain number oi' times greater, or less, is called a g-co-

metrical progrcss'/on, because each term is constantly to the

following one in the same geometrical ratio : and the number
Avhich expresses how many times each term is greater than

the preceding, is called the ed-po/icnt, or 7'atio. Thus, when
the first term is 1 and the exponent, or ratio, is Q, the geo-

metrical progression becomes,

Tcr7)is 1 2 3 1- .5 6 7 8 !» (ic.

Prog'. 1, 2, 4, 8, 16, 32, 64, 128, 256, &c.

The numbers 1, 2, 3, &.c. always marking the place which

each term holds in the {progression.

506. If we suppose, in general, the first term to be a,

and the ratio b, we have the following geometrical jiro-

gression

:

1, 2, S, 4, 5, 6, 7, 8 71.

Prog, a, ah, ab', ab^, ab^^ ab^, ab^, ah' .... ab^—K

So that, when this progression consists of n terms, the

last term is ab —^ We must, however, remark here, that if

the ratio b be greater than unity, the terms increase con-

tinually; if Z> = 1, the terms are all equal; lastly, if b be

less than 1, or a fraction, the terms continually decrease

Thus, v. hen a = 1, and b — ^, we have this geometrical

progression

:



(HAP. XI. OK ALGEBRA. 165

1 I £ I I I I 1 flrp
ij i? 4> 8> T-oJ izt 6.f> Tas' *-^^'

507. Here therefore we have to consider :

1. The first term, wliich we have called a.

2. The exponent, whicli we call b.

3. The number of terms, which we have expressed by u.

4. And the last term, which, we have already seen, is ex-

pressed by ab"~^.

So that, when the first three ofthese are given, the last term

is found by multiplying the « ~ 1 power of b, or Z»""~', by
the first term a.

If, therefore, the 50th term of the geometrical progression

1, 2, 4, 8, &c. were required, we should have a = 1, b = Q,

and n = 50; consequently the 50th term would be S*'-*; and
as 2^ = 512, we shall have 2^'^ =: 1024 ; wherefore the square

of 2^^, or 2-", = 1048576, and the square of this number,
which is 1099511627776, = 2^*\ Multiplying therefore this

value of 2^0 by 29, or 512, we have 2^^' = 562949953421312
for the 50th term.

508. One of the principal questions which occurs on this

subject, is to find the sum of all the terms of a geometrical

progression ; we shall therefore explain the method ol' doing

this. Let there be given, first, the following progression,

consisting of ten terms

:

1, 2, 4, 8, 16, 32, 61, 128, 256, 512,

the sum of which we shall represent by s, so tliat

5z=l + 2+4 + 8 -1-16 + 32 + 64 + 128 f 256 + 512;

doubling both sides, we shall have

2^=2 + 4 + 8+16 + 32 + 64 + 128 + 256 + 512+1024;

and subtracting from this the progression represented by ,v,

there remains s = 1024 — 1 = 1023; wherefore the sum
required is 1023.

509. Suppose now, in the same progression, that the

number of terms is undetermined, that is, let them be ge-

nerally represented by ?<, so that the sum in question, or

5, =l+2 + 2' + 2^ + 2^ .... 2"^»

If wc multiply by 2, we have

2*= 2 +2^- + 23 + 2^ 2',

then subtracting from this equation the preceding one, we
have ^ = 2" — 1. It is evident, therefore, that the sum re-

quired is found, by multiplying the last term, 2"-', by the

exponent 2, in order to have 2", and subtracting unity from
that product,

510. This is made still more evident by the following
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examples, in which we substitute successively for n, the

numbers 1, 2, 3, 4, &c.

1 = 1; l+2 = 3;l+2 + 4 = 7;l + J^ + 4 + 8=15;
l + 2 + 4 + 8 + 16 = 31;l+2 + 4 + 8 + 16 + 32 =
63, &c.

511. On this subject, the following question is generally

proposed. A man offers to sell his horse on the following

condition ; that is, he demands 1 penny for the first nail, 2
for the second, 4 for the third, 8 for the fourth, and so on,

doubling the price of each succeeding nail. It is required

to find the price of the horse, the nails being 32 in number ?

This question is evidentl}'^ reduced to finding the sum of

all the terms of the geometrical progression 1, 2, 4, 8, 16,

&c. continued to the 32d term. Now, that last term is 2^^

;

and, as we have already found 9r'^ — 1048576, and 2^° =
1024, we shall have 2-" x 2'« = 9?"" = 1073741824; and
multiplying again by 2, the last term S"*^ — 2147483648;
doubling therefore this number, and subtracting unity from
the product, the sum required becomes 4294967295 pence

;

which being reduced, we have 17895697/. 1,?. 3if. for the

price of the horse.

512. Let the ratio now be 3, and let it be re(,[uired to find

the sum of the geometrical progression 1, 3, 9, 27, 81, 243,

729, consisting of 7 terms.

Calling the sum s as before, we have

* = 1 + 3 + 9 + 27 + 81 + 243 + 729.

And multiplying by 3,

3a' = 3 + 9 + 27 + 81 + 243 H- 729 + 2187.

Then subtracting the former series from the latter, we have

25 = 2187 — 1 = 2186 : so that the double of the sum is

2186, and consequently the sum required is 1093.

513. In the same progression, let the number of terms be

?t, and the sum s ; so that

* = 1 + 3 + S' + 3-^ + 3* + 3"-^

If now we multiply by 3, we have

3^ = 3 + 3- + 3^ + 3^ + 3".

Then subtracting from this expression the value of *, as

3« \
before, we shall have 2.s = 3" — 1 ; therefore s = —-— . So

that the sum required is found by multiplying the last term
by 3, subtracting 1 from the product, and dividing the re-

mainder by 2 ; as will appear, also, from the following par-

ticular cases

:
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1 . . . . ^Iii.?t:i = 1
'

1+3

2

(3 X 3) - 1

1+3 + 9 - - <J^--I . U

,+3+o+.7 : *iiif'-i= «.

1+3 + 9 + 27 + 81 *iiiHL-J = 121.

514. Let us now suppose, generally, the first term to be

a, the ratio b, the iuanber of terms n, and tlieir suin ,*,

so that

s = a + ab + ab'' + «6^ + rt6^ + .... ab'^^

.

If we multiply by 6, we have

bs = ab + ab- + ab" + ab^ -{- ab^ -{-... . ab',

and taking the difference between this and the above equa-

tion, there remains (6 — 1) a' = ab" — a; whence we easily

. - a.{b"-\)
deduce the sum required s = —-, j— . Consequently, the

sum of any geometrical progression is found, by multiplying

the last term by the ratio, or exponent of the progression,

and dividing the difference between this product and the

first term, by the difference between 1 and the ratio.

515. Let there be a geometrical progression of seven

terms, of which the first is 3 ; and let the ratio be 2 : we
shall then have a = 3, b = 2, and n = 7 ; therefore the last

term is 3 x ^^, or 3 x 64, = 192; and the whole pro-

gression will be

3, 6, 12, 24, 48, 96, 19^.

Farther, if we multiply the last term 192 by the ratio 2,

we have 384 ; subtracting the first term, there remains 381

;

and dividing this by 6 — 1, or by 1, we have 381 for the

sum of the whole progression.

516. Again, let there be a geometrical progression of six

terms, of which the first is 4 ; and let the ratio be | : then

the progression is

4 6 Q 17 8 1 243

If we multiply the last term by the ratio, we sliall have

y^^ ; and subtracting the first term = ^±. the remainder is

«jV ; which, divided by /» - 1 = i, gives ^l ' = 83i- for

the sum of the series.
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517. When the exponent is less than 1, and, ('onscqucntly,

when the terms of the progression continually diminish, the

sum of such a decreasing progression, carried on to infinity,

may be accurately expressed.

For example, let the first term be 1, the ratio i, and the

sum *, so that

:

>«^ = 1 + 4 + T + T + 1^ + tV + 6^4' &C.

ad infinitum.

If we multiply by 2, we have

2^ = 2 + 1 + -- + i + i + -xV + fx +. &c.

ad infinitum : and, subtracting the preceding progression,

there remains 5 = 2 for the sum of the proposed infinite

progression.

518. If the first term be 1, the ratio i, and the sum s;

so that

.5' = 1 + 4- + ,'. + Vy + gV + , Sec. ad infinitum

:

Then multiplying the whole by 3, we have

3.5' = 3 -f 1 + ^ + -i- + tV +> 2tc. ad infinitum;

and svibtracting the value of .?, there remains 2^ = 3 ; where-

fore the sum 5 = 1|.

519. Let there be a progression whose sum is s, the first

term 2, and the ratio | ; so that

.s = 2 + 1 + I-
+ l-l: + T-Vs- + » ^'c. ad infinitum.

Multiplying by f, we have

^s = ^ + 2 + ^ + ^ + ii + -^~ +, ^c. ad infinitum

;

and subtracting from this progression s, there remains ^ =

^ : wherefore the sum required is 8.

520. If we suppose, in general, the first term to" be a, and

the ratio of the progression to be — , so that this fraction

may be less than 1, and consequently c greater than b ; the

sum of the progression, carried on ad infinitum, will be

found thus

:

(lb ab- ab^ ab* ^

Make s = a -\ ^ + —^ + -^ + ^- +, &c.

Then multiplying by —, we shall have

b ab ab^ a¥ ab'
^, , . ,, .—s

—
1

1—r+"~r+5 ^c. ad mhnitum ;

c c d"-^ r c*

and subtracting this equation from the preceding, there rcr-

mains (1 — —) s = a.
c
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Consequently, 5 = = -^-, l,y multiplynig bolh the

c

numerator and denominator by c.

The sum of the infinite geometrical progression proposed
is, therefore, found by dividing the first term a by 1 minus
the ratio, or by multiplying the first term a by the de-

nominator of the rntio, and dividing the product by tlie

same denominator diminished by the numerator of the

ratio*.

521. In the same manner we find the sums of p!\)gression.s,

the terms of which are alternately affected by the signs +
and — . Suppose, for example,

ab ab" a¥ ah''

s = a r- r 4 3- — , &c.

Multiplying by — , we have,

b ab ab" a¥ ab^

And, adding this equation to the preceding, we obtain

(1 H )s = a: whence we deduce the sum required, s —

ac
-, or s =

I
+1' "-+'>

c

522. It is evident, therefore, that if the first term « = 4,
and the ratio be

-I,
that is to say, b = 2, and c = 5, we shall

find the sum of the progression 1 + ^4- _£_^_. 4- ^^_ _j_^

&c. = 1 ; since, by subtracting the ratio from 1, there re-

mains 4> and by dividing the first term by that remainder,
the quotient is 1.

It is also evident, if the terms be alternately positive and
negative, and the progression assume this form

:

that the sum will be

b 7 -T-

c

523. Again : let there be proposed the infinite progression,

* Thi^ particular case is included in (lie trcncral Rule,
Art. 511.
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_1_ _L _5_ -L i L 1 4- 3 . 1 «,„
lO T^ lOO ' lOOO 1 lOOOO ' lOOOOO '5 w».v^.

The first term is here -^^, and the ratio is ^ ; therefore

subtracting this last from 1, there remains -^, and, if wc
divide the first term by this fraction, avc have i for the sum
of the given progression. So that taking only one term of

the progression, namely, -pV> the error would be -^^,

And taking two terms, -^ + -j-|o^
= -j3gi , there would

still be wanting -j-^ to make the sura, which we have seen

524. Let there now be given the infinite progression,

q + _2_ + g- 4- __? 4- 9
1

Sjp
«-'I^IO ' lOO I lOOO ' lOOOO'^' ».*v..

The first term is 9, and the ratio is ~. So that 1 minus
9

the ratio is ^,3 ; and— = 10, the sum required: which
1 o

series is expressed by a decimal fraction, thus, 9*9999999,
&c.

QUESTIONS FOR PRACTICE.

1. A servant agreed with a master to serve him eleven

years without any other reward for his service than the pro-

duce of one grain of wheat for the first year ; and that product

to be sown the second year, and so on from year to year till

the end of the time, allowing the increase to be only in a ten-

fold proportion. What was the sum of the whole produce ?

Ans. 111111111110 grains.

N. B. It is farther required, to reduce this number of

grains to the proper measures of capacity, and then by sup-

posing an average price of wheat to compute the value of the

corns in money.

2. A servant agreed with a gentleman to serve him twelve

months, provided he wouki give him a farthing for his first

month's service, a penny for the second, and 4J. for the

third, &.C. What did his wages amount to ?

Ans. 58^51. 8s. 5id.

3. One Sessa^ an Indian, having first invented the game
of chess, shewed it to his prince, who was so delighted with

it, that he promised him any reward he should ask ; upon
which Sessa requested that he might be allowed one grain of

wheat for the first square on the chess board, two for the

second, and so on, doubling continually, to 64, the whole

number of squares. Now, supposing a pint to contain 7()»S0

of those grains, and one quarter to be worth \l. Is. CtZ., it is

required to compute the value of the whole sum of grains.

Ans. 64181488290/.
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CHAP. XII.

O/" Infinite Decimal Fractions.

5^5. We have already seen, in logarithmic calculations,

that Decimal Fractions are employed instead of Vulgar
Fractions : the same are also advantageously employed in

other calculations. It will therefore be very necessary to

shew how a vulgar fraction may be transformed into a de-
cimal fraction ; and, conversely, how we may express the
value of a decimal, by a vulgar fraction.

526. Let it be required, in general, to cliange the fraction

-7-, into a decimal. As this fraction expresses the quotient

of the division of the numerator a by the denominator b, let

us write, instead of o, the quantity a-0000000, whose value

does not at all differ from that of a, since it contains neither

tenth parts, hundredth parts, nor any other parts whatever.

If we now divide the quantity by the number 6, according

to the common rules of division, observing to put the point

in the proper place, which separates the decimal and the in-

tegers, we shall obtain the decimal sought. This is the

whole of the operation, which we shall illustrate by some
examples.

Let there be given first the fraction i, and the division in

decimals will assume this form

:

2)1-0000000 _ _

0-5000000
~^'

Hence it appears, that i is equal to 0*5000000 or to 0'5

;

which is sufficiently evident, since this decimal fraction re-

presents ^^, which is equivalent to 4.

527. Let now ^ be the given fraction, and we shall have,

3)1-0000000 _ _

0-3333333 ~ ^*

This shews, that the decimal fraction, whose value is ~,

cannot, strictly, ever be discontinued, but that it goes on, ad
infhiitum, repeating always the number 3; which agrees

with what has been already shewn. Art. 523 ; namely, that

the fractions

t'o + t4-o + TWO + Toio o> Sic. ad infmitum, =
-f.
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The decimal fraction which expresses tlic value of |-, is

also continued ad infinitum ; for we have,

3)2-0000000 _ ^

0666m66 ~ ^'

Which is also evident from what we have just said, because
~ is the double of i.

528. If ^ be the fraction proposed, we have

4)10000000 _ ^

0-2500000 ~ ^"

So that i: is equal to 0-2500000, or to 0-25 : which is

evidently true, since -r^, or -/^, + -j-|-^ = ^?„5^ = J-.

In like manner, we should have for the fraction ^.

4)3-0000000 _ ^

0-7500000 ~ ^'

So that 1 = 0'75 : and in fact

_7_ -I-
5 __ _7_S_ __ _3_

The fraction |^ is changed into a decimal fraction, by
making

4)5-0000000 _ ^

l-25000()0
~^'

Now, 1 + T-Vo = ^.

529- In the same manner, 3^ will be found equal to 0*2

;

1^=0-4; | = 0-6;J:
= 0-8; L = I ; ^ = 1-2, &c.

When the denominator is 6, we find ' = 0*1666666, &c.

which is equal to 0-666C}66 - 0-5 : but 0'666666 — ~, and
0-5 = i, wherefore 0-1666666 = |- - 4 ; or 4 - 4 = 1.

We find, also, f = 0333333, &c. = i- ; but f becomes
0-5000000 = i ; also, |- = 0-833333 = 0*333333 + 0-5,

that is to say, j- + 4 ; or |- + |- = |.

530. When the denominator is 7, the decimal fractions

become more complicated. For example, we find i ==

0*142857; however it must be observed that these six

figures are continually repeated. To be convinced, there-

fore, that this decimal fraction precisely expresses the value

of y, we may ti-ansform it into a geometrical progression,

whose first term is JU^^/^l^^, the ratio being
14^ 857
" o o o o ojj;

I ^2 s 5 7consequently, the sum = -—'-^
I o o o o o o

531. We may prove, in a manner still more easy, that

the decimal fraction, which we have foiuid, is exactly equal to

; ; for, by substituting for its value the letter .y, we have
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.9 = 01428571428571 42857, &c
10.9 = 1- 42857142857142857, &c.

100* = 14- 2857142857142857, &c.

1000.9 = 142- 857142857142857, &c,

10000,9 = 1428- 57142857142857, &c.
100000* = 14285- 7142857142857, &c.

1000000* = 142857- 142857142857, &c.

Subtract s = 0* 142857142857, &c.

999999* -: 142857.

4-1857 .

9 9 9 9 9
And, dividing by 999999, we have *

Wherefore the decimal traction, which was I'epresented by *,

is = |.

532. In tlie same manner, ~ may be transformed into a
decimal fraction, which will be 28571428, &c. and this

enables us to find more easily the value of the decimal
fraction which we liave represented by * ; because 0-28571428,
&c. must be the double of it, and, consequently, = 2s. Now
we have seen that

100* = 14-28571428571, ^c.

So that subtracting- 2* = 0-28571428571, &c.

there remains 98* = 14
wherefore * = i+ == i-.

We also find f = 0-42857142857, Sec. which, according
to our supposition, must be equal to 3* ; and we liave found
that

10* = 1-42857142857, &c.
So that subtracting 3* = 0*42857142857, &c.

we have 7* = 1, wherefore s = -^.

533. When a proposed fraction, therefore, has the de-
nominator 7, the decimal fraction is infinite, and 6 figures

are continually repeated; the reason of which is easy to

perceive, namely, that when we continue the division, a re-

mainder must return, sooner or later, which we have had
already. Now, in this division, 6 different numbers only
can form the remainder, namely 1, 2, 3, 4, 5, 6; so that,

at least, after the sixth division, the same figures must return

;

but when the denominator is such as to lead to a division

without remainder, these cases do not happen.
534. Suppose now that 8 is the denominator of the

fraction proposed: we shall laid the following decimal
fractions

:
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± = 0125 ; I-
= 0-25 ; ^ = 0-375 ; i: = 0-5

;

I = 0-625; I = 0-75; |^ = 0-875, See.

535. If the denominator be 9, we have

i- = 0-111, &c. |. = 0-222, &c. 2. = 0-333, &c.

And if the denominator be 10, we have — = O'l, tV =
2, -^ = Go. This is evident from the nature of decimals,

as also that ^l^ =^ 0-01; ,^^ = 0-37; -r^.^ = 0256;

T-o^^ = 0-0024, Sec.

536. If 11 be the denominator of the given fraction, we
shall liave ^ = 0-0909090, &c. Now, suppose it were re-

quired to find the value of this decimal fraction : let us call

it s, and we shall have

s = 0-090909,

10* = 00-909090,

100* = 9-09090.

If, therefore, we subtract from the last the value of s, we
shall have 99* = 9? and consequently * =

-.f-j
— ~ : thus,

also,

_?_ = 0-181818, &c.
._3_ = 0-272727, &c.

T-V = 0-545454, &c.

537. There are a great number of decimal fractions,

therefore, in which one, two, or more figures constantly

recur, and which continue thus to infinity. Such fractions

are curious, and we shall shew how their values may be

easily found *

.

* These recurring decimals furnish many interesting re-

searches; I had entered upon tliem, before I saw the present

Algebra, and should perhaps have prosecuted my inquiry, had
1 not Hkevvise found a Memoir in the Philosophical Transactioits

for 1769, entitled The Theory of circulating Fractions. I shall

content myself with stating here the reasoning with which I

began.

Let —7 be any real fraction irreducible to lower terms. And

suppose it were required to find how man}' decimal places we
must reduce it to, before the same terms will return again.

In order to determine this, I begin by supposing that 10«

is greater than rf; if that were not the case, and only 100?? or

1000?j >(/, it would be necessary to begin with trying to reduce

\0n 100« „ , ^ . «.'—;-or——
-, &c. to less terms, or to a traction —r-.da a'

This being established, I say that the same period can return

only when the same remainder n returns in the continual division.
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Let US first suppose, that a single figure is constantly re-

peated, and let us represent it by </, so that ,s = O'aaaaaaa.

We have

IOa' = a'aaaaaaa

and subtracting s = O'aaaaaaa

we have 9<? = a; wherefore 5 = —

.

538. When two figures are repeated, as o/^, we have s =
O'ababab. Therefore IOO.4' = ab-abahab; and if we sub»-

tract s from it, there remains 99* = ab ; consequently, s =
ab

99*

When three figures, as ahc, are found repeated, m'c have
s = O'abcabcabc ; consequently, lOOOi' = abcabcabc; and
subtracting s from it, there remains 999* = abc ; where-

abc
,

tore s = -— , ana so on.

Whenever, therefore, a decimal fraction of this kind oc-

Suppose thatwhcn this happens we have added s cyphers, and that

(] is the integral part of the quotient 5 then abstracting from the

point, we shall have —-^=o-f —-; wherefore o = — v (10'ad d
— 1). Now, as q must be an integer number, it is required to

determine the least integer number for 5, such that — x (10* —
d

, ,
10^-1

1 , or only that —, may be an mteger number.

This problem requires several cases to be distinguished : the
first is that in which d is a divisor of 10, or of 100, or of 1000,
<S:c. and it is evident that in this case there can be no circulatin*'

fraction. For the second case, we shall take that in which d is

an odd number, and not a factor of any power of 10 ; in this

case, the value of 5 may rise to d — 1, but frequently it is less.

A third case is that in which dis even, and, consequently, with-
out being a factor of any power of 10, has nevertheless a com-
mon divisor with one of those powers : this common divisor can

only be a number of the form 2-^^; so that if, —- = <?, I say, the pe-

riod will be the same as for the fraction — , but will not com-
d

mence before the figure represented by c. This case comes to

the same therefiare with the second case, on which it is evident
the theory depends. F. T,
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curs, it is easy to find its value. Let there be given, for

example, ^96;396 : its value will be —^ = ,?=r, by dividing

both its terms by 37.

This fraction ought to give again the decimal fraction

proposed ; and we may easily be convinced that this is the

real result, by dividing 8 by 9, and then that quotient by 3,

because 27 = 3 x 9 : thus, we have

9) 8-000000

31 0-888888

0-296296, ;<cc.

which is the decimal fraction that was proposed.

539. Suppose it were required to reduce the fraction

——:—-

—

t:
—=--:^—TT—TTii to a decimal. The

1x2x3x4x5x6x7x8x9x10'
operation would be as follows :

2) 1-00000000000000

3) 0-50000000000000

4) 016G6mGmG66G6

5) 004166666666666

6) 000833333333333

T) 0-00138888888888

8) 0-00019841269841

9) 0-00002480158730

10) 0-00000.275573192

000000027557319
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CHAP. XIII.

Of the Calculation o^' Interest*.

540. We are accustomed to express the interest of any
principal by i^er cents, signifying how much interest is an-

nually paid lor the sum of 100 pounds. And it is very

usual to put out the principal sum at 5 per cent, that is, on
such terms, that we receive 5 pounds interest for every 100
pounds principal. Nothing therefore is more easy than to

calculate the interest for any sum ; for we have only to say,

according to the Rule of Three

:

As 100 is to the principal proposed, so is the rate per

cent to the interest required. Let the principal, for ex-

ample, be 860/., its annual interest is found by this pro-

portion ;

As 100 : 5 : : 860 : 43.

Therefore 43/. is the annual interest.

541. We shall not dwell any longer on examples of

Simple Interest, but pass on immediately to the calculation

of Compound Interest; where the chief subject of inquiry

is, to what sum does a given principal amount, after a

certain number of years, the interest being annually added
to the principal. In order to resolve this question, we begin
with the consideration, that 100/. placed out at 5 per cent,

becomes, at the end of a year, a principal of 105/. : therefore

let the principal be a ; its amount, at the end of the year,

will be found, by saying ; As 100 is to «, so is 105 to the

answer ; which gives

* The theory of the calculation of interest owes its first im-
provements to Leibneitz, who dehvered the principal elements
of it in the Ada Erudilorum of Leipsic for 1683. It was after-

wards the subject of several detached dissertations written in a
very interesting manner. It has been most indebted to those
mathematicians who have cultivated political arithmetic; in

which are combined, in a manner truly useful, the calculation
of interest, and the calculation of probabilities, founded on the
data furnished by the bills of mortnlity. We are still in want of
a good elementary treatise of political arithmetic, though this

extensive branch of science has been much attended to in

England, France, and Holland. F. T,
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105a 21«
z= IJ^ X o, = a + ' X a.

100 20

542. So that, when we add to the original principal its

twentieth part, we obtain the amount of the principal

at the end of the first year : and adding to this its twentieth

part, we know the amount of the given principal at the end
of two years, and so on. It is easy, therefore, to compute the

successive and annual increases of the principal, and to con-

tinue this calculation to any length.

543. Suppose, for example, that a principal, which is at

present 1000^., is put out at five per cent ; that the interest

is added every year to the principal ; and that it were re-

quired to find its amount at any time. As this calculation

must lead to fractions, we shall employ decimals, but with-

out carrying them farther than the thousandth parts of a

pound, since smaller parts do not at present enter into con-

sideration.

The given principal of 1000/. will be worth

after 1 year - - - 1050Z.

525,

after 2 years - - - 1102*5

55-125,

after 3 years - - - 1157-625

57-881,

after 4 years - - - 1215 506
60-775,

after 5 years - - - 1276-281, &c.

which sums are formed by always adding — of the pre-

ceding principal.

544. We may continue the same method, for any number
of years; but when this number is very great, the calcu-

lation becomes long and tedious; but it may always be

abridged, in the followinfj manner

:

Let the present principal be a, and since a prmcipal of

20Z. amounts to 21/. at the end of a year, the principal a will

amount to |-i • ^ ^^ the end of a year : and the same prin-

212
cipal will amount, the following year, to^ . a = (|4)' • a.

Also, this principal of two years will amount to (|^)' . fl5, the

year after : which will therefore be the principal of three

years; and still increasing in the same manner, the given
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principal will amount to (|^)* . a at the end of four years;

to (14)5 . a, at the end of five years; and after a century,

it will amount to (|^i)^"" . a; so that, in general, (^"r)" . a

will be the amount of this principal, after n years ; and this

formula will serve to determine the amount of the principal,

after any number of years,

545. The fraction 14, which is used in this calculation,

depends on the interest liaving been reckoned at 5 per cent.,

and on ^\- being equal to 4-?-|, But if the interest were

estimated at 6 per cent, the principal a would amount to

4-J-l- . a, at the end of a year ; to {~%y . «, at the end of

two years ; and to 4|4" • ^'> ^^ the end of n years.

If the interest is only at 4 per cent, the principal a will

amount only to (4o~*)" . «, after n years.

546. When the principal a, as well as the numlier of

years, is given, it is easy to resolve these formula? by loga-

rithms. For if the question be according to our first sup-

position, we shall take the logarithm of (|4)" . a, which is

= log. (^)" + log. a ; because the given formula is the

product of (34)" and a. Also, as {\^^Y is a power, we shall

have log. (|i)" = 11 log. |4 : so that the logarithm of the

amount required is oi log. li -|- log. a ; and farther, the

logarithm of the fraction |4 — ^og. 21 — log. 20.

547. Let now the principal be lOOOZ. and let it be required

to find how much this principal will amount to at the end of

100 years, reckoning the interest at 5 per cent.

Here we have 7i = 100 ; and, consequently, the logarithm

of the amount required will be 100 log. \~ + log- 1000,

which is calculated thus

:

log. 21 = 1-3222193

subtracting log. 20 = 1-3010300

log. 1.^ = 0-0211893

multiplying by 100

100 log. ^i = 2-1189300

adding los;. 1000 = 30000000

gives 5-1189300 which is the loga-

rithm of the principal required.

We perceive, from the characteristic of this logarithm,

that the principal required will be a number consisting of

six figures, and it is found to be 131501 Z.

548. Again, suppose a principal of 3452Z. were put out at

6 per cent, what would it amount to at the end of 64
years ?

n2
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We have here a — 3452, and n = 64. Wherefore the

logarithm of the amount sought is

64 log. ^\ + log. 3452, which is calculated thus:

log. 53 = 1-7242759

subtracting log. 50 = 1-6989700

/o^.44 = 0-0253059

multiplying by 64

64%. 44= 1-6195776

log. 3452 = 3-5380708

which gives 5*1576484

And taking the number of this logarithm, we find the

amount required equal to 143763/.

549. When the number of years is very great, as it is re-

quired to multiply this number by the logarithm of a frac-

tion, a considerable error might arise from the logarithms in

the Tables not being calculated beyond 7 figures of decimals

;

for which reason it will be necessary to employ logarithms

carried to a greater number of figures, as in the following

example.

A principal of \l. being placed at 5 per cent., compound
interest, for 500 years, it is required to find to what sum this

principal will amount, at the end of that period.

We have here a = 1 and n = 500; consequently, the

logarithm of the principal sought is equal to 500 log. ^ -f-

log: 1, which produces this calculation :

log. 21 = 1-322219294733919

subtracting log. 20 = 1-301029995663981

log. U = 021189299069938
z o

multiply by 500

500 log. U' = 10-594649534969000, the loga-

rithm of the amount required ; which will be found equal to

39323200000/.
550. If we not only add the interest annually to the prin-

cipal, but also increase it every year by a new sum b, the

original principal, which we call a, would increase each year

in the following; manner

:

'fc>

after 1 year, ^^a -|- b,

after 2 years, {i^ya + iJ-6 -f b,

after 3 years, (Ufa -h (14)'^ + U^ + b.
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after 4 years, {^T^ -f {UY^ + {Ufb + \l-b + h,

after n years, (|i)"« + {\hY''b + (i^)"-^^ + |4^ &c.

This amount evidently consists of two parts, of which the

first is {llYci'-, and the other, taken inversely, forms the

series b + ^b + [Ufb + {UYi^ + • • • -iUY-'b; which

series is evidently a geometrical progression, the ratio of

which is equal to ~, and we shall therefore find its sum, by
first multiplying the last term {l'^Y~^b by the exponent |4;
which gives {\~oYb. Then, subtracting the first term ^, there

remains (|-o)"^
— 6; and, lastly, dividing by the exponent

minus 1, that is to say by ^tVj we shall find the sum required

to be 20(|4)"6 — 206 ; therefore the amount sought is,

(|A)"a
-I- 20(|-' )"6 - 206 ^ {\IY X (a + 206) - 206.

551. The resolution of this formula requires us to cal-

culate, separately, its first term (|-^)" x (a -f- ^06), which is

n log. -Q- + /o"\ {a -j- 206) ; for the number which answers

to this logarithm in the Tables, will be the first term ; and

if from this we subtract 206, we shall have the amount
sought.

552. A person has a principal of 1000/. placed out at

five per cent, compound interest, to which he adds annually

100/. beside the interest : what will be the amount of this

principal at the end of twenty-five years ?

We have here a = 1000 ; 6 = lOO ; 7i = 25 ; the opera-

tion is therefore as follows

:

log. U^ = 0-021189299

Multiplying by 25, we have

25 log. U- = 0-5297324750

log. {a +'206) = 3-4771213135

And the sum = 4-00G8537885.

So that the first part, or the number which answers to this

logarithm, is 101591, and if we subtract 206 = 2000, we
find that the principal in question, after twenty-five years,

will amount to 8159"1/.

553. Since then this principal of 1000/. is always in-

creasing, and after twenty-five years amounts to 8159t'o^-

we may require, in how many years it will amount to

1000000/.

Let n be the number of years required : and, since a =
1000, 6 = 100, the principal will be, at the end of w years,

(^-•)" . (3000)- 2000, which sum must make 1000000;

from it therefore results this equation ;

3000. {UY - 2000 - 1000000;
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And adding 2000 to both sides, we have

3000 . (1^)" = 1002000.

Then dividing both sides by 3000, we have {^Y = oSi:

Taking the logarithms, n log. 1-^- = log-. 334 ; and di-

viding by log. ^, we obtain n = - ^\^ . Now, log. 334i

= 2-5237465, and log. ^L = 0-0211893 ; therefore n =
2-5237465 ^ , , .. , .

, ,

fwV^Tf^cT' ' ^ ' lastly, it we multiply the two terms ol this

traction by 10000000, we shall have n = ^ '^mn, = 119
years, 1 month, 7 days ; and this is the time, in which the

principal of 1000/. will be increased to 1000000/.
554. But if we supposed that a person, instead of annually

increasing his principal by a certain fixed sum, diminished

it, by spending a certain sum every year, we should have
the following gradations, as the values of that principal «,

year after year, supposing it put out at 5 per cent, com-
pound interest, and representing the sum which is annually

taken from it by 6 :

after 1 year, it would be -|'« — b,

after 2 years, (~)Vi — ^^h — b,

after 3 ^ears, (Ufa - {i±)"b - \^h - b,

after w years, (|^)«a-(l.i);'->5 - (U)»-^'5 . .. -(l^b-b.
555. This principal consists of two parts, one of which is

{\-iY • ^r and the other, which must be subtracted from it,

taking the terms inversely, forms the following geometrical

progression :

6 + (U)& + iiiVb + iUf^ + . • .
. iiiY-'^.

Now we have already found (Art. 550.) that the sum of this

progression is 20(^)''6 — 206 ; if, therefore, we subtract this

quantity from (|4)" • ^j ^"^'^ shall have for the principal re-

quired, after n years z=.

(li)« . (fl _ 20/;) + 206.

556. We might have deduced this ibrmula immediately

from that of Art. 550. For, in the same manner as we an-

nually added the sum b, in the former supposition ; so, in

the present, we subtract the same sum 6 every year. We
have therefore only to put in the former formula, — b every

where, instead of + b. But it must here be particularly re-

marked, that if 206 is greater than a, the first part becomes
negative, and, consequently, the principal will continually

diminish. This will be easily perceived ; for if we annually

take away from the principal more than is added to it by the

interest, it is evident that this principal must continually be-
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come less, and at last it will be absolutely reduced to

nothing ; as will appear from the following example

:

557. A person puts out a principal of 100000/. at 5 per

cent interest; but he spends annually 6000/.; which is

more than the interest of his principal, the latter being only

5000/.; consequently, the principal will continually diminish;

and it is required to determine, in what time it will be all

spent.

Let us suppose the number of years to be w, and since

a — 100000, and h = 6000, we know that after n years the

amount of the principal will be - 20000 (1^)"+ 120000,
or 120000 - 20000(|i)% where the factor, -20000, is the

result of a - 206 ; or 100000 - 120000.

So that the principal will become nothing, when 20000(|i)'*

amounts to 120000; or when 20000(4^)» = 120000. Now,
dividing both sides by 20000, we have (|-^)" = G; and
taking the logarithm, we have n log. (^) = log. 6; then

,..,.,_ , loff. 6
dividing by log. ^, we Jiave n = 7-^-77, or n =. - - -

Log. -^0

0-7781513 ^
. on a X.

rvn^crn'oQq ' ^" ' consequently, n = 6b years, o months,

22 days ; at the end of which time, no part of the principal

will remain.

558. It will here be proper also to shew how, from the

same principles, we may calculate interest for times shorter

than whole years. For this purpose, we make use of the

formula (~l~Y • « already found, which expresses the amount
of a principal, at 5 per cent, compound interest, at the end
of 71 years ; for if the time be less than a year, tlie exponent
n becomes a fraction, and the calculation is performed by
logarithms as before. If, for example, the amount of a

principal at the end of one day were required, we should
make Ji r: -3-—; if after two days, n = -j-^-j-, and so on.

559. Suppose the amount of 100000/. for 8 days were
required, the interest being at 5 per cent.

Here a = 100000, and n = 3-|-5-> consequently, the

8_
amount sought is {^lY^^ X 100000; the logarithm ofwhich

quantity is log. (l-^f^^ -f /o?. 100000 =^|^ loj;. -|4 -[- log.

100000. Now, log. 1A = 0^0211893, which, multiphed by

^-|t? gives 0-0004644, to which adding

/02:. 100000=5 0000000

the sum is 5*0004644,
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The natural number of this logarithm is found to be
100107. So that, subtracting the principal, 100000 from
this amount, the interest, for eight days, is 107/.

560. To this subject belong also the calculation of the
present value of a sum of money, which is payable only after

a tei-m of years. For as 20/., in ready money, amounts to

21/. in a year; so, reciprocally, a sum of 21/., which cannot
be received till the end ofone year, is really worth only 20/.

If, therefore, we express, by «, a sum whose payment is due
at the end of a year, the present value of this sum is ~a ;

and therefore to find the present worth of a principal a,

payable a year hence, we must multiply it by i^; to find its

value two years before the time of payment, we multiply it

^y (tt) « ; and in general, its value, n years before the time
of payment, will be expressed by (|-^)"a.

561. Suppose, for example, a man has to receive for
five successive years, an annual rent of 100/. and that he
wishes to give it up for ready money, the interest being at

5 per cent ; it is required to find how much he is to re-

ceive. Here the calculations may be made in the following
manner

:

For 100/. due
after 1 year, he receives 95 239
after 2 years - - _ 90-704
after 3 years - - - 86o85
after 4 years - - - 82-272
after 5 years - - - 78-355

Sum of the 5 terms = 432-955

So that the possessor of the rent can claim, in ready money,
only 432-955/.

562. If such a rent were to last a greater number of
years, the calculation, in the manner we have performed it,

w^ould become very tedious; but in that case it may be
facilitated as follows

:

Let the annual rent be a, commencing at present and
lasting n years, it will be actually worth

« + (4t)« -!- i^fa + a-^fa + (1° )4a . . . . + (^°)"a.

Which is a geometrical progression, and the whole is re-

duced to finding its sum. We therefore multiply the last

term by the exponent, the product of which is (|4)"'^'o;
then, subtracting the first term, there remains (|.°)"-^ia - a;
and, lastly, dividing by the exponent viinus 1, that is, by
— ,',, or, which amounts to the same, multiplying by —21,
we shall have the sum required,
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-21 . (14)"+^ . a + 21a, or, 21a - 21 . (^1)"+^ . a;

and the value of the second term, which it is required to

subtract, is easily calculated by logarithms.

aUESTIONS FOR PRACTICE.

1. What will 375/. 10.y. amount to in 9 years at Q per
cent, compound interest .'' Ans. 634/. Ss.

2. What is the interest of 1/. for one day, at the rate of

5 per cent. ? Ans. 0*0001369863 parts of a pound.
3. What will 365/. amount to in 875 days, at the rate of

4 per cent. '? Ans. 400/.

4. What will ^5Ql. 10.9. amount to in seven years, at the

rate of 6 per cent, compound interest .'* Ans. 385/. 13.S. lid.

5. What will 563/. amount to in 7 years and 99 days, at

the rate of 6 per cent, compound interest ? Ans. 860/.

6. What is the amount of 400/. at the end of 3f years, at

6 per cent, compound interest.'' Ans. 490/. 11*. 7|^.

7. What will 320/. 10^. amount to in four years, at 5 per
cent, compound interest? Ans, 389/. 11*. Md.

8. What will 650/. amount to in 5 years, at 5 per cent.

compound interest? Ans. 829/. 11*. Ijd.

9. What will 550/. 10*. amount to in 3 years and 6
months, at 6 per cent, compound interest? Ans. 675/. 6*. Sff.

10. What will 15/. 10*. amount to in 9 years, at 3l per
cent, compound interest? Ans. 21/. 2*. 4?f7.

11. What is the amount of 550/. at 4 per cent- in seven

months? Ans. 562/. 16*. 8d.

12. What is the amount of 100/. at 7'37 per cent, in nine

years and nine months ? Ans. 200/.

13. If a principal x be put out at compound interest for x
years, at a: per cent, required the time in which it will gain x.

Ans. 8-49824 years.

14. What sum, in ready money, is equivalent to 600/.

due nine months hence, reckoning the interest at 5 per cent.?

Ans. 578/. 6*. Sid.

15. What sum, in ready money, is equivalent to an an-
nuity of 70/. to commence 6 years hence, and then to continue

for 21 years at 5 per cent? Ans. 669/. 14*. Oid.

16. A man puts out a sum of money, at 6 per cent., to

continue 40 years ; and then both principal and interest are

to sink. What is that per cent, to continue for ever ?

Ans. 52 per cent.
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SECTION IV.

0/"Algebraic Equations, and c^tlie Resolution of those

Equations.

CHAP. I.

Of the Solution o^Problems m general.

563. The principal object of Algebra, as well as of all the

other branches of Mathematics, is to determine the value of

quantities that were before unknown ; and this is obtained

by considering attentively the conditions given, which are

always expressed in known numbers. For this reason.

Algebra has been defined, The science which teaches how to

determine unknown quantities hy means of those that are

hnown.
564. The above definition agrees with all that has been

hitherto laid down : for we have always seen that the know-
ledge of certain quantities leads to that of other quantities,

which before might have been considered as unknown.
Of this, Addition Avill readily furnish an example ; for, in

order to find the sum of two or more given numbers, Ave had
to seek for an unknown number, which should be equal to

those known numbers taken together. In Subtraction,

we sought for a number which should be equal to the dif-

ference of two known numbers. A multitude of other ex-

amples are presented by Multiplication, Division, the In-

volution of powers, and the Extraction of roots ; the ques-

tion being always reduced to finding, by means of known
quantities, other quantities which are unknown.

5Q5. In the last section, also, different questions were re-

solved, in which it was required to determine a number that

could not be deduced from the knowledge of other given

numbers, except under certain conditions. All those ques-

tions were reduced to finding, by the aid of some given

numbers, a new number, which should have a certain con-

nexion with them ; and this connexion was determined by
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certain conditions, or properties, which were to agree with

the quantity sought.

566. In Algebra, when we have a question to resolve,

we represent the number sought by one of the last letters of

the alphabet, and then consider in what manner the given

conditions can form an equality between two quantities.

This equality is represented by a kind of formula, called

an equation^ which enables us finally to determine the value of

the number sought, and consequently to resolve the question.

Sometimes several numbers are sought ; but they are found

in the same manner by equations.

567. Let us endeavour to explain this farther by an ex-

ample. Suppose the following question, or 'problem,) was
proposed

:

Twenty persons, men and women, dine at a tavern ; the

share of the reckoning for one man is 8 shillings, for one

woman 7 shillings, and the whole reckoning amounts to

7/. 55. Required the number of men and women sepa-

rately ?

In order to resolve this question, let us suppose that the

number of men is = jr ; and, considering this number as

known, we shall proceed in the same manner as if we wished

to try whether it corresponded with the conditions of the

question. Now, the number of men being = x, and the

men and women making together twenty persons, it is easy

to determine the number of the women, having only to sub-

tract that of the men from 20, that is to say, the number of

women must be 20 — x.

But each man spends 8 shillings ; therefore x men must
spend Hx shillings. And since each woman spends 7 shil-

lings, 20— ^ women must spend 140— 7^7 shillings. So that

adding; toajether S.z* and 1 40 — Ix, we see that the whole 20
persons must spend 140 -\- x shillings. Nuw, we know
already how much they have spent ; namely, 11. 5s. or 145*.;

there must be an equality, therefore, between 14:0 -\- x and

145 ; that is to say, we have the equation 140 -}- .r = 145,

and thence v/e easily deduce x zn 5, and consequently 20 —
07 = 20 — 5 = 15;so that the company consisted of 5 men,
and 15 women.

56s. Again, Suppose twenty persons, men and women,
go to a tavern ; the men spend 24 shillings, and the women
as much : but it is found that the men have spent 1 shilling

each more than the women. Required the number of men
and women separately ?

Let the number of men be represented by x.
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Then the women will be 20 — x.

Now, the X men having spent 24 shillings, the share of

24
each man is — . The 20 — .r women having also spent 24

.24
shillings, the share of each woman is

9fd-x

But we know that the share of each woman is one shilling

less than that of each man ; if, therefore, we subtract 1 from
the share of a man, we must obtain that of a woman ; and

consequently 1 = -^ . This, therefore, is the equa-

tion, from which we are to deduce the value of x. This
value is not found with the same ease as in the preceding

question ; but we shall afterwards see that ^ = 8, which
value answers to the equation ; for y- — 1 rr ^t includes

the equality 2 =: 2.

569. It is evident therefore how essential it is, in all pro-

blems, to consider the circumstances of the question at-

tentively, in order to deduce from it an equation that shall

express by letters the numbers sought, or unknown. After

that, the whole art consists in resolving those equations, or

deriving from them the values of the imknown numbers;
and this shall be the subject of the present section.

570. We must remark, in the first place, the diversity

which subsists among the questions themselves. In some,

we seek only for one unknown quantity ; in others, we have
to find two, or more ; and, it is to be observed, with regard

to this last case, that, in order to determine them all, we
must deduce from the circumstances, or the conditions of

the problem, as many equations as there are unknown
quantities.

571. It must have already been perceived, that an equa-

tion consists of two parts separated by the sign of equahty,

~, to shew that those two quantities are equal to one. an-

other ; and we are often obliged to perform a great number
of transformations on tliose two parts, in order to deduce

from them the value of the unknown quantity: but these

transformations must be all founded on the following prin-

ciples, namely, That two equal quantities remain equal,

whether we add to them, or subtract from them, equal

quantities; whether we multiply them, or divide them, by
the same number ; whether we raise them both to the same

jxjwer, or extract their roots of the same degree ; or lastly,
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whether we take the logarithms of those quantities, as we

have ah-eady done in the preceding section.

572. The equations which arc most easily resolved, are

those in which the unknown quantity does not exceed the

first power, after the terms of the equation have been pro-

perly arranged ; and these are called simple equations, or

equations of the first degree. But if, after having reduced

an equation, we find in "it the square, or the second power,

of the unknown quantity, it is called an equation of the

second degree, which is more difficult to resolve. Equations

of the third degree are those which contain the cube of the

unknown quantity, and so on. We shall treat of all these

in the present section.

CHAP. II.

Of the Resolution o/"Simple Equations, or Equations ofthe
First Degree.

573. When the number sought, or the unknown quantity,

is represented by the letter cV, and the equation we have ob-

tained is such, that one side contains only that a:, and the

other simply a known number, as, for example, x = 25, the

value of r is already known. We must always endeavour,

therefore, to arrive at such a form, however complicated the

equation may be when first obtained : and, in the course of

this section, the rules shall be given, and explained, which

serve to facilitate these reductions.

574. Let us begin with the simplest cases, and suppose,

first, that we have arrived at the equation a; -\~ 9 = 16.

Here we see immediately that cc — 1 : and, in general, if

we have found x -\- a = b, where a and b express any

known numbers, we have only to subtract a from both

sides, to obtain the equation x = b — a, which indicates the

value of X.

575 If we have the equation x — a = b, vfe must add

a to both sides, and shall obtain the value o^ x =. b -\- a.

We must proceed in the same manner, if the equation have

this form, x ~ a = a" -^ I: for we shall find immediately

x = a^-\-a-\-\.

In the equation x — 8a = 20 — Qa, we find

a: = 20 - 6a + 8a, or ^ = 20 -f 2a.
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And in this, x -\-Ga = 20 -]- 3a, we have

x = oo ^ Sa — 6a, or a: = 20 - Sa.

576. If the original equation have this form, x — a -\-

i — c, we may begin by adding a to both sides, wliich will

give X -{- b — c -\- a; and then subtracting b from both

sides, we shall find a: z:: c -\~ a — b. But avc might also

add -|- ''^ — ^ at once to both sides ; and thus obtain im-

mediately x = c '{' a — b.

So likewise in the following examples

:

If x - 2a -j- Sb = 0, we have r = 2a — Qb.

If A' — 3a -i- 2Z» = 25 + a 4- 26, we have .r = 25 + 4a.

If jr — 9 + 6a = 25 -j- ~«j we have x = 34 — 4a.

577. When the given equation has the form ax = b, we

only divide the two sides by a, to obtain x = — . But if the

equation has the form ax -\- b ^ c z=: d, we must first make
the terms that accompany ax vanish, by adding to both

sides — b -\- c; and then dividing the new equation ax =

d — b + c hy a, we shall have x = —
.

a

The same value of x would have been found by sub-

tracting + b — c from the given equation ; that is, we
should have had, in the same form,

7 7 1
d—b-}-c

ax =z d — b -{- c, and x = . Hence,

If 2^ + 5 — 17, we have Qx = 12, and x = 6.

If S.r — 8 = 7, we have 3.r = 15, and x = 5.

If 4^ - 5 - 3a = 15 + 9a, we have 4a; = 20 4- 12a,

and consequently x = 5 -f- 3a.

578. When the first equation has the form — = b, we

multiply both sides by a, in order to have x = ab.

. . . X „ X
But if it is \- b — c — d, we must first make — = d

a a

— b + c; after which we find

a: = (d — b + c)a = ad — ab + ac.

Let 1^ — Q = 4, then i<r = 7, and j? = 14.

Let -ix — 1 + 2a = 3 + a, then 4-^ = 4 — a, and a- =
12 - 3a.

Let — 1 = a, then = o 4- 1 and a- = a* ~ 1

.

«—

1

a—

I

579. When we have arrived at such an equation as
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(too—— = c, we first multiply by Z», in order to have ax — he,

be
and then dividinff by «, we find x =: .

If
—J

c = d, we begin by giving the equation this

form —,— = d + c'y after which we obtain the value of

aa^ — bd + be, and tlien that of .r = .

a

Let ^4? — 4 = 1, then |-,r — 5, and 2.r = 15; whence

If |j; 4- ± r= 5, we have -l^v = 5 — A =
I- ; whence 3.r =

18, and .r = 6.

580. Let us now consider a case, which may frequently

occur ; that is, when two or more terms contain the letter jr,

either on one side of the equation, or on both.

If those terms are all on the same side, as in the equation

j; -\- ^x -\- 5 — 11, we have a; -f ^x = 6 ; or S-c = 12 ; and
lastly, X = 4.

Let X + i-x + -Lx =: 44, be an equation, in which the

value of X is recj[uired. If we first multiply by 3, we have
4vr + Ix =2 132 ; then multiplying by 2, we have Hj: =
264 ; wherefore x = 24. We might have proceeded in a
more concise manner, by beginning with the reduction of
the three terms which contain x to the sinde term '-Jx- and
then dividmg the equation y^ = 44 by 11. This would
have given ~x =z 4, and x =. 24, as before.

Let ^ — -Ix + 1.x z= I. We shall have, by reduction,

-l^x = 1, and :r = 2|.

And, generally, let aj^ — bo:- + cj,' = d; which is the

same a& {a — b + c)x = d, and, by division, we derive x =
d

a — b + c

581 . When there are terms containing x on both sides of
the equation, we begin by making such terms vanish from
that side from which it is most easily expunged ; that is to

say, in which there are the fewest terms so involved.
If we have, for example, the equation Qx + 2 = x + 10,

we must first subtract x from both sides, which gives 2j: +
2 = 10 ; wherefore 2x = 8, and x = 4.

Let .r + 4 =: 20 — ^ ; here it is evident that 2x + 4 =
20; and consequently 2^' = 16, and x = 8.
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Let a: 4- 8 = 32 - 3r, this gives us 4-x + 8 = 32 ; or

4^ = 24, whence x = 6.

Let 15 — X = 20 - 9,0", here we shall have

15 + X = 20, and .r = 5.

Let 1 + X = 5 — 4^ ; this becomes 1 + ^x = 5, or |^rzr

4 ; therefore 3x =z 8 ; and lastly, x = ^ = S^-.

If 4 — i-^ — T~ :r"^5
^^ must add 4^, which gives 4 =

f + t'z^? subtracting 4, and transposing the terms, there

remains Vi^ = ^; then multiplying by 12, we obtain x= Q.

If 1^ — ^v = 1. + ix, we add ^x, which gives 14=2- +
^x; then subtracting i, and transposing, we have ^x = li,

whence we deduce x — 1^ = It % multiplying by 6 and
dividing by 7.

582. If we have an equation in which the unknown num-
ber a:* is a denominator, we must make the fraction vanish by
multiplying the whole equation by that denominator.

Suppose that we have found 8 = 12, then, adding

8, we have —~ = 20 ; and multiplying by .r, it becomes

100 = 20<r ; lastly, dividing by 20, we find x = 5.

Let now =- = 7 ; here multiplying by x — 1, we

have 5<r -f 3 = 7j:' — 7 ; and subtracting 5,r, there remains

3 = 2j; — 7 ; then adding 7, we have 2x = 10 ; whence
3" = 5.

583. Sometimes, also, radical signs are found in equations

of the first degree. For example : A number x, below 100,

is required, such, that the square root of 100 — x may be

equal to 8; or ^''(100 — x) = 8. The square of both sides

will give 100 — x = 64, and adding x, we have 100 = 64
-|- X ; whence we obtain x = 100 — 64 = 36.

Or, since 100 — x = 64, we might have subtracted 100
from both sides; which would have given — x = — 36; or,

multiplying by — 1, x = 36.

584. Lastly, the unknown number x is sometimes found

as an exponent, of which we have already seen some ex-

amples; and, in this case, we must have recourse to lo-

garithms.

Thus, when we have 2^ = 512, we take the logarithms of

both sides; whence we obtain x log. 2 = log. 512; and

los- 512
dividing by log. 2, we find x = -y-—— . The Tables then
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2-7092700

^ ' ~ 0-3010300 ~ ^
°"^°^

'

~ ^"

Let 5 X 3-' - 100 = 305 ; we add 100, which gives 5 x
3-^ = 405 ; dividing by 5, we have 3-' = 81 ; and taking

the logarithms, 9,a' log. 3 =. log. 81, and dividing by 2 log.

log. 81 hg. 81
o, we have .r = -p^—-:, or x •=. -^—^ ; whence

S/og-. 3 log. 9

1-9084850
, „

~ 0-9542425 ^+^ + ^5

aUESTIONS FOE PRACTICE.

1. If a^ - 4 + 6 = 8, then will x - 6.

2. If 4a- - 8 = 3^ + 20, then will x - 28.

3. If flf.r =1 ah — a, then will x = h — \.

4. If 2^ -f- 4 = 16, then will x = 6.

5. If «^ + 26a =r 3c% then will .r = 26.
a

6. If -^ = 5 + 3, then will x = 16.

7. If 5 - 2 = 6 + 4, then will 2^ - 6 = 18.
o

8. If « = c, then will .r =
x a— c

9. If 5^ - 15 = 2^ + 6, then will ^ = 7.

10. If 40 — 6j; - 16 = 120 — Ux, then will j; = 12.

11. If -?- - -|- -f -|^ = 10, then will x = 24.

12. --- + -r- = 20 pr— , then will x = 23^.
2 3 2 '

^

13. If ^/4a; + 5 = 7, then will a; = 6.

2«''

14. If ^ + a/(«* + ^^) = ., o .
-^, then will a: = av/i.

-/(fl'+o:-)

15. If Sojr + -;^ S = bx — a, then will a? = 7;; rr..
' 2 ' ba—'zb

16. If v/(12 + a;) = 2 + -v/^, then will x = ^.

2fl-
17. If 7/ + Via" + 7/") =

, . , „ , , then will « = ^a ^3.

18. If «+i +4^ = 16 -2'-±2, then will y = 13.
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19. If \fx At ^/(.a -I- ^) = —;—;—
- then will x = —.

20. If V{aa + xx) = ^(b^ + x% then will x =

2ar

21. If ?/ = Via" 4- v/(6^ 4- ^') ) - a, then will x =

4rt

128 216
22. If 7 = t;, then will ^ = 12.

oX — 4* OX —

^^ ^^ 42^ 35^ ,

23. If ^ =: ^, then will ^ = 8.

45 57
24. If

^;
-= -, then will x = 6.

2^-1-3 4.r-
5'

25. If :^lzi? _ ^!z:i then will x = 6.
3 4

26. If 615:r - 7^' = 48:r, then will x zz 9.

CHAP. III.

Ofthe Solution o/' Questions relating to the preceding"

Chapter.

585. Question 1 . To divide 7 into two such parts that the

greater may exceed the less by 3.

Let the greater part be .r, then the less will be 7 — a:' ; so

that X •=. 1 — X -\- '6, ox X z=. 10 — X. Adding x, we have
2.r zz 10 ; and dividing by 2, a; zi 5.

The two parts therefore are 5 and 2.

Question 2. It is required to divide a into two parts, so

that the greater may exceed the less by b.

Let the greater part be x, then the other will be « — x;
so that X zz a — x -\^ b. Adding x, we have ^x zz a -\- b;

1 V • T 1 r^
a+ b

and dividmg by 2, a:' r:

.

Another method of solution. Let the greater part = x ;

which as it exceeds the less by b, it is evident that this is less

than the other by b, and therefore must be = ^ — ^. Now,

I
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these two parts, taken together, ought to make a ; so lliat

2a: — 6 =r «; adding h, we have 2a' =: a -{ b, wherefore

X = —^, wliich is the value of the greater part; and that

p, , ... ,
a + b a + b ^b a-b

or tlie less wjll be —^ 6, or —^ —, or —5—.

586. Question 3. A father leaves 1600 pounds to be
divided among his three sons in the following manner ; viz.

the eldest is to have 200 pounds more than the second, and
the second 100 pounds more than the youngest. Required
the share of each.

Let the share of the third son be x
Then the second's will be - - .r + 100; and
The first son's share - - - x -{- 300.

Now, these three sums make up together 1600,?. ; we have,

therefore,

ar + 400 = 1600
Sx = 1200

and X = 400

The share of the youngest is 400/.

That of the second is - - 500/.
^

That of the eldest is - - 700/.

587. Question 4. A father leaves to his four sons 8600/-

and, according to tlie will, the share of the eldest is to be
double that of the .second, minus 100/. ; the second is to

receive tlu'ce times as much as the third, minus 200/. ; and
the third is to receive four times as much as the fourth, minus
300/. What are the respective portions of these four sons ?

Call the youngest son's share x
Tlien the third son's is - 4<x — 300
The second son's is - -12^7—1100
And the eldest's - - - 24^- - 2300

Now, the sum of these four shares must make 8600/. We
have, therefore, 41,r - 3700 = 8600, or

41^ = 12300, and x = 300.

Therefore the youngest's share is 300/.

The third son's 900/.

The second's - 2500/.

The eldest's - 4900/.

588. Question 5. A man leaves 11000 crowns to be
divided between his widow, two sons, and three daughters.

He intends that the mother should receive twice the share

of a son, and that each son should receive twice as much
o2
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as a daughter. Required how much each of them is to

receive.

Suppose the share of each daughter to be x
Then each son's is consequently - - - go:

And the widow's -------- 4.r

The wliole inheritance, therefore, is 3.r + 4r + 4i ; or 1 1 .r

= 11000, and, consequently, x = 1000.

Each daughter, therefore, is to receive 1000 crowns

;

So that the three receive in all 3000
Each son receives 2000

;

So that the two sons receive - 4000
And the mother receives - - 4000

Sum 11000 crowns

589. Question 6. A father intends by his will, that his

three sons should share his property in the following man-
ner: the eldest is to receive 1000 crowns less than half the

whole fortune ; the second is to receive 800 crowns less

than the third of the whole; and the third is to have

600 crowns less than the fourth of the whole. Required

the sum of the whole fortune, and the portion of each

son.

Let the fortune be expressed by x

:

The share of tlie first son is {x — 1000
That of the second - - - ^x — 800
That of the third - - - i^ - 600

So that the three sons receive in all ^x + -^x + ix —
2400, and this sum must be equal to :v. We have, there-

fore, the equation 4|a' — 2400 = x; and subtracting x,

there remains -j^x — 2400 = ; then adding 2400, we
liave ^'^o: = 2400 ; and, lastly, multiplying by 12, we obtain

X = 28800.

'J'he fortune, thei*efore, consists of 28800 crowns; and
The eldest son receives 13400 crowns

The second - - - - 8800
The youngest - - - 6600

28800 crowns.

590. Question 7. A father leaves four sons, who share

his property in the following manner : the first takes the

half of the fortune, minus 3000/. ; the second takes the

third, minus 1000/. ; the third takes exactly the fourth of

the property ; and the fourth takes 600/. and the fifth part

of the property. What was the whole fortune, and how
much did each son receive .''
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Let the whole fortune be represented by .r:

Then the eldest son will have :^x — 3000
The second ----- 4^ - 1000
The third ------ 'x

The youngest----- 2^^' + 600.

And the four will have received in all ~x -{- -^a: + ix +
^^x — 3400, which must be equal to x.

Whence results the equation ^Ix — 3400 = x; then sub-

tracting X, we have -^x — 3400 =. ; adding 3400, we ob-

tain l^^x = 3400; then dividing by 17, we have ^'^.r =
200; and multiplying by 60, gives x — 12000.

The fortune therefore consisted of 12000/.

The first son received 3000
The second - - - 3000
The third - - - - 3000
The fourth - - - 3000

591. Question 8. To find a number such, that if we
add to it its half, the sum exceeds 60 by as much as the

number itself is less than 65.

Let the number be represented by x :

Then x + ^x — 60 = 65 — x, or ix — 60 = 65 — x.

Now, by adding .r, we have -^x — 60 = 65 ; adding 60, we
have ^x = 125 ; dividing by 5, gives ^x = ^5 ; and mul-
tiplying by 2, we have x = 50.

Consequently, the number sought is 50.

592. Question 9. To divide 32 into two such parts, that

if the less be divided by 6, and the greater by 5, the two

quotients taken together may make 6.

Let the less of the two parts sought be x; then the

greater will be 32 — x. The first, divided by 6, gives

-^ ; and the second, divided by 5, gives—-— . Now -77- +

22 ^—-— = 6 : so that multiplying by 5, we have |^^ + 32 —
o

a; = 30, or — ^x + 32 = 30 ; adding i.r. we have 32 =
30 + 4^; subtracting 30, there remains 2 = -Ix; and lastly,

multiplying by 6, we have x zz 12.

So that the less part is 12, and the greater part is 20.

593. Question 10. To find such a number, that if mul-

tiplied by 5, the product shall be as much less than 40 as

the number itself is less than 12.

Let the number be x; which is less than 12 by 12 — j-;

then taking the number x five times, we have 5x, which is
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less than 40 by 40 — 5x, and this quantity must be equal to

12 - a;.

We have, therelbrc, 40 — 5.v = 12 — x. Adding 5r,

we have 40 = 12 + 4.r; and subtracting 12, we obtain

28 = 4cr; lastly, dividing by 4, we have x = '7, the number
sought.

594. Question 11. To divide 25 into two such parts,

that the greater may be equal to 49 times the less.

Let the less part be x, than the greater will be 25 — .r

;

and the latter divided by the former ought to give the

25— .r

quotient 49 : we have therefore = 49. Multiplying

by X, we have 25 — .r = 49^' ; adding x^ we have 25 =
5(Vr ; and dividing by 50, gives a: = i.

The less of the two numbers is i, and the greater is 24i

;

dividing therefore the latter by i, or multiplying by 2, we
obtain 49.

595. Question 12. To divide 48 into nine parts, so that

every part may be always i greater than the part which

precedes it.

Let the first, or least part be .r, then the second will be

^ + i-, the third x -\- \, &c.

Now, these parts form an arithmetical progression, whose

first term is x; therefore the ninth and last term will be

a: + 4. Adding those tAvo terms together, we have 2j: + 4;

multiplying this quantity by the number of terms, or by 9,

we have 18a: + 36; and dividing this product by 2, Ave

obtain the sum of all the nine parts — 9.r + 18; which

ought to be equal to 48. We have, therefore, 9-J^ + 18 =
48 ; subtracting 18, there remains \}x — 30 ; and dividing

by 9, we have x — 3f

.

" The first part, therefore, is 3y, and the nine parts will

succeed in the following order :

1 2 3 4- 5 6 7 8 9

3i + 3A + 4f + 4-^ + 5\ + 5A + 6| + (3a + 7|.

Which together make 48.

596. Question 13. To find an arithinetical progression,

whose first term is 5, the last term 10, and the entire

sum 60.

Here we know neither the difference nor the number of

terms ; but we know that the first and the last term Avould

enable us to express the sum of the progression, provided

only the number of terms were given. We shall therefore

suppose this number to be x^ and express the sum of the
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progression by -g-. We know also, that this sum is 60 ;

so that -TT- = 60 ; or 44: = 4, and a; = 8.

Now, since the number of terms is 8, if we suppose the

difference to be ;:;, we have only to seek for the eighth term
upon this supposition, and to make it equal to lO. Tiie

second term is 5 + z, the third is 5 + 2z, and the eighth is

5 + 72 ; so that

5 + 7^ = 10
7z= 5

and s = |.

The difference of the progression, therefore, is ^, and the

number of terms is 8 ; consequently, the progression is12 3 4 5 6 7 8

5 + 5I- + 61 + 7i + 71- + 8^- + 9} + 10,

the sum of which is 60.

597. Question 14. To find such a number, that if 1 be
subtracted from its double, and the remainder be doubled,
from which if 2 be subtracted, and the remainder divided by
4, the number resulting from these operations shall be 1 less

than the number sought.

Suppose this number to be x-, the double is 2^; sub-

tracting 1, there remains 2jr — 1 ; doubling this, we have
4a; — 2 ; subtracting 2, there remains 4a; — 4 ; dividing by
4, we have x — \ •, and this must be 1 less than x ; so

that

X — \ =^ X — 1.

But this is what is called an identical equation ; and
shews that x is indeterminate ; or that any number Avhatever

may be substituted for it.

598. Question 15. I bought some ells of cloth at the

rate of 7 crowns for 5 ells, which I sold again at the rate of

11 crowns for 7 ells, and I gained 100 crowns by the trans-

action. How much cloth was there ?

Supposing the number of ells to be a:, we must first see

how much the cloth cost ; which is found by the following

proportion

:

As 5 : a: : : 7 : -^ the price of the ells.

This being the expenditure ; let us now see the receipt

:

in order to which, we must make the following proportion

:
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E. C. E.

As 7 : 11 : : a: : y x crowns

;

and this receipt ought to exceed the expenditure by 100
crowns. We have, therefore, this equation:

y.r = 2^ -}- 100.

Subtracting |.r, there remains -^x = 100 ; therefore Qx =
3500, and x = 583i-.

There were, therefore, 583^ ells bought for 816f crowns,
and sold again for 916|- crowns; by which means the profit

was 100 crowns.

599. Question 16. A person buys 12 pieces of cloth for

140/. ; of which two are white, three are black, and seven
are blue : also, a piece of the black cloth costs two pounds
more than a piece of the white, and a piece of the blue cloth

costs three pounds more than a piece of the black. Required
the price of each kind.

Let the price of a white piece be x pounds ; then the two
pieces of this kind will cost S.x ; also, a black piece costing
X + 2, the three pieces of this color will cost Sx + 6; and
lastly, as a blue piece costs x + 5, the seven blue pieces will

cost 7^ -|- 35 : so that the twelve pieces amount in all to

12x -f 41.

Now, the known price of these twelve pieces is 140
pounds; we have, therefore, l^x -j- 41 = 140, and 12x =
99; wherefore x = 8|. So that

A piece of white cloth costs 8^.
A piece of black cloth costs 1 0^1.

A piece of blue cloth costs 13^1.

600. Question 17. A man having bought some nutmegs,
says that three ofthem cost as much more than one penny, as

four cost him more than two pence halfpenny. Required
the price of the nutmegs ?

Let X be the excess of the price of three nuts above one
penny, or four farthings. Now, if three nutmegs cost .r + 4
farthings, four will cost, by the condition of the question,

X -j- 10 farthings ; but the price of three nutmegs gives that

of four in another way, namely, by the Rule of Three,
Thus,

., ... 4^+16
o

So that —^ = X + 10; or, 4a' -f 16 = 3x + 30;

therefore x + 16 = 30, and x = 14.
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Three nutmegs, therelbre, cost 4{fZ., and four cost (id. :

wherefore each costs l^d.

601. Question 18. A certain person has two silver cups,

and only one cover for both. The first cup Aveighs 12'

ounces ; and if the cover be put on it, it weighs twice as

much as the other cup: but when the other cup has the

cover, it weighs three times as much as the first. Required
the weight of the second cup, and that of the cover.

Suppose the weight of the cover to be x ounces; then the

first cup being covered it will weigh x -f- 12; and this weight
being double that of the second, the second cup must weigh
i.r + 6 ; and, with the cover, it will weigh x 4- i-a; -j- 6,

\x -\- 6; which weight ought to be the triple of 12; that is,

three times the weight of the first cup. We shall therefore

have the equation | j: -j- 6 = 36, or |j: rr 30 ; so that ^ =
10 and X = 20.

The cover, therefore, weighs 20 ounces, and the second

cup weighs 16 ounces.

602. Question 19. A banker has two kinds of change:
there must be a pieces of the first to make a crown ; and h

pieces of the second to make the same. Now, a person

wishes to have c pieces for a crown. How many pieces of

each kind must the banker give him.?

Suppose the banker gives x pieces of the first kind ; it is

evident that he will give c — x pieces of the other kind

;

but the X pieces of the first are worth — crown, by the pro-

X
portion a : x : : 1 :

—
; and the c — x pieces of the second

kind arc worth —j— crown, because we have b : c — x :: \ :

b

C—X X c—x
—J—. 00 that, 1 ^— = 1 ;

o a b

bx
or h c — cC n: o ; ov bx + ac — ax —- ab:

a

or, rather bx — ax zz ab — ac;

, ,
ab — ac aib— c)

whence we have x = -^ , or .r = —^
;b—a b—a

consequently, c — cc, the pieces of the second kind, must be

be— (lb b{c — a)

b—a b—a
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The banker must therefore give -~ ^ pieces of the first

1 .
f J b{c— a) .

kind, and —j pieces of the second kind.

Remark. These two numbers are easily found by the
Rule of Three, when it is required to apply the results

which we have obtained. Thus, to find the first we say,

a{b—c)
— a : a :: — c : —, ; and the second number is

o — a

found thus ; b — a : b : : c — a : -\ .

o —a
It ought to be observed also, that a is less than b, and that

c is less than b ; but at the same time greater than a, as the
nature of the thing requires.

603. Question 20. A banker has two kinds of change

;

10 pieces of one make a crown, and 20 pieces of the other
make a crown ; and a person wishes to change a crown into

17 pieces of money : how many of each sort must he have ?

We have here a = 10, b = 20, and c = 17, which fur-

nishes the following proportions

:

First, 10 : 10 : : 3 : 3, so that the number of pieces of the
first kind is 3.

Secondly, 10 : 20 : : 7 : 14, and the number of the second
kind is 14.

604. Question 21. A father leaves at his death several

children, Avho share his property in the following maimer

:

namely, the first receives a hundred pounds, and the tenth

part of the remainder ; the second receives two hundred
pounds, and the tenth part of the remainder; the third

takes three hundred pounds, and the tenth part of what
remains; and the fourth takes four hundred pounds, and
the tenth part of what then remains ; and so on. And it is

found that the property has thus been divided equally

among all the children. Required how much it was, how
many children there were, and how much each received.'*

This question is rather of a singular nature, and therefore

deserves particular attention. In order to resolve it more
easily, we shall suppose the whole fortune to be ~ pounds

;

and since all the children receive the same sum, let the share of

each be .r, by which means the number of children will be ex-

z
pressed by — . Now, this being laid down, we may proceed

to the solution of the question, as follows

:
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Sum, or

properly to

be divided.

:-2x

:—3x

s— 4a-

z-5x

Portion of each. Diflercnccs.

-100
10

-a:-200
100-

x-100
10

z—2x—?,0d X
100

10
-100

=0

10
=0

10
3:c— 400! a-- 100

'lOO r^—=0

X = 600 +

10

-1X-.500

To

--5a; -6001

llOO-

10

X— 100

10

10

and so on.

=0

We have inserted, in the last column, the differences

which v/e obtain by subtracting each portion from that which
follows ; but all the portions being equal, each of the dif-

ferences must be = 0. As it happens also, that all these

differences are expressed exactly alike, it will be sufficient to

make one of them equal to nothing, and we shall have the

a:- 100
1 . , • ,

equation 100 ry—• = 0. Here, multiplymg by 10, we

have 1000 - x - 100 ^ 0, or 900 — cc = 0; and, conse-

quently, X — 900.

We know now, therefore, that the share of each child was

900 ; so that taking any one of the equations of the third

column, the first, for example, it becomes, by substituting

the value of a-, 900 = 100 -j-
:^-100

atuly obtain the value of

9000 = 1000 -:- z

10

for we have

100, or 9000 = 900

whence we innnedi-

therefore :; = 8100 ; and consequently — = 9.

So that the number of children was 9; the fortune left

by the father was 8100 pounds ; and the share of each child

was 900 pounds.

QUESTIONS FOR PRACTICE.

1. To find a number, to which if there be added a half, a

third, and a fourth of itself, the sum will be 50. Ans. 24.
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2. A person being asked what his age was, rephed that

-1 of his age multiplied by ~ of his age gives a product

equal to his age. What was his age ? Ans. 16.

3. The sum of 660/. was raised for a particular purpose

by four persons. A, B, C, and D ; B advanced twice as

much as A ; C as much as A and B together ; and D as

much as B and C. What did each contribute ?

Ans. 60/., UOL, ISO/., and 300/.

4. To find that number whose - part exceeds its i part

by 12. Ans. 144.

5. What sum of money is that whose ^ part, i part, and
i part, added together, shall amount to 94 pounds?

Ans. 120/.

6. In a mixture of copper, tin, and lead, one half of the

whole —16/6. was copper; one-tliird of the whole — 12/6.

tin; and one-fourth of the whole -[-4/6. lead : what quantity

of each was there in the composition ?

Ans. 128/6. of copper, 84/6. of tin, and 76//^. of lead.

7. A bill of 120/. was paid in guineas and moidores, and

the number of pieces of both sorts were just 100; to find

how many there w^ere of each. Ans. 50.

8. To find two numbers in the pi'oportion of 2 to 1, so

that if 4 be added to each, the two sums shall be in the pro-

portion of 3 to 2, Ans. 4 and 8.

9. A trader allows 100/. per annum for the expenses of

his family, and yearly augments that part of his stock which

is not so expended, by a third part of it ; at the end of three

years, his original stock was doubled : what had he at first ?

Ans. 1480/.

10. A fish was caught whose tail weighed 9/6. His liead

weighed as much as his tail and \ his body ; and his body

w eighed as much as his head and tail : what did the whole

fish weigh ? Ans. 72/6.

11. One has a lease for 99 years; and being asked how
much of it was already expired, answered, that two-thirds of

the time past was equal to four-fifths of the time to come

:

required the time past. Ans. 54 years.

12. It is required to divide the number 48 into two such

parts, that the one part may be three times as much above

20, as the other wants of 20. Ans. 32 and 16.

13. One rents 25 acres of land at 7 pounds 12 shillings

per annum ; this land consisting of two sorts, he rents the

better sort at 8 shillings per acre, and the worse at 5 : re-

quired the number of acres of the better sort.

Ans. 9 of the better.

14. A certain cistern, which would be filled in 12 minutes
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by two pipes running into it, would be filled in SO minutes

by one alone. Required in what time it would be filled by
the other alone. Ans. 30 minutes.

15. Required two numbers, whose sum may be s, and

, . . , . as ^ bs
their proportion as a to u. Ans. ——= .and—r-,

^ ^
a-\-b a-\-b

16. A privateer, running at. the rate of 10 miles an hour,

discovers a ship 18 miles oft' making way at the rate of 8
miles an hour: it is demanded how many miles the ship

can run before she will be overtaken ? Ans. 72.

17. A gentleman distributing money among some poor
people, found that he wanted lO*'. to be able to give 5s. to

each ; therefore he gives 4a*. only, and finds that he has 5s.

left : required the number of shillings and of poor people.

Ans. 15 poor, and 65 shillings.

18. There are two numbers whose sum is the 6th part of

their product, and the greater is to the less as 3 to 2. Re-
quired those numbers. Ans. 15 and 10.

N. B. This question may be solved by means of one un-
known letter.

19. To find three numbers, so that the first, with half the

other two, the second with one-third of the other two, and
the third with -one fourth of the other two, may be equal to

34. Ans. 26, 22, and 10.

20. To find a number consisting of three places, whose
digits are in arithmetical progression : if this number be di-

vided by the sum of its digits, the quotients will be 48 ; and
if from the number 198 be subtracted, the digits will be in-

verted. Afis. 432.

21. To find three numbers, so that {- the first, ^ of the

second, and ^ of the third, shall be equal to 62 : i- of the

first, ^ of the second, and i of the third, equal to 47 ; and
1. of the first, J- of the second, and i of the third, equal to

38. Jw*. 24, 60, 120.

22. If A and B, together, can perform a piece of work in

8 days ; A and C together in 9 days ; and B and C in 10
days ; how many days will it take each person, alone, to per-

form the same work ? Ans. 141-4, 17|4, 23/^-.

23. What is that fraction which will become equal to y, if

an unit be added to the numerator ; but on the contrary, if

an unit be added to the denominator, it will be equal to i ?

Ans. -jt..

24. The dimensions of a certain rectangular floor are

such, that if it had been 2 feet broader, and 3 feet longer, it

would have been 64 square feet larger ; but if it had been 3
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feet broacicr and 2 feet longer, it v.ould then have been GS

square feet larger : required the length and breadtli of the

floor. Ans. Length 14 feet, and breadth 10 feet.

25. A hare is 50 leaps before a greyhound, and takes

4 leaps to the greyhound's 3 ; but two of the greyhound's

leaps are as mucli as three of the hare's : how many leaps

must the greyhound take to catch the hare ? Ans. 300.

CHAP. IV

Of the Resolution qftxco or more Equations ofthe First

Degree.

605. It frequently happens that we are obliged to inti-o-

duce into algebraic calculations two or more unknown quan-

tities, represented by the letters a-, ?/, z : and if the question

is determinate, we arc brought to the same number of equa-

tions as there are luiknown quantities; from which it is then

required to deduce those quantities. As we consider, at

present, those equations only, which contain no powers of an

unknown quantity higher than the first, and no products of

two or more unknown quantities, it is evident that all those

equations have the form

az + bi/ + ex = d.

606. Beginning therefore with two equations, we shall

endeavour to find from them the value of x and y : and, in

order that we may consider this case in a general manner, let

the two equations be,

ax + by — c ; and^r + gy = h ;

in which, a, h, c, and_/^ g^ //, are known numbers. It is

required, therefore, to obtain, from these two equations, the

two unknown quantities x and y.

607. The most natural method of proceeding will readily

present itself to the mind ; which is, to determine, from botli

equations, the value of one of the unknown quantities, as for

example or, and to consider the equality of those two values

;

for then we shall have an equation, in which the unknown
quantity 3/ will be found by itself, and may be determined

by the rules already given. Then, knowing ^/, we shall have

only to substitute its value in one of the quantities that

express x.
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608. According to this rule, wo obtain from the first

equation, x — -^ and from the second, .r = ^-=- :

then putting these vahies equal to each other, we have this

new equation

:

« / '

muitiplymg by a, the product \%c — by = ~^
; and

then hyf, the product 'v=> fc—fhy= ah— ngy% adding OjO-^, we
have^- —fhy 4- agy = ah ; subtracting^??, gives —fby-\-
agy = ah ~fc\ or {ag — hf)y = ah — fc ; lastly, dividing

hy ag — bff we have

_ ah—Jc

In order now to substitute this value of y in one of the

two values which we have found of x^ as in the first, where

c —" by
X = ^ , we shall first have

a

abh— bcf
, ,

abh — bcf- by — f- ; whence c — by = c --;^-,

acg — bcf—abh-\-bcf acg-\-abh
= —

^

rp;
— rp ; and dividnig by «,

c—by cg—bh
~ a ~ ag—bf
609. Question 1. To illustrate this method by examples,

let it be proposed to find two numbers, whose sum may be

15, and difference 7.

Let us call the greater number x, and the less 3/ : then we
shall have

X + y = 15, and x ^ y —'^,

The first equation gives

X = 15 — y
and the second, x = 7 + 3/

;

whence results this equation, 15 — «/ = 7 + 2/- So that

15 = 7 -{- %/ ; %/ == 8, and 7/ = 4s by which means we
find X = 11.

So that the less number is 4, and the greater is 11.

610. Question 2. We may also generalise the preceding
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question, by requiring two numbers, whose sum may be a,

and the difference b.

Let the greater of the two numbers be expressed by a-, and
the less by z/ ; we shall then have x -\- tj = n, and x~i/= b.

Here the first equation gives x — a — y^ and the second

X = h -\- y.

Therefore, a — yz=.h-\-y\ a = b -\- 9,y; 2y = a — i

;

lastly, y = —q-) and, consequently,

a— b a-\-b
x = a-y=a- -^ = -^.

. a-\-b
Thus, we nnd the greater number, or .r, is ^ , and

the less, or y, is ^ ; or, which comes to the same, x =

i a + 46, and y zz {a — ^b. Hence we derive the following

theorem : When the sum of any two numbers is «, and their

difference is b, the greater of the two numbers will be equal

to half the sum plus half the difference ; and the less of the

two numbers will be equal to half the sum minus half the

difference.

611. We may resolve the same question in the following

manner

:

Since the two equations are,

X + y = a, and
X — y = b;

if we add the one to the other, we have ^x — a -\- b.

Therefore x = —^-

Lastly, subtracting the same equations from each other,

we have ky = a — b; and therefore

a—b

612. Question 3. A mule and an ass were carrying

burdens amounting to several hundred weight. The ass

complained of his, and said to the mule, I need only one

hundred weight of your load, to make mine twice as heavy

as yours; to which the mule answered, But if you give

me a hundred weight of yours, I shall be loaded three times

as much you will be. How many hundred weight did each

carrv .''



CHAP. IV. OF ALCEBRA. 209

Suppose the mule's load to be x hundred weight, and that

of the ass to be ?/ hundred weight. If the mule gives one
hundred weight to the ass, the one will have?/ + 1, and there

will remain for the odier x — I; and since, in this case,

the ass is loaded twice as much as the mule, we have v 4-

Farther, if the ass gives a hundred weight to the mule,
the latter has ^ + 1, and the ass retains y — 1 ; but the
burden of the former being now three times that of the
latter, we have jr -|- 1 = % — 3.

Consequently our two equations will be,

2/ + 1 = 2^7 — 2, and /r + 1 = 3j/ - 3.

From the first, x = -q~) ^^^ the second gives ^ = % -

4; whence we have the new equation ^^^^ = 3?/— 4, which

gives 1/ = -5-, : this also determines the value of x, which
becomes 2|^.

The mule therefore carried ^ hundred weight, and the

ass 2i hundred weight.

613. When there are three unknown numbers, and as

many equations ; as, for example,

X + 1/ - z = 8,

X + z—y = 9,

y \- z— X = \0\

we begin, as before, by deducing a value of x from each,

and have, from the

1st x-=S-\-z— y\
^A X = 9-f«/ - 2;;

Mx =y-\-z — \0.

Comparing the first of these values with the second,

and after that with the third, we have the following

equations

:

S-]^z-y = ^+y-z,

Now, the first gives 9.z — 9,1/ = 1, and, by the second,

%/ = 1 8, or ?/ = 9 ; if therefore we substitute this value of

^ in 2:3 — 2j/ = 1, we have 2^ — 18 == 1, or 9z = 19, so

that s r= 9^ ; it remains, therefore, only to determine Xy

which is easily found = 8i.

Here it happens, that the letter z vanishes in the last

equation, and that the value of y is found immediately

;

but if this had not been the case, we should have had
p



210 ELEMENTS SECT. IV.

two equations between z and ?/, to be I'esolved by the pre-

ceding rule.

614. Suppose we had found the three following equa-

tions :

3x -{- 5?j — 4<z = 25,

5:v - 2j/ 4- 3z = 46,

3y + 5z - X = 62.

If we deduce from each the value of a% we shall have

from the

25-52/4-4;^
1st X =

3

2a .r = ~ ,

5

Mx = Si/ + 5z - 62.

Comparing these three values together, and iirst the third

with the first,

we liave 3?/ + 5s — 62 = ^ ;

multiplying bv 3, gives 9j/ --}- ISs — 186 = 25 — 5j/ + 4^

;

so that 9?/ + 15:3 = 211 — 5y -\- ^z,

and 14?/'+ ll,-; = 211.

Comparing also tlie third with the second,

^. a . or. 46 + 23/-3,^
we have 6y ^- bz — o2 = ^ ,

or 46 + 2y - 3;^ = 15j/ + 25^ - 310,
which, when reduced, becomes 356 = 13y -|~ ^^^•

"We shall now deduce, from these two new equations, the

value of 3/

:

1st 143/ + lis = 211 ; or 14j/ := 211 - lis,

211-lls
and ;/ = r-r .^ 14

2d 13j/ + 28^ = 356 ; or 13j/ = 356 - 28s,

356 -28s
y ^ 13

•

These two values form the new equation

2II-II2 356-28;2—24— = ^— , whence,

2743 - 143s = 4984 - 392s, or 2492 = 2241, and s = 9.

This value being substituted in one of the two equations

of y and z, we find ?/ = 8; and, lastly, a similar sub-

stitution in one of the three values of .r, will give x = 7.
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615. If there were more llian tliree unknown quantities to

determine, and as many equations to resolve, we should pro-

ceed in the same manner ; but the calculations would often

prove very tedious-

It is proper, therefore, to remark, that, in each particular

case, means may always be discovered of greatly facilitating

the solution ; which consist in introducing into the cal-

culation, beside the principal unknown quantities, a new
unknown quantity arbitrarily assumed, such as, for example,

the sum of all the rest ; and when a person is a httle ac-

customed to such calculations, he easily perceives what is

most proper to be done *. The following examples may
serve to facilitate the application of these artifices.

616. Qiiestion 4. Three persons, a, b, and c, play to-

gether ; and, in the first game, a loses to each of the other

two, as much money as each of them has. In the next

game, b loses to each of the other two, as much money as

they then had. Lastly, in the third game, a and b gain

each, from c, as much money as they had before. On
leaving off, they find that each has an equal sum^ namely,

24 guineas. Required, with how much money each sat

down to play .''

Suppose that the stake of the first person was cc, that of

the second j/, and that of the third 2; : also, let us make the

sum of all the stakes, or x + y -\- z, — s. Now, a losing in

the first game as much money as the other two have, he

loses s — X (for he himself having had r, the two others

must have had s — x) ; therefore there will remain to him
9>x ~ s\ also B will have %, and c will have Ss.

So that, after the first game, each will have as follows

:

A = 2x — ^'j b = 2?/, and c = Ss.

In the second game, b, who has now %, loses as much
money as the other two have, that is to say, s ~ Sj/ ; so that

he has left 4y — s. With regard to the other two, they

will each have double what they had ; so that after the

second game, the three persons have as follows : A == 4cr —
2.y, b = 4?/ — 5, and c ^ 4^.

In the third game, c, v/ho has now 4^, is the loser ; he

loses to A, 4r — 2^, and to b, 4^/ — 5 ; consequently, after

this game, they will have :

* M. Cramer has given, at the q.vA of his Introduction to the

Analysis of Curve Lines, a very excellent rule for determining

immediately, and without ths necessity of passing through the

ordinary operations, the value of the unknown quantities of such

equations, to any number. F. T.

p2
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A = 8.r — 45, B = 8j/ — 2^, and c = 8z — s.

Now, each having at the end of this game 24 guineas, we

have three equations, the first of which immediately gives x,

the second ?/, and the third z; farther, s is known to be 72,

since the three persons have in all 72 guineas at the end of

the last o-ame ; but it is not necessary to attend to this at

first ; smce we have,

1st 8jr - 4^ = 24, or 8^ = 24 -\- 4*, or x = S + \s;

2d 8j/ -- 25 = 24, or 8?/ = 24 + 2.^ or 3/ = S + is;

3d 8;^ — * = 24, or & = 24 + s,orz=Q+^s;
and adding these three values, we have

So that, since ^ -\- y -\- z = s, we have 5 = 9 + t^ ? and,

consequently, -^s = 9, and 5 = 72.

If we now substitute this value of* in the expressions

which we have found for .r, ?/, and r, we shall find that,

before they began to play, a had 39 guineas, b 21, and

c 12.

This solution shews, that, by means of an expression for

the sum of the three unknown quantities, we may overcome

the difficulties which occur in the ordinary method.

617. Although the preceding question appears difllcult at

first, it may be resolved even without algebra, by proceeding

inversely. For since the players, when' they left off, had

each 24 guineas, and, in the third game, a and b doubled

their money, they must have had before that last game, as

follows

:

A = 12, B = 12, and c = 48.

In the second game, a and c doubled their money ; so

that before that game they had

;

A = 6, B =: 42, and c = 24.

Lastly, in the first game, a and c gained each as much
money as they began with ; so that at first the three persons

had:
A = 39, B = 21, c =r 12.

The same result as we obtained by the former solution.

618. Question 5. Two persons owe conjointly 29 pis-

toles ; they have both money, but neither of them enough

to enable him, singly, to discharge this common debt: the

first debtor says therefore to the second, If you give me 4- of

your money, I can immediately pay the debt; and the

second answers, that he also could discharge the debt, if the

other would give him 1 of his money. Required, how many
pistoles each hr.d ?
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Suppose that the first has x pistoles, and that the second

has y pistoles.

Then we shall first have, x-\-\y z=.^^%

and also, y -f \x — 29.

The first equation gives x = 2d — iy,

116—iy
and the second x =

so that 29 — li/
=

3

116-4?/

From which equation, we obtain?/ = 14^ ;

Therefore x = 194-

Hence the first person had 194- pistoles, and the second

had 14|- pistoles.

619. Question 6. Three brothers bought a vineyard for

a hundred guineas. The youngest says, that he could pay
for it alone, if the second gave him half the money which he
had ; the second says, that if the eldest would give him only
the third of his money, he could pay for the vineyard singly ;

lastly, the eldest asks only a fourth part of the money of
the youngest, to pay for the vineyard himself. How much
money had each ?

Suppose the first had x guineas ; the second, y guineas

;

the third, z guineas ; we shall then have the three following

equations:

x-^±y = 100

;

y Ari-z- 100-

z-\- ix= 100

;

two of which only give the value of x, namely,

1st X = 100 — ly,

3d X = 400 — 4z.

So that we have the equation,

100 — iy = 400 — 42;, or 4s — {-y = 800, which must
be combined with the second, in order to determine y and
z. Now, the second equation was, y -\- -Lz = 100 : we
therefore deduce from it y = 100 — ~z ; and the equation

found last being 4!Z — {y — SOO, we have i/ — 8z — 600.

The final equation, therefore, becomes

100 - i-2 = 82 — 600; so that 8^2; = 700, or %?z =
TOO, and z rr 84. Consequently,

j/ = 100 - 28 = 72, and x = 64.

The youngest therefore had 64 guineas, the second had 72
guineas, and the eldest had 84 guineas.
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620. As, in this example, each equation contains only two
unknown quantities, we may obtain the solution requii-ed in

an easier way.

The first equation gives y — 200 — 2x, so that j/ is de-

termined by X ; and if we substitute this value in the second

equation, we have

200 — 2^ -f 4z = 100 ; therefore i-2 = 2^ - 100,

and z — 6x — SOO.

So that z is also determined by a:; and if we introduce

this value into the third equation, we obtain Go: — 1500 -f

^x =. 100, in which x stands alone, and which, when reduced

to 25x — 1600 = 0, gives x = 64. Consequently,

3/ = 200 - 128 = 72, and z = 384 - 300 = 84.

621. We may follow the same method, when we have a

greater number of equations. Suppose, for example, that

we have in general;

X ^ , V
1. w -i rr w, ^. X -\- -^ — n.

a

^ z
^

u
3. i/ + — = 11, 4. 2 + -^ = «

;

or, destroying the fractions, these equations become,

1. au -i- X — an, 2. bx + j/ = hn,

3. cy -\- z —, en, 4. dz -\- u ^^ dn.

Here, the first gives immediately x -rz an — an, and, this

value being substituted in the second, we have ahn — abii

-|- y := bn; so that y =: bn — ahn ~\- abu; and the sub-

stitution of this value, in the third equation, gives ben —
abcn -{- abcu -|- z = en ; therefore

z :=i en — ben -\- abcn — abeu.

Substituting this in the fourth equation, we liave

cdn — bcdn -\- abcdn — abcdti -\-u zn dn.

So that dn — cdn + bcdn — abcdn =: ubcdu — w,

or {abed — 1) .u rr abcdn — bcdn -J- cdn — d7i ; whence we
have

abcdn —bcdn~\ cdn— dn _ n . (abed — bed-{- cd— d)
~~

abcd—1 abed—

I

And, consequently, by substituting this value of u in the

equation, x = an — au, we have

abcdn— acdn-\-adn— an n . {abed— acd-\-ad— a)
~

abed—

1

"~
abed—

1
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abcdn—abdn-\-abn— bji n . {abcd—abd-^ab—b)
•^
~

abcd— 1
~~

abed—

I

abcdn— abcn-\-bcn — cn n . {abed — abc-\-bc— c)
~

abed—

1

cibcd—1

abcdn — bedn -r cdti — dn _ n . [abed — bed-\-ed— d)~
abed—

I

abcd—1

622, Question 7. A captain lias three companies, one of

Swiss, another of Swabians, and a third of Saxons. He
wishes to storm with part of these troops, and he promises a

reward of 901 crowns, on the following condition; namely,

that each soldier of the company, which assaults, shall re-

ceive 1 crown, and that the rest of the money shall be equally

distributed among the two other companies. Now, it is

found, that if the Swiss make the assault, each soldier of the

other companies will receive half-a-crown ; that, if the Swa-
bians assault, each of the others will receive i of a crown

;

and, lastly, if the Saxons make the assault, each of the others

will receive ^ of a crown. Hequired the number of men in

each company ?

Let us suppose the number of Swiss to be x, that of

Swabians j/, and that of Saxons z. And let us also make
^ -{-V + z = s, because it is easy to see, tliat, by this, we
abridfge the calculation considerably. If, therefore, the Swiss

make the assault, their number being x, that of the other

will be 5 — x: now, the former receive 1 crown, and the

latter half-a-crown; so that we shall have,

OC + i-,9 - ^X = 901.

In the same manner, if the Swabians make the assault,

we have

3/ + T-^ - Ti/ = 901.

And lastly, if the Saxons make the assault, we have,

z + .ls — ±z=^ 901.

Each of these three equations will enable us to detcrniine

one of the unknown quantities, x, y, and z ;

For the first gives x = 1802 — *,

the second 2j/ = 2703 — *,

the third Qz = 3604 — s.

And if we now take the values of 6x, 6j/, and 6z, and
write those values one above the other, we shall have

6a^ = 10812 - 6s,

Qy = 8109 -3^,
6z = 7208 - 2s,

and, by addition, 6* = 26129 - 11^; or 17^ = 26129;
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SO that 5 = 1537; which is the whole number of soldiers.

By this means we find,

X = 1802 - 1537 = 265

;

2y = 2703 - 1537 = 1166, or^ = 583;
3x = 3604 - 1537 = 2067, or z = 689-

The company of Swiss therefore has 265 men ; that of
Swabians 583 ; and that of Saxons 689.

CHAP. V.

Ofthe Resolution of Pure Quadratic Equations.

623. An equation is said to be of the second degree, when
it contains the square, or the second power, of the unknown
quantity, without any of its higher powers ; and an equa-

tion, containing likewise the third power of the unknown
quantity, belongs to cubic equations, and its resolution re-

quires particular rules.

624. There are, therefore, only three kinds of terms in

an equation of the second degree

:

1. The terms in which the unknown quantity is not

found at all, or which is composed only of known numbers.
2. The terms in which we find only the first power of the

unknown quantity.

3. The terms which contain the square, or the second

power, of the unknown quantity.

So that X representing an unknown quantity, and the

letters a, b, c, d, &c. the known quantities, the terms of

the first kind will have the form a, the terms of the second

kind will have the form bcc, and the terms of the third kind

will have the form ex".

625. We have already seen, how two or more terms of

the same kind may be united together, and considered as a
single term.

For example, we may consider the formula

ax^ — bx"^ + cx^' as a single term, representing it thus,

{a — b -\- c)x^ ; since, in fact, {a — b + c) is a known
quantity.

And also, when such terms are found on both sides of the

eign = , we have seen how they may be brought to one side.
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and then reduced to a single term. Let us take, for ex-

ample, the equation,

2x- - 3x + 4) = 5x" —8^+11 ;,

we first subtract Qx", and there remains

.
- 3^ -i- 4 = 3x" — 8:c + 11

;

^

then adding Sx, we obtain,

5x + 4! = Sx^ + 11

;

lastly, subtracting 11, there remains 3^^ = 5x — 7-

626. We may also bring all the terms to one side of the

sign = , so as to leave zero, or 0, on the other ; but it must

be remembered, that when terms are transposed from one

side to the other, their signs must be changed.

Thus, the above equation will assume this form, Sx^ —
5^ -f 7 = ; and, for this reason also, the following general

formula represents all equations of the second degree

;

ax°' ±bx ± c = 0;

in which the sign + is read plus or minus, and indicates,

that such terms as it stands before may be sometimes

positive, and sometimes negative.

627. Whatever therefore be the original form of a qua-

dratic equation, it may always be reduced to this formula of

three terms. If we have, for example, the equation

ax-\-b ex^f
cx + d gx + h

we may, first, destroy the fractions ; multiplying, for this

purpose, by ex -j- d, which gives

cex" + cfx+ edx+fd . ,
t i u

ax -{ h — ——. =^, then by gx -f h, we have
gx+fi

agx" -}- bgx -f- ahx -f bh = cex" -\- cfx -\~ edx -\-fd,

which is an equation of the second degree, reducible to

the three following terms, which we shall transpose by ar-

rangino; them in the usual manner

:

We may exhibit this equation also in the follo^ving form,

which is still more clear

:

{ag — ce)x'- + (bg + ah — cf— ed)x + bk —fd = 0.

628. Equations of the second degree, in which all the

three kinds of terms are found, are called complete, and the

resolution of them is attended with greater difficulties ; for
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which reason we shall first consider those, in which one of
the terms is wantinjr.

Now, if the term <»' were not found in the equation, it

would not be a quadratic, but would belong to those of
which we have already treated ; and if the term, which con-
tains only known numbers, were wanting, the equation
would have this form, ax"^ ± bx = 0, which being divisible
by X, may be reduced to a.v ± b = 0, which is likewise a
simple equation, and belongs not to the present class.

629. But \yhen the middle term, which contains the first

power of X, is wanting^ the equation assumes this form,
a^"~ ± c = 0, or ax' = j^ c ; as the sign of c may be either
positive, or negative.

We shall call such an equation apzire equation of the second
degree, and the resolution of it is attended with no difficulty;

for we have only to divide by a, which gives x- = — ; and

c

a
which means the equation is resolved.

630. But there are three cases to be considered here. In

the first, when — is a square number (of which we can there-

fore really assign the root) we obtain for the value of x a
rational number, which maybe either integral, or fractional.

For example, the equation x~ — 144, gives x = 12. And

taking the square root of both sides, we find x = ^/— ; by

X- = yV, gives X = I

The second case is, when — is not a square, in which case

we must therefore be contented with the sign y' . If, for
example, x' = 12, we have x =^12, the value of which
may be determined by approximation, as we have already
shewn.

c
The third case is that, in which — becomes a negative

a °

number : the value of x is then altogether impossible and
imaginary ; and this result proves that the question, which
leads to such an equation, is in itsell" impossible.

631. We shall also observe, before proceeding farther,

that whenever it is required to extract the square root of a
number, that root, as v;e have already remarked, has always
two values, the one positive and the other negative. Sup-
pose, for example, we have the equation x- = 49, the valae
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of X will be not only -}-7, but also — 7, which is expressed

by :c — ±: 7. So that all those questions admit of a double

answer ; but it will be easily perceived that in several cases,

as those which relate to a certain number of men, the ne-

gative value cannot exist.

632. In such equations, also, as ax'' = hx, where the

known quantity c is wanting, there may be two values of x,

though we find only one if we divide by x. In the equation

o)"^ — Sx, for example, in which it is required to assign such

a value of x^ that x^ may become equal to 3.r, this is done by
supposing X = S, a value which is found by dividing the

equation by x ; but, beside this value, there is also another,

which is eqiially satisfactory, namely, <2?
—

- ; for then

,r" = 0, and 3.;' = 0. Equations therefore of the second

degree, in general, admit of t\vo solutions, whilst simple

equations admit only of one.

We sliall now illustrate what we have said with regard to

pure equations of the second degree by some examples.

633. Qncsiion 1, Required a number, the half of which

multiplied by the third, may produce 24.

Let this number be x; then by the question ~x, mul-

tiplied by -i.t', must give 24 ; we shall tiierefore have the

equation ^^x- = 24.

Multiplying by 6, w'e have x' — 144 ; and the extraction

of the root gives x = ±. V2. We ])ut ± ; for if x — + 12,

we have 4^ = 6, and ~x ~ 4: now, the product of these

two numbers is 24 ; and if x == — 12, we have \x = — 6,

and yX — — 4, the product of which is likewise 24.

634. Question 2. Required a number such, that being-

increased by 5, and diminished by 5, the product of the sum
by the difference may be 96.

Let this number be x, then x -\- 5, multiplied by a; — 5,

must give 96 ; whence results the equation,

a^"--25 = 96.

Adding 25, we have x- = 121 ; and extracting the root,

we have a.- = 11. Thus x -|- 5 -— 16, also x — 5 = 6 ; and,

lastly, 6 X 16 = 98.

635. Question 3. Required a number such, that by
adding it to 10, and subtracting it from 10, the sum, mul-
tiplied by the difference, v/ill give 51.

Let X be this number; then lO+x, multiplied by 10— x,

must make 51, so that 100 — x^ =:= 51. Adding x-, and
subtracting 51, we have x" ~ 19, the square root of which

gives ,r — 7.

636. QjLiestiwi 4. Three persons, who had been playing,

leave off; the first, with as many times 1 crowns, as the

second has three crowns ; and tlie second, with as many
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times 17 crowns, as the third has 5 crowns. Farther, if we
multiply the money of the first by the money of the second,

and the money of the second by the money of the third,

and, lastly, the money of the third by that of the first, the

sum of these three products will be '3830-. How much
money has each ?

Suppose that the first player has x crowns; and since

he has as many times 7 crowns, as the second has 3 crowns,
we know that his money is to that of the second, in the ratio

of 7 : 3.

We shall therefore have 7 : S : : x : 1^, the money of the
second player.

Also, as the money of the second player is to that of the
third in the ratio of 17 : 5, we shall have 17 : 5 : : -fee : ^-^x,
the money of the third player.

Multiplying x, or the money of the first player, by |^, the
money of the second, we have the product |^" : then, Aj, the
money of the second, multiplied by the money of the third,

or by -Y—^, gives -^^x^ ; and, lastly, the money of the third,

or tW-^j multiplied by x, or the money of the first, gives

tVo^^- Now, the sum of these three products is -ix-
-f-

tVj^^ tI" -iVir^" ; and reducing these fractions to the same
denominator, we find their sum ^-j^", which must be equal
to the number 3830f.
We have therefore, l^fa;' = 3830|:.

So that VVV'j;^ = 11492, and 1521x^ being equal to

9572836, dividing by 1521, we have x^ = ^ VAV ^
; and

taking its root, we find x = ^y|-*. This fraction is reducible
to lower terms, if we divide by 13; so that x — ^i.^ =
79y; and hence we conclude, that ^<r =: 34, and JL^— 10.

The first player therefore has 79^ crowns, the second has
34 crowns, and the third 10 crowns.

RemarJi. This calculation may be performed in an easier

manner ; namely, by taking the factors of the numbers which
present themselves, and attending chiefly to the squares of
those factors.

It is evident, that 507 = 3 x 169, and that 169 is the
square of 13; then, that 833 = 7 X 119, and 119 = 7 x

3x 169
17 : therefore :r^——x"" zz 3830|-, and if we multiply by 3,

9x 169
we have _ ^^—77- X* = 11492. Let us resolve this num-

17x49

ber also into its factors; and we readily perceive, that

the first is 4, that is to say, that 11492 = 4 x 2873;
farther, 2873 is divisible bv 17, so that 2873 = 17 x 169.
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Consequently, our equation will assume the following form,

9 X 1 69
TTz—TT'i'- = 4 X 17 X 169, which, divided by 169, is re-
17x49 J

>

9
duced to :r^—j^v^ = 4 X 17 ; multiplying also by 17 x 49,

and dividing by 9, we have x- = , in which all

the factors are squares; whence we have, without any

2x17x7
further calculation, the root x = rz ^1^ = 79y,

as before.

637. Qiiestlon 5. A company of merchants appoint a

factor at Archang-el. Each of them contributes for the

trade, which they have in view, ten times as many crowns

as there are partners ; and the profit of the factor is fixed at

twice as many crowns, pe?' cent, as there are partners. Also,

if te4o- part of his total gain be multiplied by 2^, it will give

the number of partners. That number is required.

Let it be j: ; and since, each partner has contributed lOx,

the whole capital is lOc^-^. Now, for every hundred crowns,

the foctor gains ^x, so that with the capital of IOj:'^ his profit

will be 1^'^ The -j4^ part of his gain is —-^r^ ; multiplying

by 2|, or by \?, we have ^§V% ^^ 2 ^T'^^ ^^^ this must

be equal to the number of partners, or x.

We have, therefore, the equation ^iyc^ = x, or ^rr^ =
225j; ; which appears, at first, to be of the third degree

;

but as we may divide by x, it is reduced to the quadratic

X- r: 225 ; whence x = 15.

So that there are fifteen partners, and each contributed 150

QUESTIONS FOR PRACTICE.

1. To find a number, to which 20 being added, and

from which 10 being subtracted, the square of the sum,

added to twice the square of the remainder, shall be 17475.

Am\ 75.

2. What two numbers are those, which are to one an-

other in the ratio of 3 to 5, and whose squares, added to-

gether, make 1666? Ans. 21 and 35.

3. The sum 2ff, and the sum of the squares 2Z>, of two

numbers being given ; to find the numbers.
Jns. a — V{b — a") and a + \/(6 - «^).

"
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4. To divide the number 100 into two such parts, that

the sum of their square roots may be 14. Ans. 64 and 36.

5. To find three such numbers, that the sum of the first

and second multiplied into the third, may be equal to 63

;

and the sum of tiie second and third, multiphed into the

first, may be equal to 28; also, that the sum of the first and
third, multiplied into the second, may be equal to 55.

A71S. 2, 5, 9.

6. Wliat two numbers are those, whose sum is to the

greater as 11 to 7 ; the difference of their squares being
132.? Ans. U and 8.

CHAP. \T.

OftJie Resolution o/'Mixt Equations oftlic Second Degree.

638. An equation of the second degree is said to be mixt^

or complete, when three terms are found in it, namely, that

which contains the square of the unknown quantity, as ax'\

that, in which the unknown quantity is found only in the

first power, as ho: ; and, lastly, th.e term which is composed
of only known quantities. And since v/e may unite two or

more terms of the same kind into one, and bring all the

terms to one side of the sign rr, the general form of a mixt
equation of the second degree will be

ax" + 6.r -f e n 0.

In this chapter, we shall shew how the value of x may be
derived from such equations : and it will be seen, that there

are two methods of obtaining it.

639. An equation of the kind that we are now considering

may be reduced, by division, to such a form, that the first

term may contain only the square, t-, of the unknown quan-
tity X. We shall leave the second term on the same side

v/ith .r, and transpose tlie knov/n term to the otlier side of

the sign =. By these means our equation will assume the

form of x"-
-^i
px = ±. q, in which p and q represent any

known numbers, positive or negative ; and the whole is at

present reduced to determining the true value of r. We shall

begin by remarking, that if x- + px were a real square, the

resolution would be attended with no difficulty, because

it would only be required to take the square root of both

sides.
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640. But it is evident that x'^ -4- px cannot be a square

;

since we have ah-eady seen, (Art. 307.) that if a root con-

sists of two terms, for example, x -\- n, its square always

contains three terms, namely, twice the product of the two

parts, beside the square of each part; that is to say, the

square of x -\- n is x^ + 9,nx -j- rf. Now, we have already

on one side x^ -{ px;, we may, therefore, consider x" as the

square of the first part of the root, and in this case -px must

represent twice the product of .r, the first part of the root,

by the second part : consequently, this second part must be

i-p, and in fact tlie square of x
-f-

i^p^ is found to be

x-'J^px^r-iP"-

641. Now, X' -{- px + i.p'^ being a real square, which has

for its root x + \p, if we resume our equation x" -f-
px r: q,

we have only to add ^p'^ to both sides, which gives us

XT ^ px -x-^p^ — q -V iP'i the first side being actually

a square, and the other containing only known quantities.

If, therefore, we take the square root of both sides, we

find X -]- ±p =: \/{^p'' + q); subtracting \p, we obtain

X zz— i-p -^-V i-^p''- -f- q) ; and, as every square root may be

taken either affirmatively or negatively, we shall have for

X two values expressed thus

;

642. This formula contains the rule by which all qua-

dratic equations may be resolved ; and it will be proper to

commit it to memory, that it may not be necessary, every

time, to repeat the whole operation which vve have gone

through. We may always arrange the equation in such a

manner, that the pure square x" may be found on one side,

and the above equation have the form x"^ = — px -\- q, where

we see immediately that *' = — 4P i v^lx/*" ~h (?)•

643. The general rule, therefore, which we deduce from

that, in order to resolve the equation a," = — px -\- <y, is

founded on this consideration ;

That the unknown quantity x is equal to half the co-

efficient, or multiplier of x on the other side of th.e equation,

plus or minus the square root of the square of this number,

and the known quantity which forms the third term of the

equation.

Thus, if we had the equation jv" = 6r -{- 7, we should

immediately say, thatjr = 3 ± s/(9 -f 7) = 3 ± 4, whence

we have these two values of r, namely, .r = 7, and .r =
— 1. In the same manner, the equation a'" = 10.r — 9,

would give .r = 5 ± ^/ (25 - 9) = 5 ± 4, that is to say,

the two values of a; are 9 and 1,

644. This rule will be still better understood, by distin-
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guishing the following cases: 1st, When p is an even num-
ber; 2d, Whenp is an odd number; and 3d, When jw is a
fractional number.

1st, Let p be an even number, and the equation such,

that X- — 2px + q; we shall, in this case, have

X =p ±^{p^ + q).

2d, Let p be an odd number, and the equation x^ =
px -\- g ; we shall here have x = ^p ±.^ (ip" + 9) '> ^^id

smce ~j)- + q = —7—, we may extract the square root 01

the denominator, and write

3d, Lastly, if p be a fraction, the equation may be re-

solved in the following manner. Let the equation be ax^ =
hx c

bx -f c. or ^-=— -f — , and we shall have, by the rule,

b ,. b- , c- ^^ b- c 6'+ 4ac , ^

*} = TT ± v/(t~:> -\ )• Now, -—:-{ = —^—— , the de-
2u ^ '4-a- a ' 4ia^ a 4a'' '

nominator of which is a square ; so that

X — .

2a

645. The other method of resolving mixt quadratic equa-
tions is, to transform them into pure equations ; which is

done by substitution : for example, in the equation x~ =
px + q, instead of the unknown quantity .r, we may write

another unknown quantity, ?/, such, that x = y -\- ^p\ by
which means, when we have determined y, we may imme-
diately find the value of x.

If we make this substitution of j/ -}- \p instead of x, we
have x'^zzy^ -\- py H- J-^^, and px z=. py -\- \p^ ; consequently,

our equation will become

which is first reduced, by subtracting py, to

y- -\- ^p' ~ip' + q;

and the^n, by subtracting ^p', to y"- rr ~p' -j- q. This is

a pure quadratic equation, which immediately gives

y =±V{i-p'' + q).

Now, since x = y -\- {p, we have

x = ip ±^/(i/?' + q),
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as we found it before. It only remains, therefore, to il-

lustrate this rule by some examples.

646. Question 1. There are two numbers; the one exceeds

the other by 6, and their product is 91 : what are those

numbers ?

If the less be x, the other will be j: + 6, and their pro-

duct x" -\- Qx = ^\. Subtracting Qx, there remains x' =
91 — 6^, and the rule gives

X = — 3 + v/(9 + 91) — — 3 + 10; so that x — 7, or

.r = _ 13.

The question therefore admits of two solutions ;

By the one, the less number ^ = 7, and the greater x +
6 = 13.

By the other, the less number x = — 13, and the greater

^ + 6 = - 7.

6i7. Question 2. To find a number such, that if 9 be

tiiken from its square, the remainder may be a number,
as much greater than 100, as the number itself is less

than 23.

Let the number sought be x. We know that x'' — 9 ex-

ceeds 100 by x"- — 109 : and since x is less than 23 by

23 — X, we have this equation

X- — 109 = 23 - X.

Therefore x" — — x -\- 132, and, by tlic rule,

^=-\± x/a+132)=-i±v'(^i^)=-i ± V- S«
that X := \\, or X = — V2.

Hence, when only a positive number is required, that

number will be 11, the square of which minus 9 is 112, and
consequently greater than 100 by 12, in the same manner
as 1 1 is less than 23 by 12.

(>48. Question 3. To find a number such, that if we
multiply its half by its third, and to the pi'oduct add half

the number required, the result will be 30.

Supposing the number to be a-, its half, multiplied by its

third, will give ^a--; so that ^.r" -f \x = 30; and multiply-

ing by 6, we have x" -f ScC = 180, or x~ — — 'iu -j- 180,
which gives x^- \ ± ,/(-|- -[- 180) = - A ± V-

Consequently, either x =: 12, or x =z — 15.

649- Question 4. To find two numbers, the one being

double the other, and such, diat if we add their sum to their

product, we may obtain 90.

Let one of the numbers be x, then the other will be 2.r;

their product also will be 2.c\ and if we add to this 3a:,

or their sum, the new sum ought to make 90. So that

2x" + 3x = 90 ; or 2a'^ :^ 90 - 3.r ; whence x'' = - |x -|-

45; and thus we obtain
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a'=-l±v/(A + 45)=:-A±y.
Consequently .r =. 6, or x =z — 7^.

650. Question 5. A horse-dealer bought a hoi'se for a

certain number of crowns, and sold it again for 119 crowns,

by which means his profit was as much per cent as the horse

cost him ; what was his first purchase ?

Suppose the horse cost x crowns ; then, as the dealer gains

X per cent, we have this proportion

:

As 100 : .r : : a: : — ;

since therefore he has gained -,-7^5 and the horse originally

cost him X crowns, he mu^t have sold it for x -\-

100'

100

a;2

therefore .7' + TTjTr = ^^9; and subtractmg x, we have

x^

Y^ = — X -\- 119; then multiplying by 100, we obtain

x^ := - 100^ -{- IISOO. Whence, by the rule, we find

X = -50 ± ^/(2500 + 11900) = — 50 ±^14400 = -
50 ± 120 = 70.

The horse therefore cost 70 crowns, and since the horse-

dealer gained 70 per cent when he sold it again, the profit

must have been 49 crowns. So that the horse must have

been sold again for 70 -|- 49, that is to say, for 119 crowns.

651. Question 6. A person buys a certain number of

pieces of cloth : he pays for the first 2 crowns, for the

second 4 crowns, for the third 6 crowns, and in the same

manner always 2 crowns more for each following piece.

Now, all the pieces together cost him 110 : how many pieces

had he ?

Let the number sought be x ; then, by the question, the

purchaser paid for the different pieces of cloth in the fol-

lowing manner :

for the 1, 2, 3, 4, 5 . . . . x pieces

he pays 2, 4, 6, 8, 10 .... 2:r crowns.

It is therefore required to find the sum of the arithmetical

progression 2 + 4 + 6 + 84- ^-^5 which consists of

X terms, that we may deduce from it the price of all the

pieces of cloth taken together. The rule which we have

already given for this ojicration requires us to add the last

term to the first; and the sum is 2j: + 2; which must be

multiplied by the number of terms .r, and the product will
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be 2x- + 2,r ; lastly, if we divide by the diflTerence 2, the

quotient will be a:^ -\- x, which is the sum of the progression ;

so that we have x" -^ x = 110 ; therefore «* =

—

x + HO,
and .r = - 4- + v/ (i + 11 0) = - 4 + V = 10.

And hence the number of pieces of cloth is 10.

6*52. Question 7. A person bought several pieces of

cloth for 180 crowns; and if he had received for the same
sum 3 pieces more, he would have paid 3 crowns less for

each piece. How many pieces did he buy "^

Let us represent the number sought by or; then each

180
piece will have cost him crowns. Now, if the purchaser

had had x -\-Q pieces for 180 crowns, each piece would have

180 , . ,...,,, T
cost ;, crowns ; and, smee this price is less than the real

x + 3 ^

price by three crowns, we have this equation,

180 180

0^ + 3
3.

Multiplying by x, we obtain -;

—

\ — 180 — Qx ; dividing

by 3, we have = 60 — x ; and again, multiplying by
X -\- o

^' + S, gives 60x =180-1- 57x — x"; therefore adding x\
we shall have x^ -f- 60x = 180 + 61x ; and subtracting 60x,

we shall have x'^ = ~ Sx + 180.

The rule consequently gives,

^=-|,+v^(^+180),or^=-l+ y =12.
He therefore bought for 180 crowns 12 pieces of cloth

at 15 crowns the piece ; and if he had got 3 pieces more,

namely, 15 pieces for 180 crowns, each piece would have
cost only 12 crowns, that is to say, 3 crowns less.

653. Question 8. Two merchants enter into partnership

with a stock of 100 pounds ; one leaves his money in the

partnership for three months, the other leaves his for two
months, and each takes out 99 pounds of capital and profit.

What proportion of the stock did they separately furnish ?

Suppose the first partner contributed .r pounds, the other

will have contributed 100 — x. Now, the former receiving

99/., his profit is 99 — x, wliich he has gained in three

months with the principal x ; and since the second receives

also 99/., his profit is x — 1, which he has gained in two

months with the principal 100 — .r; it is evident also,

that the profit of this second partner would have been

u2
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—-—, if he had remained three months in the partnership

:

and as the profits gained in the same time are in proportion

to the principals, we have the following proportion,

^ : 99 — .r : : 100 - ^ : -^r—

And the equality of the product of the extremes to that of

the means, gives the equation,

—^— = 9900 — 199^ + 0?-;

then multiplying this by 2, we have

Sx^ - 3x = 19800 - 398^ -f 2x" ; and subtracting Qx% we
obtain ^- - 3.r = 19800 - 398^^'. Adding 3.r, gives x' =
19800 - 395.r; then by the rule,

yr — _ 395 I // 156025 _L 79 2^0 0\ — _ 39^5 1.4^^8 — 90

= 45.

The first partner therefore contributed 451. and the other

551. The first having gained 54/. in three months, would
have gained in one month 18/. ; and the second having

gained 44/. in two months, would have gained 22/. in one

month : now these profits agree ; for if, with 45/., 18/. are

gained in one month, 22/. will be gained in the same time

with 55/.

654. Question 9. Two girls carry 100 eggs to market;

the one had more than the other, and yet the sum which they

both received for them was the same. The first says to the

second. If I had had your eggs, I should have received 15

pence. The other answers, If I had had yours, I should

have received 6i pence. How many eggs did each carry to

market ?

Suppose the first had x eggs ; then the second must have

had 100 - ^.

Since, therefore, the former would have sold 100 — a: eggs

for 15 pence, we have the following proportion:

(100 _ ,,) : IS : :
..

: ^^.
Also, since the second would have sold x eggs for 6f

pence, we readily find how much she got for 100 — x eggs,

thus

:

2000—20.r
As X : (100 - x):: V : :r

•

Now, both the girls received the same money ; we have
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, ,
15.r 2000-20^' , .

, ,

consequently tlie equation, -ttt:— =
^

, which be-

comes 25^^ = 200000 - 4000^1' ; and, lastly,

a;"~ = - 160a; + 8000

;

whence we obtain

:r = - 80 + V{G4>00 + 8000) = - 80 + 120 = 40.

So that the first girl had 40 eggs, the second had 60, and
each received ]0 pence.

655. Question 10. Two mercliants sell each a certain

quantity of silk ; the second sells 3 ells more than the first,

and they received together 35 crowns. Now, the first says

to the second, I should have got 24 crowns for your silk

;

the other answers, And I should have got for yours 12

crowns and a half. How many ells had each ?

Suppose the first had x ells ; then the second must have

had X ~^3 ells ; also, since the first would have sold x -\- 3

24^
ells for 24 crowns, he must have received —r-^, crowns for

'
07-1-3

his x ells. And, with regard to the second, since he would
have sold x ells for 12^ crowns, he must have sold his

25^7 -i-75
.r -f 3 ells for —^ ; so that the whole sum they re-

2x •'

ceived was

24^ , 25^7 1-75 „^
^+3+-2^ =35 crowns.

This equation becomes x^ = 20^7 — 75; whence we have

.r = 10 + ^/(lOO — 75) = 10 ± 5.

So that the question admits of two solutions : according

to the first, the first merchant had 15 ells, and the second

had 18; and since the former would have sold 18 ells for

24 crowns, he must have sold his 15 ells for 20 crowns.

The second, who would have sold 15 ells for 12 crowns and
a half, must have sold his 18 ells for 15 crowns ; so that they

actually received 35 crowns for their commodity.

According to the second solution, the first merchant had
5 ells, and the other 8 ells ; and since the first would have

sold 8 ells for 24 crowns, he must have received 15 crowns

for his 5 ells ; also, since the second would have sold 5 ells

for 12 crowns and a half, his 8 ells must have produced

him 20 crowns ; the sum being, as before, 35 crowns.
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CHAP. VII.

Of the Extraction ofthe Roots o/^ Polygon Numbers.

656. We have shewn, in a preceding chapter*, how
polygonal numbers are to be found ; and what we then called

a side, is also called a root. If, therefore, we represent the

root by x, we shall find the following expressions for all

polygonal numbers

:

Liie iJiiguii, ui Liiaiigie, i;
' 2 '

the ivgon, or square, -

the vgon - _ _ _

x\

2 '

the vigon - - - _ '^x-'-x,

the viigon - - - -
5a'—3^

2 '

the viiigon _ - - 8^^ -21-,

the ixgon - - _ _
lx^-5x

2 '

the xgon _ - - - - 42^^ -3x,

thp Tjcpon _ _ _ -
(7i-2).r*-(w--4)t

657. We have already shewn, that it is easy, by means of

these formula^, to find, for any given root, any polygon

number required : but when it is required reciprocally to

find the side, or the root of a polygon, the number of whose

sides is known, the operation is more difficult, and always

requires the solution of a quadratic equation ; on which ac-

count the subject deserves, in this place, to be separately

considered. In doing this we shall proceed regularly, be-

ginning with the triangular numbers, and passing from them
to those of a greater number of angles.

658. Let therefore 91 be the given triangular number,
the side or root of which is required.

If we make this root =x, we must have

* Chap. 5, Sect. III.
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-~- = 91 ; or .r- + r = 182, and x'^ = — ^ -f- 182;

consequently,

from which we conclude, diat die triangular root required is

13 ; for the triangle of 13 is 91.

659. But, in general, let a be the given triangular num-
ber, and let its root be required.

Here if we make it = jr, we have —-^— = a, or x^ +

X = 2« ; therefore, ^-^ = — .r -[- 2«, and by the rule x =—
l+^(8«+l)

i+s/{i-\-^a),ovx =
2

This result gives the following rule : To find a trian-

gular root, we must multiply the given triangular number
by 8, add 1 to the product, extract the root of the sum,
subtract 1 from that root, and lastly, divide the remainder

660. So that all triangular numbers liave this property

;

that if we multiply them by 8, and add unity to the product,

the sum is always a square ; of which the following small

Table furnishes some examples :

Triangles \, 3, 6, 10, 15, 21, 28, 36, 45, 55, &c.
8 times + 1 = 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, &c.

If the given number a does not answer this condition, we
conclude, that it is not a real triangular number, or that no
rational root of it can be assigned.

661. According to this rule, let the triangular root of 210
be required; we shall have a =. 210, and 8« -j- 1 = 1681,
the square root of which is 41 ; whence we see, that

the number 210 is really triangular, and that its root is

41-1—-— zz 20. But if 4 were given as the triangular num-

ber, and its root were required, we should find it r:

—
I, and consequently irrational. However, the tri-

angle of this root, ^ — ^, may be found in the following

manner

:

V33-1 , „ 17-V/33 , ,,.
Smce X r= , we have .i-= rz , and addmg
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2
to it, the sum is x^ + a; =: '-^ = 8. Conse-

quently, the triangle, or the triangular number, —^— = 4.

66^. The quadrangular numbers being the same as

squares, they occasion no difficulty. For, supposing the

given quadrangular number to be a, and its required

root a;, we shall have jc^ :=. a, and consequently, x =^ a ;

so that the square root and the quadrangular root are the

same thing.

663. Let us now proceed to pentagonal numbers.

Let 22 be a number of this kind, and x its root ; then, by

the third formula, we shall have —-—
• =: 22, or 3x- — x

= 44), or x'^ = -^x -\- y- ; from which we obtain,

^ =^+^/(tV+ V), or X = 1±^^-??^ = -L + y =4;

and consequently 4 is the pentagonal root of the number 22.

664. Let the following question be now proposed : the

pentagon a being given, to iind its root.

Let this root be x, and we have the equation

—-— = a, or 3x- — X zz, 2a, or x" = i.x -^ — ; by means

2a
of which we find ^ = i

-f-
-/(JL. + — ), that is,

X n v^ • 1 hererore, when a is a real pentagon,

24a -)- 1 must be a square.

Let 330, for example, be the given pentagon, the root

l+v^ (7921) 1 + 89 _
will be a; := 75 — —ji— =^ i^«

o o

665. Again, let a be a given hexagonal number, the root

of which is required.

If we suppose it = x, we shall have 2x" — x zz a, or

a/^ =: i_cc -{- i-a ; and this gives

So that, in order that a may be really a hexagon, 8a + 1

must become a square; whence we see, that all hexagonal

numbers are contained in triangular numbers; but it is not

the same with the roots.
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For example, let the hexagonal number be 1225, its root

1+V9801 1+99 ^^
will be a: = ^ = -j- = 25.

666. Suppose a an heptagonal number, of which the root is

required.

Let this root be a:, then we shall have -^— = a, or

.r' := -|a7 -{- yO, which gives

3-f \/(40a + 9)
a.z=A-!-v/(Tl-o-+|«) =

10

therefore the heptagonal numbers have this property, that if

they be multi])lied by 40, and 9 be added to the product,

the sum will always be a square.

Let the heptagon, for example^ be 2059 ; its root will be

f„™a _ , _ a±^(85269) ^ 3 + 257 ^luuuu ~ u, — ^„ 10

667. Let us suppose a an octagonal number, of which

the root x is required.

We shall here have Sx'^ — ^x = a, or x^ = ^x -{- -^a,

, , , ^ i_f-^(3«4.i)
whence results j:: =:: i -p \/ (^ + ^a) = .

Consequently, all octagonal numbers are such, that if

multiplied by 3, and unity be added to the product, the sum
is constantly a square.

For example, let 3816 be an octagon; its root will be

1+v/ 11449 1 + 107 „,.
X = ^ = —

7^
— = 35.

668. Lastly, let a be a given 7i-gonal number, the root of

which it is required to assign ; we shall then, by the last

formula, have this equation :

(m - 2)j;- — (n — 4)J7

2
a, or {n — 2)^- — {n — 4>)x = 2a ;

,
(m—4)^ 2a

consequently, ^-= ——^ + "ZTg'
^^^^"^^'

w—

4

(w — 4)- 2a

^ - 2(/i—2)"*''^^n—2)-"*"4(7i-2)2^'°''

- ^^ - 4-f y/ (8(?i - g)g-t-(M— 4)'^)

'^^
~

2{n-2)
*
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This formula contains a general rule for finding all the

possible polj^gonal roots of given numbers.
For example, let there be given the xxiv-gonal number,

3009 : since a is here = 'i30O9 and n ~ 24, we have
w — 2 = 22 and 7i — 4 = 20 ; wherefore the root, or

_ 20+V (529584+400) _ 20+728 _
^'
-

44
'~

44 - ''•

CHAr. VIII.

Of the Extraction of the Square Roots o/^Binomials.

669. By a binomial''^ we mean a quantity composed of
two parts, which are either both affected by the sign of the
square root, or of which one, at least, contains that sign.

For this reason 3 + a/5 is a binomial, and likewise

a/ 8 + a/3 ; and it is indifferent whether the two terms be
joined by the sign + or by the sign — . So that 3 — a/5
and 3 + a/5 are both binomials.

670. The reason that these binomials deserve particular

attention is, that in the resolution of quadratic equations we
are always brought to quantities of tliis form, when the re-

solution cannot be performed. For example, the equation
cc^ =z (jx — 4< gives x = 3 + a/5.

It is evident, therefore, that such quantities must often

occur in algebraic calculations; for which reason, we have
already carefully shewn how they are to be treated in the
ordinary operations of addition, subtraction, multiplication,

and division . but we have not been able till now to shew
how their square roots are to be extracted ; that is, so far as

that extraction is possible; for when it is not, we must be
satisfied with affixing to the quantity another radical sign.

Thus, the square root of 3 + a/2 is written V^ + V2

;

or a/(3 + V2).
671. It must here be observed, in the first place, that the

* In algebra we generally give the name binomial to any
quantity composed of two terms ; but Euler has thought proper
to confine this appellation to those expressions, which the French
analysts call qnantilies i^arllij commeiisurable, and partly incom-
mensurable. F. T.
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squares of such binomials are also binomials of the same

kind ; in which also one of the terms is always rational.

For, if we take the square of a -f -^/i, we shall obtain

^a- + b) + 2a s^b. If tlierefore it were required i*eciprocally

to take the root of the quantity («" + h) + 2« ^/b, we should

find it to be a -\- ^/b, and it is undoubtedly much easier to

form an idea of it in this manner, than if we had only put

the sign / before that quantity. In the same manner, if

we take the square of ^/a + ^,/h, we find it (a + b) +
2 \/ab ; therefore, reciprocally, the square root of (« + 6) +
2 ^/ab will be ^/a + ^/b, which is likev/ise more easily un-

derstood, than if we had been satisfied with putting the sign

V before the quantity.

672. It is chiefly required, therefore, to assign a character,

which may, in all cases, point out whether such a square

root exists or not ; for which purpose we shall begin with an

easy quantity, requiring whether we can assign, in the sense

that we have explained, the square root of the binomial

Suppose, therefore, that this root is ^/.r -f- ^/^/ ; the

square of it is {x -\- ij) + 2 Vxy^ which must be equal to

the quantity 5 + 2^/6. Consequently, the rational part

a: + 7/ must be equal to 5, and the irrational part 2 ^/xy

must be equal to 2 V6 ; which last equality gives ^/xy —
a/6. Now, since x -\- y — 5, we have ?/ = 5 — jt, and

this value substituted in the equation xy = 6, produces

5x — x^ =: 6, or X' = 5x — 6; therefore, x = -^^ + \/(y —
y-) = 4 + i = 3. So that a; = 3 and ?/ =r 2 ; whence we
conclude, that the square root of 5 + 2 ^/6 is a/3 -|- a/2.

673. As we have here found the two equations, x ^ y = 5,

and xy = 6, we shall give a particular method for obtaining

the values of j; and y.

Since x -\-y = 5, by squaring, x''- -f- ^xy -{- y- = 25 ; and

as we know that x'^ — 2xy -\- y- is tlie square of x — y, let

us subtract from x~ -}- 2.n/ -[-?/'• = 25, the equation xy — 6,

taken four times, or 4!xy — 24, in order to have .r® — 2xy -{-

y^ = I ; whence by extraction we have .r — ?/ = 1 ; and as

X -{-y = 5, we shall easily find ^ == 3, and y = 2: where-

fore, the square root of 5 + ^ v'6 is \/3 -j- v'2.

674. Let us now consider the general binomial a 4- Vb,
and supposing its square root to be ^/.r + -/^/^ we shall

have the equation {x -\- y) -\- 2 \fxy = « -f ^/b% so that

X -\-y = a, and 2 ^/xy = ^/b, or 4:xy — b ; subtracting

this square from the square of the equation x A^ y — «, that

is, from x" -\- 2xy -\- y" =. a"^ there remains x^ — 9>xy -\-

y^ — d^ — by the square root ofwhich \sx — y = \^{a'^ — b).
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Now, X -\- y ^= a; we have therefore x =

SECT. IV.

a— V(a"—b) .
,

and 1/ z=. ; consequently, the square root re-
/v

quired of « + ^/b is ^/—'

]^
+ ^/- ^ '-\

675. We admit that this expression is more complicated
than if we had simply put the radical sign a/ before the

given binomial a+ Vb, and written it x^(« + ^^b): but
the above expression may be greatly simplified when the
numbers a and b are such, that a'' — 6 is a square ; since

then the sign a/, which is under the radical, disappears.

We see also, at the same time, that the square root of the

binomial a + ^,/b cannot be conveniently extracted, except
when a^ — b ~ c'-; for in this case the square root required

a + c ^^~^i-r>
IS -v/(—^ ) -j- a/(

——)• but if a^ — t» IS not a perfect

square, we cannot express the square root of a + ^/6

more simply, than by putting the radical sign a/ before it.

676. The condition, therefore, which is requisite, in order

that we may express the square root of a binomial a -\- \/b

in a more convenient form, is, that a^ — 6 be a square ; and
if we represent that square by c', we shall have for the

square root in question a/ (

—

-— ) -}- a/(—^— )• We must

farther remark, that the square root of « — a/ 6 will be

a-fc a—c „ , . 1 •

A^( „ ) — \^(~77~) ; lor, by squaring this quantity, we get

Of- — c^
a — 2 a/(—7— ) ; now, since c' r= a- — 6, and consequently

a- — c~zz b, the same square is found

^ * 2a/Z»
= a — 2 V-r = a ^ = « — Vb.

677. When it is required, therefore, to extract the square

root of a binomial, as a + Vb, the rule is, to subtract from

the square a^ of the rational part the square b of the ir-

rational part, to take the square root of the remainder, and

calling that root c, to write for the root required

a + c^ a — c^

V(—2-)±v/(-2-)•

678. If the square root of 2 + V'o were required, we
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should have a = 2 and x^b = a/ 3; wherefore a} - b =
c- — 1 ; so that, by the formula just given, the root sought

=z /I -L /J..

Let it be required to find the square root of the binomial

11 + 6 V^- Here we shall have « — 11, and v6 = 6 v/2;

consequently, b = oQ x 9, = 72, and a~ — b = 49, which

gives c = 7 ; and hence we conclude, that the square root

of 11 4- 6 v/2 is v'9 + a/ 2, or 3 + v2.
Required the square root of 11 -|- 2 ^/30. Here a — 11,

and s/b = 2 \/30; consequently, b = i< x 'SO = 120,

fl* — 6 = 1, and c = I ; therefore the root required is

/v/6 4- v'5.

C79. This rule also applies, even when the binomial con-

tains imaginary, or impossible quantities.

Let there be proposed, for example, the binomial 1 -\-

4 x/— 3. First, we shall have « = 1 and vb = 4 \/- 3,

that is to say, 6 = — 48, and a"- — b — 4^9; therefore

c = 7, and consequently the square root required is ^/4 +
^-3 = 2+ V-3.

'

Again, let there be given - i- + i- ^/— o. First, we

have a = — i; Vb = | ^z - S, and b .= l x - 3 = - |-;

whence ci^ — b — ^ + 1—1, and c = 1 ; and the result

required is ^/i: + ^/ - ^ = i -j- ^—^> or i + a ,/ - 3.

Another remarkable example is that in which it is required

to find the square root of 2 x^ — 1. As there is here no

rational part, we shall have a — 0. Now, ,/ 5 = 2 a/— 1,

and b = — 4 ; wherefore a" — 6=4 and c = 2 ; conse-

quently, the square root required is vl -\- x'— 1 = 1 -|-

^/— 1, and the square of this quantity is found to be

14-0 ,/- 1 _1 ^ 2 v/- 1.

680. Suppose now we have such an equation as .r° =
a + \/b, and that a^ — b n c ; we conclude from this, that

Cl ~\~ C Cl — c
the value of x — s'\-^) ± \^{—^), which may be useful

in many cases.

For example, if x'- — 17-1-12 ^/2, we shall have

.r = 3 + ^/8 = 3 -h 2 ^/2.

681. This case occurs most frequently in the resolution of

equations of the fourth degree, such as x^ =. 2a.r- -|- d. For,

if we suppose x'^ =z ?/, we have x^ =j/', which reduces the

given equation to i/ = 2aij -}- d, and from this we find

y — a ± a/(«' + d\ therefore, x- — a± x/(a-+ fZ), and

consequently we have anoth.er evolution to perform. Now,
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since a/6 = a/(«^ + d), we have b = a" + d, and «- —
h z=. — d'; if, therefore, — d \% a. square, as c% that is to

say, d =: — c\ we may assign the root required.

Suppose, in reahty, that d = — c^ % or that the proposed

equation of the fourth degree is x*—9>ux- — c', v/e shall then

a + c a—

c

find that x = ^/{—^)± ^^{-7^^^

682. We shall illustrate what we have just said by some

examples.

1. Required two numbers, whose product may be 105,

and whose squares may together make 274.

Let us represent those two numbers by .r andj/j we shall

then have the two equations,

ooy = 105
^2 + y"- = 274..

105
The first gives y = , and this value of y being sub-

stituted in the second equation, we have

jr- + —T- = 274.

AVhereforc x' -f-
105^ = 274^-', or x' = 274.i'2 _ io5-.

If we now compare this equation with thiat in the pre-

ceding article, we have 2a = 274, and — c- = — 105";

consequently, c — 105, and « =: 137. We therefore find

137 + 105^
,

137-105^ ^^ , ^X - a/(—^ ) ± ^^( o ) = 11 ± 4'.

Whence x = 15, or x — 7. In the first case, ?/ — 7, and in

the second case, j/ =:: 15 ; whence the two numbers sought are

15 and 7.

683. It is proper, however, to observe, that this calcula-

tion may be performed much more easily in another way.

For, since x- -\- 2xij \- y~ and x" — 9.xy + y" are squares,

and since the values of x" -f y" and of xy are given, we have

only to take the double of this last quantity, and then to add

and subtract it from the first, as follows: x- -{-«/- ~ 274;

to which if we add 2.?'?/ n 210, we have

x" -\- 2xy -\- y- = 484, which gives x ~y = 22.

But subtracting 2^7/, there remains x" — 2a7/ + .y- = 64,

whence we find x ~ y z=. 8.

So that 2.r n SO, and 2^/ =: 14 ; consequently, x = 15

and 7/ r: 7-

The following general question is resolved by the same

method.
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2. Required two numbers, whose product may be in, and

the sum of tlic squares n.

If those numbers are represented by x and j/, we have the

two following equations :

Xi/ =: m
X' + y" =11.

Now, 2xy = 9^m being added to x" + y" — n, we have
^c _}_ 2xy -\-y" rz n -j- 2ot, and consequently,

.r -f y — x^{n + 2???).

But subtracting 9.xy., there remains .r^ — 9,xy -f- t/^ = ?z

— 2ot, whence we get .r — 3/ =: /(7J — 2m) ; we have,

therefore, x — '^ V(n + 27?j) -|- ^ ^/(tj — 2m) ; and

?/ = i v^O* + ^^) — T V(w ~ 2w).

684. 3. Required two numbers, such, that their product

may be 35, and the difference of their squares 24.

Let the greater of the two numbers be x, and the less^:

then we shall have the two equations

xi/ = 35,

A'" — 7/2 = 24

;

and as we have not the same advantages here, we shall pro-

ceed in the usual manner. Here, the first equation gives

35
y =^ — , and, substituting this value ofy in the second, we

1225
have or* — —^ = 24. Multiplying by .y", we have

X* — 1225 = 24^'- ; or cV* = S.4>d'"- -\- 1225. Now, the se-

cond member of this equation being affected by the sign +,
we cannot make use of the formula already given, because

havino- c- = — 1225, c would become imaginary.

Let us therefore make x- = z; we shall then have

z" = 24s; -f- 1225, whence we obtain

s = 12 ± V(144 -f- 1225) or 2 = 12 + 37

;

consequently, <^>^ = 12 + 37 ; that is to say, either = 49, or

= -25.
If we adopt the first value, we have x = '^ and 3/ = 5.

The second value gives x = ^/— 25 ; and, since xy = 35,

35 1225
we have 3/ = ^_^^ = ^^325 — ^^~ ^^•

685. We shall conclude this chapter with the following

question.

4. Required two numbers, such, that their sum, their

product, and the difference of their squares, may be all

equal.
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Let X be the greater of the two numbers, and ?/ the less

;

then the three following expressions must be equal to one

another: namely, the sum, x -\- 7/ ; the product, xi/ ; and

the difference of the squares, a" — 7/-. If we compare the

first with the second, we have ^ -}~3' —
-^J/

' which will give

y
a value of x : for y = xy — x =^ {y — 1), and x = y

Consequently, a- + y= y^i-^^^'Jzi' ^"^^ '^-^ = w-1'
that is to say, the sum is equal to the product ; and to this

also the difference of the squares ought to be equal. Now,

making this equal to the quantity found r, we have

y2 ~y' + 2y- ...,.,, , 1—
; dividing byy, we have =

"

we have x'^ — y- = —^—^^——, — y^ — —,—;;:

—

t^-, ; so that

y-\ y^-2^ + 1' ^ •'•^' y~l "
^jr^Zfl ^ and multiplying by ?/^ _ 2^ -{- 1, or (3/- 1)-,

we have y — 1 = — j/- -|- Sy ; consequently, y'^ = y + ^ :

1 + A '5
which givesy = \- ± %/(-^ 4" 1) = t ± a/-I ; or j/

= — ,

and since .r = '^
., , we shall have, by substitution, and

3/-I

X =

y

using the sign --
•> ^ "=—?

—

\ •

In order to remove the surd quantity from the denomi-

nator, multiply both terms by x'5 -[- 1, Jinfl ^e obtain

6+2x/5'_ .'3+ x^5

4" ~ 2 •

Therefore the greater of the numbers sought, or .r,

= —
; and the less, j/, = —^^—

.

ill

'

<*

Hence their sum x -\-y = ^ -\- \^5; their product xy —

^ . r 1 • . 7+3 s'5 ^ „ 3-i-v/5
2 -\- -v/o ; and since x- = —

, and y- ~ —~— , we

have also the difference of the squares a^ — ?/- rz 2 -j- ^^o,

being all the same quantity.

G86. As this solution is very long, it is proper to remark
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that it may be abridged. In order to which, let us begin
with making the sum x +j/ equal to the difference of the

squares .r* — y""-, we shall then have x -\-y -z^ x^ ~ y^'i ^^^
dividing by x + y, because x^ — j/ = {x + y) x{x — y),
we find 1 = X — y and ^ — 7/ + 1. Consequently, x ^ y
=: %/ + 1, and x- - j/ — "^y -\- 1 ; flirther, as the product
xy, or y"^ + y, must be equal to the same quantity, we have
y^ -^ y =. ^y -{ \, or ?/- = ?/ + 1? which gives, as before,.

l+ v/5
^ = —g—

•

687. The preceding question leads also to the solution of

the following.

5, To find two numbers, such, that their sum, their pro-

duct, and the sum of their squares, may be all equal.

Let the numbers sought be represented by x and «/;

then there must be an equality between x + y, xy, and
x- ^-y".

Comparing the first and second quantities, we have

X -\- y =. xy, whence x = •
; consequently, xy, and

y"
.r -j- 7/ = r . Now, the same quantity is equal to x"^ + y"i

so that we have

Multiplying by y" — 2y -\- 1, the product is

y* - Sy + 2j/- =y -y% ory = Zy^ - 3y

;

and dividing by ?/^, we have ?/- = 3?/ — 3 ; which gives

y - \ ±\/(t — 3) = ^ ; consequently.

T
1 + X/-3 . , 34-A/-3

?/ — 1 = -^ , whence results x = :r— ;

multiplying both terms by 1 — ^/ — 3, the result is

6-2v/-3 3-V-S
X = '

, or
2

J3 / —

3

Therefore the numbers sought are x = ~
, and

3-1- V-3 .

y = , the sum of which is x -\- y = 3, then*

3 — 3 /—

3

product xy = 3 ; and lastly, since x" n: ^ , and

E,



242 ELEMENTS SECT. IV.

'if-
= , the sum of the squr;res x- + «/' = 3, all

the same quantity as required.

688. We may greatly abridge this calculation by a par-

ticular artifice, Avhich is applicable likewise to other cases

;

and which consists in expressing the numbers sought by the

sum and the difference of two letters, instead of representing

them by distinct letters.

In our last question, let us suppose one of the numbers
sought to be ^ + q, and the other j^ — q^ then their sum
will be 2p, their product will be jf- — q-^ and the sum of

their squares will be 2/j" + 2§'% which three quantities must
be equal to each other ; therefore making the first equal to

the second, we have ^p = p" — q", which gives q" =! p"^ — 9,p,

Substituting this value of q" in the tliird quantity

(2/)" H- Sgr^), and comparing the result ^p~ — 4p with the

first, we have 2p rz 4/)'^ — 4/?, whence p ~ ^^

a/ — 3
Consequently, q~ =: p"" - 2j) = — |^, and q n —^-^;

so that the numbers sought are p + q =. ^ , and

p — q =: , as berore.

QUESTIONS FOR PRACTICE.

1. What two numbers are those, whose difference is 15,

and half of their product equal to the cube of the less ?

A71S. 3 and 18.

2. To find two numbers whose svmi is 100, and product

2059. Ans. 71 and 29.

3. There are three numbers in geometrical progression

:

the sum of the first and second is 10, and the difference of

the second and third is 24. What are they ?

Ans. 2, 8 and 32.

4. A merchant having laid out a certain sum of money in

goods, sells them again for 24/. gaining as much per cent as

the goods cost him : required, what they cost him. Ans. 20/.

5. The sum of two numbers is <t, their product b. Re-
quired the numbers.

A71S. -^± y/{ -l>-\-^), and
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6. The sum of two numbers is «, and the sum of their

^squares b. Required the numbers.

a ^b— a"- -

Ans. ^ ± V{—7— ), and

a 2b — a"-

7. To divide 36 into three such parts, that the second

may exceed the first by 4, and that the sum of all their

squares may be 464. Ans. 8, 13, 16.

8. A person buying 120 pounds of pepper, and as many
of ginger, finds that for a crown lie has one pound more of

ginger than of pepper. Now, the whole price of the pepper

exceeded that of the ginger by six crowns: how many
pounds of each had he for a crown ?

Ans. 4 of pepper, and 5 of ginger.

9. Required three numbers in continual proportion, 60

being the middle term, and the sum of the extremes being

equal to 125. Ans. 45, 60, 80.

10. A person bought a certain number of oxen for 80

guineas : if he had received 4 more for the same money, he

would have paid one guinea less for each head. What was

the number of oxen.

^

Ans. 16.

11. To divide the number 10 into two such parts, that

their product being added to the sum of their squares, may
make 76. Ans. 4 and 6.

12. Two travellers A and B set out from two places, r and

A, at the same time; A from r with a design to pass

through A, and B from A to travel the same way : after A
had overtaken B, they found on computing their travels,

that they had both together travelled 30 miles ; that A had

passed through A four days before, and that B, at his rate of

travelling, was a journey of nine days distant from r. Re-
quired the distance between the places T and A. Ans. 6 miles.

r2
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CHAP. IX.

Of the Nature o/'Equations of the Second Degree.

689. What we have already said sufficiently shews, that

equations of the second degree admit of two solutions ; and
this property ought to he examined in every point of view,

because the nature of equations of a higher degree will be

very much illustrated by such an examination. We shall

therefore retrace, with more attention, the reasons which

render an equation of the second degree capable of a double

solution; since they undoubtedly will exhibit an essential

property of those equations.

690. We have already seen, indeed, that this double solu-

tion arises from the circumstance that the square root of any

number may be taken either positively, or negatively ; but,

as this principle will not easily apply to equations of higher

degrees, it may be proper to illustrate it by a distinct

analysis. Taking, therefore, for an example, the quadratic

equation, x'^ = 12.r — ^5, we shall give a new reason for

this equation being resolvible in two ways, by admitting for

X the values 5 and 7, both of which will satisfy the terms of

the equation,

691. For this purpose it is most convenient to begin with

transposing the terms of the equation, so that one of the

sides may become ; the above equation consequently takes

the form
X' -\2x -{-^5 = 0;

and it is now required to find a number such, that, if wc
substitute it for ^', the quantity x'^ — 12^' -(- 35 may be really

equal to nothing; after which, we shall have to shew how
this may be done in two different ways.

692. Now, the whole of this consists in clearly shewing,

that a quantity of the form x- — 12x -j- 35 may be con-

sidered as the product of two factors. Thus, in reality, the

quantity of which we spealc is composed of the two factors

(x — 5) X {x — 7) : and since the above quantity must
become 0, wc must also have the product {x — 5) x [x — 7)

— ; but a product, of whatever number of factors it is

composed, becomes equal to 0, only when one of those fac-

tors is reduced to 0. This is a fundamental principle, to

which we must pay particular attention, especially when
equations of higher degrees are treated of.

693. It is therefore easily understood, that ihe product
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(jr — 5) X ('* — 7) may become in two ways : first, wlicn

the first factor x —5 = 0; and also, when the second factor

X — 7 = 0. In the first case, x = 5, in the second .r = 7.

The reason is therefore very evident, why such an equation

x" — 12a.- + 35 = 0, admits of two solutions ; that is to say,

why we can assign two values of jt, both of which equally

satisfy the terms of the equation ; for it depends upon this

fundiamental principle, that the quantity .r^ — l^o: + 35
may be represented by the product of two factors.

694. The same circumstances are found in all equa-

tions of the second degree : for, after having brought the

terms to one side, we find an equation of the following-

form x" — a.v -j- 6 = 0, and this formula may be always

considered as the product of two factors, which we shall re-

present by {x — p) y. {x — q), without concerning ourselves

what numbers the letters p and q represent, or whether they

be negative or positive. Now, as this product must be = 0,

from the nature of our equation, it is evident that this may
happen in two cases ; in the first place, when x = p; and in

the second place, when x =i q; and these are the two values

of X which satisfy the terms of the equation.

695. Let us here consider the nature of these two factors,

in order that the multiplication of the one by the other may
exactly produce x" — ax + b. By actually multiplying

them, we obtain x- — {p -\- q) x -{- pq ; which quantity must

be the same as x'^ — ax -\- b, therefore we have evidently

p -\- q = a, and pq = b. Hence is deduced this very re-

markable property; that in ever}'^ equation of the form

x'^ — ax -{- b = 0, the two values of x are such, that their

sum is equal to a, and their product equal to b ; it there-

fore necessarily follows, that, if we know one of the values,

the other also is easily found.

696. We have at present considered the case, in which the

two values of x are positive, and which requires the second

term of the equation to have the sign — , and the third term

to have the sign -{-.
' Let us also consider the cases, in which

either one or both values of cZ- become negative. The first

takes place, when the two factors of the equation give a pro-

duct of this form, {x — p) x [x + q) ; for then the two

values of x are x = p, and x = — q; and the equation

itself becomes
a-' -r iq — J>)

'^' — T^g = ;

the second term having the sign + , when q is greater than />,

and the sign — , when q is less than /; ; lastly, the tliird term

is always negative.
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The second case, in which both values of x are negative,

occurs, when the two factors are

{x-\-'p)x Cr + g);

for we shall then have x == -- p, and x =. — q; the equa-
tion itself therefore becomes

i- + {p { q) X -{- pq = 0,

in which both the second and third terms are affected by the

sign +.
697- The signs of the second and the third terms con-

sequently shew us the nature of the roots of any equation of
the second degree. For let the equation he x^ .... ax ... .

b = 0. If the second and third terms have the sign -|-, the

two values of x are both negative ; if the second term have
the sign — , and the third term + , both values are positive

:

lastly, if the third term also have the sign — , one of the

values in question is positive. But, in all cases whatever, the

second term contains the sum of the two values, and the

third term contains their product.

698. After what has been said, it will be easy to form
equations of the second degree containing any two given

values. Let there be required, for example, an equation
such, that one of the values of x may be 7, and the other

— 3. We first form the simple equations x -— 7, and
X = — 3 ; whence, .r — 7 n 0, and .r -\- 3 = ; these give

us the factors of the equation required, which consequently

becomes x~ — 4x — 21 = 0. Applying here, also, the above
rule, we find the two given values of .r ; for ifx- zz 4<x + 21,
we have a = 2 + V25 = 2 + 5, that is to say, x = 7, or

.r = - 3.

699- The values of .r may also happen to be equal. Sup-
pose, for example, that an equation is required, in which both
values may be 5 : here the two factors will be (x — 5) X
{x — 5), and the equation sought will be x" — lOx -}- 25 = 0.

In this equation, x appears to have only one value ; but it is

because x is twice ibund = 5, as the common method of
resolution shews ; for we have x- = lOx — 25 ; wherefore
,z' == 5 + a/O = 5 + 0, that is to say, x is in two ways = 5.

700. A very remarkable case sometimes occurs, in which
both values of x become imaginary, or impossible ; and it is

then wholly impossible to assign any value for x^ that would
satisfy the terms of the equation. Let it be proposed, for

example, to divide the number 10 into two parts, such that

their product may be 30. If we call one of those parts </',

the other will be 10 — x, and their product will be 10:r —
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x^ = 30 ; wherefore ,r- == lOx — 30, and x — 5 ±_ \/ — 5,

which, being an imaginary number, shews that the question

is impossible.

701. It is very impoi-tant, thcrefoi-e, to discover some

sign, by means of^vhich we may inmiediately know whether

an equation of the second degree be possible or not.

Let us resume the general equation x^ — ax -\- h =: 0. We
shall have x^ = ax — b, and x :=: }-a ±.^ {^a"- — b). This
shews, that if b be greater than ^a*, or 46 greater than d^,

the two values of x are always imaginary, since it would be

required to extract the square root of a negative quantity

;

on the contrary, if b be less than ia", or even less than 0,

that is to say, if it be a negative number, both values will be

possible or real. But, whether they be real or imaginary, it

is no less true, that they are still expressible, and always

have this property, that their sum is equal to a, and their

product equal to b. Thus, in the equation j:-— 6,i'-j-10= 0,

the sum of 'the two values of x must be 6, and the product

of these two values must also be 10; now, we find, 1. a: =^

3 + V — 1, and 2. x = 3— -/ — 1, quantities whose sum is

6, and the product 10.

702. The expression which we have just found may like-

wise be represented in a manner more general, and so as to

be applied to equations of this form,^'^ ± gx -{- Ji = 0;
for this equation gives

_ ff^' h , g , ,, ff' h .

x-= +y -y, and .V = + -p±^/{pi-- yl or . .

+ o- + ^ iff^ - 4ffJi)
X = —-——-^ — ; whence we conclude, that the two

values are imaginary, and, consequently, the equation im-

possible, when 4/7i is greater than ^ ; that is to say, when,
in the equation^^ — gx + 7i = 0, four times the product

of the first and the last term exceeds the square of the second

term : for the product of the first and the last term, taken

four times, is kfhx^^ and the square of the middle term is

^V ; now, if 4/%a;^ be greater than g-x~^ 4/7i is also greater

than g^, and, in that case, the equation is evidently im-

possible ; but in all other cases, the equation is possible, and
two real values of x may be assigned. It is true, they are

often irrational; but we have already seen, that, in such

cases, we may always find them by approximation : whereas

no approximations can take place with regard to imaginary

expressions, such as v^ — 5 ; for 100 is as far from being the

value of that root, as 1, or any other number.
703. We have farther to observe, that any (juantity of
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the second degree, x" ± ax ± b, must always be resolvible
into two factors, such as (x + p) x {x ± q). For, if wc
took three factors, such as these, we should come to a
quantity of the third degree; and taking only one such
factor, we should not exceed the first degree. It is therefore
certain, that every equation of the second degree necessarily
contains two values of x, and that it can neither have more
nor less.

704. We have already seen, that when the two factors
are found, the two values of x are also known, since each
factor gives one of those values, by making it equal to 0.

The converse also is true, viz. that wl^en we have found one
value of x, we know also one of the factors of the equation

;

for \i X = p represents one of the values of x, in any equa-
tion of the second degree, x — ph one of the factors of that
equation ; that is to say, all the terms having been brought
to one side, the equation is divisible by a? — p; and farther,
the quotient expresses the other factor.

705. In order to illustrate what we have now said, let

there be given the equation a;'' -{- 4a; — 21 r= 0, in which
we know that x = 3 is one of the values of x, because
(3 X 3) + (4 X 3) - 21 =r 0; this shews, that x - 3 is

one of the factors of the equation, or that x^ -j- 4x — 21 is

divisible by x — 3, which the actual division proves. Thus,

X - 3) X" + 4.r - 21 {x + 7
x" — Qx

Ix - 21

7x - 21

0.

So that the other factor is x + 7, and our equation is re-

presented by the product (J^ — 3) x (x
-f- 7) = ; whence

the two values of x immediately follow, the first factor giving
•r = 3, and the other x = — 7.

CHAP. X.

0/Pure Equations ofthe Third Degree.

70G. An equation of the third degree is said to be pure,
when the cube of the unknown ((uantity i,s ecjual to a known
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quantity, and when neither the square of the unknown
quantity, nor the unknown quantity itself, is found in the

equation ; so that

x^ = 125, or, more generally, x^ = a, x^ = —, &c.

are equations of this kind.

707. It is evident how we are to deduce the value of

X from such an equation, since we have only to extract the

cube root of both sides. Thus, the equation x^ = 125
gives x =i 5, the equation x^ = a gives x = ^a, and the

equation cv^ = -j- gives x = If-j-, ov x = —. To be able,

therefore, to resolve such equations, it is sufficient that we
know how to extract the cube root of a given number.

708. But in this manner, we obtain only one value for x :

but since every equation of the second degree has two
values, there is reason to suppose that an equation of the

third degree has also more than one value. It will be de-

serving our attention to investigate this ; and, if we find that

in such equations x must have several values, it will be neces-

sary to determine those values.

709. Let us consider, for example, the equation x^ r= 8,

with a view of deducing from it all the numbers, whose cubes

are, respectively, 8. As a: — 2 is undoubtedly such a num-
ber, what has been said in the last chapter shews that the

quantity x^ — 8 =z 0, must be divisible by x — 2 : let us

therefore perform this division.

X - 2) x^ - 8 {cv- 4-2^ + 4
x^ — 2x"

2^2 -8
2.r"- - 4x

4.r--8
4^--8

0.

Hence it follows, that our equation, a.^^ — 8 — 0, may be

represented by these factors

;

(<r - 2) X (.«" + 2x -j- 4) = 0.

710. Now, the question is, to know what number we arc

to substitute instead of x, m order that x'^ = 8, or that

.r' -=— 8 = ; and it is evident that this condition is an-

swered, by supposing the product which we have just now-

found equal to : but this happens, not only when the first
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factor X — S! = 0, which gives us a' = 2, but also when the

second factor

x^ + 2x + 4) = 0. Let us, therefore, make
^2 -f 2.r + 4 = 0; then we shall have .r' = — 2.r — 4,

and thence j: — — 1 + /— 3.

711. So that beside the case, in which x = 2, which cor-

responds to the equation x^ = 8, we have two other values

of ^, the cubes of which are also 8; and tliese are,

X = — 1 4~ \^ — 3, and .r=r — 1 — ^— 3, as will be

evident, by actually cubing these expressions

;

-1+ ,/—

3

_1_ ^/_3
-l-i-v/-3 -l-_v-3

1-,.—

3

l+v^-S
_ ,/_3_3 4.y_3_3

—2 - 2 / - 3 square -2 + 2 v - 3
-1+ /-3 -I- ^/-3

2 + 2v/-3 2—2^/-3
-2v^—3 + 6 +2^/_3 + 6

8 cube. 8.

It is true, that these values are isnaginary, or iinpossible

;

but yet they deserve attention.

712. What we have said applies in general to every cubic

equation, such as x^ — a\ namely, that beside the value

X = l/a, we shall always find two other values. To abridge

the calculation, let us suppose ^a = c, so that a = c^, our

equation will then assume this form, .r^ — c' — 0, which

will be divisible hy x — c, as the actual division shews

:

X — c) .r' — c^ {x"- + cr + c"

.r^ — cx'

cx- - c^

cx" — c-x

c-x c^

c\v - c^

0.

Consequently, the equation in question may be repre-

sented by the product (.r — c) x (.v-
-f- cx + c') = 0, which

is in fact = 0, not only when x — c = 0, or x = c, but also
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when x"^ -{- ex -{ c* = 0. Now, this expression contains two

other values of x ; for it gives

X- = — c.r — C-, and .r" = — ± V{-7 c), or

.r = ^ ; that is to say, .r z=

-l±^/-3
2

X c.

713. Now, as c was substituted for \/a, we conclude, that

every equation of the third degree, of the form x' = a, fur-

nishes three values of x expressed in the following manner:

1. ,v = i/a,

-l-[-y-3
X l/a,

b. X = ^ X s/a.

This shews, that every cube root has three different

values ; but that one only is real, or possible, the two others

being impossible. This is the more remarkable, since every

square root has two values, and since we shall afterwards

see, that a biquadratic root has four different values, that a

fifth root has five values, and so on.

In ordinary calculations, indeed, we employ only the first

of those values, because the other two are imaginary ; as we
shall shew by some examples.

714. Question 1. To find a number, whosse quare, mul-
tiplied by its fourth part, may produce 432.

Let X be that number ; the product of x" multiplied by
\x must be equal to the number 432, that is to say, -^r' =
432, and x^ =: 1728 : whence, by extracting the cube root,

we have x = 12.

The number sought therefore is 12 ; for its square 144,
multiplied by its fourtii part, or by 3, gives 432.

715. Qiiestion 2. Required a number such, that if we
divide its fourth power by its half, and add 14i^ to the pro-

duct, the sum may be 100.
Calling that number .r, its fourtli power will be x^-,

dividing by the half, or ^.t, we have 2i"^; and adding to that
14i

, th.c sum must be 100. We have therefore 2,r^ -f 14l

zzlOO; subtracting 14^, there remains 9.x^ = ^^^ ; di-

viding by 2, gives x^ — ^^^ , and extracting the cube root,

we find X = L,

71(>. Question 3. Some officers being quartered in a
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country, each commands three times as many horsemen, and
twenty times as many foot-soldiers, as there are officers.

Also a horseman's monthly pay amounts to as many
florins as there are officers, and each foot-soldier receives

half that pay ; the whole monthly expense is 13000 florins.

Required the number of officers.

If X be the number required, each officer will have under
him 3x horsemen and 20x foot-soldiers. So that the whole
number of horsemen is 3x^, and that of foot-soldiers is

20x"-.

Now, each horseman receiving .t florins per month, and
each foot-soldier receiving i-sc florins, the pay of the horse-

men, each month, amounts to 3x^, and that of the foot-

soldiers to lOo:' ; consequently, they all together receive

13^ florins, and this sum must be equal to 13000 florins

:

we have therefore 13^' = 13000, or .v' = 1000, and x = 10,

the number of officers required.

717. Question 4. Several merchants enter into partner-

ship, and each contributes a hundred times as many sequins

as there are partners ; they send a factor to Venice, to

manage their capital, who gains, for every hundred sc(juins,

twice as many sequins as there are partners, and he re-

turns with 2662 sequins profit. Required the number of

partners.

If this number be supposed ~jr, each of the partners

will have furnished 100^ sequins, and the whole capital

must have been lOOx'-; now, the profit being 2.r for 100,
the capital must have produced 2x^ ; so that 2.r^ — 2662,
or .2'^ = 1331 ; this gives ^ = 11, which is the number of

partners.

718. Quesiion 5. A country girl exchanges cheeses for

hens, at the rate of two cheeses for three hens ; whicli hens

lay each i as many eggs as there are cheeses. Farther, the

girl sells at market nine eggs for as many sous as each hen
had laid eggs, receiving in all 72 sous : how many cheeses

did she exchange ?

Let the number of cheeses = x, then the number of

hens, which the girl received in exchange, will be ^x, and
each hen laying ~x eggs, the number of eggs will be =^x'-.

Now, as nine eggs sell for \x sous, the money which ^x"

eggs produce is -^i-^x^, and ^x"' — 72. Consequently,

.r^ = 24 X 72 = 8 X 3 X 8 X 9 = 8 X 8 X 27, whence
X zz\2\ that is to say, the girl exchanged twelve cheeses

for eighteen hens.
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CHAP. XI.

Of the Resolution o/'Complete Equations qftlie Third
Degree.

719. An equation of the third degree is called complete,

when, beside the cube of the unknown quantity, it contains

that unknown quantity itself, and its square: so that the

general formula for these equations, bringing all the terms

to one side, is

ax"^ -±1 hx^ ±. ex ± d =. ^.

And the purpose of this chapter is to shew how we are to

derive from such equations the values of x, which are also

called the roots of the equation. We suppose, in the first

place, that every such an equation has three roots ; since it

has been seen, in the last chapter, that this is true even with

regard to pure equations of the same degree.

720. We shall first consider the equation x"^ — %x- +
Wx — 6 = 0; and, since an equation of the second degree

may be considered as the product of two factors, we may
also represent an equation of tlie third degree by the product

of three tactors, which are in the present instance,

(^ - 1) X {X - 2) X {x - 3) = 0;

since, by actually multiplying them, we obtain the given

equation ; for [x — V) x (-^ — 2) gives or — %x -\- 2, and
multiplying this by x — 3, we obtain x"^ — Gx''- -\- ILr — 6,

which are the given quantities, and which must be =0.
Now, this happens, when the product {x — 1) x {x — 2) x
{x — 3) =: ; and, as it is sufficient for this purpose, that

one of the factors become = 0, three different cases may give

this result, namely, when x — 1 = 0, or x = 1 ; secondly,

when r — 2 = 0, or ;r = 2 ; and thirdly, when ^^ — 3=0,
or X = S.

We see immediately also, that if we substituted for .r,

any number whatever beside one of the above three,

none of the three factors would become equal to ; and,

consequently, the product would no longer be ; which
proves that our equation can have no other root than these

three.

721. If it were possible, in every other case, to assign

the three factors of such an equation in the same manner,
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we should immediately have its three roots. Let us, there-

fore, cousider, in a more j^eneral manner, these three factors,

a-' —
J),

X — (/, a: — r. Now, if we seek their pi'oduct, the
first, multiplied by the second, gives x' — (p + gY^i^ -\- pq,
and this product, multiplied by x — ?•, makes

x^ — (y; -}- ^ -j- r)x" -f- {pq -\-pr -j- qr)x — i^^r.

Here, if this formula must become = 0, it may happen in

three cases : the first is that, in which x ~- p = 6, or x = p

;

the second is, when x — q = 0, or x =. q; the third is,

when .r — r =: 0, or a? = ?•.

722. Let us now represent the quantity found, by the

equation x^ — ax'^ + 6ar — c = 0. It is evident, in order
that its three roots may be a = p, a; = q, x = ?-, that we
must have,

1. a — p -\- q -\- r,

% b = pq -f-^r -}- qr, and
3. c = pqr.

We perceive, from this, that the second term of the equa-
tion contains the sum of the three roots; that the third term
contains the sum of the products of the roots taken two by
two ; and lastly, that the fourth term consists of the product
of all the three roots multiplied together.

From this last property we may deduce an important
truth, which is, that an equation of the third degree can
have no other rational roots than the divisors of the last

term ; for, since that term is the product of the three roots,

it must be divisible by each of them : so that when we wish
to find a root by trial, we immediately see what numbers
we are to use *.

For example, let us consider the equation, x"^ = a: -|- 6,

ox x^ — X — Q -=.0. Now, as this equation can have no
other rational roots than numbers which are factors of the

last term 6, we have only 1, 2, 3, 6, to try with, and the

result of these trials will be as follows

:

If a; = 1, we have 1 — 1 — 6=— 6.

lix = 2, we have 8-2-6 = 0.

If .r = 3, we have 27 - 3 - 6 = 18.

Ux = 6, we have 216 - 6 - 6 = 204.

Hence we see, that jr = 2 is one of the roots of the given

equation ; and, knowing this, it is easy to find the other two;

* We shall find in the sequel, that this is a general property

of equations of any dimension ; and as this trial requires us to

know all the divisors of the last term of the equation, we may for

this purpose Iiave recourse to the Tabic, Art. GG.



CHAP. XI. OF ALGEBRA. 255

for a: r= 2 being one of the roots, w — 2 is a factor of the

equation, and we have only to seek the other factor by
means of division as follows

:

.r - 2) ^' —X - 6 [x' + ^2x-\-2

x" — ^x"-

2^^- j; 6
2x"- — 4!X

Sx -6
3x - 6

0.

Since, therefore, the formula is represented by the product
{^x — 2) X (.r' -f- 2^ -{- 3), it will become —0, not only when
x — 2 =0, but also when x" + 2x -{- 3 zz 0: and, this last

factor gives x'
-f-

2a; — — 3 ; consequently,

X ~—l ± ^/— 2;

and these are the other two roots of our equation, which are

evidently impossible, or imaginary.

723. The method which we have explained, is applicable

only when the first term x^ is multiplied by 1, and the other

terms of the equation have integer coefficients; there-

fore, when this is not the case, we must begin by a pre-

paration, which consists in transforming the equation into

another form having the condition required ; after which, we
make the trial that has been already mentioned.

Let there be given, for example, the equation

V
as it contains fourth parts, let us make x = ~, which

will give

y 3V^ lly

8 4^8 T - "»

and, multiplying by 8, we shall obtain the equation

//'-Gj/^-f llj/-6 = 0,

the roots of which are, as we have already seen, 2/= !, J/=%
y = 3 ; whence it follows, that in the given equation, we
have a: = i, jr = I, x = i-.

724. Let there be an equation, where the coefficient of
the first term is a whole number but not 1, and whose last

term is 1 ; for example,

6x' - Ux' + 6x -1 = 0.
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Here, if we divide by C, we shall have o)^— Ux"' {x—^= 0;
which equation we may clear of fractions, by the method
just explained.

First, by making ^= -jr, we shall have

216 216
"^

6 ^"" '

and multiplying by 216, the equation will become

y — 111/- + 36?/ — o6 = 0. But as it would be tedious

to make trial of all the divisors of the number 36, and
as the last term of the original equation is 1, it is better

to suppose, in this equation, x zz — ; for we shall then

have — — + — 1=0, which, multiplied by z',

gives 6 — llz -j- 6z^ — z^ =: 0, and transposing all the

terms, z^ — Gx'^ + II2: — 6 = ; where the roots are z = 1,

z =z 9,, z =. 3; whence it follows that in our equation

X Tz I, X :z ^, X zz
J-.

725. It has been observed in the preceding articles, that

in order to have all the roots in positive numbers, the signs

plus and minus must succeed each other alternately ; by
means of which the equation takes this form,

x^ — ax"^ -{- bx — c = 0, the signs changing as many times

as there are positive roots. If all the three roots had been
negative, and we had multiplied together the three factors

X + jy, X -\- q, X -\- 7-, all the terms would have had the

sign plus, and the form of the equation would have been
x^ + ^^^ + ^^^' + c = 0, in which the same signs follow

each other three times; that is, the number of negative

roots.

We may conclude, therefore, that as often as the signs

change, the equation has positive roots ; and that as often as

the same signs follow each other, the equation has negative

roots. This remark is very important, because it teaches us

whether the divisors of the last term are to be taken affirma-

tively or negatively, when we wish to make the trial which
has been mentioned.

726. In order to illustrate what has been said by an ex-

ample, let us consider the equation x^-\-x'^— 3'i!X + 56 = 0,

in which the signs are changed twice, and in which the same
sign returns but once. Here avc conclude that the equation

has two positive roots, and one negative root ; and as these
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roots must be divisors of the last terra 56^ they must be in-

cluded in the numbers +1, 2, 4, 7, 8, 14, 28, 56.

Let us, therefore, make ^ = 2, and we shall have 8 +
4 _ 68 _|p 56 z= ; whence we conclude that x =z 2 is a

positive root, and that therefore .r — 2 is a divisor of the

equation, by means of which we easily find the two other

roots ; for, actually dividing by ,r — 2, we have

a- _ 2 ) x3 + :r^ _ 34x + 56 ( a" + 3:c — 28
X' _ 2*^

Sx- — 34a-

3x^ - 6x

- 28.r + 56
- 28x 4- 56

0.

And making the quotient ^r- -f 3a: — 28 == 0, we find the

two other roots ; which Avill be

X -= I ± ^/(l + 28) =: -
I- ± V ; that is, x = 4

;^
or

X = — 7 ; and taking into account the root found before,

namely, x = 2, we clearly perceive that the equation has

two positive, and one negative root. We shall give some

examples to render this still more evident.

727. Quest1071 1. There are two numbers, whose dif-

ference is 12, and whose product multiplied by their sum
makes 14560. What are those numbers.^

Let X be the less of the two numbers, then the greater

will be .r -\~ 12, and their product will be .r^ -|- 12x, which

multiplied by the sum 2x + 12, gives

Qx^ + 36i2 + 144^ = 14560;

and dividing by 2, we have

x^ -f 18^^- + 72.r = 7280.

Now, the last term 7280 is too great for us to make trial

of all its divisors ; but as it is divisible by 8, we shall make
x = 9.1/, because the new equation, 8?/' -1- 723/" + 144j/

= 7280, after the substitution, being divided by 8, will be-

come ?/' -\- 9j/" + 18^ = 910 ; to solve which, we need only

try the divisors 1, 2, 5, 7, 10, lo, &c. of the number 910 :

where it is evident, that the three first, 1, 2^ 5, are too

small ; beginning therefore with supposing y =-1, we im-

mediately find that number to be one of tlie roots ; for the

substitution gives 343 ~|- 44 1
-i-

126 = 910. It follo\vs,

therefore, that ^ = 14 ; and the two other roots will be

found by dividing y^ + 9;y- + 18y - 910 by y — 7, thus

:
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2/-7)y+ 9r + 18^- 910 (2/^ + 1% + 130

16y -f 18^
16y- - U2i/

130^/ - 910
130j/ - 910

0.

Supposing now this quotient /+ I6jj -{- 130 = 0, we
shall havey- + 1% = — 130, aud thence

?/=— 8 + \/— 66; a proof that the other two roots are

impossible.

The two numbers sought are therefore 14, and (14 +
12) = 26 ; the product of which, 364, multiplied by their

sum, 40, gives 14560.

728. Qjiestlon 2. To find two numbers whose difference

is 18, and such, that their sum multiplied by the difference

of their cubes, may produce 275184.
Let X be the less of the two numbers, then a- + 18 will be

the greater ; the cube of the first will be oc'^, and the cube of

the second

.r^ -f 54.^- -}- 9T2x -f 5832

;

the difference of the cubes
54.1- + 972j: + 5832 = 54 (a:' + 18.r + 108),

which multiplied by the sum 2a' -\- 18, or 2 (j; + 9), gives

the product

108 (.r"^ -f 27^'- + 270a- + 972) = 275184.

And, dividing by 108, we have

^3
_l_

27^2 4. O70a- + 972 = 2548, or

x^ + 27^- + 270a- = 1576.

Now, the divisors of 1576 are 1, 2, 4, 8, &c. the two first of

which are too small ; but if we tr}-^ a; = 4, that number is

found to satisfy the terms of the equation.

It remains, therefore, to divide by x — 4, in order to find

the two other roots ; which division gives the quotient

x^ •\- Q\x + 394; making therefore

a"- 4- 31a: = - 394, we shall find

^= - V V±e|' - 'V')'
that is, two imaginary roots.

Hence the numbers sought are 4, and (4 + 18) = 22.

729. Question 3. Required two numbers whose dif-

ference is 720, and such, that if the less be multiplied by the

square root of the greater, the product may be 20736.



CHAP. XI. OF ALOEBKA. 259

If the less be represented by a:, the greater will evidently

be X- + 720 ; and, by the question,

X ^/{x + 720) = 20736 = 8 . 8 . 4 . 81.

Squaring both sides, we have

x^ {x 4- 720) = A,- -I- 720.r- = S'^ . 8^ . 4- . 81 «.

Let us now make cC =: 8^ ; this supposition gives

d>Y + 720 . Sy - 8^ .
8''

. 4^ . 81^

;

and dividing by 8\ we have if' -j- 90j/^ — 8 . 4"
. 81 ^•

Farther, let us suppose y = Qz, and we shall have
8;2^ + 4 .

902'^ = 8 . 4\ 81" ; or, dividing by 8,

z^ + 452^ = 4- . 812.

Again, make z = 9^^, in order to have, in this last equa-

tion, 9^«^ + 45 . Q'u" = 4"
. 9^ because dividing now by 9\

the equation becomes u^ -}- Su" n 4- . 9, or

u"{u + 5) = 16 . 9 =: 144; where it is obvious, that?/ =4;
for in this case u" — 16, and u + 5 = 9 : since, therefore,

u =: 4, we have z = 36, j/ = 72, and x = 576, which is the

less of the two numbers sought ; so that the greater is 1296,
and the square root of this last, or 36, multiplied by the

other number 576, gives 20736.
730. Remark. This question admits of a simpler solu-

tion ; for since the square root of the greater number, mul-
tiplied by the less, must give a product equal to a given

number, the greater of the two numbers must be a square.

If, therefore, from this consideration, we suppose it to be x-y

the other number will be x"^ — 720, which being multiplied by
the square root of the greater, or by x, we have
x^ - 720.r - 20736 = 64 . 27 . 12.

If we make x = 4j/, we shall have

Q^f - 720 . 4^ = 64 . 27 . 12, or

y _ 45j/ = 27. 12.

Supposing, farther, y = Sz, we find

27z3 - 135r = 27 . 12 ; or, dividing by 27, z* - 5z = 12,

or 23 _ 5^r ~ 12 = 0. The divisors of 12 are 1, 2, 3, 4, 6,

12 : the first two are too small ; but the supposition of

2 = 3 gives exactly 27 — 15 — 12 = 0. Consequently,

2 = 3, ?/ =: 9, and x = 36 ; whence we conclude, that the

greater of the two numbers sought, or x'\ = 1296, and that

the less, or x" — 720, = 576, as before.

731. Question 4. There are two numbers, whose dif-

ference is 12; the product of this difference by the sum of

their cubes is 102144 ; what are the numbers?
Calling the less of the two nvmribers x, the greater will be

.r -I- 12 : also the cube of the first is x^, and of the second

s2
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x^ 4- 36-r' -f 432j; -j- 17^8 ; the product also of the sum of

these cubes by the difference 12, is

12 (2.r3 + S6x^ + 432a: + 1728) = 102144

;

and, dividing successively by 12 and by 2, we have

^3 _^ lg^^^ 4- 216^7 -f 864 = 4256, or

x^ 4 18r- -j- 216^ = 3392 = 8 . 8 . 53.

If now we substitute x :=. 2?/, and divide by 8, we shall

have 7/3 + 9^^ 4. 54// 1= 8 . 53 = 424.

Now, the divisors of 4'24 are 1, 2, 4, 8, 53, &c. 1 and 2
are evidently too small ; but if we make y = 4, we find

64 4- 144 -1^ 216 = 424. So that 3/ = 4, and ^ = 8;
whence we conclude that the two numbers sought arc 8 and
(8 4- 12) = 20.

732. Question 5. Several persons form a partnership,

and establish a certain capital, to which each contributes ten

times as many pounds as there are persons in company :

they gain 6 p/us the number of partners per cent ; and the

whole profit is 392 pounds : I'equired how many partners

there are ?

Let .r be the number required ; then each partner will

have furnished lOx pounds, and conjointly IOj^''' pounds;
and since they gain a: -[- 6 per cent, they Avill have gained

with the whole capital, —^ „ , which is to be made equal

to 392.

We have, therefore, x^ -\- 6.r' = 3920, consequently,

making x = 9,7/, and dividing by 8, we have

7/ + 3j/- == 490.

Now, the divisors of 490 are 1, 2, 5, 7, 10, &c. the first

three of which are too small ; but if we suppose y z=.l, we
have 343 4- 147 = 490 ; so that y -1, and x = 14.

There are therefore fourteen partners, and each of them

put 140 pounds into the common stock.

733. Question 6. A company of merchants have a com-

mon stock of 8240 pounds ; and each contributes to it forty

times as many pounds as there are partners; with which

they gain as much per cent as there are partners : now, on

dividing the profit, it is found, after each has received ten

times as many pounds as there are persons in the company,

that there still remains 224/. Required the number of mer-

chants ?

If <r be made to represent the n^umber, each will have con-

tributed 40.r to the stock ; consequently, all together will

have contributed 40x-, which makes the stock
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= 40cr- + 8240. Now, with this sum they gain ^ per cent

;

so that the whole gain is

100 ^ 100 ~"° \-To^-s-^ -f r ^

From wliich sum each receives lOi', and consequently they

all together receive lOa--, leaving a remainder of 224 ; the

profit must therefore have been 10.r- -f- 224, and we have

the equation

=i+ !^:::,.10.r^ + oo4.

5 5

Multiplying by 5 and dividing by 2, we have x^ -}- 206x =
25.r^ + 560, or w' - 25a^" -f- 206^7 - 560 == : the first,

however, will be more convenient for trial. Here the divisors

of the last term are 1, 2, 4, 5, 7, 8, 10, 14, 16, &c. and they

must be taken positively ; because in the second form of the

equation the signs vary three times, which shews that all the

three roots are positive.

Here, if we first try x = 1, and j; =z 2, it is evident that

the first side will become less than the second. We shall

therefore make trial of other divisors.

When X zz 4, we have 64 + 824 = 400 + 560, which

does not satisfy the terms of the equation.

If a- = 5, we have 125 + 1030 = 625 -|- 560, which like-

wise does not succeed.

But if X = 7, we have 343 + 1442 = 1225 + 560,

which answers to the equation ; so that a; = 7 is a root of

it. Let us now seek for the other two, by dividing the

second form of our equation by ,r — 7.

;r.
- 7 )

^3 _ 25^2 J. qqqy _ 560 ( x^ - 18.r -f 80
x^ - 7^"

- 18^^' -h 206^-

- 18^" 4- 126a;

80a' - 560
80r - 560

0.

Now, making this quotient equal to nothing, we have

x" — 1807 4- 80 = 0, or .r"- - iS.r = - 80 ; which gives

07 = 9 + 1, so that the two other roots are ^ = 8 ; or

o; = 10.

This question therefore admits of three answers. Accord-

ing to the first, the number of merchants is 7 ; according to
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the second, it is 8 ; and, according to

following statement shews, that all

conditions of the question

:

Number of merchants - - _ _

Each contributes 40.r _ _ - .

In all they contribute 40^^'^ _ - _

The original stock was - - - -

the third, it is 10. The
these will answer the

The whole stock is 40^"- + 8240

With this capital they gain as

much per cent as there are

partners -------
Each takes from it - _ - -

}

So that they all together take lO^r^

Therefore there remains _ - -

7 8 10

280 320 400

1960
8240

2560
8240

4000
8240

10200 10800 12240

714 864 1224

70 80 100

490 640 1000

224 224 224

CHAP. XII.

Ofthe Rule o/' Cardan, or o/'Scipio Ferreo.

734. When we have removed fractions from an equation

of the third degree, according to the manner which has been
explained, and none of the divisors of the last term are

found to be a root of the equation, it is a certain proof, not

only that the equation lias no root in integer numbers, but
also that a fractional root cannot exist; which may be
proved as follows.

Let there be given the equation x^ — ax" -\- bx — c = 0,

in which, a, b, c, express integer numbers. If we suppose,

for example, x zz |, we shall have y — ^a + \b — c = 0.

Now, the first term only has 8 for the denominator ; the

others being either integer numbers, or numbers divided

only by 4 or by 2, and therefore cannot make with the

first term. The same thing happens with every other

fraction.
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735. As ill those fractions the roots of the equation are

neither inteoer numbers, nor fractions, they are irrational,

and, as it often liappens, imaginary. The manner, tliere-

fore, of expressing them, and of determining the radical

signs which affect them, forms a very important point, and
deserves to be carefully explained. This method, called Car-
dans Rule, is ascribed to Cardan, ov move \iro\)ev\y X.o Scipio
Ferreo., both of whom lived some centuries since*.

736. In order to understand this rule, we must first at-

tentively consider the nature of a cube, whose root is a

binomial.

Let « + ^ be that root ; then the cube of it will be
a^ -|- 3a-Z» -}- oah" -{- &^, and we see that it is composed of

the cubes of the two terms of the binomial, and beside that,

of the two middle terms, 3«'-6 -j- 3«6^ which have the com-
mon factor 3a6, multiplying the other ftictor, a + 5 ; that is

to say, the two terms contain thrice the product of the two
terms of the binomial, multiplied by the sum of those terms.

7o7. Let us now suppose ^ = a -f 6 ; taking the cube of

each side, we have x^ — a^ ^ b^ -f Qab {a + b) : and, since

a -]- 6 = x,\ve shall have the equation, x^ = a^ + b^ + Qabx,

or .r' = Sabx + a^ + 6^, one of the roots of which we know
to be ^ == a + b. Whenever, therefore, such an equation

occurs, we may assign one of its roots.

For example, let « =z 2 and Z» = 3 ; we shall then have
the equation .r^ = 18.r -i- S5, which we know with certainty

to have j; — 5 for one of its roots.

738. Farther, let us now suppose d-^ = p, and P zz q; we
shall then have a = l/p and b — l/q, consequently, ab = Vpq;
therefore, whenever we meet with an equation, of the form
x^ = 3x\/pq + p + q, we know that one of the roots is

^p + \/q.

Now, we can determine p and q, in such a manner, that

both Sl/pq and ]) + q niay be quantities equal to detei*-

minate numbers ; so that we can always resolve an equation

of the third degree, of the kind which we speak of.

7o9. Let, in general, the equation x^ "^-f^ + g be pro-

posed. Here, it will be necessary to comparey with ^i/pq,
and g with p -\- q'-, that is, we must determine p and q in

* This rule when first discovered by Scipio Ferreo was only

for particular forms ofcubics, but it was afterwards generalised

by Tartalea and Cardan. See Montucla's Hist. Math. ; also Dr.

liutton's Dictionary, article Algebra; and Professor Bonny-

castle's Introduction to his Treatise on Algebra, Vol. 1. p.

;iii— XV.
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such a manner, that ^lypq may become equal to
J', and

p -\- q "= g'-, for we then kno^v that one of the roots of our

equation will be x — l/p -\- l/q.

740. We have therefore to resolve these two equations,

3Vpg =y;
v-\-q = g-

The first gives \/j)q = '^; or pq = — z= ^\f\ and

4fpq = -^-jP'
'^^^ second equation, being squared, gives

V~ ~r '^P^
~~ q" = g^ '•> if we subtract from it 4/;<7 = -^-rf'^

we have (f
— 9.pq + 5- — g"- — -i-rpt and taking the

square root of both sides, wc have

Now, since p -|- q = g, v.e have, by adding p -\- q to one

side of the equation, and its equal, g^ to the other, 2/; =
g + \^{g' ~" -^tP) '•> ^^^^5 ^y subtracting p — q from p -\- q^

we have 9.q :=. g ~ \^[g'^ — -^rf^) '•> consequently,

g + .^{g^ 4rf') _, _g- ^ng- - ^P)
2P - - '"0 ""

^^^^ q-

711. In a cubic equation, therefore, of the form x" =
Jjc -\- g, whatever be the numbersyand g, we have always

for one of the roots

X = v/( ^ )~irv{
^

)'

that is, an irrational quantity, containing not only the sign

of the square root, but also the sign of the cube root ; and

this is the formula which is called the Rule of Cardan.
742. Let us apply it to some examples, in order that its

use may be better understood.

Let x"^ = 'ox -|- 9. First, we shall havey*= 6, and^- = 9 ;

so that g^ = 81, f = 216, -^p = S2; then

^2 _ _A_f3 _ 49, and V{g- - /y/"') = 7. Therefore, one

of the roots of the given equation is

qj_7 o_7

2 + 1=3.
743. Let there be proposed the equation x^ = 3x -{- 2.

Here, we shall havey zz 3 and ^ = 2 ; and consequently,

g" — 4,
/3 — 07^ jjj^j iT.f^ — ^ 5 which gives

^/(g- — z%-f^) = ^^ '> whence it follows, that one of the

24-0 2-0
roots is X = V(-5-)-fi/(-Z7-) = 1 + '. = 2.
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744. It often happens, however, that, though such an
equation has a rational root, that root cannot be found by
the rule which we are now considering.

Let there be given the equation ^' :=. 6x + 40, in which
.JT =: 4 is one of the roots. We have herey ~ 6 and ^ =: 40

;

farther, g" - 1600, and ^V/^ = 32 ; so that

g~ - 4yf^ =1568, and V(^^ - 4r.P) = ^^1568 = . ...

^/(4 . 4 . 49 . ^) :=: 28 V^ ; consequently one of the roots

will be

40-^-28 ^/2 „ 40-28s/2
-"' = '^' ^"2

) + ^^ o -^) o^

'.r = </(50-i-14 v'2) + ^(20-14 ,/2)

;

which quantity is really = 4, although, upon inspection, we
should not suppose it. In fact, the cube of 2-f- V2 being

20 + 14 ^/2, v/e have, reciprocally, the cube root of 20 +
14 V2 equal to 2 -f a/2; in the same manner, ^(20 —
14 v2) = 2 — v/S ; wherefore our root x = 2 + v2 -h
2- a/2 = 4*.

745. To this rule it might be objected, that it does not

extend to all eqviations of the third degree, because the

square of x does not occur in it ; that is to say, the second

term of the equation is wanting. But we may remark, that

every complete equation may be transformed into another,

in which the second term is wanting, which will therefore

enable us to apply the rule.

To prove this, let us take the complete equation ^^ —
6^"^ -f 11 J-' — 6 = 0: where, if Ave take the third of the

coefficient 6 of the second term, and make x — 2 =: «/, we
shall have

.r = 2/ -f 2, X- = if + 4?/ + 4, and
x^ - y^ + Qf -\- 12?/ -f 8 ;

Consequently, x'^ = y^-^Qy^ -\- 12y -\- 8
- 6x'' = — 6z/2 - 247/ — 24
lLr:= ll3/-{-22
-6= — 6

or, x^ — Qx^ + 11.1' — 6 = y"' — y.
We have, therefore, the equation y"' — y =. 0, the resolu-

* We have no general rules for extracting the cube root of
these binomials, as we have for the square root ; those that have
been given by various authors, all lead to a mixt equation of the
third degree similar to the one proposed. However, when the
extraction of the cube root is possible, the sum of the two
radicals which represent the root of the equation, always be-
comes rational; so that v/e may find it immediately by the
method explained, Art. 722. F. T.
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tion of which it is evident, since we immediately perceive

that it is the product of the factors

y[y'- i)=3/(.y + i) X (j/-i) = o.

If we now make each of these factors = 0, we have

\^X = % \^X = 1, \X = V>y

that is to say, the three roots whicli we have already found.

746. Let there now be given the general equation of the

third degree, x'^ -j- ax^ -\- hx -\- c =^ ^^ of which it is re-

quired to destroy the second term.

For this purpose, we must add to x the third of the co-

efficient of the second term, preserving the same sign, and
then write for this sum a new letter, as for example t/, so

that Ave shall have x -\- ~a ^^ y, and x = y — i^a\ whence
results the following calculation :

-^ = «/ - T«» ^~ = «/* - T«y + ia".

and x'^ = y^ -

Consequently,

-^y' + \f^"y- ^«^;

x-' — y^ — ay"- + T«'j/
-

Vt«'
ax" =
bx =

ay"- -
hy - \ah

c = c

or,y' - (I« - f^)y + ^aV- ~ah -f- c = 0,

an equation in which the second term is wanting.

747. We are enabled, by means of this transformation, to

find the roots of all equations of the third degree, as the fol-

lowing example will shew.

Let it be proposed to resolve the equation

^3 _ Q,x-^\^x — YZ =0.
Here it is first necessary to destroy the second term ; for

which purpose, let us make x — 2 ^= y^ and then we shall

have X = y -T 2, x- r= j/^ -f 4«/ -f- 4, and x'^ = y^ -{- 6?/'- ^-

I2y -j- 8 ; therefore,

<i-3 =y' -\- Qy'- + 12// + 8
— 6^* = - Qf - 2% - 24
\Qx =z IQy + 26

- 12 = - 12

which gives y^ -{- y — 2 =0 ; or y^ = — j/ + 2.

And if we compare this equation with the formula, (Art.

741) x^ '=-fa +^, we have_/"= — 1, and ^ = 2; where-

fore, g^ = 4, and JV/' = - tV ; also, g^ - 4jf^=
4v'21

4 + tV = VT%andV(^'^--,\/3)=: v^Vr^ =-9—'
consequently.
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or

2v/21 , , 2 x/21
^ r: -^(1 + -^ ) +y(l - -^ ), or

2^21 2^/21

^^27+6^/21 27-6 V21
«/ = ^( ^— ) +i/( ^ )or

y = i^(27H- 6 v/21) (+ tV(27 - 6 y21)

;

and it remains to substitute this value in x = i/ -{- Q.

748. In the solution of this example, we have been

brought to a quantity doubly irrational ; but we must not

immediately conclude that the root is irrational : because the

binomials 27 + 6 \/21 might happen to be real cubes; and

this is the case here ; for the cube of

3+V/21, . 216+48^/21 _ ,
_ ^^^ . . ., ,

^—~— bemg '— = 27 -{- 6 -s/21, it follows that

the cube root of 27 + 6 ^21 is ^ , and that the cube

3— /21
root of 27 — 6 s/21is —^— . Hence the value which we

found for y becomes

3-fv/21, 3-^/21
,'j = i{—i— )+t(—^— ) = 4 + l = l.

Now, since 2/ = 1 , we have x = 3 for one of the roots of the

equation proposed, and the other two will be found by

dividing the equation by d' — 3.

X — 3 ) .r^ — 6x^ + 13x - 12 {x"- - 3.r + 4

x^ — Sx"

- Sx- + I3x
- 3^2 + 9^

^x — 12

4^-12

0.

Also making the quotient x'^ — Sx -1-4 = 0, wc have

jf- = 3.r — 4 ; and
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which are the other two roots, but they are imaginary.

749. It was, however, by chance, as we have remarked,
that we were able, in the preceding example, to extract the

cube root of the binomials that we obtained, which is the

<;ase only when the equation has a rational root; con-

sequently, the rules of the preceding chapter are more easily

employed for finding that root. But when there is no
rational root, it is, on the other hand, impossible to express

the root which we obtain in any other way, than according

to the rule of Cardan ; so that it is then impossible to apply
reductions. For example, in the equation .r^ rr 6jr + 4, we
haveyz: 6 and g = 4; so that x =^/{2 + ^ ,,/ ~ 1) +
y/(2 - 2 A-/

— 1), which cannot be otherwise expressed *.

* In this example, we have
-^--J^^

less than ^% which is the

well-known irreducible case; a case which is so much the more
remarkable, as the three roots are then always real. We cannot
here make use of Cardan's formula, except by applying the

methods of approximation, such as transforming it into an infinite

series. In the work spoken of in the Note, Art. 40, Lambert has

given parlicukir Tables, by which we may easily find the nu-

merical values of the roots of cubic equations, in the irreducible,

as well as tJie other cases. For this purpose we may also em-
ploy the ordinary Tables of sines. See the Spherical Astro-

nomy of Mauduit, printed at Paris in 1765.

In the present work of Euler, we are not to look for all that

might have been said on the direct and approximate resolutions

of equations. He had too many curious and important objects,

to dwell long upon this ; but by consulting VHistoire des Ma-
thematiques, fAlgebrc de M. Clairaut, le Cours de Mathematiques

de M. Bezont, and the latter volumes of the Academical Me-
moirs of Paris and Berlin, the reader will obtain all that is known
at present concerning the resolution of equations. F. T.

For a clear and explicit investigation of this method, the

reader is also referred to Bonnycastle's Trigonometry ; from

which the following formulae for the solution of the different

-cases of cubic equations are extracted.

1 . x^ -\- px — q = 0.

/; 3 3

Put — (—)" = tan. ~, and t/(tan. (1-5° — iz) ) = tan. u ;

2 p

Then x = 2 y^ ^ X cot. 2 u. Or, putting

Log. — + 10 — 4 log. ~z=. log. tan. 2:, and
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QUESTIONS FOR PRACTICE.

1. Given y"^ + 30?/ = 117, to determine y. Ans.y = 3.

2. Given y^ — S6y = 91, to find the value ofy.

Ans. // ~ 7.

^- (log. tan. (45° — ^z)+ 20) = log. tan. n,

4n
= ^'og--^ +log. <

2. x^ -\- px -{• q -zz 0,

4p
Then log. x= i, log. -^ + log. cot. 2m— 10.

Put -|-(— ) ^ = tan. z, and ^(tan. (45° — ^;2) ) = tan. u.

,;^Then x—~1 v'— X cot. 2 z/. Or, putting
3

Log. -i-
-f 10 — 4 log. -^ = log. tan. z, and

4- (log. tan. (45° — 4x) + 20) = log. tan. u.

Then log. x = 10 — 4 log. -~ — log. cot. 2 ?<.

3. -i'^ — 290: — y = 0.

2 » '

This form has 2 cases, according as— (^)^isless,or greater
q o

than 1.

2 p
In the 1st case, put — ( -^ )^ = cos. s.

^r 3

And 3/(tan. 45° - 4 ;:) ) = tan. m ;

Then x ='2. V-|- x cosec. 2 ?«. Or, putting

10 + 4 log. -^ log, -|- = log. cos. z, and

-^ (log. tan, (45° - \z) + 20) = log. tan. m;

4/3Then log. .r = 10 + log. -^ - log. sin. 2 ?/.

033
In the 2d case, put -|. (^-)

"^ = cos. z, and r will have the

3 following values

:

X = + 2 v^-^ X COS. -—
.) 3

.r = - 2 a/^- X COS. (GO" -^ -^ )

•'' = - 2 v'-f- X COS. (60° + -|- ) or,
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3. Given 'if- + 2% = 250, to find the value of ?/.

Ans. y = 5 '05.

4. Giveny - Sy —9,y~ — 8 = 0, to find y. Ans.y = 2.

Log. .r = 4- log. -^ + log. COS. -^ 10,

Log. X = i log. ^ + log. COS. (G0° - -|-) - 10,

Log. x = ^ log. ^ + log. COS. (60° + -|-) _ 10,

Taking the value of a;, answering to log. x, positively in the first

equation, and negatively in the two latter.

4. x^ ~ pA' -\- q = 0.

This form, like the former, has also two cases, according

2 p 4-

as — ( -^) ' is less, or greater than 1

.

g ^ 3 ^ *=

2 p ~
In the 1st case, put — (^^) = cos. z,go

And '^ (tan. (45° — Iz) ) = tan, m, as before

;

p
Then jr = — 2 -v/

—- cosec. 2 v. Or, putting
3

10 + -^log-"! log- -^ = log. COS. z, and

4-|log. (tan.45'' — 4z) + 20
j
= log. tan. u;

4«
Then, — log. x = 10 + log — log. sin. 2 ii.

3

a S I
In the 2d case, put -j—{— )

' = cos. z, and r will have the 3

following values

:

T^ = — 2 ^ -^ X cos. -—

^ = + 2 v^ -I- X COS. (60° - 4-)
o o

0- = + 2 V -|- X COS. (60° + -^ ). Or,

4n ir

Log. .T = 4- log. -— + log. COS. __ — 10,
o 6

Log. x — \ log. -^ + log. COS. (60° ^ ) - 10,
6 o

Log. a; = 4- log. -^ + log. COS. (60° + —)- 10,
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5. Given y^ + 3?/- + 9j/ = 13, to determine y.

Ans.y = 1.

6. Given x^ — %x =^ — 9, to find the value of x.

Ans. X zz — %.

7. Given x"^ — 6^^ + V)x = 8, to find x. Ans. x = 4.

8. Given i?^ _ '§.^ p = '4^°, to find;?. Ans. p = 8^-.

9. Given x^ — ^-^x = 2--, to find x. Ans. x = 2i-.

10. Given a^ — 91a = — 330, to find a. A7is. a in 5.

11. Given j/^ -- 19y zz 30, what is the value of3/?

Ans. y = 5.

Taking the vakie of .r, answering to log. x, negatively in the

first equation, and positively in the two latter.

As an example of this mode of solution, in what is usually

called the Irreducible Case of Cubic Equations, Let x^ — 3.r = 1,

to find its 3 roots.

(7 3 ' '

Here J (—)^ = 4. (^) ^=z 4- = . 5 = cos. 60° = z, hence

X = 2 */^ X cos.— =2 cos. 20" = 1 .8793852
o 3

x= -2 V^ X cos. (60° - ^) = — 2 003.40° r: — 1.5320888
3 3

a- = - 2 -v/-^^ X cos.(60° + 4) = - 2 cos. 80°= —0.3472964.
3 3

Also, let a' — 3x z= — 1, to find its three roots.

q 3 \i
Here, as before, —^(

—

)' =z . 5 = cos. 60° = z, hence
2 p

X = - 2 v/^ X cos. -^= -2 cos. 20° = - 1.8793852
3 3

X =- 2 V^ X cos. (60°—|-) = 2 cos. 40° = 1.5320888
3 3

j; = - 2 V— X cos. (60° + -^) = 2 cos. 80° = 0.3472964.
3 3

"Where the roots are the negatives of those of the first case.

For the mode of investigating these kinds of formulae, see,

in addition to the references ah-eady given, Cagnoli, Traite de
Trigon. and Article Irreducible Case, in the Supplement to Dr.
Hutton's Mathematical Dictionary.
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CHAP. XIII.

Of the Besolution o/'Equatlons of the Fourth Degree.

750. When the hlgliest power of the quantity x rises to

the fourth degree, we have equations of the fourth degree,

the general form of which is

x^ -f ax^ + hx" + ex + (Z = 0.

We shall, in the first place, consider pure equations of

the fourth degree, the expression for which is simply x^ =,/";

the root of Avhich is immediately found by extracting the

biquadrate root of both sides, since we obtain x ^^f
751. As x^ is the square of.r'', the calculation is greatly

facilitated by beginning with the extraction of the square

root ; for we shall then have x" = ^[f\ and, taking the

square root again, we have x = Xf:, so that i/f is nothing

but the square root of the square root of^^

For example, if we had the equation x^ — 2401, Ave should

immediately have x"^ rr 49, and then x = 7.

752. It is true this is only one root ; and since there are

always three roots in an equation of the third degree, so also

there are four roots in an equation of the fourth degree :

but the method which we have explained will actually give

those four roots. For, in the above example, we have not

only .r- = 49, but also a-^ = — 49; now, the first value gives

the two roots x = ^ and x z^ — 7, and the second value

a^ = V- 49, ==7 ^/-l, and x = — ,/- 49 =
- 7 v^ ~ 1 ' which are the four biquadrate roots of 2401.

The same also is true with respect to other numbers.

753. Next to these pure equations, we shall consider

others, in which the second and fourth terms are wanting,

and which have the form .r* + fo'^ + g = 0. These may be

resolved by the rule for equations of the second degree ; for

if we make x'^ — ?/, we have y^ -^fy + ^ — 0, or

y" = —fy — g, whence we deduce

Now, x^-=Ly\ so that .r = ± a^(-^ ^ h i'^

which the double sijjns + indicate all the four roots.

&
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754. But whenever the equation contains all the terms, it

may be considered as the product of four factors. In fact,

if we multiply these four factors together, (x — />) x
(.c — q) X {x — 1-) X (x — s), we get the product .i'* —
{p + g + r + s) .x^ + {pq + pr + ps -\- qr + qs + rs) x'^

— (pt/r + pqs + prs + qrs) x + pqrs\ and this quantity

cannot be equal to 0, except when one of these four factors

is = 0. Now, that may happen in four ways

;

1. when X z=.p\ % when x =: q;
S. when x = r; 4. when x — *

;

and consequently these are the four roots of the equation.

755. If we consider this formula with attention, we ob-

serve, in the second term, the sum of the four roots multi-

plied by — x'' ; in the third term, the sum of all the possible

products of two roots, multiplied by x- ; in the fourth term,

the sum of the products of the roots combined three by
three, multiplied by — .r; lastly, in the fifth term, the pro-

duct of all the four roots iiiultiplied together.

756. As the last term contains the product of all the roots,

it is evident that such an equation of the foiu'th degree can

have no rational I'oot, which is not a divisor of the last term.

This principle, therefore, furnishes an easy method of de-

termining all the rational roots, when there are any ; since

we have onlv to substitute successively for x all the divisors

of the last term, till we find one which satisfies the terms of

the equation : for having found such a I'oot, for example,

a: = p, we have only to divide the equation by a: — p, after

having brought all the terms to one side, and then suj^poso

the quotient = 0. We thus obtain an equation of the third

degree, which may be resolved by the rules already given.

757. Now, for this purpose, it is absolutely necessary

that all the terms should consist of integers, and that tlic

first should have only imity for the coefficient ; whenever,

therefore, any terms contain fractions, we must begin by de-

stroying those fractions, and this may always be doTic by
substituting, instead cf ^', the quantity j/, divided by a num-
ber which contains all the denominators of those fractions.

For example, if we have the equation

as we find here fractions which have for denominators 2, 3,

and multiples of these numbers, let us suppose x — ^, and

we shall then have
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an equation, which, multipUcd by 6*, becomes

if - Qf + 12?/^ - 16%/ + 72 = 0.

If we now wish to know whether this equation has rational

roots, we must write, instead of j/, the divisors of 72 suc-

cessively, in order to see in what cases the formula would
really be reduced to 0.

758. But as the roots may as well be positive as negative,

we must make two trials with each divisor ; one, supposing

that divisor positive, the other, considering it as negative.

However, the following rule will frequently enable us to

dispense with this*. Whenever the signs + and — suc-

ceed each other regularly, the equation has as many positive

roots as there are changes in the signs ; and as many times

as the same sign recurs without the other intervening, so

many negative roots belong to the equation. Now, our

example contains four changes of the signs, and no suc-

cession ; so that all the roots are positive : and we have no
need to take any of the divisors of the last term negatively.

759. Let there be given the equation

X* + 2^3 _ 7^2 _ 8:c + 12 = 0.

We see here two changes of signs, and also two successions ;

whence we conclude, with certainty, that this equation con-

tains two positive, and as many negative roots, which must
all be divisors of the number 12. Now, its divisors being

1, 2, 3, 4, C, 12, let us first try x = + \, which actually

produces 0; therefore one of the roots is ^r = 1.

If we next make .v = — 1, we find +1— 2 — 7 + 8-^
12 = 21— 9= 12: so that d' = — 1 is not one of the roots

of the equation. Let us nov^f make x = 2, and we again

find the quantity =0; consequently, another of the roots is

a: = 2 ; but .r = — 2, on the contrary, is found not to be a

root. If we suppose .?• = 3, we have 81 -\- 54 — 63 — 24
-|- 12 n 60, so that the supposition does not answer; but

x=-^, giving 81 — 54 - 63 -f 24 + 12 = 0, this is

evidently one of the roots sought. Lastly, when we try

X =— 4, we likewise see the equation reduced to nothing

;

so that all the four roots are rational, and have the following-

values : X = 1, or =: 2, .«' = — 3, and .r = — 4 ; and, ac-

* This rule is general for equations of all dimensions, provided

there are no imaginary roots. The French ascribe it to Des-

cartes, the English to Harriot ; but the general demonstratiou

of it was first given by M. I'Abbe de Gua. See the Memoires
de TAcademie des Sciences de Paris, for 1711. F. T.
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cordins: to the rule civcn above, two of these roots arc

positive, and the two others are negative.

760. But as no root could be determined by this method,

when the roots are all irrational, it was necessary to devise

other expedients for expressing the roots whenever this case

occurs ; and two diiferent methods have been discovered for

finding such roots, Avhatever be the nature of the equation of

the fourth degree.

But before we explain those general methods, it will be

proper to give the solution of some particular cases, which

may frequently be applied with great advantage.

761. When the equation is such, that the coefficients of

the terms succeed in the same mamier, both in the direct

and in the inverse order of the terms, as happens in the fol-

lowing equation *

;

cc* -|- mx"' + ihv^ -f- m.v + 1 i= ;

or in this other equation, which is more general

:

x^ -j- incLt^ + na^.v" + ina^.v -j- a^ = ;

we may always consider such a formula as the product of
two factors, which are of the second degree, and are easily

resolved. In fact, if we represent this last equation by the

product

(.r- -\- j^ax -\- a-) x (x- -{- qax -\- a) — 0,

in which it is required to determine y:> and g in such a man-
ner, that the above equation may be obtained, we shall find,

by performing the multiplication,

^* -{- ip + q)ax^ 4- {j)q + 2)a^.r" -f- {p + q)a"x -\- a^ = \

and, in order that this equation may be the same as the

former, we must have,

1. 2J-\-q= m,
2. j)q \-^ = 11^

and, consequently, jiq =zn — 2.

* These equations may be called reciprocal^ for they are not

at all changed by substituting — for x. From this property it

follows, that if c, for instance, be one of the roots, — willbeone
a

likewise ; for which reason such equations may be reduced to

others of a dimension one half less. De Molvre has given, in

his Miscellanea Analytica, page 71, general formula? for the re-

duction of such equations, whatever be their dimension, F. T.

See also Wood's Algebra, the Complement des Eleraens

d'Algebra, by Lacroix, and Waring's Medit. Algeb. chap. 3.
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Now, squaring the first of those equations, we have
p'j

-f- 2pq 4" 5^ — '''^' ' ^ncl if from this we subtract the

second, taken four times, or ^pq =z in — 8, there remains

jf — 2pg -\- q'^ =. ni^ — 4/i 4" 8 ; and taking the square root,

we find p — q =. ^/(?7^^ — 4/i -+ 8) ; also, p -\- q = 7n; we
shall therefore have, by addition, 2p =^vi-\-\/{m-—4:7i-\-8),

m+ V{m-~4n-\-8)
or p = ; and, by svibtraction, xq = m

?»— \/(77i-— 4w-(-8) T_ ,— ^/(m2 — ^n + 8), ox q- ^^j . Havnig

therefore found p and q^ we have only to suppose each

factor = 0, in order to determine the value of x. The first

gives x^ -{- pax -\- a" = 0, ox x"- -iz. — pax — a^^ whence we

obtam ^ = - ^ ± V{^ - a'),

pa
ox X ---^ ± i-a^/^jj- - 4).

The second factor gives ^ =— ~^ + i^\/('/ ~ 4')^

and these are the four roots of the given equation.

762. To render this more clear, let there be given the

equation x* — 4.r' — 3.r- — 4.r + 1 =0. We have here

a ~ 1, 7/i =— 4, 71 n — 3 ; consequently, in-— 4« + 8 =36,
and the square root of this quantity is rr 6; therefore

-4+6 , , -4-6
^ ,

,

p = —^— = 1, and q =—-— = — 5 ; whence result

the four roots,

1st and 2d X = - ^ ± i v/ - 3 = ^-^- ; and

5+ -v/Sl
3d and 4th x = | ± 4V21 = -"^^ ; that is, the

four roots of the given equation are

:

-l+^/-3 , -1-./-3
1. X z=

2

5+ ^/21
, 5-V/21

3. a: = —2—

,

4. .r = -^— .

The first two of these roots are imaginary, or impossible

;

but the last two are possible; since we may express \/21 to

any degree of exactness, by means of decimal fractions. In

fact, 21 being the same with 21-00000000, we have only to

extract the square root, which gives 'v/21 r: 4"5825.
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Since, tlicrefore, \^2l = 45825, the third root is very

nearly a: = 4-T912, and the fourth, .r =r 0-2087. It would

have been easy to have determined these roots with still

more precision: for we observe that the fourth root is very

nearly -^g, or i, Avhich value will answer the equation with

sufficient exactness. In fact, if we make x = -^^ we find

fi It - tIt - i:t - -^ + 1 = oW-. We ouo-ht however to

have obtained 0, but the difference is evidently not great.

76?3. The second case in which such a resolution takes

place, is the same as the first with regard to the cocfiicients,

but differs from it in the signs, for we shall suppose that the

second and the fourth terms have different signs ; such, for

example, as the equation

a;^ -J- 7ncLv^ ^- na'j:'^ — ma^x -f a* = 0,

which may be represented by the product,

(x^ + j)(Lv — a") X (cT- + qax - a^) = 0.

For the actual multiplication of these factors gives

^'' -\- {p + q)ax'^ + {pq — ^)arx" — {p \- q)a^x + «>,

a quantity equal to that which was given, if we suppose,

in the first place, p -\- q = m, and in the second place,

pq — 2 = 11, or pq :=z n -\- Q ; because in this manner the

fourth terms become equal of themselves. If now we square

the first equation, as before, (Art. 761.) we shall have
p^ + 2.pq -\- q- =: m' ; and if from this we subtract the

second, taken four times, or i<pq = 4?i + 8, there will re-

main p' — 9,pq + q- =. 711^ — 4« — 8 ; the square root of

which IS p — q — */(rti" - 4i7i — 8), and thence, by adding
p7i -\- q = m, we obtain

1/1 {- ^/{m-— 4;n — 8)
p = ^ ; and, by subtracting p -[ q, ...

q — -^ . Having therefore found ^j and </,

we shall obtain from the first factor (as in Art. 761.) the

two roots .r n — ~pa + \-a \/{p- + 4), and from the second

factor the two roots x ^l— -Iqa + \a ^'{q" + 4), that is, we
have the four roots of the equation ])n)j>i)sed.

764. Let there be given the equation

x' - 3 X 2*- + 3 X 8.r -f 16 - 0.

Here we have « = 2, w = — 3, and n iz 0% so that

A/(«i^ — 4« — 8) = 1, = ^ — <^; and, consequently,

-3+1 -3-1
p = —^j

— = ~ I, and q - —^y- = - ^.

Therefore the first two roots are ^ =: 1 ± v'' 5, and the
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last two are .r = 2 + v'8 ; so that the four roots sought

will be,

1. xzzl + V5, 2. J7 = 1 - V5,
3. X-2 + VS, 4. .r = 2 -^S.

Consequently, the four factors of our equation will be

(a? - 1 - a/5) X (^ - 1 + v/ 5) X {x - 2 — x/S) x
{x — ^ -\- a/8), and their actual multiplication produces

the given equation ; for the first two being multiplied to-

gether, give cV-—'2x— 4i, and the other two give x-— 4.r— 4:

now, these products multiplied together, make x* — 6^"^ -\-

24x + 16, which is the same equation that was proposed.

CHAP. XIV.

Of the Rule of Bombelli Jbr reducing the Resolution of
Equations o/" the Fourth Degree to that o/"Equations (^
the Third Degree.

765. We have already shewn how equations of the third

degree are resolved by the rule of Cardan ; so that the prin-

cipal object, with regard to equations of the fourth degree,

is to reduce them to equations of the third degree. For it

is impossible to resolve, generally, equations of the fourth

degree, without the aid of those of the third ; since, when
we have determined one of the roots, the others always

depend on an equation of the third degree. And hence

we may conclude, that the resolution of equations of higher

dimensions presupposes the resolution ofall equations oflower

degrees.

766. It is now some centuries since Bombelli, an Italian,

gave a rule for this purpose, which we shall explain In this

chapter *.

Let there be given the general equation of the fourth

degree, .r^ + ax^ + bx'^ + ex + d = 0, in which the letters

«, 6, c, d, represent any possible numbers; and let us

suppose that this equation is the same as (x^ -\- \ax -\-pY—
{qx -\- rY = 0, in which it Is required to determine the let-

ters jo, 2', and ?•, in order that we may obtain the equation

* This rule rather belongs to Louis Ferrari. It is improperly

called the Rule of Bombelli, in the same manner as the rule dis-

covered by Scipio Ferrco has been ascribed to Cardan. F. T
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proposed. 13y squaring, and ordering Uus new c([iuitioii,

wc shall have

x^ -J- ax^ -f-
i«'-.r'- + apx + jy-

9>px- — 2qrx — r'^

— q-x".

Now, the first two terms are already the same here as in

the given equation ; the third term requires us to make
ia^ 4- %p — q'' =z b, which gives f z= la" -\- '2p - b; die

fourth term shews that we must make ap — 2q7- = c, or

2qr = ap — c; and, lastly, we have for the last term

p' — r^ =. d, or r^ — p'^ — d. We have therefore three

equations which will give the values of j;, g, and r.

767. The easiest method of deriving those values from

dicm is the following: if we take the first equation four

times, we shall have ^(p = a" + 8/? - 4i ; which equation,

multiplied by the last, r" — p"^ — d, gives

45^r" = 8jw^ + (a"- - 46)j9^ - Sdp - d)Q^ — 46).

Farther, if we square the second equation, we have

4<^V^ = a-p- — %acp -j- c^ So that we have two values of

45'^r*, which, being made equal, will furnish the equation

8/;3 + («' - 4Z»)p^ - Sdp — d(ci^ - 46) = aY'-^acp + c\

or, bringing all the terms to one side, and arranging,

8;/ _ /^hp"~ + (^ac - 8d)p - a-d + Ud — c^ = 0,

an equation of the third degree, which will always give the

value of ;:> by the rules already explained.

768. Having therefore determined three values of p by

the given quantities a, h, c, d, when it was required to find

only one of those values, we shall also have the values of

the two other letters q and r ; for the first equation will

11 1 • ap — c
give q = '/[^a" -\- %> —6), and the second gives r = ——

*

Now, these three values being determined for each given

case, the four roots of the proposed equation may be found

in the following manner :

This equation having been reduced to the form

(x- + {;ax -\-p)- — {qx ~\- r)'- — 0, we shall have

{t' + \ax + pY - {qx -{- r)%

and, extracting the root, a-^ -\- -lax -\- p = q^ + t', or

x" -}- \ax -\- p — — qx — r. The first equation gives

X- =
((J
— \a)x — p -\- /•, from which we may find two

roots; and the second equation, to which we may give

the form x~ = — (gf -|- {a)x ~ p - r, will furnish the two

other roots.
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769. Let us illustrate this rule by an example, and sup-
pose that the equation

.T* _ 10x3 -f Q5x' - 50^^ + 24 =
was given. If we compare it with our general formula (at

the end of Art. 767.), we have a =- 10, b=S5,c =- 50,
fZ = 24 ; and, consequently, the equation which must give
the value ofp is

Sp^ - 140/?' + 808;? - 1540 = 0, or
2p^ — 35p~ + 202/? — 385 = 0.

The divisors of the last term are 1, 5, 7, 11, &c. ; the
first of which does not answer ; but making p = 5 v;e get
250 - 875 + 1010 - 385 = 0, so that /? = 5 ; and if we
farther suppose p = 1, we get 686 — 1715 + 1414 —
385 -r 0, a proof that p = 7 is the second root. It remains
now to find the third root ; let us therefore divide the equa-
tion by 2, in order to have p^ — y/?- -f lOlp — ^ ^^ = 0,
and let us consider that the coefficient of the second term, or

V, being the sum of all the three roots, and the first two
making together 12, the third must necessarily be y

.

We consequently know the three roots required. But it

may be observed that one would have been sufficient, be-
cause each gives the same four roots for our equation of the
fourth degree.

770. To prove this, let p = 5 ; we shall then have, by
the formula, ^(±0" -\-2p— b),q = V(25 + 10 — 35) =0,

, -50f50and r zz — °, Now, nothing being determined

by this, let us take the third equation,

r"" =p"- - d=^5 -^24< = 1,

so that 7=1; our two equations of the second degree will

then be

:

1, x" = 5x — 4, 2. a" = 5x — 6.

The first gives the two roots

5 + 3
^ = I ± V^, or X = -=-,

that is to say, x = 4f and x = 1.

The second equation gives

that is to say, a; = 3, and x = 2.

But suppose now p = 7, we shall have
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-70+50
q = v/(25 + 14 - 35) ^ 2, and r = ^— = - 5,

whence result the two ccjuations of the second degree,

1. x^ = 7.i' — 12, 2. x^ = 3x — 2;

. . . 'i' + l
the first gives ^ = 1 ± a^^, or a? = —^,

so that X :z: 4, and x = 3 ; the second furnishes the root

3+1
x = -| +^± =-|-'

and, consequently, .r = 2, and a: = 1 ; therefore by this

second supposition the same four roots are found as by the

first.

Lastly, the same roots are found, by the third value of p,
zz y : for, in this case, we have

^r =v/(25 + 11 - 35) = 1, and r = ^ = - |;

so that the two equations of the second degree become,

1. ^2 = 6x, 2. .r» = 4<x -^ 3.

Whence we obtain from the first, .r :::= 3 ± ^/l, that is to

say, jr == 4, and x zn 2; and from the second, x = "± ^/l,

that is to say, .r r: 3, and x = 1, which are the same roots

that we originally obtained.

771. Let there now be proposed the equation

X* - 16x - 12 = 0,

in which a — 0, b z:z 0, c = — 16, d =.— 12; and our

equation of the third degree will be

8/ + 96p - 256 = 0, or p^ + 12p - 32 = 0,

and we may make this equation still more simple, by writing

p = 2t; for we have then

8t' + 24^ - 32 = 0, or /!3 -j- 3^ _ 4 = 0.

The divisors of the last term are 1, 2, 4; whence one of

the roots is found to be ^ = 1 ; therefore p = 2, q =
^4 = 2, and r rr L? = 4. Consequently, the two equa-

tions of the second degree are

x"- = 9,x -\- 2, and x'^ =— 2x - 6;

which give the roots

X ~l + v/3, and ^ =: - 1 ± V— 5.

772. We shall endeavour to render this resolution still

more familiar, by a repetition of it in the following example.

Suppose there were given the equation
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^i - 6.r3 + 12.T^" - Ux' + 4 zr 0,

which must be contained in the formula

Cr^ — 3x + pY~ - {qx + ?•)- = 0,

in the former part of which we have put — 3.r, because —13

is half the coefficient —6, of the given equation. This
foraiula being expanded, gives

x^ — Gx"^ + (2;; + 9 - q^)x^— {Qp + Zqr)x + /' - r* = ;

which, compared with our equation, there will result from
that comparison the following equations

:

1. 2p + 9 - ?' = 12,
2. Qp + 2(7r = 12,

3. p"- - r- = 4.

The first gives g'- = 2p — 3

;

the second, ^qr = 12 — 6p, or ^r = 6 — o^J

;

the third, r* = y;^ — 4.

Multiplying 7'^ by <7'', and p- — 4 by 2p — 3, we have

q"^r - ^p^ - 3p'- — 8p + 12

;

and if we square the value of qr, we have

^V= 36- 36p + 9p-;

so that we have the equation

Qp3 _ Sp"- - 8^ + 12 = 9^5- — 36;? + 36, or

2p^ — 12//- + 28p - 24 = 0, or

p^ - Gp" + Up - 12 = 0,

one of the roots of which is p = 2; and it follows that

y* = 1, <7 = 1, and p- — r = 0. Therefore our equation

will be [x"- — 3x + 2)"^ = .r"-, and its square root will be

x'^ — 3.r -f 2 = ± .r. If we take the upper sign, we liavc

x^ — 4.y — 2; and taking the lower sign, we obtain

X- = 2x — 2, whence we derive the lour roots >r — 2 + ^/%
and .r = 1 + ^/ — 1.

CHAP. XV.

Ofa new Method of resolving Equations of the Fourth
Degree.

773. The rule of Bombelli, as we have seen, resolves

c(iuations of the fourth degree by means of an equation of

the third degree; but since the invention of that Rule,



i;iIAl'. XV. OV ALGEBRA. 283

another method has been discovered of performing the same

resolution : and, as it is altog-ether different from the first, it

deserves to be separately explained*.

774. We suppose that the root of an equation of the

fourth degree has the form, x = ^/p -T-\/q + \/r, in which

the letters p, q, r, express the roots of an equation of the

third degree, z^ —fi" \- gz — li = Q\ ^o that p + g + r—f\
pq + pr -{- q?- = g ; and pqr = h. This being laid down,

we square the assumed formula, x = Vp + \/q + V^'} and
we obtain

x"=:p^q-{-r-\-9i Vpq + 2 Vpr + 2 Vqr ;

and, since j!? -\- q -k- r =J', we have

.%" -f= 2 ^/pq + 2 Vpr + 2 Vqr ;

we again take the squares, and find

X*— 9fx- f/i

=

^pq+ 4>pr-]-4!qr+ 8 \/p'^qr+ 8Vpf^+ 8 v^fl?^--

Now, 4>pq + 4<pr + 4qr = 4<g ; so that the equation becomes

x^ — 2/i2 _^y2_ 4 o- _ 8 Vpq}- X ( a/^ +a/!Z+ ^^) ' ^^^^

A/p + A/g^ + x/^ == ^j ^^*^ P9^ = ^*> or Vpqr = \^h;

wherefore we arrive at this equation of the fourth degree,

X* - 2/r'' —- 8jr A//i +/" — 4^ == 0, one of the roots of

which is 07 == '/p -\- ^q + -v/?'; and in which p, q, and r,

are the roots of an equation of the third degree,

z^ — fz" -\- gz — /i n 0.

775. The equation of the fourtli degree, at which we
have arrived, may be considered as general, although the

second term x'y is wanting ; for we shall afterwards shew,

that every complete equation may be transformed into an-

other, from which the second term has been taken away.

Let there be proposed the equation x^— ax"— hx—cr:0,

in order to determine its root. This we must first compare

with the formula, in order to obtain the values of^ g", and

h ; and we shall have,

1. 2f=: a, and, consequently,_/ = —

;

2. 8 \^h — h. so that h = -yr: ;

64

^f" - 4o- = _ c, or -^ - 4o
• + c = 0,

or ±a' + c z: 4g ; consequently, g = -^a^ + ^c.

* This method was the invention of Euler himself. Ho haa

explained it in the sixteenth volume of the Ancient Commenta-
ries of PetersburiT. F. T.
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776. Since, therefore, the equation

.z* — «.r^ — 6:r — c = 0,

gives the values of the letters j^ g, and /<-, so that

f-\(^yg = -iV«' + i^j and h = ^b", or ^/7i = 46,

we form from these values the equation of the third degree

z^ —fz'- -\- g'z — h =. 0, in order to ohtain its roots by
the known rule. And if we suppose those roots, 1.;:=/;,

2. z = q, Q. z = ?-, one of the roots of our equation of the

fourth degree must be, by the supposition, Art. 774,

X = Vp + -s/ q -\-'Vr.

777. This method appears at first to furnish only one

root of the given equation ; but if we consider that every

sign -v^ may be taken negatively, as well as positively, Ave

shall immediately perceive that this formula contains all the

four roots.

Farther, if we chose to admit all the possible changes

of the signs, we should have eight different values of >r,

and yet four only can exist. But it is to be observed, that

the product of those three terms, or \/])qr^ must be equal to

V'/i = i-i, and that if \b be positive, the product of the

terms a//j, ^/j^, v/r, must likewise be positive; so that all

the variations that can be admitted are reduced to the

four following

:

1. .r = Vp + Vq -T Vr^
2. X — Vp — V(/ - n/ ^>

3. ^ — - s/p + V!7 - a//-.

^. X — — vp —s/q +v^''-

In the same manner, when ^h is negative, we have only

the four following values of x

:

1. X = ^/p-{-^q -^r,
a. X = Vp —%/'/+ Vr,
3. X — - ^p -\- ^q -^ x/r,

4). X = — ^,/p — \/q — \/r.

This circumstance enables us to determine the four roots

in all cases ; as may be seen in the following example.

778. Let there be proposed the cc{ nation of the fourth

degree, a;* — 25x'- + GOx — 36 = 0, in which the second

term is wanting. Now, if we compare this with the general

formula, we have a = 25, b = — CO, and c = S6; and
after that,

/= \\g = ^V + 9 - W. and h = ^1'
;

by which means our equation of the third degree becomes,
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First, to remove tlic fractions, let us make z= —- ; and we

shall liavc-^- -gg- + "eT
~ ^ - ' "*" multiplying

by the greatest denominator, we obtain

ti' - 50u" + iGdu - 3600 = 0.

We have now to determine the three roots of this equation ;

which are all three found to be positive ; one of them being

u =: 9: then dividing the equation by u — 9, we find the

new equation u" - ^Im + 400 = 0, or ^r = 4<lu - 400,

which gives

41+9

so that die three roots are 21 = 9, w = 16, and u = 25.

u
Consequently, as z =—^ the roots are

1^_9 0^_4 3-. — 25

These, therefore, are the values of the letters />, q, and r

;

that is to say, p = |, (7 = 4, and r = y . Now, if Ave con-

sider that \fpqr = \//t =— '-j% and that therefore this value

= |6 is negative, we must, agreeably to what has been said

with regard to the signs of the roots ^,/p, vg, and ^ r, take

all those tlirce roots negatively, or take only one of them
negatively; and consequently, as ^/p = |-, \^q=z2, and

x^r =. I, the four roots of the given equation are found

to be:

1. a;= 1+2-1 = 1,

^. a; — -^ /v-r^ — /v,

3. :r=-|- + 2 + l=:S,
4. x=-l-2-|=-6.

From these roots are formed the four factors,

(x - 1) X {x - 2) X {X -3) X {x + 6) = 0.

The first two, multiplied together, give x"^ — Qx ~\- 2;
the product of the last two is x^ + 3x — 18; again multi-

plying these two products together, we obtain exactly the

equation proposed.

779. It remains now to shew how an equation of the

fourth degree, in which the second term is found, may be

transformed into another, in which that term is wanting : for

which wc shall give the following rule *.

* An investigation of this rule may be seen in Maclaurin's

Algebra, Part II. chap. f>.
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Let there bo proposed the fjcneral equation ?/*
-f- citj'^ -{-

by- -{- cjj -\- d ^=^ 0. If wc add to y llic fourth part of the

coefficient of the second term, or ^a, and write, instead of

the sum, a new letter x, so that y -|- ~a -=. ^, and conse-

quently y zz. X — i« : we shall have

y = x" - -\ax 4- -^a\y' - x^ — Lax' + -^ir-x - -^\a'',

and, lastly, as follows

:

y = .t4 — «.r" + |aV- - _'-«lr + ^^-^a'

ay^ = a.v^ - la-x" + -^5_c^3^ -• eV^'
Z*y = 6;r- — ^ahx -\- -^^n"h

cy =^ ex — ^ac
d = d

And hence, by addition,

X* + — la'x'i
•

bx- = 0.

d.

We have now an equation from Avhich the second term is

taken away, and to which nothing prevents us from applying

the rule before given for determining its four roots. After

the values of x arc found, those of y will easily be deter-

mined, since y '= x — ^a.

780. This is the greatest length to which we have yet

arrived in the resolution of algebraic equations. All the

pains that have been taken in oi'der to resolve equations of

the fifth degree, and those of higher dimensions, in the same

manner, or, at least, to reduce them to inferior degrees,

have been unsuccessful : so that we cannot give any general

rules for finding the roots of equations, which exceed the

fourth degree.

The only success that has attended these attempts has

been the resolution of some particular cases ; the chief of

which is that, in which a rational root takes place ; for this is

easily found by the method of divisors, because wc know
that such a root must be always a factor of the last term.

The operation, in other respects, is the same as that we have

explained for equations of the third and fourth degree.

781. It will be necessary, however, to apply the rule of

Bombelli to an equation which has no rational roots.

Let there be given the equation y"^ — 8^ -)- 14//- -\-

4y — 8 = 0. Here we must begin with destroying the

second term, by adding the fourth of its coefficient to t/, sup-

posing y — 2 = 0:, and substituting in the equation, instead

of?/, its new value x -\- 2, instead of y/'-', its value -i- + 4.i' + 4

;

and doing the same with regard to j/' and yy^ we shall have.
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«/* = ^ + 8x' + 2^x^ + 3S.r + 16
_ 8y = - 8.r3 - 48.7/^ - 96.r — i

14?/'-= Ux^ -\- 56x -]- TjG

\y = 4:x -{-. 8
- 8 = — 8

.1 J- - lOz'^ — 4^ -j~ 8=0.
This equation being compared with our general formula,

gives n = 10, 6 = 4, c = — 8; whence we conclude, that

y=: Q^ g = L7, h =z ^, and Vh = I ; that the product

\/pqr will be positive ; and that it is from the equation of

the third degree, 2'' — 5s- -j- V ^ — ^ ~ ^' ^^^^ ^'^ ^^^ ^^

seek for the three roots |;, q, r. (Art. 774.)

782. Let us first remove the fractions from this equation,

11

by making z = —, and we shall thus have, after multiply-

ing by 8, the equation ti^ — 10?r + 17?* — 2 rr 0, in Avhich

all the roots are positive. Now, the difisors of the last

term are 1 and 2 ; if we try u = 1, we find 1 — 10 + 17 —
9, = 6; so that the equation is not reduced to nothing

:

l)ut trying u — 2, we find 8 — 40 -|- 34 — 2 = 0, whicli

answers to the equation, and shews that u = 2 is one of the

roots. The two others will be found by dividing by u — S,

as usual ; then the quotient ii- — 8?* -[- 1 = will give

u° = Su — 1, and ?« =r 4 + ^./15. And since z = 4?/, the

three roots of the equation of the third degree are,

l,z = p=U
4+ ,/15

2, z = g=—j-,
4-v/15

S, z = r = .

783. Having therefore determined 7:), q, r, we have also

their square roots; namely, ^^/p = 1,

^/(8 + 2^/15)* ^ ^/(8—2./15)^ ~
2 ' ^^ ~ 2

* This expression for the square root of q is obtained by mul-

tiplying the numerator and denominator of ——— by 2, and

extracting the root of the latter, in order to remove the surd

:

Tl,us, li^ X 2 = t+1^ , „,„, ^11!+!:^
^ 4 a/4'

^/{S + 2^/15
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But we have already seen, (Art. 675, and GTO), that the

square root of a ±\/b, when a/ (a- — b) = e, is expressed

by ^/{a ± s^b) = a^(-^) ± ^^{—^)- so that, as in the

present case, a = 8, and a'Z* = 2 Vlo ; and consequently,

b = 60, and c = v(^'^ — ^) — 2, we have

a/(8 + 2 vl5) = ^/5 + a/ 3, and v(8 - 2 a/15)

a/5 + a/ 3
= -s/S — a/3. Hence, we have Vp = 1, Vq = « »

/2 /Q
and a/^ = o ' wherefore, since we also know that

the product of these quantities is positive, the four values of

X will be

:

, , , , , ,
,/5-]- A/3-1- ^/5-./3

l.x= s''p-\'\/ci-^\fr= \-\ ^

= 1+ \/5,

- a/5- A^3- ^^5+ a/3
2.^= a/;>- a^2'-^''~1 + 2

a/5 l-s/3-v^5+v/3
3.X=— A/P+ a/??- A/r=—li -^ • . • •

= -l + v/3,

4. x=— 1 ^/p— a/(74- ^/r= -l^-
^3

.

= -1- a/3.

Lastly, as we have j/ = x + 2, the four roots of the

given equation are

:

1. 3/ = 3 + v'5, 2. 7/ :=: 3 - ^'5,

3. j/ = 1 + a/3, 4. ^ = 1 — V3.

QUESTIONS FOU PrwVCTICE.

1. Given z^ — 4;=^ - 8.- -|- 32 = 0, to find the values

of ~. Ans. 4, 2, - 1 + ^/ - 3, - 1 - x^ - 3.

2. Given y^ - ^}f
- oj/^ - 4?/ 4- 1 = 0, to find the

values of y. Ans. ~-^ , and ^

3. Given x"" — o.r- — 4.x" = 3, to find the values of .r.

1+ vl3 _l + ,/-3
Am. -^ ,and -,
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Ofthe Resolution o/^' Equations hj Approximation.

784. Wlien the roots of an equation are not rational,

whether they raay be expressed by radical quantities, or

even if we have not that resource, as is the case with equa-

tions which exceed the fourth degree, M^e must be satisfied

with determining their values by approximation ; that is to

say, by methods which are continually bringing us nearer to

the true value, till at last the error being very small, it may
be neglected. Different niethods of this kind have been pro-

posed, the chief of which we shall explain.

785. The first method which v.'e shall mention, supposes

that we have already determined, with tolerable exactness,

the value of one root * ; that we know, for example, that

such a value exceeds 4, and that it is less than 5. In this

case, if we suppose this value — 4 -f- p, we are certain that

p expresses a fraction. Now, as /> is a fraction, and con-

sequently less than unity, the square of/), its cube, and, in

general, all the higher powers ov p, v.lU be much less with re-

spect to unity ; and, for this reason, since we require only an

ap.proximation, they may be neglected in the calculation.

When we have, therefore, nearly determined the fraction j5,

we shall know more exactly the root ^ \- jp \ from that we
proceed to determine a new value still more exact, and con-

tinue the same process till we come as near the truth as we
desire.

7S6. We shall illustrate this method first by an easy ex-

ample, requiring by approximation the root of the equation

x" — 20.

Here we perceive, that x is greater than 4 and less than

5; making, therefore, .r = 4 -^ p-, we shall have x' = 16 +
8/7 + p" — 20; but asp^ must be very small, we shall neg-

lect it, in order that we may have only the equation 16 \-

* This is the method given by Sir Is. Newton at the beginning of

his Mediod of Fluxions. When investigated, it is found subject

to different imperfections ; for which reason we may with ad-

vantage substitute the method given by M. de la Grange, in the

Memoirs of Berlin for 1767 and 1768. F. T.

This method has since been published by De la Grange, in a

separate Treatise, where the subject is discussed in the usual

masterly style of this author.

u
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Sp = 20, or 8/9 = 4. This gives p = i, and or = 4*^,

which ah-eady approaches nearer the true root. If, there-

fore, we now suppose x = 4)^ + p' ; we are sure that p ex-

presses a fraction much smaller than before, and that we
may neglect p- with greater propriety. We have, there-

fore, x"^ = 20i + 9p' = 20, or 9p' = - i ; and consequently,

p' = — 3^; therefore .r = 4 i- — -^i^ = 4fl.

And if we wished to approximate still nearer to the true

value, we must make x = 4-L7, -\-p", and should thus have

x"~ =: 20^^^ + S^t-p" - 20; so that 8|^p" = - Wt^,
322/ = -^l%^= ~^, and

_ 1 _ , .

P - ~ 36x322 ~ ~ "^^^^

therefore x = 4^1 — -rrhri = ^TrWaJ ^ value which is so

near the truth, that we may consider the error as of no im-

portance.

787. Now, in order to generalise what we have here laid

down, let us suppose the given equation to be x- zz a, and

that we previously know x to be greater than n, but less

than n -\- 1. If we now make a; zz n + p, p must be a

fraction, and p"^ may be neglected as a very small quantity,

so that we shall have x^ — n" + %ip =a; or 2np — a — n^,

a — n- a — n-n--\-a
and V = -^ ' consequently, x - n {- -^ = -^ •

Now, if n approximated towards the true value, this new

value —X will approximate much nearer ; and, by sub-

stituting it for 71, we shall find the result much nearer the

truth ; that is, we shall obtain a new value, which may again

be substituted, in order to approach still nearer ; and the

same operation may be continued as long as we please.

For example, let x- zz2; that is to say, let the square

root of 2 be required ; and as we already know a value suf-

ficiently near, which is expressed by n, we shall have a still

91-+

2

nearer value of the root expressed by —^— . Let therefore,

1. w rr 1, and we shall have ,r = |,

2. n = -I,
and we shall have x zz \\,

3. w z= W, and we shall have x zz: IL^.

This last value approaches so near a/ 2, that its square

3 3 29|9 differs from the number 2 only by the small quantity

_^_L__, by which it exceeds it.

788. Wc may proceed in the same manner, when it is
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required to find by approximation cube roots, biquadrate
roots, &c.

Let there be given the equation of the third degi-ee,

x'^ = rt ; or let it be proposed to find the value of ^rt.

Knowing that it is nearly n, we shall suppose xzzn -\- p;
neglecting p- and /;•'', we shall have x'^ =. ii' + Qn-p := a ; so

that 37rp — a — n^, and p =.—-- ; whence x = —tt

If, therefore, n is nearly — ^/a, the quantity which we have
now found will be much nearer it. But for still greater

exactness, we may agani substitute this new value for w, and
so on.

For example, let a'^ rz 2 ; and let it be required to deter-

mine 1/2. Here, if n is nearly the value of the number

sought, the formula „ ^
will express that number still

more nearly ; let us therefore make

1. n = 1, and we shall have ^ = |i,

2. n = ±, and we shall have x = -f-i,

3. n = -fi, and we shall have x = 4||^|£|||.
789. This method of approximation may be employed,

with the same success, in finding the roots of all equations.

To shew this, suppose we have the general equation of

the third degree, x^ -\- ax" -\- br-\-c = 0, in which n is

very nearly the value of one of the roots. Let us make
x = n — p ; and, since p will be a fraction, neglecting the

powers of this letter, which are higher than the first degree,

we shall have x- =. it — 2?/p, and x'^ = ri^ — ?)7fp ; whence
we have the equation n? — '2>n"p + ari^ — 9,anp -\- hn —
hp + c zz 0, or n^ + an^ -\- hn -\- c = Qn^p + ^anp -f- bp

„ ,, ,
n^+ artb-i-n— c= (2n^ + 2an -f 6) a ; so that »= —^r-^— -y-, and^ ' M '

/ 3n"+ 2an+b '

n^-\-an^-^bn-^c 27i^ -\- an" — c _, .

X :=i n—{ o ^ /
^ ,-T~)— f, , .

-7^ r~T- This value,
Sn--\-2an-{-b 3n' -\- ^an -\- b '

which is more exact than the first, being substituted for n,

will furnish a new value still more accurate.

790. In order to apply this operation to an example, let

x^+ 2x^ + 3 r - 50 = 0, in which a = 2, b =z 2, and
6- = — 50. If n is supposed to be nearly the value of one

. ,
^

2n^-\-2n'-\-50 .„ ^ot the roots, x =. -—-^ , will be a value still nearer
o7i ^-^n~T~o

the truth.

Now, the assumed value of x — S not being far from the

u 2
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true one, we shall suppose w rr 3, which gives us ^ r: ^^ ;

and if we were to substitute this new value instead of n, we
should find another still more exact.

791. We shall give only the following example, for equa-
tions of higher dimensions than the third.

Let x^ = 6.V -{- 10, or x'' — 6x— 10= 0, where we readily

perceive that 1 is too small, and that 2 is too great. Now,
if X = n is a value not far from the true one, and we
make ^^ = ?i -}- p, we shall have ,v^ — n^ -j- 5n^p ; and, con-

sequently,

n^ -f- 5n*p = 6n -f- G/J -{- 1 ; or

p{57i* - 6) = Qh -{- 10 - n\

WT. e
6>t-|-10- n-^ 4n^+10 '

Wherefore p = ______ and x =
g^^,_g

. If we sup-

14
pose TO = 1, we shall have x = —^ =: — 14; this value is

altogether inapplicable, a circumstance which arises from the
approximated value of n having }>een taken by much too

small. We shall therefore make ?i = 2, and shall thus
obtain x = ^i = ^?-, a value which is much nearer the

truth. And if we were now to substitute for n, the fraction

14} ^VG should obtain a still more exact value of the root x^

792. Such is the most usual method of finding the roots

of an equation by approxmiation, and it applies successfully

to all cases.

We shall however explain another method *, which de-

serves attention, on account of the facility of the calculation.

The foundation of this method consists in determining for

each equation a series of numbers, as a, Z>, c, &c. such, that

each term of the series, divided by the preceding one, may
express the value of the root with so much the more ex-

actness, according as this series of numbers is carried to a
greater length.

Suppose we have already got the terms p, q, ?•, s, t, Sec.

* The theory of approximation here given, is founded on the

theory of what are called recurring series, invented by M. de
Moivre. This method was given by Daniel Bernoulli, in vol. iii.

of the Ancient Commentaries of Petersburg. But Euler has

here presented it in rather a different point of view. Those
who wish to investigate these matters, may consult chapters 13

and 17 of vol. i. of our author's Introd. in Anal. Infin.j an ex-

cellent work, in which several subjects treated of in this first

part, beside others equally connected with pure mathematics,
are profoundly analysed and clearly explained. F, T.
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— must express the root .r with tolerable exactness ; that is

P
^

to say, we have — zz x nearly. W^e shall have also

r ...— =r .r *, and the multiplication of the two values will

r s
mvc— =z x"^. Farther as — =. x, we shall also haveOp

r

s t t— = x'-'' ; then, since — = x, we shall have — = x^. and
p s p
so on.

793. For the better explanation of this method, w€ shall

begin with an equation of the second degree, x" -— x -\- \,

and shall suppose that in the above series we have found

the terms p^ q, r, s, t, &;c. Now, as— n a;, and — =: .r-,

T n
we shall have the equation — =— + 1, or q + ^ = r.

And as we find, in the same manner, that s zz r -\- q. and
t ^= s -\- 7'\ we conclude that each term of our series is the

sum of the two preceding terms ; so that having the first

two terms, we can easily continue the series to any length.

With regard to the first two terms, they may be taken at

pleasure: if we therefore suppose them to be 0, 1, our series

will be 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144-, &c. and
such, that if we divide any term by that which immediately

precedes it, we shall have a value of x so much nearer the

true one, according as we have chosen a term more distant.

The error, indeed, is very great at first, but it diminishes as

we advance. The series of those values of x, in the order in

which they are always approximating towards the true one,

is as follows

:

^ — J_ I -2. ! S 8 I-? II 34 55 89 144- Sj-f.
•* o> r5 iJz'TJT' T'Ts'Ti' TT' ST' ~Slf > *^*^*

If, for example, we make x = 4-f> ^^ have 44^ = tt ~l~

1 = t^T? ii^ which the error is only ~-^. Any of the suc-

ceeding terms will render it still less.

794. Let us also consider the equation x'=:2x-\-\\

Q T
and since, m all cases, x = -'-', and x^ = —, we shall have

P P

* It must only be understood here that —is nearly equal to x.
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r 9.(1— = — 1- l.or ;• = 2u -A- p-^ whence we infer that the
V V
double of each term, added to the preceding term, Avill give

the succeeding one. If, therefore, we begin again with 0,

], we shall have the series,

0, 1, 2, 5, 12, 29, 70, 169, 408, &c.

Whence it follows, that the value of x will be expressed

still more accurately by the following fractions

:

y, 1 2 5 li 2.9 7° j69 4.0s S,„
'*' — o? T5 TJ T ' T"2> "2y'5 To 5 "f6'"9"5 '^'-*

wliich, consequently, will always approximate nearer and
nearer the true value oi x =-\ + .^/ 2 ; so that if we take

unity from these fractions, the value of v'2 ^vill be expressed

more and more exactly by the succeeding fractions

:

1 I 3 7 17 41 99 2.39 »rp

For example, |-| has for its square y|44j which differs

only by 4~-o from the number 2.

795. This method is no less applicable to equations, which
have a greater number of dimensions. If, for example, we
have the equation of the third degree x^ = a^^ + 2^ + 1,

we must make x = — , ^"= — , and x^ -= — ; we shall

P V P
then have 5 = ?•-{- 2^' -]- y? ; which shews how, by means of

the three terms p, q, and r, we are to determine the suc-

ceeding one, s; and, as the beginning is always arbitrary,

we may form the following series :

0, 0, 1, 1, 3, 6, 13, 28, m, 129, &c.

from which result the following fractions for the approximate
values of x

:

~, o I I 3 6 13 2 8 6 12 9 C, _
•* — "OJ 'O J TJ T? T* "6 > TTT' 28"' "60" J *^^*

The first of these values would be very far from the truth

;

but if we substitute in the equation |^, or y, instead of x,

we obtain

3 3 7 5 ^2.5_i_30_|_1 — 3 3 8 8
3 4-3 +9 l^ T \^ 343»

in which the error is only ~^.
796. It must be observed, however, that all equations are

not of such a nature as to admit the application of this

method ; and, particularly, when the second term is wanting,

it cannot be made use of. For example, let x- = ^; if we

wished to make x = — , and a" = —, we should have
P P
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Avould

2, or r — 2p, that is to say,

result the series

295

r — Qq -\- ^p, whence

1, 1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, &c.

from which Ave can draw no conclusion, because each term,

divided by the preceding, gives always x = 1, or .v = 2.

But we may obviate this inconvenience, by making a;= i/ — l ;

for by these means we have y'' — 2t/ -\- 1 = ^ ; and if we

now make y :=. — . and iP = —, we shall obtani the same
^ p' ^ p'

approximation that has been already given.

797. It would be the same with the equation x^ — 2, This

method would not furnish such a series of numbers as would

express the value of ^2. But we have only to suppose x —y
— 1, in order to have the equation j/^ — 3j/- + 3j/ — 1 =: 2,

q r
ox if rz 3y — 3z/ + 3; and then makmgj/ = —^y^zr.—,

andy rr — , we have s — 3r - 3q + 3/7, by means of

which we see how three given terms determine the succeed-

ing one.

Assuming then any three terms for the first, for example

0, 0, 1, we have the following series :

0, 0, 1, 3, 6, 12, 27, 63, 144, 324, &c.

The last two terms of this series give y — 4^ and x — l,-

This fraction approaches sufficiently near the cube root of 2

;

for the cube of .|. is '^% and ^ =: '^\
^

798. We must farther observe, with regard to this

method, that when the equation has a rational root, and the

beoinning of the period is chosen such, that this root may
result from it, each term of the series, divided by the pre-

ceding term, will give the root with equal accuracy.

To shew this, let there be given the equation x"- z=: x + 2,

one of the roots of which is x =: 2 ; as we have here, for

the series, the formula r = g + 2p, if we take 1, 2, for the

first two terms, we have the series 1, 2, 4, 8, 16, 32, 64, &c.

a geometrical progression, whose exponent = 2. The same

property is proved by the equation of the third degree

x^ = ^- 4- 3a; + 9, which has x = 2 for one of the roots.

If we suppose the first terms to be 1, 3, 9, we shall find, by

the formula, s = r + 3q -{- dp, and the series 1, 3, 9, 27,

81, 243, &c. which is hkewise a geometrical progression.
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799. But if the beginning of the series exceed the root,

we shall not approximate towards that root at all ; for

when the equation has more than one root, the series gives

by approximation only the greatest : and we do not find one
of the less roots, unless the first terms have been properly

chosen for that purpose. This will be illustrated by the

following example.

Let there be given the equation x'- = 4a: — 3, whose two
roots are x = 1, and x = 3. The formula for the series is

r = iq — 3/7, and if we take 1,1, for the first two terms of

the series, which consequently expresses the least root, we
have for the whole series, 1, 1, 1, 1, 1, 1, 1, 1, &c. but as-

suming for the leading terms the numbers 1, 3, which con-

tain the greatest root, we have the series, 1, 3, 9, 27, 81,

243, 729, &c. in which all tiie terms express precisely the

root 3. Lastly, if we assume any other beginning, provided

it be such that the least term is not comprised in it, the

series will continually approximate towards the greatest

root 3 ; which may be seen by the following series

:

Beginning,

0, ], 4, 13, 40, 121, 364, &c.

1, 2, 5, 14, 41, 122, 365, &c.

2, 3, 6, 15, 42, 123, 366, 1095, &c.

2, 1,-2,-11,-38,-118,-362,-1091,-3278, &c.

in which the quotients of the division of the last terms by
the preceding always approximate towards the greater root

3, and never towards the less.

800. We may even apply this method to equations

which go on to infinity. The following will furnish an
example

:

x^ = x'^-'-\- x"^-' -j- x""-^ -f 0;*-^+, &c.

The series for this equation must be such, that each term

may be equal to the sum of all the preceding ; that is, we
must have

1, 1, 2, 4, 8, 16, 32, 64, 128, &c.

whence we see that the greater root of the given equation is

exactly x = 2; and this may be shewn in the following

manner. If we divide the equation by .r** , we shall have

1 = — + — -1- — + — -f , &C.
X X x^ x^

a geometrical progression, whose sum is found rr z ; so
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thatl =: -; multiplying therefore by x =. 1, we have

^ — 1 rr 1, and .v =: 2.

801. Beside these methods of determining^ the roots of an

equation by approximation, some others have been invented,

but they are all either too tedious, or not sufficiently general*.

The method which deserves the preference to all otliers, is

* This remark does not apply to the method of finding the

roots of equations of all degrees, and however affected, by The
Rule of Double Position. In order, therefore, that this chapter

might be more complete, we shall explain this method as briefly

as possible.

Substitute in the given equation two numbers, as near the

true root as possible, and observe the separate results. Then,
as the difference of these results is to the difference of tlie two
numbers ; so is the difference between the true result, and
either of the former, to the respective correction of each. This

being added to the number, when too small, or substracted from
it, when too great, will give the true root nearly.

The number thus found, with any other that may be sup-

posed to approach still nearer to the true root, may he assumed
for another operation, which may be repeated, till tiie root shall

be determined to any degree of exactness that may be re-

quired.

Example. Given ^^ + x- -}- x =: 100.

Having ascertained b}'^ a few trials, or by inspecting a Table of
roots and poAvers, that x is more than 4, and less than 5, let us

substitute these two numbers in the given equation^ and calculate

the results.

By the first 1

supposition i

X = 4
= 16
= 64

By the second
supposition

. . Results . . . .

.5

4

rx
=

5
25
125

84 . 155

15.5

84
100 true result.

84

Differences 71 1 16

Then, As 71 : 1 : : 16 : -2253 +
Therefore 4 -f- -2253, or 42253 approximates nearly to the

true root.

If now 4'2 and 4"3 were taken as the assumed numbers, and
substituted in the given equation, we should obtain the value of

.V = 4*264 very nearly.
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that which we explained first ; for it applies successfully to

to all kinds of equations : whereas the other often requires

the equation to be prepared in a certain manner, without

which it cannot be employed ; and of this we have seen a

proof in different examples.

QUESTIONS FOR PRACTICE.

1. Given x^ + Qx~ - 23x - 70 = 0, to find x.

Ans. X - 5-13450.

2. Given .r' - 15.c- -j- %'6x - 50 -. 0, to find x.

Ans. X - 1-028039.

3. Given x" - 3a:^ - 75a; = 10000, to find x.

Ans. X — 10-2G15.

4. Given x^ + 2.f* -f 3.f^ + 4a;" + ^x - 54321, to find

.r. Ans. X — S-4144.

5. Let 120^-^ + 3657u;- - 38059a; = 8007115, to find

X. Ans, X = 34-6532.

END OE PAK.T I.



ELEMENTS

OF

ALGEBRA

PART II.

Coniaining' the Analysis o/" Indeterminate Quantities.

CHAR I.

Of the Resolution of' Equations of' the First Degree, zvhicJi,

contain more than one imknown Quantity.

ARTICLE I.

^T has been shewn, in the First Part, how one unknown
quantity is determined by a single equation, and how we
may determine two unknown quantities by means of two
equations, three vniknown quantities by three equations, and
so on ; so that there must always be as many equations as

there are unknown quantities to determine, at least when the

question itself is determinate.

When a question, therefore, does not furnish as many
equations as there are unknown quantities to be determined,

some of these must remain undetermined, and depend on
our will; for which reason, such questions are said to be

indeterminate ; forming the subject of a particular branch of

algebra, which is called Indeterminate Analysis.

2. As in those cases we may assume any numbers for one,

or more unknown quantities, they also admit of several

solutions : but, on the other hand, as there is usually an-

nexed the condition, that the numbers sought are to be in-

teger and positive, or at least rational, the number of all the

possible solutions of those questions is greatly limited : so

that often there are very few of them possible ; at other
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times, there may be an infinite number, but such as are not
readily obtained ; and sometimes, also, none of them are
possible. Hence it happens, that this part of analysis fre-

quently requires artifices entirely appropriate to it, which are
of great service in exercising the judgment of beginners, and
giving them dexterity in calculation.

3. To begin with one of the easiest questions. Let it be
required to find two positive, integer numbers, the sum of
which shall be equal to 10.

Let us represent those members by x and 9j ; then we have
.r + j/ = 10 ; and x = 10 — ?/, where j/ is so i'ar only de-
termined, ihat this letter must represent an integer and positive

number. We may therefore substitute for it all integer
numbers from 1 to infinity : but since x must likewise be a
positive number, it follows, that i/ cannot be taken greater
than 10, for otherwise x would become negative; and if

we also reject the value of j- — 0, we cannot make j/ greater
than 9 ; so that only the following solutions can take
place

:

If^ = 1, 2, 3, 4, 5, 6, 7, 8, 9,

then ^ = 9, 8, 7, 6, 5, 4, 3, 2, 1.

But, the last four of these nine solutions being the same as

the first four, it is evident, that the question really admits
only of five different solutions.

If three numbers were required, the sum of which might
make 10, we should have only to divide one of the numbers
already found into two parts, by which means we should
obtain a greater number of solutions.

4. As we have found no difficulty in this question, we
will proceed to others, which require different considera-

tions.

Qi(estio7i 1 . Let it be required to divide 25 into two parts,

the one of which may be divisible by 2, and the other by S.

Let one of the parts sought be 2.r, and the other

3_y ; we shall then have 2x -\- St/ = 25 ; consequently
Sx = 25 — Si/; and dividing by 2, we obtain

25 — Si/
X = —^~^ ; whence we conclude, in the first place? that

83/ must be less than 25, and, consequently, ?/ is less than 8.

Also, if, from this value o£ x, we take out as many integers

as we possibly can, that is to say, if we divide by the de-

l—y
nominator 2, we shall have a: = 12 —

?/ + -—
; whence

it follows, that 1 — ?/, or rather 7/ — 1, must be divisible by
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by 2. Let us, iherefore, make 1/ — 1 = Qz; and we shall

have 1/ = 2z -\- 1, so that

a: = 12- 22 - 1 - s = 11 -Sz.
And, shice 1/ cannot be greater than 8, we must not sub-
stitute any numbers for z which would render 2c; -}- 1 greater

than 8 ; conse(|uently, z must be less than 4, that is to say,

Z cannot be taken greater than 3, for which reasons we have
the followina; answers

:

If we make z = z = 1 z =2 z=3.
we have 1/ = 1

and a; 1= 11

y=3
a: = S

y — '^

X = 5 a; = 2.

Hence, the two parts of 25 sought, are

22 + 3, 16 + 9, 10 + 15, or 4 + 21.

5. Question 2. To divide 100 into two such parts, that
the one may be divisible by 7, and the other by 11.

L.et 7x be the first part, and 11?/ tJie second. Then we
must have 7x -j- 11?/ = 100; and, consequently,

- IQQ-l^J^ 984-2 -7?/ -4?/

a- = 14 — ?/ -f

or

2-4?/

7 '

wherefore 2 — 4y, or 4j/ — 2, must be divisible by 7.

Now, if we can divide 4j/ — 2 by 7, we may also divide
its half, 2?/ — 1, by 7. Let lis therefore make2y — 1 =: 7~,

or 2j/ = 7^ + 1, and we shall have a- =: 14 — 3/ — 2z;
but, since 2j/ = '7z -\- 1 = 6z -^ z -{- 1, we shall have

^4-1
j/ = 32 + —^. Let us therefore make z -{- 1 zz 2u, or

z = 2?^ — 1 ; which supposition gives 7/ = Sz -^ u; and,
consequently, we may substitute for 11 every integer number
that does not make x or j/ negative. Now, as 7/ becomes
= 7?^ — 3, and a: = 19 — 11 w, the first of these expressions
shews that 7?^ must exceed 3 ; and according to the second,
llu must be less than 19, or u less than -i^

: so that u can-
not be 2 ; and since it is impossible for this number to be 0,
we must have ?* = 1 : which is the only value that this

letter can have. Hence, we obtain x = 8, and 3/ = 4

;

and the two parts of 100 which were required, are 55*,

and 44.

6. Question 3. To divide 100 into two such parts, that
dividing the first by 5, there may remain 2 ; and dividing
the second by 7, the remainder may be 4.
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Since the first part, divided by 5, leaves the remainder

2, let us suppose it to be So: -j- 2 ; and, for a similar reason,

we may represent the second part by 7j/ + 4 : we shall thus

have

5jc 4- 7y + 6 = 100, or 5x = 94 - 7y=90 + 4- 5?/ -%

;

4— 2y
whence we obtain a; rr 18 — j/ H —---. Hence it follows,

that 4 — Sj/, or 2?/ — 4, or the half j/ — 2, must be divisible

by 5. For this reason, let us make ?/ ~ 2 = 5s, or

1/ =i 5z -^ 2, and we shall have .v = 16 — 72 ; whence we
conclude, that Iz must be less than 16, and z less than 'y,

that is to say, z cannot exceed 2. The question proposed,
therefore, admits of three answers

:

1. z = gives X = 16, and ?/ = 2 ; whence the two
parts are 82 -f- 18.

2. 2; = 1 gives X = 9, and j/ = 7; and the two parts

are 47 + 53.

S. z = 2 gives X = 2, and j/ = 12 ; and the two parts

are 12 + 88.

7. Question 4. Two women have together 100 eggs : one

says to the other; ' When I count my eggs by eights,

there is an overplus of 7.' The second replies :
* If I count

mine by tens, I find the same overplus of 7.' How many
eggs had each ?

As the number of eggs belonging to the first woman,
divided by 8, leaves the remainder 7 ; and the number of

eggs belonging to the second, divided by 10, gives the same
remainder 7 ; we may express the first number by Sx + 7,

and the second by lOj/ + 7; so that 8j" + lOj/ + 14= 100,
or 3a: = 86 - lOy, or 4a; = 43 - 5j/ = 40 + 3 - 4?/ —y.
Consequently, if we make j/ — 3 = 42;, so that 3/ =z 42; + 3,

•

we shall have

a: = 10 - 4;^ - 3 - ~ = 7 — 5;^;

whence it follows, that 5z must be less than 7, or z Jess

than 2 ; that is to say, we shall only have the two following-

answers :

1.2 = gives /r rr 7, and 3/ = 3 ; so that the first woman
had 63 eggs, and the second 37.

2.2 = 1 gives X = 2, and 3/ = 7 ; therefore the first

woman had 23 eggs, and the second had 77.

8. Question 5. A company of men and women spent

1000 sous at a tavern. The men paid each 19 sous, and each

woman 13. How many men and women were there ?
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Let the number of men be x, and that of the women y,
we shall then have the equation

19^ 4- 13_y = 1000, or

13j/ = 1000 - 19:r = 988 + IS - 13^ - 6^, and

^ = 76 - .r + —Y3— ;

whence it follows, that 12 — 6a?, or Q)X — 12, or x ~- % the

sixth part of that number must be divisible by 13. If,

therefore, we make ^ — 2 = 13r, we shall have x — 13;= + 2,

and ?/ = 76 - 13r - 2 - 6r, or ?/ = 74 - 19z;

which shews that z must be less than -f^, and, consequently?

less than 4 ; so that the four following answers are possible :

1. z =z gives X = 2, and ?/ — 74 : in which case there

were 2 men and 74 women ; the former paid 38 sous, and
the latter 962 sous.

2. ;: =: 1 gives tiie number of men a' = 15, and that of
women j/ =: 55 ; so that the former spent 285 sous, and the
latter 715 sous.

3. s = 2 gives the number of men x = 28, and that of
the women y — 36; therefore the former spent 532 sous,

and the latter 468 sous.

4. s := 3 gives j; =z 41, and ?/ — 17; so that the men
spent 779 sous, and the women 221 sous.

9. Question 6. A farmer lays out the sum of 17T0
crowns in purchasing horses and oxen ; he pays 31 crowns
for each horse, and 21 crowns for each ox. How many
horses and oxen did he buy ?

Let the number of horses be x, and that of oxen y ;

we shall then have 31^; + 91y = 1770, or 91y = 1770
- Qlx = 1764 + 6 - 21^ - iOx ; that is to say,

6 — IOj:
?/ = 84 — X -] -^— . Therefore 10<r — 6, and Uke-

wise its half 5x — 3, must be divisible by 2L If we
now suppose 5^ — 3 = 2lz, we shall have 5x = 21z -{- 3,

and hence y = 84} — x — 2:. But, since

X =—=— = 4^ -j — , we must also make z -\-3 = 5u ;

which supposition gives

2 n 5m — 3, ;r =1 21m — 12, and

,y = 84 - 21m -I- 12 - 10m -1- 6 = 102 - 31m;

hence it follows, that ic must be greater than 0, and yet less

than 4, which furnishes the following answers

:
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1. ?i = 1 gives the number of liorses r = 9, and that of
oxen j/ = 71 ; wherefore the former cost 279 crowns, and the

latter 1491 ; in all 1770 crowns.

2. 71 = 2 gives a: = 30, and 3/ = 40 ; so that the horses

cost 930 crowns, and the oxen 840 crowns, which together

make 1770 crowns.

3. M rz 3 gives the number of the horses x =. 51, and that

of the oxen 2/
— Q; the former cost 1 581 crowns, and the

latter 189 crowns ; which together make 1770 crowns.

10. The questions which we have hitherto considered

lead all to an equation of the form ax -{- hij z= c, in which
a, b, and c, represent integer and positive numbers, and
in which the values of x and 7/ must likewise be integer

and positive. Now, if b is negative, and the equation
has the form ax — by = c^ we have questions of quite

a different kind, admitting of an infinite number of an-

swers, which we shall treat of before we conclude the present

chapter.

The simplest questions of this sort are such as the fol-

lowing. Required two numbers, whose difference may be

6. If, in this case, we make the less number .r, and the

greater j/, we must have y — x = 6, and y = G -\- x. Now,
nothing prevents us from substituting, instead of x, all the

integer numbers possible, and whatever number we assume,

y will always be greater by 6. Let us, for example, make
X = 100, we have y = lOG ; it is evident, therefore, that an
infinite number of answers are possible.

11. Next follow questions, in which c = 0, that is to say,

in which ax must simply be equal to by. Let there be re-

quired, for example, a number divisible both by 5 and by 7.

If we write n for that number, we shall first have N = 5x,

since n must be divisible by 5 ; farther, we shall have

N = 7t/, because the number must also be divisible by 7 ; we

7«/
shall therefore have 5x = 7?/, and x = -^. Now, since 7

cannot be divided by 5, y must be divisible by 5 : let us

therefore make y = 5z, and we have x = '7z; so that the

number sought n = 35r ; and as we may take for z, any

integer number whatever, it is evident that we can assign

for N an infinite number of values; such as

35, 70, 105, 140, 175, 210, &c.

If, beside the above condition, it were also required that the

number n be divisible by 9, we should first have n n 35^,

as before, and should farther make n = 9u. In this man-
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ncr, 35:: = du, and u — -~
; where It is evident that s!

must be divisible by 9 ; therefore let 2; = 9.? ; and we shall

then have u = S5s, and the number sought n = 3155.

12. We find more difficulty, when c is not = 0. For
ejcample, when 5j: ^ 7y + 3, the equation to which we are

led, and which requires us to seek a number x such, that

it may be divisible by 5, and if divided by 7, may leave the'

I'cmainder 3: for \ve must then have N = 5^, and also

K = 7v/ -{- 3, whence results the equation 5a.- z= 7^ + 3 j

£tnd, consequently,

X - ^ - ^ - -y^ ^ .

2w4-3
If we make 2y -{- 3 :r 5z, or z = -^—-—, wehavcT=7/-f s^

o

now, because 2?/ -|- 3 = 5?j or 27/ = 5z — 3, we have

If, therefore, we farther suppose : ~ 3 = 2«, we havef

z = 2u -{- 3i and 7/ = 5u -{- 6, and

X = y -^ z = {5u + 6) + {Qu + 3) = lu + 9.

Hence, the number sought n rz 35?^ + ^O, in which equa-

tion we may substitute for u not only all positive integer

numbers, but also negative numbers ; for, as it Is sufficient

that >f be positive, we may make zi =: — 1, which gives

N rr 10; the other values are obtained by continually add-

ing 35; that is to say, the numbers sought are 10, 45, 80,

115, 150, 185, 220, &c.

13. The solution of questions of tins sort depends on the

relation of the two numbers by which we are to divide ; that

is, they become more or less tedious, according to the nature

of those divisors. The following question, for example,

admits of a very short solution :

llequircd a number which, divided by G, leaves the re-^

mainder 2 ; and divided by 13, leaves the remainder 3.

Let this number be n; first n := 6^ + 2, and then

N = 13i/ + 3; consequently, 6^ + 2 = 13^ + 3, and
Qx = 13«/ + 1 ; hence,

13^+1 ^ y+\

and if we make y -\- \ = 6r, wc obtain y = 6z — 1, and'

X = 2y + z -- 13::; — 2; v.'hence we have for the number'
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sought N = 78z — 10 ; therefore, the question admits of the

following values of n ; viz.

N = 68, 146, 224, 302, 380, &c.

which numbers form an arithmetical prooression, whose

difference is 78 = 6 x 13. So that if w'e know one of the

vahies, we may easily find all the rest ; for we have only to

add 78 continually, or to subtract that number, as long as it

is possible, when we seek for smaller numbers.

14. The following question furnishes an example of a

longer and more tedious solution.

Question 8. To find a number N, wdiich, when divided

by 39, leaves the remainder 16 ; and such also, that if it be
divided by 56, the remainder may be 27.

In the first place, Ave have n = Q9p + 16; and in the

second, n = 56q + 27 ; so that

39/? + 16 = 56q + 27, or Qdj) = 56g + 11, and

56o + ll 17/7+11
P - 3()

= q + —Tjg— = q -'r r, by makmg

17g + ll

39 '

So that 39r = 17<? + 11, and

39r-ll ^ 5;— 11 ^—^— = 2r 4
^Y~

= ^'" + *' '^y malting

5r^ll

17
s = ——— , or 17<? = 5r — 11 ; whence we get

175+ 11 , 2^+11 ^
r = p— = 35 4 — = iis -{- f, by makmg

2^ + 11
t = ——z— , or 5^ = 2^ + 11 ; whence we find

5

5^-11 ^ f.~U ^
s = —-r— =^t -\- —^T— = 2^ + u, by makmg

7/, = —-— ; whence i = 2?< + 11.

Having now no longer any fractions, we may take

at pleasure, and then we have only to trace back the fol

lowing values :

t = 2?/+ 11,

s -^t ^n = 5u 4- 22,

r = Ss -\-t = 17?/+ 77,
^r = 2/-+* = o9u-{- 176,

p = q -\- r — 56)1 -\-

u
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and, lasily, n = 39 x 5Gu -f 9883 *. And the least pos-

sible value of N is found by making u — — 4 ; fo by this

supposition, we have n = 1147 : and ifwe make ii = .v — 4,

we find

N = 2184x' - H73G + 9883 ; or >; = 2184^ + 1147;

which numbers form an arithmetical progression, whose

first term is 1147, and whose common difference is 2184;

the following being some of its leading terms

:

1147, 3331, 5515, 7699, 9883, &c.

15. We shall subjoin some other questions by way of

practice.

Question 9. A company of men and women club to-

gether for the payment of a reckoning : each man pays 25

livres, and each Avoman 16 livres; and it is found that all

the women together have paid 1 livre more than the men.

How many men and women were there ?

Let the number of Avomen be ;;, and tliat of men q ; then

the women Avill have expended 16^, and the men 25^; so

that 16/; = ^5q + 1, and

25<? + l
,

9<? + l
^ ,^ Q ,

,

2) =z -^Q— ^ </ + -^jQ- -q + r, or IGr = 9<7 + 1,

I6r-1 7r-l n r/ 1
q = —— =z r -{- —g— = r + s, or 9s = 7r — 1,

95 + 1 'Js + 1
,

-

r r= —-— = s + —Y- = * -f ^, or it = ^s -\- 1,

s = 5^^^ = 3* + *-^ = 3* + «, or ^u=t~l.

We shall therefore obtain, by tracing back our substitutions,

t =^iC + l,

s = 3t -\- ft = 7w -{- 3,

r = .s- -f- ^ = 9w -j- 4,

q = r -]- s = 16ti 4" 7,

2)= q-\.r = mic -\- 11.

So that the number of women was 25m + 11, and that of

men was 16^* + 7 ; and in these formulae we may substitute

* As the numbers 176 and 253 ought, respectively, to be

aivisible by 39 and 56; and as the former ought, by the

question, to leave the remainder 16, and the latter 27, the sum

9883 is formed by multiplying 176 by 56, and adding the re-

mainder 27 to the product : or by multiplying 253 by 39, and

adding the remainder 16 to the product. Th.is,

(176 X 56) 4- 27 = 9883 5 and (253 x 39) + 16 = 9883.



^08 ELEMEKTS TAUT 11.

lor 11 ftny inteo-cr numbers "whatever. The least results,

tlierefbrc, will be as follow :

Number of women, 11, 36, 61 , 86, 111, &c.
^ of men, 7, 23, 39, 55, 71, &c.

Accordlnn- to the first answer, or that which contains llic

least numbers, the women expended l7G livres, and the n:en

175 livres; that is, one livre less than the women.
16. Question 10. A person buys some horses and oxen :

he pays 31 crowns per horse, and 20 crowns for each ox ;

and he iinds that the oxen cost him 7 crowns more tlian the

horses. How many oxen and horses did he buy .''

If we suppose _p to be the number of the oxen, and r,' tlic

number of the horses, we shall have the following equation :

^ "" "so"" ^ '^'^ 20~ "'?"'" ^'' ''^' ~^'" '=^^lT'y

20r-7 ,
9;- -7

(J
= —y:— = r -\ Yt~ = ^' H" *» oi' ^^^ = ^^'- h

9^—7 t —1
s = —^ = U^ —^y- = 4^ -I- n, or 2ic = t-^1,

whence t = 2?^ -}- 7, and, consequently,

s = U -\-2i= ^u, 4- 28,

r = s-\- t = \\u + 35,

q ^= ?•-}- 5 = 20» -j- Q?), number of horses,

^ = q-^ r =. 3\ii -j- 98, number of oxei?.

Whence, the least positive values of 7^ and q are found by

making ?« 1= — 3; those which are greater succeed in the

following arithmetical progressions

:

Number of oxen, p = 5, 3Q, 67, OS, 129, 160, 191, 222,

253, &c.

Number of horses, a -3, 23, 43, 63, 83, 1C3, 123, 143,

163, &c.

17. If now we consider how the letters p and y, in tliis

example, are determined by the succeeding letters, we shall

perceive that this determination dcjiends on the ratio of the

numbers 31 and 20, and ])articularly on the ratio which wc
discover by seeking the greatest common divisor of lliese two
numbers. In fact, if we perform this operation.
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31
20

(1

(1

(1

11) 20
11

, 9) 11

1)

2) 9
8

('t

1) 2
o

(2

it is evident tliat the quotients are found also in the suc-

cessive values of the letters jj, q, ?•, s, &c. and that they are

connected with the first letter to the rij^dit, w'lile the last

always remains alone. We see, farther, that the number 7
occurs only in the fifth and last equation, and is affected by
the sign +, because the number of this equation is odd;
for if that number had been even, we should have obtained
— 7. This will be made more evident by the foilowino-

Table, in which we may observe the decomposition of the

nvmibers 31 and 20, and then the determination of the values

ot' the letters p, g, r, &c.

31 = 1 X 20 + 11

20 = 1 X 11 + 9
11 r:z 1 X 9 + 2
9 = 4 X 2 + 1

2 = 2x 1+ i =2 X u \- 7.

IS. In the same manner, we may '"epresent t!ie example
in Art. 14.

/^ = 1 X 7 + r

7 = 1 X r + -y

r = 1 X i>f + t

,v = 4 X t + u

56 = 1 X 39 + 17
39 = 2 X 17 + 5
7 = 3 X 5 + 2
5 = 2 X 2 + 1

2 =3 2 X 1 +

q = 2 X /• -r .?

r = S X s -{- t

s = 2 X t + u
t -il X u + 11.

19. And, in the same manner, we may analyse all ques-

tions of this kind. For, let there be given the equation

bji :=: aq + n, in which a, b, and ?/, are known numbers

;

then, we have only to proceed as we should do to find the

greatest common divisor of the numbersL a and by and we
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may immediately determine p and q by the succeeding let-

ters, as follows

:

Let

a rr Ab + c

b = Bc-\-d
c =: Cd + e

d=LDe + f
e^EfVg

ard wc shall

find

{p = Jq^r
\q- Br + ,v

I

/• = C.9 + t

J

s = Dt -\- u
t = Eu + V
u = Fv + 11.

We have only to observe farther, that in the last equation
the sign + niust be prefixed to 7i, when the number of
equations is odd ; and that, on the contrary, we must take
— 71, when the number is even : by these means, the ques-
tions which form the subject of the present chapter may be
readily answered, of which we shall give some examples.

20. Question 11. Required a number, which, being di-

vided by 11, leaves the remainder 3; but being divided by
19, leaves the remainder 5.

Call this number n; then, in the first place, we have
X = 11/; -f- 3, and in the second, n = 19(7 + 5 ; therefore,

we have the equation lip = 19q -{- 2, which furnishes the

following; Table

:

19= 1 X ll-f-S p = q + r
11 = 1 X 8+3 q = r + s

8 = 2 X 3-f2 r = %s + t

3 = 1 X 2+1 s = t + u
2 = 2 X 1 + t = ^u + 2,

where we may assign any value to 7z, and determine by it

the preceding letters successively. We find,

t = 2/^+2
s — t + u = Su-^ 2
r =2*+ t = 8ii + 6
g=z r + s = llu + 8

p = q -i- r = Idu +14;

whence we obtain the number sought n=:209?<+157; there-

fore 157 is the least number that can express n, or satisfy

the terms of the question.

21. Question 12. To find a number n such, that if

we divide it by 11, there remains 3, and if we divide it by
19, there remains 5; and farther, if we divide it by 29,
there remains 10.

The last condition requires that n = 29/? +• 10 ; and as

wc have already performed the calculation (in the last

question) for the two others, wc must, in consequence of that
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result, liavc N = 209?^ -\- 157, instead of which we shall

write N = 2095' + ^57 ; so that

29/; + 10 = 203(7 4- 157, or Z^p = 209^ + 147;

^vhenee we have the following Table;

209 = 7 X 29 + 6 ; (p- Iq -I- r,

29= 4 X Q^-5;
Q= 1 X 5 + 1;
5 = 5 X 1 4- ;

And, if" w'e now retrace these steps, we have

s = 5t — 147,

r- s+ t= (5t— 147,

^ = 4r -}- s= 29t— 735,
'

j9 r= 7g + r = 209?; - 5292 *.

So that N = 6061^ — 153458: and the least number is

found by making t = 26, which supposition gives n = 4128.

22. It is necessary, however, to observe, in order tliat an

equation of the form bj) = ag + n may be resolvible, that

the two numbers a and b must have no common divisor

;

for, otherwise, the question would bo impossible, unless the

number n had the same common divisor.

If it M^cre required, for example, to have 9p = ^oq + 2;
since 9 and 15 have a common divisor 3, and which is not a
divisor of 2, it is impossible to resolve the question, because

9/; — \5q being always divisible by 3, can never become
n: 2. But if in this example 11 = 3, or ti = 6, &c. the

question would be posssible : for it would be sufficient first

to divide by 3; since we should obtain 'op = 5q-\-\, an
equation easily resolvible by the rule already given. It is

evident, therefore, that the numbers a, 6, ought to have no
common divisor, and that our rule cannot apply in any other

case,

23. To prove this still more satisfactorily, we shall con-

sider the equation 9/? = \5q -|- 2 according to the usual

method. Here we find

157+2 6(7 + 2
P = —^ = q + -—— = q -r r; so that

9r = 6q+ 2, or 6q - Qr - 2 ; or

())• _ O c^j. o
q =

'—n— = r-\ jr-^ = r-\-s; so that 3;- — 2 = 6s,

* That is, — 5292 x 29 = — 153468 -, to wliich if the re-

mainder -f 10 rcquiicd by the question be addecb the sum is

- 153 158.
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(j,y J. o
or 3r = 6^' + 2 : consequently, r — —-^ = 2s -\- ~.

o

No\v, it is evident, that this can never become an integer

number, because s is necessarily an integer ; which shews
the impossibility of such questions *.

CHAP. II.

Of the Rule winch is called Regula Caeci, fbr determining

by means of' tioo Equations, three or more Unknown
Quantities.

24. In the preceding chapter, we have seen how, by means
of a single equation, two unknown quantities may be deter-

mined, so far as to express them in integer and positive

numbers. If, therefore, we had two equations, in order that

the question may be indeterminate, those equations must
contain more than two unknown quantities. Questions of

this kind occur in the common books of arithmetic ; and are

resolved by the rule called Regula Caci, Position, or The
Mule ofFalse ; the foundation of which we shall now ex-

plain, beginning with the following example :

25. Question 1. Thirty persons, men, wbmen, and child-

ren, spend 50 crowns in a tavern ; the share of a man is 3
crowns, that of a woman 2 crowns, and that of a child is 1

crown ; how many persons were there of each class ?

If the number of men be^, of women q, and of children r,

we shall have the two following equations

;

1. p -^ q + r = 30, and
2. Sp + 2q + r = 50,

from which it is required to find the value of the three

letters
J9, q, and r, in integer and positive numbers. The

first equation gives r = 30 — p —q; whpnce we imme-
diately conclude that jt? + q must be less than 30 ; and, sub-

stituting this value of r in the second equation, we have
2/? + y + SO = 50 ; so that q = 20 - 2p, and p -{- q =

* See the Appendix to this chapter, at Art. 3. of the Additions
by De la Grange. /> S3o ,
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GO — p^ wlilch evidently is also less than 30. Now, as wc
may, in this equation, assume all numbers for p which do
not exceed 10, we shall have the following eleven ansv/crs

:

the number of men p, of women q, and of children r, being-

as follov*'

:

p= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;

5 = 20,18,16,14,12,10, 8, 6, 4, ^, 0;
r = 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20;

and, if v.e omit the first and the last, there will remain 9.

26. Question 2. A certain person buys hogs, goats, ami
sheep, to the number of 100, for 100 crowns ; tb.e hogs cost

him 3[ crowns apiece ; the goats, 1^ crown ; and the sheep,
i a crown. How many hnd lie of each ?

Let the number of hogs be p, that of the goats q, and of
the sheep ?•, then we shall have the two following equations :

1. P ^ q+ r =^ 100,

2. 2>'^p^~^q + \r^ 100;

the latter of which being multiplied by 6, in order to remove
the fractions, becomes," 21/? -j- 83- -l-"3r — 600. Now, th,e

first gives r rz. 100 — p — q ; and if we substitute this

value of r in the second, wc have ISp -\- 5q — t'OO, or

lS/7
5q = SOO — 18p, and q 7:1 60 y : consequently, lS/>

o

must be divisible by 5, and therefore, as 18 is not divisible

by 5, p must contain 5 as a factor. If we therefore make
J) = 5^, we obtain q — 60 ~ 18s, and r = 13.v -\- 40 ; in

which Ave may assume for the value of s any integer number
whatever, provided it be such, that q docs not become ne-
gative: but this condition limits the value of 5 to 3; so diat

if we also exclude 0, there can only be three answers to the

question ; which are as follow :

AVhen 5 = 1, 2, 3,

(p= 5, 10, 15,

We have -^ ^7 = 42, 24, (),

(r = 53, 66, 79.

27. In forming such examples for practice, we must take
particular care that they may be possible ; in order to which,
we must observe the following particulars

:

Let us represent the two equations, to which we were just

now brought, by

1. X { y -\- z — a, and

^'f^-\-g.'J + 'l^r: = b,

in whichyj g, and h, as well as a and b, arc given numbers.
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Now, if we suppose that among the numbers f^ g, and //,

the first, y, is the greatest, and h the least, since we have

Jx \ fy f yr, or(x +3/4- 2)/ =ya, (because .r +j/ + 2=rt)
it is evident, that/r

-{-J}! ^fi is greater than^iz' + gy + A:

;

consequently, y« must be greater than 6, or h must be less

than /«. Farther, since lix -\- hy \- hz, or {x -{- y -^ z)h =. ha,

and ha: -\- hy + /*:; is undoubtedly less Xhanfx -\- gy + hz,

ha must be less than Z>, or h must be greater than ha. Hence
it follows, that if h be not less than fa, and also greater than

ha^ the question will be impossible : which condition is also

expressed, by saying that h must be contained between the

limits Ja and ltd ; and care must also be taken that it may
not approach either limit too nearly, as that would render it

impossible to determine the other letters.

In the preceding example, in which a = 100,/'= 3i, and
7i =: i-, the limits were 350 and 50. Now, if we suppose

h = 51, instead of 100, the equations will become

x-\~y-\-z = 100, and 3i.r -{- \ly ^ Ir = 51

;

or, removing the fractions, 9>lx -\- Sy -\-^z -— 306; and if

the first be multiplied by 3, we have 3^ + 3// + 3^ = 300.

Now, subtracting this equation from the other, there re-

mains 18a,' -\- 5i/ = G; which is evidently impossible, because

X and y must be integer and positive numbers *,

28. Goldsmiths and coiners make great use of this rule,

when they propose to make, from three or more kinds of

metal, a mixture of a given value, as the following example

Avill shew.

Question 3. A coiner has three kinds of silver, the first

of 7 ounces, the second of 5 ^ ounces, the third of 4^ ounces,

fhic per marc -f ; and he wishes to form a mixture of the

weight of 30 marcs, at 6 ounces: how many marcs of each

sort must he take ?

If he take x marcs of the first kind, y marcs of the second,

and z marcs of the third, he will have x -\-
y -\- z = 30,

wliich is the first equation.

Then, since a marc of the first sort contains 7 ounces of

(ine silver, the x marcs of this sort will contain Ix ounces of

such silver. Also, the y marcs of the second sort will con-

tain b^y ounces, and the 2 marcs of the third sort will con-

tain ^^^z ounces, of fine silver; so that the whole mass will

contain l.v + B\y + 4~2 ounces of fine silver. As this

mixture is to weigh 30 marcs, and each of these marcs must

contain G ounces of fine silver, it follows that the whole mass

* '\'k1o Article 2?..

t A marc is eiqht ounces.
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will contain 180 ounces of fine silver; and thence results the

second equation, Tf -|- 51?/ -{- 4jX.' = 180, or 14<j; -}- lli/ -\-

Qz = il60. If we now subtract from this equation nine

times the first, or 9.r -|- 9?/ -|- 9::; = 270, there remains Sx -\-

2// = 90, an equation which must give the values of a- and
1/ in integer numbers; and with regard to the value of r, we
may derive it from the first equation z = 30 — x — y.
Now, the former equation gives 2y = 90 — 5.r, and

5 r
i/=i5——; therefore, if x = 2ii, we shall have ?/ = 45

— 5«, and z =^ 3u — 15; which shews that u must be
greater than 4, and yet less than 10. Consequently, the ques-

tion admits of the following solutions :

If u= 5, 6, 7, 8, 9,

I

Vr = 10, 12, 14, 16, 18,

Then [?j = 20, 15, 10, 5, 0,

yz=. 0, 3, 6, 9, 12.

29. Questions sometimes occur, containing more than three

unknown quantities; but they are also resolved in the same
manner, as the following example will shew.

Question 4. A person buys 100 head of cattle for 100
pounds; viz. oxen at 10 pounds each, cows at 5 pounds,
calves at 2 pounds, and sheep at 10 shillings each. How
many oxen, cows, calves, and sheep, did he buy ?

Let the number of oxen he p, that of the cows q, of calves

?; and of sheep s. Then we have the following equations

:

1. p + q + r + s -=100;
2, lOp -\-5q-{- 2;- + ls = 100

;

or, removing the fractions, 20^; -f lOq 4- 4r + * = 200

:

then subtracting the first equation from this, there remains

19p + 9q + 3r = 100 ; whence

3r=l00- 19p - 9q, and
r = 33 -f { — 6p — ip —3q ; or

r= 33- 6/; -3^ + ^;
whence 1 -

J), or p — \, must be divisible by 3; therefore

if we make

jp — 1 = 3t, we liave

p = 36-\~l

q = q
r = 27 — 19/f- Sq

6 = 72 4- '-^q 4- idt;



If^ = 1

p = 4

9 =
r =
s =

9
8
88
-3q

would then become
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whence it follows, that 19^ + 3^ must be less than 27, and
that, provided this condition be observed, Ave may give any
value to q and f. We have therefore to consider the follow-

ing cases

:

1. If^ =
we havej5 = 1

9 = 9
r = Tl- 3q
5 = 72 + 2g.

We cannot make t — 2, because

negative.

Now, in the first case, q cannot exceed 9 ; and, in tlie

second, it cannot exceed 2 ; so that these two cases give

the following solutions, the first giving the following ten

answers

:

1. 2. 3. 4. 5. G. 7. 8. 9. 10.

_?; =1111111111
0=0 1 23 4 56789
r = 27 24 21 18 15 12 9 6 3

* = 72 74 76 78 80 82 84 86 88 90.

And the second furnishes the three following answers

;

1. 2. 3.

p = 4 4 4

<7 = 1 2
r = 8 5 2
* = 88 90 92.

There are, therefore, in all, thirteen answers, which arc re-

duced to ten if we exclude those that contain :::ei'o, or 0.

30. The method would still be the same, even if the letters

in the first equation were multiplied by given numbevs, as

will be seen from the following example.

Qjiestion 5. To find three such integer numbers, that if

the first be multiplied by 3, the second by 5, and the third

by 7, the sum of the products may be 560; and if we mul-

tiply the first by 9, the second by 25, and the third by 49,

the sum of the products may be 2920.

If the first number be oc^ the second ?/, and the third ;::, we
shall have the two equations,

1. S.r -f 5y -{- Iz^ 560
2. 9.r + 25?/ 4- 49^ = 2920.

And here, if we subtract three times the first, or 9.^' + 15j/ -|-

'2^z =. 1680, from the second, there remains Kfy -j- 28,'::

= 1240 ; dividing by 2, wc have 5// + 14; = 620 ; whence
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we obtahi y = 124 ^r- : so that ,•? must be divisible by

5. If therefore we make z = Su, we shall have 1/ —
124 — I4?i ; which values of?/ and z beinoj substituted in the

first cqucition, we have 3x — 35u + G20 = 560 ; or '3x =
35u

35ic — 60, and x =. —z 20 ; therefore we shall make
o

21 —. 3^, from which we obtain the following answer,

X — 35t — 20, 7/
— 124 — 42^, and :-i = I5t, in which we

must substitute for t an Integer number greater than and
less than 3 : so that we are limited to the two following

answers

:

"}5=^; ^^^^^^^1^—50,^ = 40,^ = 30.

CHAP. III.

O/*Compound Indeterminate Equations, in lohicJi one of the

Unknown Quantities docs not exceed the First Degree.

31. We shall now proceed to Indeterminate equations, in

wliich it is required to find two unknown quantities, one of

them being multiplied by the other, or raised to a power
higher than the first, whilst the other is found only in the

first degree. It is evident that equations of this kind may
be represented by the following general expression :

a f hx \r cy + dx"-+ exy \-fx^ +g-K^ + ^t^*+ ^'-"-^
'!y + ? &c. = 0.

As ill this equation y does not exceed the first degree, that

letter is easily determined; but here, as before, the values

both of .r and of?/ must be assigned in Integer numbers.

We shall consider some of those cases, beginning with the

easiest.

32. Question 1. To find two such numbers, that their

product added to their sum may be 79.

Call the numbers sought x and y: then we must have

xy -f ^ -\- v/ = 79 ; so that jt/ + j/ = 79 — x, and

79 -X 79 , -X
, ,

80 „ ...
7/ = r — -—t4- — --, = — 1 H -=, from which

we see that x -|- 1 must be a divisor oi" 80. Now, SO having-
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several divisor?, we shall also have several values of a', as the
following Table will shew:

The divisors of 80 are 1 2 4 5 8 10 16 20 40 SO

therefore ^r: 1 3 4 7 9 15 19 39 79
and ,7/ = 79 39 19 15 9 7 4 3 10

But as the answers in the bottom line are the same as

those in the first, inverted^ we have, in reality, only the five

following ; viz,

.r = 0, 1, 3, 4, 7, and

y - 79, 39, 19, 15, 9.

33. In the same manner, we may also resolve the general

equation xy + ax + by = c; for we shall have xy -\- by =
c — ax ab + c . .

c — ax, and y = , -, or y = , — a ; that is to say,

X -\- b must be a divisor of the known number ab -\- c\

so that each divisor of this number gives a value of x. If
we therefore make ab -\- c =J'gi we have

y = /^
J
— a ; and supposing x -i- b ==f, or .r =y— h, it

is evident, that y zz g — a\ and, consequently, that we have
also two answers for every method of representing the num-
ber c-S + c by a product, such as^\ Of these two answers,

one is x =J^ — b, and y ^= g — a, and the other is ob-

tained by making x \- b =^ g, in which case x = g — b,

and 7/ =y— a.

If, therefore, the equation ocy -f ^-x -\- oy = 42 were pro-

posed, we should have a = 2, 6 = 3, and c = 42 ; con-

48
sequently, y =: -;— — ^. Now, the number 48 may be

X -]- o

represented in several ways by two factors, ^'^fg: and in

each of those cases we shall always have either x =y— 3,

and y z=. g — 9,\ or else x = g — o, and y —f— 2. The
analysis of this example is as follows :

Factors 1 x48 2 X 24 3 X 16 i X 126x8

.r y

46
— 1

— 1

21

y

22

X

13

14

1

X

1

9

y

10

X

3

5

y

6
4

Numbers
or

-2
45

34. The equation may be expressed still more generally,

by writing mxy = ax -j- by + c ; Avhere a, b, r, and m, are
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given numbers, antl it is required ta find integers lor x and

y that are not known.
CtiV -\- c

If we first separate y, we shall have y =^—— ; and re-

mo vino- X from the numerator, by inulliplying both sides by

tn^ we have
ma.v-\-mc mc '- ah

my = r~ = « + 7—.
•^ mx— b mx — ii

We have here a fraction whose numerator is a known num-
ber, and whose denominator must be a divisor of that num-
ber; let us therefore represent the numerator by a product

of two factors, asjg (which may often be done in several

ways), and see if one of these factors may be com{)ared with

vuv — b, so that rnx — b =f. Now, fur this purpose, since

X = , f-\- b must be divisible by m ; and hence it fol-

lows, that out of the factors of mc -\- ab, we can employ only

those which are of such a nature, that, by adding h to them,

the sums will be divisible by m. We shall illustrate this by

an example.

Let the equation be 5xij = ^x -j- 3^ + IS. Here, vre

have
2a- +18 , ^ lO.r-1-90 ^

,
93

y = 573-3' ^"^ ^^ = -jr~3 = - + 5:^^

'

it is thei'efore required to find those divisors of 26 wiiich,

added to 3, will give sums divisible by 5. Now, if we coji-

sider all the divisors of 96, which are 1, 2, 3, 4, 6, 8, 12, IG,

24, 32, 48, 96, it is evident that only these three of them,

viz. 2, 12, 32, will answer this condition.

Therefore,

1. If 5x ~ o = 2, we obtain 5>j = 50, and
consequentlv .r = 1, and 7/ — 10.

2. If 5x ~3 = 12, we obtain% = 1 0, and
consequently x = 3, and 7/ = 2.

3. If 5.r — = 32, we obtain 5 y = 5, and
consequently x = 7, and^ = 1.

35. As in this general solution we have
7nc4-ab

nuj — a = T".mx— b

it will be proper to observe, that if a number, contained in

the formula 7nc+ ab, have a divisor of the form mx — b, the

quotient in that case must necessarily be contained in the

formula my — a: we may therefore express the number
mc + f(b by a product, such as {mx — b) x {my — ((). For
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example, let m — 12, a — 5, b — "I, and c = 15, ar.d we
215

have 12^ - 5 =r
^,^^ _ ^. Now, the divisors of 215 are

1, 5, 43, 215; and we must select from these such as are
contained in the formula \2x - 7^ or such as, b}' acUHilg- 7
to them, the sum may be divisible by 12: but 5 is the onfy
divisor that satisfies this condition ; so that 12.r — 7 = 5,
and VIij — 5 — 43. In the same manner, as the first of
these equations gives ^ =r 1, Ave also find ?/, in integer num-
bers, from the other, namely, ?/ zz 4, 'liiis property is of
the greatest importance with regard to the theory of num-
bers, and therefore deserves particular attention.

36. Let us now consider also an equation of this kindj
.ry -\- x^ — ^x -\- 3y -\- 29. First, it gives us

2^-^^-1-29
, ,

26
y = —^33— oryzz-x- 1+^33; and

26
7/ -]- a: -]- 1 = : so that .r — 3 must be a divisor of26 i

and, in this case, the divisors of 26 being 1, 2, 13, 26, we
obtain the three following answers :

1. x — 3 = 1, or .r = 4 ; so that

7/ + X -^ 1 = 7/ +5 = 26, and ?/ = 21

;

2. j: — 3 = 2, or a: = 5 ; so that

?/+a: + l— j/4-6 = 13, and 7/ = 7

;

3. ^ — 3 = 13, or .r = 16 ; so that

y + x-\-lzzy-i-17 = 2, and ?/ = - 15.

This last value, being negative, must be omitted ; and^
for the same reason, we cannot include the last case,

a: - 3 = 26.

37. It would be unnecessary to analyse any more of these

formulae, in which we find only the first power of y, and
higher pov>ers of a: ; for these cases occur but seldom, and,

besides, they may always be resolved by the method which
we have explained. But when y also is raised to the second

power, or to a degi'ee still higher, and we wish to determine

its value by the above rules, we obtain radical signs, which
contain the second, or higher powers of x ; and it is then

necessary to find such values of .r, as will destroy the radical

signs, or tlie irrationality. ISow, the great art of Indctcr-

rnmate Analysis consists in rendering those surd, or incom-

mensurable formula? rational : the methods of pei'forming

which will be explained in the following chapters *.

'^ See the Appendix to this chanter, at Art. 4, of the Ad-
tiili-.ms by De la GraiiL-c. jC- fj4
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aUESTIONS FOR PRACTICR.

1. Given 24.1- =: 13^ -\- 16, to find x and ij in whole

numbers. jins. .r — 5, and y — 8.

2. Given 87^ + 25% = 15410, to find the least value of

cc, and the greatest of?/, in whole positive numbers.

Ans. X - 30, and ij = 12800^
3. What is the number of all the possible values of ,r, ?/,

and z, in whole numbers, in the equation 5^' 4- 7// -t-

1U = 224.? A/i.i.GO.

4. How[many old guineas at 21.?. 6d ; and pistoles at 17s,

will pay 100/. ? and in how many ways can it be done ?

Ans. Three different ways ; that is,

19, 62, 105 pistoles, and 78, 44, 10 guineas.

5. A man bought 20 birds for 20 pence ; consisting of

geese at 4 pence, quails at Id. and larks at ^d. each ; how
many had he of each ?

Ans. Three geese, 15 quails, and 2 larks.

G. A, B, and C, and their wives P, Q, and R, went to

market to buy hogs ; each man and woman bought as many
hogs, as they gave shillings for each ; A bought 25 hogs

more than Q, and B bought 11 more than P. Also each

man laid out three guineas more than his wife. Which two

persons were, respectively, man and wife ?

Jns. B and Q, C and P, A and R.
7. To determine whether it be possible to pay 100/. in

guineas and moidores only ? Ans. It is not possible.

8. I owe my friend a shilling, and have nothing about me
but guineas, and he has nothing but louis d'ors, valued at

17.?. each ; how must I acquit myself of the debt .''

Ai:s. I must pay him 13 guineas, and he must give me
16 louis d'ors.

9. In how many ways is it possible to pay 1000/. with

crowns, guineas, and moidores only ? Ans. 70734.
\X 10. To find the least whole number, which being divided

by the nine whole digits respectively, shall leave no re-

mainders.
'

Ans. 2520.

'Ht^ ^^'
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CHAP. IV.

On the Method of rend^iing Surd Quantities of theJbrm
^/(« \- bx -\- cx~) Rational.

88. It is required in the present case to determine tlie

values which are to be adopted for x, in order that the

formula a -\- bx -\- ex" may become a real square; and,

consequently, that a rational root of it may be assigned.

Now, the letters r/, b, and c, represent given numbers ; and
ihe determination of the unknown quantity depends chiefly

on the nature of these numbers ; there being many cases in

which the solution becomes impossible. Eut even when it is

possible, we must content ourselves at first with being able to

assign rational values for the letter x, without requiring those

values also to be integer numbers ; as this latter condition

produces researches altogether peculiar.

39. ^Ye suppose here that the formula extends no farther

than the second power of x ; the higlier dimensions require

different methods, which will be explained in th.eir ])roper

places.

We shall observe first, that if the second pov.-er were not

in the formula, and c were = 0, the problem would be at-

tended with no difficulty; for if a,/ [a + bx) were the given

Ibrmula, and it were required to determine x, so that a -\- bx
might be a square, we should only have to make a + bx "^y",

whence we should immediately obtain .r =r "^—-— . Now,

whatever number we substitute here for y, the value of x
would always be such, that a \- bx would be a square, arid

consequently, v^(« + bx) would be a rational quantity.

40. We shall therefore begin with the formula ^/ (1 + x")

;

that is to say, we are to find such values o'l x, that, by add-

ing unity to their squares, the sums may likewise be squares

;

and as it is evident that those values of .r cannot be integers,

Ave must be satisfied with finding the fractions which express

them.

41. If we supposed 1 -f a;- — y-, since 1 -^ x" must be a

square, we should have x" =: y- — 1, and x zz \/{y- — 1

;

so that in order to find x we should have to seek numbers
for y, whose squares, diminished by unity, would also leave

squares ; and, consequently, we should be led to a question as

difficult as the former, without advancing a single step.
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It is certain, however, that there are real fractions, whiclj,

being substituted for x, will make 1 + -^^^ a square ; of

which we may be satisfied from the following cases

:

1. If ^ = 1^5 we have 1 + j;® =tt; ^"<i consequently

2. 1 -\- x'^ becomes a scjuare likewise, if a; = |, which
gives a/(1 + a') --. 1.

3. If we make x = -,\, we obtain 1 + x- =4|^, the

square root of which is 41*

But it is requii-ed to shew how to find these values of .vt

and even all possible numbers of this kind.

42. There are two methods of doing this. The first re-

quires us to make ^/(l -\- ^r-) = x -{• p ; from which sup-

position we have 1 -\- x^ = x- -{- 9>px -\- p-j where the square

X' destroys itself; so that we may express x Avithout a

radical sign. For, cancelling x' on both sides of the equa-

1 -p"
tion, we obtain 9.px -f-

p" = 1 ; whence we find x = —^— ;

a quantity in which we may substitute for p any number
whatever less than unity.

AM

Let us therefore suppose p = —, and we have

— , and if we multiply both terms of this fraction
2m

by n", we shall find x — —r——

.

•^ 2mn
43. In order, therefore, that 1 + .r' may become a square,

we may take for m and n all possible integer numbers, and
in this manner find an infinite number of values for x.

Also, if we make, in general, x zr — , we find, by

, ,
n* — 2m"n" -{-

m*
.

squaring, 1 -{- a;- ir: 1 -| —-—
, or, by puttmg

imr .
71* -j- 2m^n' -f- m*

1 = -;—; m the numerator, 1 -4- .r" = -.
—-—, ; a

4/;i^ '
' 4?w''«-

fraction which is really a square, and gives

n-4- m~
A/a + X")

\Z7nn

We shall exhibit, according to this solution, some of the

least values of x.
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If n = 2, 3, 8, 4, 4, 5, 5, 5, 5,

and w = 1, 1, 2, 1, 3, 1, 2, 3, 4,

vve iicivt; a- — ^, y, -j-j, -g- J ^-j-j -5-5 io> iT' +o*

44. We have, therefore, in general,

{n" — 7rf)" {ii"-\-iiv)"

"*"
(9,mn)"-

~
(2w?t)- '

and, if we multiply this equation by (^2mn)-, we find

(2wi7i)- + {n" - rn^y — (7i' + wi')=

;

so that v/e know, in a general manner, two squares, whose

sum gives a new square. This remark will lead to the

solution of the following question :

To find two square numbers, whose sum is likewise a

square number.

We must have j^- -\- q- = r-; we have therefore only to

make p — 9.mn, and q = 71^ — m"; then we shall have

r = n^ + m^.

Farther, as (n- + wi-)- — (2mw)- = (/i- — m"Y\ we may
also resolve the following question :

To find two squares, whose difference may also be a square

number.
Here, since p- — q- = ?-, we have only to suppose

p = n'- + 771% and q = 9,mn, and we obtain r = n- — m-.

We might also make p = n"^ -\- m", and q = n" — m-y

from which we should find r = Qmn.

45. We spoke of two methods of giving the form of a

square to the formula 1 + x". The other is as follows

:

THOC

If we suppose V(l+.r^) = 1 + — , we shall have

1 -4- ,r^ = 1 + '^^— A ^—
; subtracting 1 from both sides,

' n 'nr

we have x"- = '^^—^
-A . This equation may be divided

11 n
^771 711 OC

bv X, so that we have t = ^^ + —r^, or ii'x — 9,mn + m^x^

whence we find x = -p ,. Having found this value of

.r, we have

4w-7i2 7i* + ^m'^n- + 7n'^ ....
1 4- 0,2 = 1 4- = :r-;-^ :» which is

the square of -^r ;,• Now, as we obtain from that, the
^ 71^— VI-
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. ^ {2mn)- (ri' + m^-y
, ,, ,

equation 1 + r-r —-, = -—^ —.. we shall have, as be-^ («*

—

m-) {71-—m)
fore, (n'-m^Y + {2mny = (w^+ vi"-Y;

tliat is, the same two squares, whose sum is also a square.

46. Tlie case which we have just analysed furnishes two
methods of transforming the general formula a + bx + cx^

into a square. The first of these methods applies to all

the cases in which c is a square ; and the second to those in

which « is a square. We shall consider both these sup-

positions.

First, let us suppose that c is a square, or that the given

formula I's a + bx -\-J^^x^. Since this must be a square,

we shall make A/(a -|- bx -^-J^'oc") =f^-\ 5 and shall thus

have a + bx + f-x- = f'x-4-'^^-^—j -, in which the
"^ -^ 1171'-

terms containing x'^ destroy each other, so that

a -{- bx = — j -, If we multiply by ?r, we obtain

m- — 7i'a
n^a f 71 bx=2m7ifx-{-7n- ; hence we find a'= -77—-, -,,; and,

^ ' ifb — 271171/

substituting this value for x, we shall have

, ^ , m'^f—7i"af m vi7ib—m"f—7faf
*^ 7vb— ylmnj n ivb— zmnj-

47. As we have got a fraction for .r, namely,

m"-n-a P , 0,1
let us make x = —, then p = 7n- — 71 a, and

7i"b— 2m7if^
'

q

bp y^'p~
n = 7i^b — ^?.>inf; so that the formula a -j j

—- is a
^ ^

q q
square; and as it continues a square, though it be mul-
tiplied by the square q^, it follows, that the formula

ci-q~-\-bpq-\-f-p^ is also a square, if we suppose jj^mr—n^a,
and q = jf-b — %n7if. Hence it is evident, that an infinite

number of answers, in integer numbers, may result from
this expression, because the values of the letters m and 71 are

arbitrary.

48. The second case which we have to consider, is that in

which a, or the first term, is a square. Let there be pro-

posed, for example, the formula^/'- + bx-\-cx', which it

is required to make a square. Here, let us sup»pose
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tllX

\/[f' + hx -f ex'-) —f-\ , and we shall have

f- -j- bx + c^' rr f- -{• ——- A — , in which equation
w n-

the terms/" destroying each other, we may divide the re-

maining terms by x, so that we obtain

, %nf m-x
+ ex — —^ H — , or

n n
oCh + n-cx z= %nnf-\- m^x, or

x{n~c — m'^) = 9,mrif— n~b ; or, lastly,

2mnf—n-h
X = —f —

nc— m-

If we now substitute this value instead of .r, we have

'^Ttf-f—mnh n^cf-\- iri^f— mnb
^^{P^hx-\-CX^-) .:./ +

ri'c— iit^

and making .r rr —-,we may, in the same manner as before,

transform the expressiony'-g'" -{- bpq 4- cp^, into a square,

by making p = 9,m7if ~ n"h, and q = ti^c — in'-.

49- Here we have chiefly to distinguish the case in which

« = 0, that is to say, in which it is required to make a

square of the formula bx -\- cx^:, for we have only to

suppose '/{bx + cx^') •=. — , from which we have the equa-

11}/-
x^

tion bx + ex"- = —— ; which, divided by x, and multiplied

by 7^^ gives bn- + cn"x ~ oivx ; and, consequently,

_ bn'

~ m^— cn"'

If we seek, for example, all tlio triangular numbers
that are at the same time squares, it will be necessary that

—
-J—, which is the form of triangular numbers, must be

a square; and, consequently, 2x^' + ^x must also be a

in'X'
square. Let us, therefore, suppose —- to be that square,

n-

o,

and we shall have 27i-x + 2w- =: vfx, and ^r =: —r.—x—
- 5

'»
111' — iln-

which value we may substitute, instead of m and n, all pos-
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sible numbers ; but we shall generally iind a fiaclion for ,r,

thougli sometimes Ave may obtain an integer number. For
example, if m = ii, and n = 2, we find a: = 8, t!ie triangular

number of which, or 36, is also a square.

We may also make m = 7, and n — 5; in this c<ise,

X = - 50, the triangle of which, 1225, is at the same time
the triangle of +49, and the square of 35. We should
have obtained the same result by making ?a

— 7 and ??i::Ll();

for, in that case, we should also have found .v rz 49.
In the same manner, if m rr 17 and n =12, wc obtain

.V =. 288, its triangular number is

^(^+1) 288x289-^= ^— =14ix 289,

which is a square, whose root is 12 x 17 — 204.

50. We may remark, with regard to this last case, lliat

we have been able to transform the formula ba' -f cx'^ into a
square from its having a known factor,^; this observation

leads to other cases, in which the formula a ~r bx -\- cw"-

may likewise become a square, even when neither a nor c

are squares.

These cases occur when a -{- bx -\- cx^ may be resolved

into two factors ; and this happens when b'- — ^ac is a
square : to prove which, we may remark, that the factors

depend always o\\ the roots of an equation ; and that,

therefore, we must suppose a + bx + cx'^ = 0. This
being laid down, we have cx"^ = — bx — a, or

bx a
X- = — , whence we nnd

c c

b b' a I) -/{b'— 4rtc)
X ~ ±-'fc-~)'«^--^'=-^±2c - ' He- c

"
2c
-

2c

and, it is evident, that if Z»- — 4«c be a square, this quantity
becomes rational.

Therefore let h- — 4:ac zz d'- ; then the roots will be

—b±d . . -b+d ,
, ,—

^
, that IS to say, x — —

; and, consequently, the

divisors of the formula a -f- bx -\- cx' are x -j —
, and

X -\—^— . If we multiply these factors together, we are

brought to the same formula again, except that it is divided

by c ; for the product is x'"- + j-— — -

j „ ; and since

d' = b"- — 4tfc, we have
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bx b' b" 4«c bx . a
^ ^ ^

^' +7+4?--4^+Te^ = ^^^ + 7+ -c-'
^'^"^^ ^^^"^'

multiplied by c, gives cx^ -f- bx -\- a. We have, therefore,

only to multiply one of the factors by c, and we obtain the

formula in question expressed by the product,

b cl
' b d^

and it is evident that this solution must be applicable when-
ever b- — 4oc is a square.

51. From this results the third case, in which the formula

(I -f- bx -\- ex' may be transformed into a square ; which we
shall add to the other two.

52. This case, as we have already observed, takes place,

when the formula may be represented by a product, such

as (/" + g'X) X (/^ + kx). Now, in order to make a square

of this quantity, let us suppose its root, or

• 77l( f-\-^X)
V{f+ £'^) X {h + kx) = -^—^—

; and we shall then

have {/-hg'x) x {h i- kx) = ^-!^-LM±L . ai^a, dividing

or
1 • • u X.

, ,
^7 m'(f+gx)

tins equation by_/ +g^\ we have h + kx= "^—-—
;

hif + k

and, consequently, x =

h)f + kn"x =,/in,^ -\- gnfx ;

kir—grri-'

To illustrate this, let the following questions be pro-

posed.

Qucst'iju 1. To find all the numbers, x, such, that if 2
be subtracted from twice their square, the remainder may be
a square.

Since 2a-^ — 2 is the quantity v/hicli is to be a square, wc
must observe, that this quantity is expressed by the factors,

2 X (,r + 1) X (.r - 1). If, therefore, avc suppose its root

~ — -, we have 2(.r + 1) x (a: - 1) = —^^

—

-—^;
n ^

ir

dividing by x + 1, and multiplying by n~, we obtain

o " o 2 o , . ,
ni- + 2n'^

\ln-x — 2/r = m-x -{- m-, and x = ;r—^ :.

2/^2 — m
Ifj therefore, we make ?» = 1, and ;/ = 1, we find x = 3,

and 2.r- - 2 = 16 = 4-.

If?/; = 'J and // = 2, wc have ,v =—17. Now, as x is
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only found in the second power, it is indifferent whether we
take X =z— 17, or a; = + 17 ; eitlier supposition equally

gives 2^'- -2 = 516 = 24^

53. Question 2. Let the formula 6 + 13.z' + (ix^ be pro-

posed to be transformed into a square. Here, wc have
rt = 6, 6 = 13, and c = 6, in which neither a nor c is a

square. If, therefore, we try whether b' — 4flc becomes a

square, we obtain 25 ; so that Ave are sure the formula may
be represented by two factors ; and those factors are

(2 + Sx) X (3 + 2x).

rn{2 + Sx)....
If ig their root, we nave

which becomes 3n~ + 2n^x = 2m* + 3m-x, whence we find

9.m-—3n" 3n"~2m" ^ .
i , ,Now, m order that the numc-

^n'-Sm'^ 3w-— 2w'

rator of this fraction may become positive, 3/i^ must be
greater than 2m- ; and, consequently, 2m'^ less than 3n^

:

that is to say, —- must be less than -|. With regard to the

denominator, if it must be positive, it is evident that 3m^

must exceed %i^ ; and, consequently, —— must be greater

than |-. If, therefore, we would have the positive values

of X, we must assume such numbers for m and ??, that

—— may be less than l, and yet greater than ~.

For example, let m = 6, and a^ = 5 ; we shall then have

7?i'

= 14? which is less tban |, and evidently greater than

1^, whence x = ^^-.

54. This third case leads us to consider also a fourth,

which occurs whenever the formula a -{-bx -{ ex'' may be
resolved into two such parts, that the first is a square, and
the second the product of two factors : that is to say, in this

case, the formula must be represented by a quantity of the

form p' + ryr, in which the letters p, </, and ; express quan-
tities of the formy+ gx. It is evidcut that the rule for this
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case will be to make \/{p'-r !7>") =2^ H ; f^^' '^^e shall

thus obtain p--\- or = ;r H =^ -\ r,in which the terms

p- vanish; after which we may divide by q, so that we find

mp
,
m-q ^ r—i- -| ~, or w r = 9,nmp + m-<7, an equation irom

9

n n'

which X is easily determined. This, therefore, is the fourth

case in which our formula may be transformed into a square

;

the application of which is easy, and we shall illustrate it by

a few examples.

55. Qucsticm 3. Required a number, a; such, that double

its square, shall exceed some other square by unity ; that is,

if we subtract unity from this double square, the remainder

may be a square.

For instance, the case applies to the number 5, whose

square 25, taken twice, gives the number 50, which is

greater by 1 than the square 49.

According to this enunciation, 2<r- — 1 must be a square

;

and as we have, by the formula, a = — 1, b = 0, and c = '2,

it is evident that neither a nor c is a square ; and farther,

that the given quantity cannot be resolved into two factors,

since b"— 4ac = 8 w^hich is not a square ; so that none of

the first three cases will apply. But, according to the fourth,

this formula may be represented by

X' + {x' - 1) = .v' + (.r — 1) X (.r + 1).

m(.v -'r 1)
If, therelore, we suppose its root =: x -\ , wo

shall have

x' + ix + 1) X (a: - 1) = .r=+ --^—^ + V,^ n n-

This equation, after having expunged, the terms x", and

divided the other terms bj"^ .r + 1, gives

Ti'x — n^ = %nnx + m'x + m~ ; whence we find

X = -T

—

rz „ ; and, since in our formula, 2.r' — 1, the

square x" alone is found, it is indifferent whether we take

positive or negative values for x. We may at first even

write — m, instead of + m, in order to have
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if- -\-^mn — ii^f

If" we make m=- 1, and w = 1, we find .r = 1, and
Sx*^ —1 = 1; or if we make m = 1 , and w = 2, we find

a: = i-, and 2a:-- — 1 = ~ ; lastly, if we suppose wi = 1

,

and w=: — 2, we find .c= — 5, or ^ = +5, and Sa;*— 1 =49.
56. Question 4. To find numbers whose squares doubled

and increased by 2, may likewise be squares.

Such a number, for instance, is 7, since the double of

its square is 98, and if we add 2 to it, we have the square

100.

We must, therefore, have ^v' + 2 a square ; and as

a = 2, h = 0, and c = 2, so that neither a nor c, nor

b" — iac, the last being = — 16, are squares, we must,

therefoi'e, have recourse to the fourth rule.

Let us suppose the first part to be 4, then the second

will be 2.r^ — 2 = 2(x -f 1) x {x — 1), which presents

the quantity proposed in the form

4 + Gr + 1) X (x - 1).

7)1(w "i" 1 I

Now, let 2 -|
'

be its root, and we shall have
71

the equation

4wzOr+ 1 ) m-(x + 1Y
4 + 2(0; 4- 1) X (x _ 1) = 4 + —^-T—^ + —^^-^-^,

^ n n-

in which the squares 4, are destroyed ; so that after having

divided the other terms by a; + 1, we have

9/n-x — S>n^ = 4mw -{- m'^x + w" ; and consequently,

4<mti-\-7n'^-\-2n~

If, in this value, we make m = 1, and w = 1, we find

^ = 7, and %v" + 2 = 100. But if wi = 0, and 7i = 1, we
have :r = 1, and 2a;^ -|- 2 = 4.

57. It frequently happens, also, Avhen none of the first

three rules applies, that we are still able to resolve the

formula into such parts as the fourth rule requires, though

not so readily as in the foregoing examples.

Thus, if the question comprises the formula 7 + 15a;

+ 13.r", the resolution we speak of is possible, but the

method of performing it does not readily occur to the mind.

It requires us to suppose the first part to be (1 — x)- or

1 - 2a; -|- x\ so that the other may be 6 -f 17.r + 120;^:

and we perceive that this part has two factors, because

17- - (4 X 6 X 12), = 1, is a square. The two factors
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therefore are (2 + ijx) x (3 + 4.r) ; so that the formula
becomes (1 — a-f -\- {2 -j- 3.r) x (3 + 4a^), which we may
now resolve by the fourth rule.

But, as we have observed, it cannot be said that this

analysis is easily found ; and, on this account, we shall ex-

plain a general method for discovering, beforehand, whether
the resolution of any such formula be possible or not ; for

there is an infinite number of them which cannot be re-

solved at all : such, for instance, as the formula Sx- -\- 2,

which can in no case whatever become a square. On the

other hand, it is sufficient to know a single case, in which a
formula is possible, to enable us to find all its answers ; and
this we shall explain at some length.

58. From what has been said, it may be observed, that all

the advantage that can be expected on these occasions, is

to determine, or suppose, any case in which such a formula
as a + bx + ex", may be transformed into a square ; and
the method which naturally occurs for this, is to substitute

small numbers successively for x, until we meet with a case

which gives a square.

JSow, as X may be a fraction, let us begin with substituting

for x the general fraction — ; and, if the formula

a 4- ^ -
n which results from it, be a square, it will be

so also after having been multiplied by zi- ; so that it only

remains to try to find such integer values for t and u, as will

make the formula mr -|- btic -{- ct- a square ; and it is

evident, that after this, the supposition of x = — cannot fail

to give the formula a -f- bx -j- cx'~ equal to a square.

But if, whatever we do, we cannot ai'rive at any satisfac-

tory case, we have every reason to suppose that it is altogether

impossible to transform the formula into a square ; which, as

"we have already said, very frequently happens.

59. We shall now shew, on the other hand, that when one

satisfactory case is determined, it will be easy to find all the

other cases which likewise give a square ; and it will be per-

ceived, at the same time, that the number of those solutions

is always infinitely great.

Let us first consider the formula 2 -j- 7.r-, in which « = 2,

Z> = 0, and c = 7. This evidently becomes a square, if we

suppose .t' = 1 ; let us therefore make x = 1 -\-y, and, by

isubslitution, wc shall liavc x" = 1 -|- 2// + y", and our
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formula becomes 9 -\- I'i^ + Tj/'-, in which the first term is

a square ; so that we shall suppose, conformably to the

second rule, the square root of the new formula to be

3-1

—

^ and we shall thus obtain the equation
n »

6771V ,
onry" .

9 + 1% + Ty" = 9 H —-{ r» ^" which we may ex-

punge 9 from both sides, and divide by 1/ : which being

done, we shall have 14<n'- -\- Ifny = 6mn + m'iy ; whence

67nn— l4!)r . ,

7/ = -jz—

^

^r- ; and, consequently,
7w-— m-

6mn — In^— m^
X zz , in which we may substitute any

in-— m"

values we please for m and n.

If we make m = \, and n = 1, we have ^ = — 4.; or,

since the second power of jv stands alone, x = + i, where-

fore 2 + 7.i''^ = V •

If m = 3, and n = 1, we have x =. — 1, or ^ = + 1.

But if m = 3, and n = — 1, we have .r = 17; which

gives 2 -[- 7x" = 2025, the square of 45.

If m = 8, and 71 = 3, we shall then have, in the same

manner, x = — 17, or .x' = +17-
But, by making m = 8, and 11= — 0, we find x = 271

;

so tliat 2 + Ix' = 514089 = 717'^

60. Let us now examine the formula 5x- + So? + 7, which

becomes a square by the supposition of cr = — 1. Here, if

we make x — y — 1, our formula will be changed into this

:

5y - lOj/ + 5

+ %-3
+ 7

%^- 7J/ + 9,

my
the square root of which we shall suppose to be 3 ; by

which means we shall have

% — ^^ + 9 = 9 - —- -\-
'^"

bn-y — 7n- = — Qtmn -f- m-y ; whence we deduce

^n" — Qmn 2w- — 6w7i-|-m'-
II = -—

—

; and, lastlv, x = --;; 5—

•
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Ifm= ^, and n = 1, we have x = — 6, and consequently

5x'' -f- 3.r -f 7 = 169 = 13-.

But if 7)1 =: — 2 and n = 1^ we find -r = 18, and 5x^ -j-

3j7 + 7 = 1681 = 41-.

61. Let us now consider the formula, 7^r- -f- IS-r -|- 13, in

which we must begin with the supposition ot jr = — . Hav-

ing substituted and multiplied u", we obtain

It- -[- 15^?/ -\- 13?/-, which must be a square. Let us there-

fore try to adopt some small numbers as the values of t

and n.

If ^ r: 1, and w = 1, /" = 35

, rt' J,

^'
T the formula will become-/ •,

,

t zz 2, and u = — 1, | zr 11

^ = 3, andw = l, (=121.
Now, 121 being a square, it is proof that the value of

x r: 3 ansv/ers the required condition ; let us therefore sup-

pose it- = ?/ + 3, and we shall have, by substituting this

value in the formula,

7y- + 42?/ + G3 + 15?/ + 45 + 13, or

if- + my + 12L
wy

Therefore let the root be represented by 11 -f
—^, and we

shall have If + 51y + 121 = 121 + —^ -\- -^, or

In-y + 577i^ = 227/z7i -|- ?»-?/ ; whence

57?^^ - 22»m , 36ri'— 227/27? -f37?i2
V = n ^ n , and A' = ;,—;— .^ m- — 77i- m- — ln

Suppose, for example, in zz 3, and ii zz: 1; we shall then

find X = —
I, and the formula becomes

7^^ + 15a: + 13 r= V - il:Y-

Ifm rz 1, and n zz 1, we find x —. — y ; if wi — 3, and

n zz — 1, we have a: rn '^^, and the formula

7^^ + 15a;-}- 13 = '^-°_+°' = (3 + 7)^_

62. But frequently it is only lost labor to endeavour to

find a case, in which the proposed formula may become a

square. We have already said that 3.r'' -|- 2 is one of those

unmanageable formulae ; and, by giving it, according to this

rule, the form Qt- -\- 27i-, we shall perceive that, whatever

values we give to t and ?;, this quantity never becomes a

square number. As the formulae of this kind are very
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numerous, it will be worth while to fix on some characters,

by which tlieir impossibiUty may be perceived, in order that

we mav be often saved the trouble of" useless trials ; which

shall form the subject of the following chapter*.

CHAP. V.

Ofthe Cases m which the Formula a -r bx + cx' can never

become a Square.

63. As our general formula is composed of three terms,

we shall observe, in the first place, that it may always be

transformed into another, in which the middle term is want-

y—^ 1 • ' 1 •

ing. This is done by supposmg x = -^ ; whicn substitu-

tion changes the formula into

by—b- y- — '^hij-\-h- ^ac—b"-\-y" , . ,.

f,
r ^L L.-^ -^

: or -^
; and snice this

must be a square, let us make it equal to — , we shall then

4c:^
have 4rtc — Jr -j~ j/- = —j— , = cz"-^ and, consequently,

y" = cz" -j- b- — 4a6'. Whenever, therefore, our formula is

a square, this last cz'' -{• 6' — 4«c will be so likewise ; and

reciprocally, if this be a square, the proposed formula will

be a square also. If therefore we write t, instead of i-— 4ac,

the whole will be reduced to determining whether a quantity

of the form cz^ -\- 1 can become a square or not. And as

this foi-mula consists only of two terms, it is certainly much
easier to judge from that whether it be possible or not; but

in any further inquiry we must be guided by the nature of

the given numbers c and t.

64. It is evident that if ^ = 0, the formula cz"^ can become

a square only when c is a sqviare ; for the quotient arising

from the division of a square by another square being like-

wise a square, the qviantity cz' cannot be a square, unless

* Seethe Appendix to this cliapter, at Article 5. of the Ad-
ditions by De la Grange. /^. ^j -.
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—^7, that is to say, c, be one. So that when c is not a square,

tlie formula cz" can by no means become a square ; and on the

contrary, if c be itself a square, cz^ will also be a square,

whatever number be assumed for z.

Q5. If we wish to consider other cases, we must have re-

course to what has been already said on the subject of dif-

ferent kinds of numbers, considered with relation to their

division by other numbers.

We have seen, for example, that the divisor 3 produces

three different kinds of numbers. The first comprehends

the numbers which are divisible by 3, and may be expressed

by the formula 3w.

The second kind comprehends the numbers which, being

divided by 3, leave the remainder 1, and are contained in

the formula 3?t 4- 1-

To the third class belong numbers which, being divided

by 3, leave 2 for the remainder, and which may be repre-

sented by the general expression Qn + 2.

Now, since all numbers are comprehended in these three

formulae, let ns therefore consider their squares. First, if

the question relate to a number included in the formula 3?/,

we see that the square of this quantity being 9'i-, it is divisible

not only by 3, but also by 9.

If the given number be included in the formula 3;i-f- 1,

we have the square 9n" -|- G^i + 1, which, divided by 3,

gives Qn" -\- 9.n, with the remainder 1 ; and which, con-

sequently, belongs to the second class, 3w -{- 1. Lastly, if

the number in question be included in the formula 2>n -f 2,

we have to consider the square 9n- + YZn -f 4 ; and if we

divide it by 3, we obtain 3;i- + 4« + 1, and the remainder

1 ; so that this square belongs, as well as the former, to the

class 3/i -\- 1

.

Hence it is obvious, that square numbers are only of two

kinds with relation to the number 3 ; for they are either

divisible by 3, and in this case are necessarily divisible also

by 9 ; or they are not divisible by 3, in which case the re-

mainder is always 1, and never 2 ; for which reason, no

number contained in the formula 3?^ -|- 2 can be a square.

" QQ. It is easy, from what has just been said, to shew, that

the formula 3a?- + 2 can never become a square, whatever

integer, or fractional number, Me choose to substitute for x.

For, if X be an integer number, and we divide the formula

3.i'" + 2 bv 3, there remains 2 ; therefore it cannot be a
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square. Next, if a- be a fraction, lot us express it by

— , supposing it already reduced to its lowest terms, and that t

andw havenocommon divisor. In order, therefore, that —^ + 2

may be a square, we must obtain, after multiplying by ?r,

Si^ + 9.11^ also a square. Now, this is impossible ; for the

number 71 is either divisible by 3, or it is not: if it be, t will

not be so, for f and n have no common divisor, since the

fraction — is in its lowest terms. Therefore, if we make
u

u = 3/^ as the formula becomes 3jf' -f IS/'-, it is evident that

it can be divided by o only once, and not twice, as it must

necessarily be if it were a square ; in fact, if we divide by 3,

we obtain f- -\- 6/'\ Now, though one part, 6/% is divisible

by 3, yet the otherj t", being divided by 3, leaves 1 for a

remainder.

Let us now suppose that u is not divisible by 3, and see

what results from that supposition. Since the first term is

divisible by 3, we have only to learn what remainder the

second term, 2«'-, gives. Now, ii- being divided by 3,

leaves the remainder 1, that is to say, it is a number of the

class 3/i + 1 ; so that 9.h" is a number of the class ijn + 2

;

and dividing it by 3, the remainder is 2 ; consequently, the

formula 3(5- -j- 2//", if divided by 3, leaves the remainder 2,

and is certainly not a square number.

G7. We mav, in the same manner, demonstrate, that the

formula Qt- -p 5u-, likewise can never become a square, nor

any one of the following :

$t- -f 8u", 3f- -|- 11.'.-, 3t" + 142^', &c.

in which the numbers 5, 8, 11, 14, &c. divided by 3, leave

2 for a remainder. For, if we suppose that u is divisible by

3, and, consequently, that t is not so, and if we make u = 3«,

we shall always be brought to formulae divisible by 3, but

not divisible by 9 : and if 7c were not divisible by 3, and

consequently u" a number of the kind 3/^ + I? we should

have the first term, 3t-, divisible by 3, while the second

terms, 5u~, 8u'\ llu-, &c. would have the forms 15m + 5,

24?i + 8, 33« + 11, &c. and, when divided by 3, would

constantly leave the remainder 2.

68. It is evident that this remark extends also to the ge-

neral formula, 3t- + {Qn + 2) X u-, which can never be-

come a square, even by taking negative numbers for n. If,

for example, we should make >i := — I, 1 say, it is im-

z
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possible for the formula Sf^ — u- to become a square. This

is evident, if u be divisible by 3 : and if it be not, then ?r

is a number of the kind 3;^ + 1, and our formula becomes

3/- — oil — 1, which, being divided by 3, gives the re-

mainder — 1, or -{- 2; and in general, if nhe = — m, we
obtain the formula 3/- — (3m — 2) n-, which can never be-

come a square.

69. So far, therefore, are we led by considering the di-

visor 3 ; if we now consider 4 also as a divisor, we see tliat

every number may be comprised in one of the four following

formulae

;

4??, 47i + 1, 4?i + 2, 471 + 3,

The square of the first of these classes of numbers is I6n" ;

and, consequently, it is divisible by IC.

'I'hat of the second class, 4?i + 1, is I6n" -|- 8;i -f 1

;

which if divided by 8, the remainder is 1 ; so that it belongs

to the formula 8?t -|- 1.

The square of the third class, 4:n + 2, is 16;i- + 16??. + 4

;

which if we divide by 16, there remains 4; therefore this

square is included in the formula 16n + 4.

Lastly, the square of the fourth class, 4w + 3, being

16?i'- +'24>n + 9, it is evident that dividing by 8 there re-

mains 1.

70. This teaches us, in the first place, that all the even

square numbers are either of the form I67?, or 16?i -f 4

;

and, consequently, that all the other even formulae, namely,

16??+2, 16?i+6, 16n-f8, 16??-fl0, lGn-\-12, 16w+14,

can never become square numbers.

Secondly, that all the odd squares are contained in the

formula 8?i + 1 ; that is to say, if we divide them by 8,

they leave a remainder of 1. And hence it follows, that all

tlie other odd numbers, which have the form either of

8?i + 3, or of 8??. 4 5, or of 8n -{• 7, can never be squares.

71. These principles furnish a new proof, that the formula

Si" + 2u" cannot be a square. For, either the two numbers

f, and u are both odd, or the one is even and the other odd.

They cannot be both even, because in that case they

would, at least, have the common divisor 2. In the first

case, therefore, in which both t- and u- are contained in the

formula 8/? -1-1, the first term 3t-, being divided by 8,

would leave the remainder 3, and the other term 2w- would

leave the remainder 2; so that the whole remainder would

be 5: consequently, the formula in question cannot be a

square. But, if the second case be supposed, and ^ be even,

and u odd, the first term St- will be divisible by 4, and the
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second term 2//"-, if divided l>y 4, will leave the remainder 2 ;

so that the two terms together, when divided by 4, leave a

remainder of 2, and therefore cannot form a square. Lastly,

if we were to suppose u an even number, as 2.¥, and i odd,

so that t- is of the form Hn +1, our formula would be changed
into this, 24« + 3 -f 8.s~ ; which, divided by 8, leaves 3,

and therefore cannot be a s(juare.

This demonstration extends to the formula Qt" -|- (8n+ 2)u-

;

also to this, {8m -\- 3) t- -h 2u-, and even to this,

{8m + 3) t" -{- {8fi 4- 2) u- ; in which we may substitute for

m and n all integer numbers, whether positive or negative.

72. But let us proceed farther, and consider the divisor 5,

with respect to which all numbers may be ranged under the

five following classes

:

5;;, 5n + 1, 5n + ^, 5n -\- 3, 5n + 4.

We remark, in the first place, that if a number be of the

first class, its square will have the form 25/i- ; and will con-

sequently be divisible not only by 5, but also by 25.

Every number of the second class will have a square of

tile form 25?i'- + 10?^ + 1 ; and as dividing by 5 gives the

remainder 1, this square will be contained in the formula
on 4- 1.

The numbers of the third class will have for their square
9.571" + 20?i 4- 4 ; which, divided by 5, gives 4 for the re-

mainder.

The square of a number of the fourth class is 25?i- 4-

30« 4- 9; and if it be divided by 5, there remains 4.

Lastly, the square of a number of the fifth class is

25w^ 4- 40w 4- 16 ; and if we divide this square by 5, there

will remain 1.

When a square number therefore cannot be divided by 5,

the remainder after division will always be 1, or 4, and never

2, or 3 : hence it follows, that no square number can be con-

tained in the formula 5n 4- 2, or 5n 4- 3.

73. From this it may be proved, that neither the formula
51" 4- 2?^'-, nor 5t- 4- 3?^-, can be a square. For, either u is

divisible by 5, or it is not : in the first case, these formulas

will be divisible by 5, but not l)y 25 ; therefore they cannot

be squares. On the other hand, if u be not divisible by 5,

u" will either be of the form 5/i 4-1, or 5n + 4. In the

first of these cases, the formula Bt" + 9it" becomes 5t" +
lOn 4- 2; which, divided by 5, leaves a remainder of 2;

and the formula 5t- + 3u" becomes 5t- + I57i + 3 ; which,

being divided by 5, gives a remainder of 3 ; so that neither

the one nor the other can be a square. With regard to the

case of w- = 5n + 4, the first formula becomes Bf' + lO/i 4- 8;
z 2



.'^40 i:t,i:mf.nts PAIIT TI.

wliic'li, divided by 5, leaves J3 ; and the otlicr becomes
5/-' + !5» + 1^, which, divided by 5, leaves 2; so that in

this case also, neither of the two formulae can be a square.

For a similar reason, we may remark, that neither the

fornnda 51'- + {on + 2)u", nor 5t~ + {5n + S)?/'-, can be-

come a square, since they leave the same remainders that we
[lavc just found. VVc might even in the first term write

5mi-, instead of 5t', provided 7ii be not divisible by 5.

74, Since all the even squares are contained in the formula
4w, and all the odd squares in the formula 4?i + 1 ; and,

consequently, since neither 4// + 2, nor 4?* + 3, can become
a square, it follows that the general formula (4??i + 3) t' +
{•hi -r 3)//- can never be a square. For if ^ be even, t' will

be divisible by 4, and the other term, being divided by 4,

will give 3 for a remainder; and, if we suppose the two
numbers t and it odd, the remainders of t' and of ?r will be
1 ; consequently, the remainder of the whole formula will be
a : now, there is no square number, which, when divided by
4, leaves a remainder of 2.

We shall remark, also, that both m and n may be taken

negatively, or = 0, and still the formula? 3t- -{- Qir, and
3^i — }i\ cannot be transformed into squares.

75. In t!ie same manner as we have found for a few di-

visors, that some kinds of numbers can never become squares,

Ave might determine similar kinds of numbers for all other

divisors.

If we take the divisor 7, we shall have to distinguish

seven different kinds of numbers, the squares of which we
shall also examine.

Kinds of numbers. Their squares are of the kind,

in

In + 1

7w + 2
In +3
7/1 + 4

In + 5

In + 6

49«-

49?i- -\- 14« + 1

49/i"- + 28/i + 4
49w' + 42;i + 9
49/i' + 5Qn + 16
49^i' + 70/? + 25
49n- + 84?« + 36

in

In + 1

In + 4

In + 2

In + 2
7w + 4

In + 1.

Therefore, since the squares which are not divisible by 7,

are all contained in the three forrauhe In -{- 1, In -\- 2,

7/i + 4, it is evident, that the three other formulae, In + 3,

In + 5, and ^n + 6, do not agree with the nature of

squares.

76. To make this conclusion still more apparent, we shall

remark, that the lac-t kind, In + 6, may be also expressed
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by 7w — 1 ; tliat, in the same uuinncr, the iuiniula In -\- o
is the same as In — 2, and In -\- 4 the .same as lu — ;j.

This being the case, it is evident, that the squares of the

two classes of" numbers, In + 1, and In — 1, if divided by
7, will give the same remainder 1 ; and that the squares oi"

the two classes, In + 2, and 7/i — % ought to resemble

each other in the same respect, each leaving the remainder 4.

77. In general, therefore, let the divisor be any num1)er
whatever, which we shall represent by tlie letter d, the dif-

ferent classes of numbers which result Ironi it will be

(ln\

cln + 1, dn + 2, dn + 3, Stc.

dn — 1, dn — 2, dn — 3, &c.

in which the squares of dn + 1, and dn — 1, have this in

common, that, when divided by d, tJiey leave the remainder

1, so that they belong to the same formula, dn + 1 ; in the

same manner, the squares of the two classes dn + 2, and
dn — % belong to the same formula, dn + 4. So that we
may conclude, generally, that the s(j[uares of the two kinds,

dn + «, and dn — a, when divided by f/, give a common
remainder a^, or that which remains in dividing or by d.

78. These observations are sufficient to point out an in-

finite number of formulae, such as at^ -f- Z>«', which cannot

by any means become squares, 'llius, by considering the

divisor 7, it is easy to perceive, that none of these three

formulfe, '^f- -\- Str, It" + 5it% 7t- + 6ii\ can ever become
a square ; because the division of u^ by 7 only gives the re-

mainders 1, 2, or 4 ; and, in the first of these formula-,

there remains either 3, or 6, or 5 ; in the second, 5, 3, or C

;

and in the tliird, 6, 5, or 3 ; which cannot take place in

square numbers. Whenever, therefore, we meet with such
formuUe, we are certain that it is useless to attempt discover-

ing any case, in which they can become squares : and, for

this reason, the considerations, into which we have just

entered, are of some importance.

If, on the other hand, the formula proposed is not of this

nature, we have seen in the last chapter, that it is sufficient

to find a single case, in which it becomes a square, to enable

us to deduce from it an infinite number of similar cases.

The given formula. Art. G3, was properly «.r^ + <^;

and, as we usually obtain fractions for x, we supposed

t

.r = — , so that die problem, in reality, is to transform

at' + bir into a square.
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But there is frequently an infinite number of cases, in

which X may be assigned even in integer numbers; and the

detennination of those cases shall form the subject of the

following chapter.

CHAP. VI.

Of the Cases in Integer Numbers, in which the Formula
ax^ + b becomes a Square.

79. We have already shewn, Art. 63, how such formula?

as a -\-bx -t cx"^ are to be transformed, in order that the

second term may be destroyed ; we shall therefore confine

our present inquiries to the formula ax" + b, in which it is

required to find for x only integer numbers, -which may
transform that formula into a square. Now, first of all,

such a formula must be possible ; for, if it be not, we shall

not even obtain fractional values of .r, far less integer ones.

80. Let us suppose then ax- + 6 = ?/- ; a and b being

integer numbers, as well as oc and y.
Now, here it is absolutely necessary for us to know, or to

have already found a case in integer numbers ; otherwise it

would be lost labor to seek for other similar cases, as the

formula might happen to be impossible.

We shall, therefore, suppose that this formula becomes a

square, by making x =J'., and we shall represent that square

by g"^ so that cif^ + b = g", wherey'and^ are known num-
bers. Then we have only to deduce from this case other

similar cases ; and this inquiry is so much the more im-
portant, as it is subject to considerable diificulties; which,

however, we shall be able to surmount by particular artifices.

81. Since we have already found af- -\- b — g', and like-

wise, by hypothesis, ax^ + b = y\ let us subtract the first

equation from the second, and we shall obtain a new one,

ax' — af- = j/' — g', which may be represented by factors

in the following manner ; a{x 4-/) x (x —f) = {y -\- g) X

{y
—

g), and v/liich, by multiplying both sides by pq^ he-

comes apq[x +./) X {x —_/) = pq{y -\- g) X {y — g)- If

we now decompound this equation, by making ap{x +y) =
q{y + g)i and q{x — ,/') "= p{y — g, we may derive, from
these two equations, values of the two letters x and y. The
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first, divided by q, gives t/ H- .«• = —'

; and the se-

cond, divided by p, gives y — g z=. —. Subtracting this

latter equation from the former, we have

"
P<1 ,

^gpq = (ap' — q")x-\-{ap^-'tq')f; therefore

25-;^9 iap'+q^)f
a- = —;

, 7- „ , irom which we obtani
ajr—q^ ap' — q"

%-fl* {ap'--\-(f)fq qf . . • ,• ,

w = o-
-I- f^ ,— \ -^

..
-^ „;^ ^ — ^—. And as, ni this lat-^ ^ ap^-q^ {ap''— q-)p p

ter value, the first two terms, both containing the letter g,

may be put into the form'^^

—

, and as the other two,
*^ ^ api—q^

^afpn
containing the lettery^ may be expressed by —5—^—5 all the

terms will be reduced to the same denomination, and we

shaU have y =SM+j!bM2.•^ ap-— q-

82. This operation seems not, at first, to answer our pur-
pose ; since having to find integer values of jv and ?/, we are

brought to fractional results ; and it Avould be required to

solve this new question,—What numbers are we to substitute

for p and q, in order that the fraction may disappear ? A
question apparently still more difficult than our original one

:

but here we may employ a particular artifice, that will

readily bring us to our object, which is as follows:

As every thing must be expressed in integer numbers, let

ap'^+q^ 2pq . . ,

us make -—;
„ = m, and —^ ., = 71, in order that we

ap-— q- ap^ — q'^

may have x = iig — mf^ and y = mg — naf.

Now, we cannot here assume m and n at pleasure, since

these letters must be such as will answer to what has been
already determined : therefore, for this purpose, let us con-

sider their squares, and we shall find

''^' = 'T~2
—

TT-T-—\, and
a'p'^-2upY + q

2 V?' 1 1

II = ———rf—V^ : ; and hence
a p*— 2ap q" + r/'
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vv — an —
, ^1+ ^}^

ap* +2apq- + §- *— 4iap''q - _
ap*—2a2)f/-\-q^

a'j)*—2o2)q~-\-q*

83. We see, therefore, that tlie two numbers m and n
must be such, that jn'^ = ait^ +1. So that, as a is a known
number, we must begin by considering the means of de-
termining such an integer number for n, as will make
aif + 1 a square ; for then vi will be the root of that square ;

and when we have likewise determined the number /' so,

that qf^ + h may become a square, namely g^^ we shall ob-
tain for X and y the following values in integer numbers

;

X = ng — vif, y — mg — naf\ and thence, lastly, ax^ +

84. It is evident, that having once determined in and n,

we may write instead of them — m and — w, because the

square ti^ still remains the same.

But we have already shewn that, in order to find x and j/

in integer numbers, so that ax'^ + b = i/, we must first

know a case, such that of- + b may be equal to g'^
; when

"we have therefore found such a case, we must also endeavour
to know, beside the number a, the values of m and ??, which
will give aii^ + 1 = m^ : the method for which shall be de-

scribed in the sequel, and when this is done, we shall liave a
new case, namely, x = ng -\- mf, and y = ntg + naf, also

ax^ { b =y^.
Putting this new case instead of the preceding one, which

was considered as known ; that is to say, writing ng + mf
forj^ and mg -|- naf fox g, we shall have new values of .r

and y, from which, if they be again substituted for x and ?/,

Ave may find as many other new values as we please: so

that, by means of a single case known at first, we mav after-

wards determine an infinite number of others.

85. The manner in which we have arrived at this solution

has been very embarrassed, and seemed at first to lead us
from our object, since it brought us to complicated fractions,

which an accidental circumstance only enabled us to reduce

:

it \yill be proper, therefore, to explain a shorter method,
which leads to the same solution.

86. Since we must have ax'^ + b = y'^, and have already
found ({f'-i- b = g^, the first equation gives us b=y'^—ax^y
and the second gives b •=: g"- — af- ;' consequently, also,

y^ - ax"- = g^ — qf\ and the whole is reduced' to de-
termining the unknown quantities x and^r, by means of the
known (juantitiesy*and g. It is evident, that for this pur-
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pose we need only make x- =/'and ?/ = ff; but it is also

evident, that this supposition would not furnish a new case

in addition to that already known. Wc shall, therefore,

suppose that we have already found such a number for n,

that a7i^ + 1 is a square, or that an'^ + 1 = m^ ; which be-

ing laid down, we have m'^ — an^ = 1 ; and multiplying by
this equation the one we had last, we iind also if — ax'' =
[g^ — qf") X {m^ — an') —g^m'; — afmi' — ag^'n" +a[f'n'^.

Let us now suppor5e y = gm + (ifn, and we shall have

g'^m^ + 2qfgmn + a'f-n~ — ax" =
g'-m" — af'-m^ — ag-n- + a"f- n",

in which the terms g-m- and a"J'"ni' are destroyed ; so that

there remains ax~ = qf-m- + ag"n" -f- 2(ifgmn, or x" =
jf-m" -\- 2f:^mn + g'n'^. Now, this formula is evidently a

square, and gives x =Jm + gn. Hence we have obtained

the same formulae for x and y as before.

87. It will be necessary to render this solution more
evident, by applying it to some examples.

Question 1. To find all the integer values of x, that

will make 2a;- — 1, a square, or give ^x"^ — 1 = y^.

Here, we have a =. ^ and b =. — 1 ; and a satisfactory

case immediately presents itself, namely, that in which .r:=l

and 2/ rr 1 : which gives us^= 1 and g" =: 1. Now, it is

farther required to determine such a value of n, as will give

9,11- + 1 rr m- ; and we see immediately, that this obtains

when n =. 2, and consequently m zz 'S; so that every case,

which is known fory and g, giving us these new cases

X z=. 2f -{ 2o-, and j/ rr 3§' + 4/5 we derive from the first

solution,y= 1 and ^ = 1, the following new solutions:

x =f- 1

y='g=l
29
41

169
239, &c.

88. Question 2. To find all the triangular numbers,

that are at the same time squares.

Let z be the triangular root ; then
'

is the triangle,

which is to be also a square ; and if we call x the root of this

square, we have —-— = x'^ : multiplying by 8, wc have

4;:- + 4r = 8.r' ; and also adding 1 to each side, we
have

4~= ^ 4,^ ^ I ^ ^2z + iy = Sx' + 1.

Hence the question is to make 8x' + 1 become a square;
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for, if we iind 8a;' + 1 — y' , we shall have y = 9.z -\- \^

and, consequently, the triangular root required will be

Now, we have a = 8, and 6=1, and a satisfactory case

immediately occurs, namely,y=: and ^ = 1- It is farther

evident, that 8^^ + 1 = ?w'^, if we make w = 1, and m = 3;

therefore a- = 3f + g, and y = Sg- + 8f; and since

i/= ——y we shall have the following solutions :

y =g=l

2
=

6
17

35

99

49

204
577

288

1189
3363

1681, &c.

89. Question 3. To find all the pentagonal numbers,

which are at the same time sqviares.

3z"-z
If the root be z, the pentagon will be ~ —^— , which

we shall make equal to .r% so that Sz- — c =: 2x'^ ; then

multiplying by 12, and adding unity, we have

36s" — 12r: + 1 =: {6z - Ip =z 24.r2 + 1 ; also, making

24^' + 1
y+1

: j/"^, we have y zz 6z — 1, and z — —-^—

.

Since a = 24, and b = 1, we know the casey=: 0, and
^- = 1 ; and as we must have 24>n^ + 1 = m\ we shall make
n = 1, which gives 7n = 5 ; so that we shall have :t'=:5/'-f-g

9/ + 1

and y = 5g + 24/; and not only z = —y^—, but also

z = „ , because we may write ^ = 1 — 6~ : whence we

find the following results

:

980
4801

a:=f=0 1 10 99

y = g = ^ 5 49 485

- g -T 1
2 ^

T 81

= -^ = T -8 142
8" -800, &c.

90. Qiicstion 4. To find all the integer square num-
bers, which, if multiplied by 7 and increased by 2, become

squares.
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It is here required to have 7^" + 2 = ?/, or a = 7, and

6 = 2; and the known case innnediately occurs, that is to

say, .1 = 1; so that x =f= 1, and y = g = 3. If we

next consider the equation 7n- + 1 — jn'\ we easily find

also that « = 3 and m = S; whence x = Sf + 3g, and

y = 8g + 21f. We shall therefore have the following

results

:

.17

45

271

717, &c.

91. Question 5. To find all the triangular numbers, that

are at the same time pentagons.

Let the root of the triangle be p, and that of the pentagon

-?, or 9ifq : then we must have

and, in endeavouring to find §-, we shall first have

q=p-+p;

? = -^± V(3^ +^\or9 =

, and

1 + V(12/5^ + 12/;+l)

Consequently, it is required to make 12j?' + 12p + 1 be-

come a square, and that in integer numbers. Now, as

there is here a middle term 12p, we shall begin with making

x-1
2

,
by Avhich means we shall have 12p^= 3ar— 6x + 3,

and 12p = 6x-6; consequently, 12/ + 1 2p + 1 = 3.z-- 2

;

and it is this last quantity, which at present we are required

to transform into a square.

If, therefore, we make Sj;'^ — 2 = j/-, we shall have

^ 1 1 -\-y

p = , and q — ^ ; so that all depends on the formula

3a:-— 2=?/'; and here we have «=3, and h=—% Farther,

we have a known case, x =f= 1, and 3/ = g = 1 ; lastly,

in the equation ni^ — 3n" + 1, we have 11 = 1, and w = 2

;

therefore we find the following values both for x and ?/, and

for p and q

:

First, X =^ y + g, andi/ = 2g + Sf; then,

p =0

q = 0^

because we have also q =
. 6 •

11

19
5

I o

41

71
20
12
3 s

T
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9^. Hilhcrto, wlicn the given formula contained a second

term, we were obliged to expunge it, but the method we

have now given may be applied, without taking away that

second term, in the following manner.

Let ax' + bx f c be the given formula, which must be a

square, y"^ and let us suppose that we already know the case

of' + ^+ c ^ g\
Now, if we subtract this equation from the first, we shall

have fl!(a;^ —./'') + K^ —f) — V^ — g\ which may be ex-

pressed by factors in this manner

:

{X -f) X {ax +af+b)^{y- g) X (j/ + g) ;

and if we multiply both sides by pq, we shall have

j)q{x -f) {ax + af^- h)^pq{y - g) x (j/ + g),

which equation may be resolved into these two,

1. p{x -/) == q{y - g),

2. q{ax + af+ b) = p{y + g).

Now, multiplying the first by /?, and the second by q, and

subtracting the first product from the second, we obtain

{aq"- -p')x + {tuf +p)f+ bq- ^ ^gpq,

which gives x = —: „ 7,
;

7. ;•° aq - 2^' aq'—p aq-—p

But the first equation is q{y — g) = p{x —J") —
2o-«<7 9,afq'' bq'^ .

,

ni
^^^ ^^ -^—

:) ; so that y - g =
^^aq^'-f- aq;-p^ aq^-p^^' ^ "^

—si- ZJJ-L LL—
-; and, consequently,

aq^—p" aq—p^ aq'- — p-

aq^ +p- '^afp<l bpq

^ ~~ ^ ^aq~—p" aq"—p^ aq^'—p^'

Now, in order to remove the fractions, let us make, as

before, ^—^ = w, and —^—\ — n ; and we shall have
aq~—p' aq —P

9,aq" , q^ m + \

,;i + 1 = —T—i., and —i—, = -75— ; therefore
aq^-p"' aq--p '.la

X = ng - mf ~
, and y — mg - nctf — ijm;

in which the letters m and n must be such, that, as before,

77i* = an" + 1.

93, The formulae which we have obtained for x and ^,

are still mixed with fractions, since some of their terms con-

tain the letter h ; for which reason they do not answer our
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purpose. l?ut li" from those values we pass to the succcc(lin<T

ones, we constantly obtain uitcger numbers; which, indeed,

we should have obtained much more easily by means of the

numbers p and q that were introduced at the beginning.

In fact, if we take p and q, so that /r = aq" + 1, we shall

have aq" — ;7^=: — 1, and the fractions will disappear. For
i\\en x— —9,gpq + f\nq" -\- f) + />»./% and j/= —g'(«(^--(-p2)

+ ^cifpq 4- bpq ; but as in the known case, af- -\- hf + c

=. g^', we find only the second power of g, it is of no conse-

quence what sign we give that letter ; if, therefore, we
write —g instead of +g\ we shall have the formulse

X = 9,gpq \- fijiq"^ -i- f^) + hq^, and

y — g{aif + p'-') +9,afpq + hpq,

and we shall thus be certain, at the same time, that

ff.r- -\-hx -{- c — y-.

Let it be required, as an example, to find the hexagonal
numbers that are also squares.

We must have 9.x- — x = y'^, ov a = % h = ~ 1, and
c — 0, and the known case will evidently be x =J'= 1, and

y = g ^ 1.

Farther, in order that we may have p"^ = 2r;^ + 1, we
must have 9=2, and p t=z Q; so that we shall have
.1' = 1% + 17/"- 4, and y = 17^- + 24/'— 6 ; whence re-

sult the following values :

X =/= 1

y =g =.1
25
35

841
1189, &c.

94. Let us also consider our first formula, in which the
second term was wanting, and examine the cases which make
the formula ax^ + b a square in integer numbers.

luetax'^ + b = y"-, and it will be required to fulfil two
conditions :

1. We must know a case in which this equation exists;
and we shall suppose that case to be expressed by the equa-
tion ctf^ + b = g'-.

2. We must know such values of m and n, that
m- = aii^ H- 1 ; the method of finding which will be taught
in the next chapter.

From that results a new case, namely, x = 'ng -\- mf,
and 3/ = mg + ayif; this, also, will lead us to other similar

cases, which we shall represent in the following manner

:

x=f
y =g

invvhichA=H^ -|-»?/'|b= «p +??iA

and v=.mg-{-anj\Q=.mv-{-anx

BCD
Q R s

E

T, &C.
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and these two series of numbers may be easily continued to

any length.

95. It will be observed, however, that here we can-

not continue the upper series for a:, Avithout having the

under one in view; but it is easy to remove this incon-

venience, and to give a rule, not only for finding the upper
series, without knowing the other, but also for determining

the latter without the Ibrraer.

The numbers which may be substituted for x succeed

each other in a certain progression, such that each term (as,

for example, e), may be determined by the two preceding

terms c and d, without having recourse to the terms of the

second series u and s. In fact, since e = ms + vw =
n{7/tR -\- atic) + m{nK + mc) =

2mnR + anc + m"c, and nK — t> — mc,

we tlierefore find

E = 2wM) — in-c + «M^c, or

E = 2»?D — {m~ — an^)c ; or lastly,

E = 2mD — c, because m^ = an^ + 1,

and m'^ — an^ = 1 ; from which it is evident, how each term
is determined by the two which precede it.

It is the same with respect to the second series ; for, since

T =1 ms + anD, and d = 7tii + mc, we have

T = w?s + an'v. + amnc. Farther, s — mn + anc, so

that «nc, :=z s — mn ; and if we substitute this value of«wc,

we have t = 2ms — r, which proves that the second pro-

gression follows the same law, or the same rule, as the first.

Let it be required, as an example, to find all the integer

numbers, .r, such, that 2x- — 1 =
Jj'-

We shall first havey= l, and ^=1. Then in' —^7i--\-l,

if w = 2, and 7n = 3; therefore, since A = ng + mj'= 5,

the first two terms will be 1 and 5 ; and all the succeeding

ones will be found by the formula e = 6d — c : that is to

say, each term taken six times and diminished by the pre-

ceding terra, gives the next. So that the numbers x which
we require, will form the following series

:

1, 5, 29, 169, 985, 5741, &c.

This progression we may continue to any length ; and if

"we choose to admit fractional terms also, we might find an

infinite number of them by the method which has been

already explained *.

* See the appendix to this chapter at Art. 7, of the acUlitions

bv Dc la Grarii^jc.
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CHAP. VII.

Of a particular Method, hy zchicJi the Formula an- + 1

becomes a Square in Integers.

96, That which has been taught in the last chapter, can-

not be completely performed, unless we are able to assign for

any number a, a number w, such, that aw' + I may become
a square ; or that we may have m' = an" + 1.

This equation would be easy to resolve, if we were satis-

fied with fractional numbers, since we should have only to

make m = I -{ ^; for, by this supposition, we have

2np n-p- ^ .

m- = I -T- + —-— = an- -\- 1 ; m which equation, we
q q-

mav expunge 1 from both sides, and divide the other terms

by n : then multiplying by q- , we obtain ^j)q +np- =anq- ;

and this equation, giving n = —-.- :, would furnish an

infinite number of values for 7i : but as n must be an integer

number, this method will be of no use, and therefore very

different means must be employed in order to accomplish

our object.

97. We must begin with observing, that if we wished

to have an' + 1 a square, in integer numbers, (whatever be

the value of a), the thing required would not be possible.

For, in the first place, it is necessary to exclude all the

cases, in which a would be negative ; next, we must exclude

those also, in which a would be itself a square ; because

then an' would be a square, and no square can become a

square, in integer numbers, by being increased by unity. We
are obliged, therefore, to restrict our formula to the con-

dition, that a be neither negative, nor a square ; but when-
ever a is a positive number, without being a square, it is

possible to assign such an integer value of «, that an' + 1

may become a square : and when one such value has been

found, it will be easy to deduce from it an infinite number
of others, as was taught in the last chapter : but for our

purpose it is sufficient to know a single one, even the least

;
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and tills, Pell, an English writer, has tauglit us to find bv
an ingeni()iis method, which we shall here explain.

98. This method is not such as may be employed ge-
nerally, for any number a whatever ; it is apphcable only to

each particular case.

We shall therefore begin with the easiest cases, and shall

first seek such a value of n, that 2}i' + 1 may be a square,

or that V(2«- + 1) may become rational.

We immediately see that this square root becomes greater

than ?i, and less than 2?i. If, therefore, we express this root

by II. 4- JJ, it is obvious that p must be less than 7i ; and we
shall have V{2n' + 1) =z n ^ p ; then, by squaring,

2;i- + I = jr -f 2np + p' ; therefore

01- = %np -\- p' — 1, and n — p -\- Vi^p" — 1).

The whole is reduced, therefore, to the condition of 2^/- — 1

being a square; now, this is the case ifp — 1, Avhich gives

n = 2, and V{^n -}- 1) = 3.

If this case had not been immediately obvious, we should

have gone farther; and since x/{9,p' — 1) 7 p*, and, con-

sequently, n 7 ^p, we should liave made n = 2p -\- q ; and
should thus have had

Qp + q= p +v/(%r - 1), or;; + q = ,^(9p' - 1),

and, squaring, p" + 9,pq + q- = 2p' — 1, whence

p' = 2jq + q' + 1,

which would have given p — q -^ a/(%" + 1) ^ so that it

would have been necessary to have Sg'' + 1 a square; and
as this is the case, if we make q = 0, we shall have p = 1,

and w = 2, as before. This example is sufficient to give an
idea of the method ; but it will be rendered more clear and
distinct from what follows.

99. Let a = 3, that is to say, let it be required to trans-

form the formula 3n' -}- 1 into a square. Here we shall

make ^/(3r^' + \) = n + p, which gives

Su- + 1 = 9V + 2np + p% and 2n- = %ip -\- p- — 1

;

, u. • i^+v/(3p--2)
whence we obtam n — ^ . JNow, smce

V(3p- — 2) exceeds p, and, consequently, n is greater

* This sign, y ,
placed between two quantities, signifies that

the former is greater than the latter ; and \yhen the angular

point is turned the contrary way, as /. , it signifies that the

former is less than the latter.
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than -~, or tlwn jj, let us suppose n = p ^ q, and we

shall have

2p + Sq = p + \/(3/r - 2), or

p + ^q= ,/(3/?^ - 2);

then, by squaring /;"+ 4<j)q -{- 4^q- = 3p- — 2; so that

2/j^ =: 4p5' + ^9' + 2> «!' P' — ^Pq + ^q' + 1) ai^d

i^ = <? +^(3<?^'+ 1).

Now, this formula being similar to the one proposed, we
may make q — 0^ and shall thus obtain /> = 1, and ?«==!;
whence ^/{^iv + 1) = 2.

100. Let a = 5, that we may have to make a square of
the formula 5?r-|- 1, the root of which is greater than 9,n.

We shall therefore suppose

V{5n'-\- 1) = 2w + p, or 5w '-f 1 = 4w'-{- 4?//? H-/^"

;

whence we obtain

71- = ^np -\- 2^' ~ I5 ^^^ ** — ^P -rVi^P' — !)•

Now, ^[52}- — 1) 7 %; whence it follows that w 7 4p; for

which reason, we shall make w = 4p + q, which gives

%j -\- q —^ {52^ — 1), or 4p- + 4^05- -f-
g^' = 5p' — 1, and

p- = ^)q + g" -]- 1 ; so that|; =: 2q -[- \/{Bq" + 1) ; ^nd as

q ^z satisfies the terms of this equation, we shall have

p = 1, and 7i = 4; therefore ^y(5')r-\- 1) = 9.

101. Let us now suppose a =: 6, that we may have to

consider the formula C?i'-{- 1, whose root is likewise con-

tained between 2n and Sn. We shall, therefore, make
\/{Qn' -r \) = 9,71 -\- p, and shall have

Qn-~\- 1 — in'-\- ^np -\- p% or 2/4 ' = ^nv -\- p' ~ 1

;

./(6/)^-2) 2p-f ,/(6p^-2)
and, thence, n = /; + ^ , or n — —-

;

so that n 7 2/?.

If, therefore, we make w = 2p -|- 5-, we shall have

4;? + 25' = 2^ + a/(6/?' — 2), or

2p + 2q= -v/(6^^-2);

the squares of which are 4/3 '-|- Hpq -\- ^q- = Qp- — 2; so

that 9,p' rz ^j^q -|- 4*7' + 2, and p' = 4!pq + 2q' + 1. Lastly,

J)
= Qq -\- ,,/{(3q' + 1). Now, thjs formula resembling the

first, we have q =:z 0; wherefore p = I, n ::z 2, and
V{(Jn'-\- 1) = 5.

102. Let us proceed farther, and take a = 7, and
7?r-t- 1 = 771' ; here we see that 711 7 2w; let vis therefore

make vi = 2n ~\- p, and we shall have
A A
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7«^-{- 1 = 4?i' + 4tnp -\- p% or 3;*= = 4np -\- p" — 1

;

which gives 7i = '^
^-77 . At present, since n 7 ^p,

and, consequently, greater than p, let us make n = p + q,

and we shall have p + Qq = ^/ {lip'' — 0) ; then, squaring

both sides, p^ + 6pq + 9^^ = 7p^ — 3, so that

6^^ = 6pq + 9q^ + 3, or 2p" = Qpq + 3^^ + 1 ; whence

<?+ ^/(V + 2) ^, ,
. Sq

we get p = . Now, we have here pv-^;

and, consequently, p 7 q; so that making p =: q -{- r, we
shall have g 4- 2r = \/0q'^ + 2) ; the squares of which are

q"- + ^qr + 4r^ — "t q"- \- 9.
-^ then Qq"- = ^qr + 4r^ — 2,

or 3^" = 2^;- + 2;-^ - 1 ; and, lastly, q = L±_^i^'_^^)^

Since now q 7 ?", let us suppose (7 = r + ,s, and we shall

have

2r + 35 =\/(Tr^ —3); then

4r" + 12rs + 9*" = 7r^ — 3, or

3r' = 12r* + 9.v" + 3, or

r^ = 4rs + 3,5^ + 1, and
r = 2* + V(T5^ + 1).

Now, this formula is like the first; so that making 5 = 0,

we shall obtain r = 1, g = 1, p = 2, and ?j = 3, or

7n = 8,

But this calculation may be considerably abridged in

the following manner, which may be adopted also in other

cases.

Since 7?i^ -}~ 1 = '^'^5 i^ follows that m z 3n.

If, therefore, we suppose m = Q?i — p, we shall have
7n^ + 1 = 9w^ — 6np -{- p^, or 2/r = 6w/7 — p>^ -\-l;

whence we obtain n = ; so that 71 L op ; for

this reason we shall write 11 = iip — 2q ; and, scjuaring, we
shall have Qp"- — VZpq + ^q"- = Ip"- + 2 ; or

2p'- = 12pq — iq"- 4- 2, and p^ = Cpg^ - 2q^ + 1,

whence results p == 3q -\- V {7q' -\- 1). Here, we can at

once make q = 0, which gives j) = 1, n = 3, and m = 8,

as before.

103. Let a = 8, so that 8n^ -|- 1 = 071^, and m Z on.

Here, we must make m — 3n — p, and shall have

8n^ + 1 = 9?i^ — Gnp +PS oi* n^ = 6np — p'' -|- 1

;

whence n = Sp +\/{8p'- -f- l)j and this formula being al-
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ready similar to the one proposed, we may make p = 0,

wliicli gives » = 1, and m — S.

lOrt. We may proceed, in the same manner, for every

otlier number, a, provided it be positive and not a scpiare,

and we shall always be led, at last, to a radical quantity,

such as V{at- + 1), similar to the first, or given formula,

and then we have only to suppose ^ = ; for the irra-

tionality will disappear, and by tracing back the steps, we
shall necessarily find such a value of ??, as will make an' -\- 1

a square.

Sometimes we quickly obtain our end ; but, frequently

also, we are obliged to go through a great number of

operations. This depends on the nature of the number
a; but we have no principles, by Avhich we can foresee

the number of operations that it will be necessary to per-

form. The process is not very long for numbers below 13,

but when a = 13, the calculation becomes much more
prolix ; and, for this reason, it will be proper here to resolve

that case.

105. Let therefore a = 13, and let it be required to

find l3w^ + 1 = wi^. Here, as m'' 7 9n^, and, consequently,

m 7 Qfi, let us suppose w = 2n -+-/?; we shall then have
1371* + 1 = dn"- + Qnp -H p*, or 47i* = 6wp + p* — 1, and

3p+^/(13p*-4) ,. , , , ^ , ,n = -T , which shews that n 7 ^p, and there-

fore much greater than p. If, therefore, we make n=p-\-q,
we shall have p+ '^q^ ^,/i\'i}^p'^— 4) ; and, taking the squares,

VSp"- — 4 :- 2?^ + Spq + IGq"- ;

so that 12/?- = 8pq + IGq"- + 4, or Sp"- = ^pq + 45''' + 1,

q^V(i Qq'- + S) q+ Sq
and p — ~

. Here, p 7—^, or p 7 q; we

shall proceed, therefore, by making p =^ q ~h r, and shall

thus obtain ^ + 3r =: V{lSq^ + 3) ; then

13^^ + 3 = 4(7* + Uq?- + 9r\ or

%* = 12qr -I- 9r^ - 3, or

Sq"- = iqr + 3r* - 1 ;

2r-\-V{13r^-Q)
which gives q

—
3

Qr+or
Again, since q 7 —^— 5 or q 7 r, we shall make

q z= r + s, and we shall thus have r + 3s =v/(13;-* — 3)

;

or I3r* - S = r' + 6rs + Qs\ or 12r' = 6rs + 9*^ + 3, or
4?-* = ^rs + 3^* + 1 ; whence we obtain

A a2



o5b ELEMENTS PART II.

5 4-^/(13.9^ + 4) .9+ 3.9
»• — .

. J3ut licrc r 7 —-—5 or r 7 s ; where-
4 4

fore let r = s { t, and we shall have 3* + 4^= x/(135^+4),

and 13.9^ + 4 = 9^^ + 24>3t + l6r-

;

so that 4*^ = 245i5 + 16i!^ — ^j and 5^ = 6^5 + 4/' — 1
;

therefore s = 3t -\- ^/(\Qt^ — 1). Here we have

s 7 'St -{• St, or s 7 Gt;

we must therefore make ,9 = 6^ + u ; whence
3^ + u = ^/(13^^ - 1), and 13^^ -1=9^^

-f- Gfu + 7/^

;

then 41^ = 6tit + 71^ + 1 ; and, lastly,

3«.+ V(13?*^ + 4) Cm
t = 7 , or t y — , and 7 w.

If, therefore, we make ^ = ?^ + v, we shall have

?^ + 4r = a/(13?^^+ 4), and 13?^"+ 4 = ?*" + 8?/u + I6r"

;

therefore 12?r = Suv + iGv- — 4. or 3u''=^7W + 4<v~ — 1

;

v+ V(13t>^-3) 4t;

lastly, ?^ = ^ , or w 7 -,7, or u 7 v.
o o

Let us, therefore, make ic = v + x, and we shall have

^v + Sx = V(l3r^ - 3), and
13i;^ — 3 = 4z;^ + I2y.r + 9.r^ ; or

9t^' = 12f^ + 9x^ + 3, or 3t)^ = 4t».r + ojr- + 1, and

2.r+ ^/(13x^ + 3)
t> = ; so that V 7 4^', and 7 ^'c.

o

Let us now suppose v = x -{- 7/, and we shall liave

X + 3?/ = ^{ISx"- + 3), and
I3.v^ +3 = .r^ + arj/ + 9«/% or
12:1'" = 6xi/ + 9^' - 3, and
4^:^ = 2a;?/ + S^/* — 1 ; whence

3/+ a/ (13?/

-

4)
'^- 4" ~'

and, consequently, a^ 7 j/. We shall, therefore, make
r = ?/ + ;, which gives

3i/ + 4^r = -v/(13/ - 4), and
13z/" - 4 = 9f + 24z7/ -{- 16r.'2, or

4^/2 = 24:?/ + 16^2 + 4; therefore

?/- — 67/s + 4s- + 1, and
ij = 3.:r + ./(13^^ + 1).

This formula being at length similar to the first, we may
take 2 = 0, and go back as follows

:
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z = 0,

3/ = l,

X = 1^ -\- z = 1,

q= r -{ s = 71,

2^= q-\-r = 109,

n= p-\-q = 180,

m = 3w + j9 = 649.

u = V + X = 3,

^ = ?* + 5^ = 5>

s =6i + u = 33,

r = * + ^ = 38,

So that 180 is the least number, after 0, which wo can

substitute for n, in order that 137i'' + 1 may become a

square.

106. This example sufficiently shews how prolix these

calculations may be in particular cases ; and when the num-
bers in question are greater, we are often obliged to go
through ten times as many operations as we had to perform

for the number 13.

As we cannot foresee the numbers that will require such

tedious calculations, we may with propriety avail ourselves

of the trouble which others have taken ; and, for this pur-

pose, a Table is subjoined to the present chapter, in which

the values of m and 7i are calculated for all numbers, a, be-

tween 2 and 100 ; so that in the cases which present them-

selves, we may take from it the values of m and n, which

answer to the given number a.

107. It is proper, however, to remark, that, for certain

numbers, the letters m and n may be determined generally ;

this is the case when a is greater, or less than a square, by
1 or 2 ; it will be proper, therefore, to enter into a particular

analysis of these cases.

108. In order to this, let a = ^'' — 2; and since we must
have (6''^ — 2)?i2 _i_ ^ — ^i^^ it is clear that m L en ; therefore

we shall make m rr en — ^, from which we have

(e^ — 2)w^ -|- 1 = e'-n'^ - Sert/? -j-^r, or

2w2 = %enjp — i)^ -\-\\ therefore

n = i— ; and it is evident that it we

make 7? =. 1, this quantity becomes rational, and we have

n z=. e, and m r: e^ — 1.

For example, let a n 23, so that e =: 5 ; we shall then

liave 9.on^ -j- 1 rr m^, if n = 5, and m =z 24. The reason

of which is evident from another consideration; for if, in

the case of a =. e^ — 2, we make n =. e, we shall have

an'-\- 1 =r c* — 2e" -1- 1 ; which is the square of c' — 1.

109. Let a =. e' — 1, or less than a square by unity.

First, we must have {e^ — \)n^ + \ = m"^ \ then, because,

as before, m Z en, we shall make m = en — p ; and this

being done, we have

(e^ — 1)h' -\-lz=:e'
H'—2en2y+p% or n"=2enp-if +1

;
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wherefore n-=:ep + ^/{e''p^—p^ + 1). Now, the irrationality

disappeared by supposing p = 1 ; so that n = 2f, and
VI — ^e' — 1. This also is evident; for, since a = c' — 1,

and n = 2^, we find

aiv +1 —^e^ — ie' + 1,

or equal to the square of 2c' —1. For example, letan24,
or e = 5, we shall have n = 10, and

24<7i-'+ 1 =2401 == (49)=*

110. Let us now suppose a = c' + 1, or a greater than
a square by unity. Here we must have

{e' + l)n-' + 1 == w%
and m will evidently be greater than en. Let us, therefore,

write m :=. en + p, and we shall have

(c^ + l)7z= + 1 = c'li' + 2cnp-\-p'' , or ?i-z:z 9,enp + Z^'
~"

-^

'

whence n = ep -{ V(e'p- + p= — !)• Now, we may make
p == 1, and shall then have n=^2e ; therefore m^ = 2c!-' + 1

;

which is what ought to be the result from the consideration,

that a ^= e^ + 1, and n rz 2e, which gives

an' +1 = ie* + 4e^ +1, the square of 2^- + 1. For ex-

ample, let a = 17, so that e? = 4, and we shall have

17H' -f 1 = m' ; by making n = 8, and m = 33.

ill. Lastly, let a = e- +2, or greater than a square by
2. Here, we have (<?-'

-f- ^)7i' + 1 =m', and, as before,

m 7 en ; therefore we shall suppose vi = en + y, and shall

thus have

e'lv + %i- + 1 = e'n- 4- 'Henp + p% or

2n- = 2epji + p' — ly which gives

n
cp+ ^/{e'p'-^-^p'-2)

lA^t 2? = 1, we shall find n = e, and m — c- + 1 ; and, in

fact, since a— e"-\-2^ and w= <?, we have GW^+l=6'*-f 2c- + 1,

which is the square of c^ + 1.

For example, let a= 11, so that r = 3; we shall find

\\n- + 1 = m' , by making « = 3, and m — 10. If we

* In this case, likewise, the radical sign vanishes, if we make
/? = : and this supposition incontestably gives the least possible

numbers for m and n, namely, w. = 1, and vi = e 3 that Js to say,

ife = 6, tlie formula 1^:n'^ •\- 1 becomes a square by making
;/ = 1 3 and the root of this square will be m •= e = .5. F. T.
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supposed a = 83, we should have c = 9, and

83n^ + 1 = ni% where ii = 9, and m = 82 *.

* Our author might have added here another very obvious

2
case, which is when a is of the form e^ ± —e ; for then by mak-

ing ?z — c, our formula rin'- -{- 1, becomes e'c'^ ± Ice + 1 =
{ec ± \)\ I was led to the consideration of the above form,

from having observed that the square roots of all numbers in-

cluded in this formula are readily obtained by the method of

continued fractions, the quotieutfigures, from which the fractions

are derived, following a certain determined law, of two terms,

readily observed, and that whenever this is the case, the method
which is given above is also applied with great facility. And as

a great many numbers are included in the above form, I have
been induced to place it here, as a means of abridging the

operations in those particular cases.

The reader is indebted to Mr. P. Barlow of the Royal Aca-
demy, Woolwich, for the above note 5 and also for a few more
in this Second Part, which are distinguished by the signature, B.
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Table, shewing for each value of a the least numbers m and n,

that will give m- z=z an'' + 1 * ; or that will render a?ii + 1

a square.

a 71 m a n tn

2
3

2
1

3

2

53
54
55
56
57
58
59
60
61

62
63

9100
66
12

2
20

2574
69
4

226153980
8

1

66249
485
89
15

151

19603
530
31

1766319049
63
8

5

6

7

8

4
2
3

1

9

5

8

3

10
11

12

13

14

15

17

IS

19

20
21

22
23
24

26

27
28
29
30
31

32
33
34
35

37
38
39
40
41

42
43
44
45
46
47
48

6
3

2
180

4
1

19
10

7

649
15

4

33

17

170
9

55
197
24
5

65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80

16

8

5967
4

936
30

413
2

267000
430

3

6630
40
6
9
1

129
65

48842
33

7775
251

3480
17

2281249
3699

26
57799

351
53
80
9

8

4

39
2
12

42
5

1

10

5

24
1820

2
273

3

4

6
1

51

26
127

9801
11

1520
17

23
35

6

82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98

99

18

9
6

30996
1122

3

21

53000
2

165
120

12G0
221064

4
5

6377S52
10

1

163
82
55

285769
10405

28
197

500001
19

1574
1151

12151
2143295

89
49

62809633
99
10

12

6
4
3

320
2

531
30
24

3588
7
1

73
37
25
19

2049
13

3482
199
161

24335
48

7

50
51

52

14

7

90

99
50

649

* See Article 8 of the additions by l)e hv Grange.
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CHAP. VIII.

Of the Method (^rendering the Irrational Formula,

V(a + hv + cx'^ ^ dx") Rational.

112. We sliall now proceed to a formula, in which x rises

to the third power ; after which we shall consider also the

fourth power of x, although these two cases are treated in

the same manner.
Let it be required, therefore, to transform into a square

the fornuda a + bx + ex- + dx"\ and to had proper values

of X for this purpose, expressed in rational numbers. As
this investigation is attended with much greater difficulties

than any of the preceding cases, more artifice is requisite to

find even fractional values of ^; and with such we must be
satisfied, without pretending to find values in integer num-
bers.

It must here be previously remarked also, that a general

solution cannot be given, as in the preceding cases ; and
that, instead of the number here employed leading to an
infinite number of solutions, each operation will exhibit but
one value of a*.

113. As in considering the formula a + bx -f ex", we
observed an infinite number of cases, in which the solution

becomes altogether impossible, we may readily imagine that

this will be much oftener the case with respect to the present

formula, which, besides, constantly requires that we already

know, or have found, a solution. So that here we can only

give rules for those cases, in Avhich we set out from one
known solution, in order to find a new one; by means of

which, we may then find a third, and proceed, successively

in the same manner, to others.

It does not, however, always happen, that, by means of a

known solution, we can find another; on the contrary,

there are many cases, in which only one solution can take

place ; and this circumstance is the more remarkable, as in

the analyses which we have before made, a single solution

led to an infinite number of other new ones.

114. We just now observed, that in order to render the

transformation of the formula, a -\- bx -{- ex- + dx^, into a

square, a case must be presupposed, in which that solution is

possible. Now, such a case is clearly perceived, when the
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first term is itself a square already, and the formula may be
expressed thus, y"- + hx -\-cx- + dx^ ; for it evidently be-
comes a square, if x = 0.

We shall therefore enter upon the subject, by considering

this formula; and shall endeavour to see hov/, by setting

out from the known case x r= 0, v/e may arrive at some
other value of x. For this purpose, we shall employ two
different methods, which will be separately explained : in

order to which, it will be proper to begin v/ith particular

cases.

115. Let, therefore, the formula 1 -j- 2jc — x' -\-
x'^ be

proposed, which ought to become a squai*e. Here, as the

first term is a square, we shall adopt for the root required
such a quantity as will make the first two terms vanish.

For which purpose, let 1 -f x be the root, whose square is

to be equal to our formula ; and this will give 1 H- 2.r —
;r* 4- a;^ = 1 + ScT + x'\ of v/hich equation the first two
terms destroy each other ; so that we have x' = — x- -\- x^,

or x^ = 2x^, which, being divided by x", gives x = 2; so

that the formula becomes 1 ^- 4< — 4 -|- 8 r: 9.

Likewise, in order to make a square of the formula,

4> -r- 6x — 5^^ 4- 3^^ we shall first suppose its root to be
2 + nx, and seek such a value of w as will make the first

two terms disappear ; hence,

4 H- 6.T7 — 5x^^ -{- ox"^ = 4: + 4inx + n'-x"^;

therefore we must have 4w = 6, and ?«, = 1 ; whence re-

sults the equation - 5x^ + Sjt^ = n'^x'^—^x'^, or Qx^ = ^.r^,

which gives x = W ; and this is the value which will make
a square of the proposed formula, whose root will be

O I 3
J.

4 5

IIG. The second method consists in giving the root three

terms, asjT-i- gx -\- lix\ such, that the first three terms in

the equation may vanish.

Let there be proposed, fur example, the formula 1 — 4a.' +
Qx^ — 5*'', the root of which we shall suppose to be

\ — 2x -\- 7ix^, and we shall thus have

1 _ 4^ + Ga;2 - 5x-' = 1 - ix -{- 4<x'^ - 4:hx"^ + It^x^ + 2hx^-,

The first two terms, as we see, are immediately destroyed on

both sides ; and, in order to remove the third, we must make
27i -f. 4 = 6; consequently, h — 1; by these means, and

transposing 9Jix^ = S.r"', we obtain - 5x^ = — 4a'^ -|- x\
or — 5 — — 4 -f- .r, so that x = — I.

117. These two methods, therefore, may be employed,

when the first term a is a square. The first is founded on

expressing the root by two terms, asy'-f 2^h in which,/' is
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the sfjuarc root of the first term, and j) is taken sucli, that

the second term must likewise disappear; so that tliere re-

mains only to compai'e p^x" "with the third and fourth term

of the formula, namely cx^ -f dar^; for then that equation,

being divisible by ^^, gives a new value of x, which is

p^— c

^ = -dr'
In the second method, three terms are given to the root;

that is to say, if the first term a =y", we express the root

hyf-\- px -}- qx^ ; after which, /; and q are determined such,

that the first three terms of the formula may vanish, wliich

is done in the following manner : since

f + hx + cx'+ dx"^—f-+ ^pfx + yqx"- -\-'p\v" 4- '^pqx"' + qx\
h

we must have b — 9fp ; and, consequently, p — •^.; farther,

equation dx^ = 2pqx^ -[- q'^x* ; and, as it is divisible by x^y

, . „ .
d— Qpq

we obtain trom it x = :—

.

Q'

118. It may frequently happen, however, even when

a—f^, that neither of these methods will give a new value

ofx; as will appear, by considering the formula y*" -|- J^r^,

in which the second and third terms are wanting.

For if, according to the first method, we suppose the root

to bey-f- px, that is,

p-^dx"^=zf^-\-2fpx-{-p^x%
we shall have 2/'p = 0, and j; = ; so that dx^ = ; and
therefore x = 0, which is not a new value of x.

if, according to the second method, we were to make the

rooty-}" px -j- qx^, or

/2 + dx^ —/• -\- y^px -{- p"x" -|- yqx" -i- 9>pqx^ -j- cpx''^

we should find 9fp = 0, p^ + %^ = ^5 ^^^ g^ = ; whence

dx^ = 0, and also x = 0.

119. In this case, we have no other expedient, than to en-

deavour to find such a value of x^ as will make the formula

a square ; if we succeed, this value will then enable us to

find new values, bv means of our two methods : and this

will apply even to the cases in which the first term is not a

square.

If, for example, the formula 3 \- x^ must become a square ;

as this takes place when x = 1, let a- = 1 -|- //, and we shall

thus have i -| Ov/ l- 3^- 4 i/, the first term of which is a



36i ELEMENTS PART II.

^ = P' - 3 = -/-^ - -M- = -^p, ; therefore x =

square. If, therefore, we suppose, accordhig to the first

method, the root to be 2 + pij, we shall have

4 + 3?/ + 37/^ + y^ = 4 + ^jnj -f p^2f^.

In ord<;r that the second term may disappear, we must
make 4/> = 3 ; and, consequently, 7; = 1 ; whence 3 -\-y =p-,

-39 , . -23
-^p. ; thererore x = —:r>>'16 16

which is a new vaUie of x.

If, again, according to the second method, we represent
the root by 2 -j-^;j/-|- gy^, we shall have

4 -h 3j/ +- 3?/^ + 2/3= 4 -1- 4>2/+ 4^qf- +2>Y- + ^Pqf+ q"y\

from which the second term will be removed, by makin<>-

4p = 3, or p z=z ^-^ and the fourth, by making '\^q 4- p- = 3,

or q =. —1 — = |-^-; so that 1 = 9.pq -\- q'^y; whence we

1 - 2pq
obtain y — -—

, or 3/ = -f^~ ; and, consec^uently,

,, 1873
a- rT2T'_

ISO. In general, if we have the formula

a -\- bx + cx^ + dx\
and know also that it becomes a square when x =J', or that

a + bf + cf^ + df'^ — g-^y we may make x —f + j/, and
shall hence obtain the following new formula :

^hf-^rhy

g^ + {h+ ^cf +3t^-)^+ (c + Mf)y^ + dy\

In this formula, the first term is a squai-e ; so that the

two methods above given may be applied with success, as

they will furnish new values of y, and consequently of x
also, since x z=.f + y.

121. But often, also, it is of no avail even to have found

a value of x. This is the case with the formula 1 + x^,

which becomes a square when x •=. 2. For if, in consequence

of this, we make a; = 2 + 3/, we shall get the formula 9 -V

12j/ + 6j/^ + 7/^, which ought also to become a square.

Now, by the first rule, let the root be o-|-y;j/, and we shall

have9+l%/~l~%'+^^= 9~i"Qpj/+/^^j/'') "^ which we must
have 6/J =: 12, and p m^\ therefore 6 -f 3/ = p^ = 4, and

J/
= ~ 2, which, since we made a; r= 2 + ?/, this gives

a; = ; that is to say, a value from which we can derive

nothing more.
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Let us also try the second method, and represent the root

by 3 ^r vy V W'-< this gives

in which we must first have 6/; =. 12, and p — 2; then

6,y -}- p" = 6y + 4 = 6, and q-=. \% farther,

1 -<ilpq + q:y = ^ + i3/'^

hence j/= — 3, and, consequently, x=. — 1, and 1 +ji^=0 ;

from which we can draw no further conclusion, because, if

we wished to make <r ~ — 1+2, we should find the formula,

3~ — 3z" -\- z^, the first term of which vanishes ; so that we
cannot make use of either method.

We have therefore sufficient grounds to suppose, after

what has been attempted, that the formula 1 -j- a:^ can never

become a square, except in these three cases ; namely, when
1. .r = 0, 2. ^ — — 1, and 3. x =. %

But of this we may satisfy ourselves from other reasons.

122. Let us consider, for the sake of practice, the formula

1 + 3x^, which becomes a square in the following cases

;

when
1. ;r = 0, 2. a: = - 1, 3. X -. 2,

and let us see whether we shall arrive at other similar

values.

Since cc =. 1 is one of the satisfactory values, let us sup-

pose jr = 1 -{-3/, and we shall thus have

1 + 3.r3 = 4 + % + 97/2 + 3^3.

Now, let the root of this new formula be 2-\-pi/, so that

4 -f- 9^ + 9y + 3?/' = 4 -f- 4<pi/ + p'y\ We must have

9 == 4y;, and p = ^, and the other terms will give 9 + ^^ =
p- = 4-i, and 7/ = ""

T-5^ » consequently, a: = — -/^, and
l-j-3a7"' becomes a square, namely, — i^ii-, the root of which

is — ^, or -p |4 • ^^^i ^^ ^^^ chose to proceed, by making
X ^= — -^ -{- rjy we should not fail to find new values.

Let us also apply the second method to the same formula,

and suppose the root to be 2 -j- py -j- qy ; which supposition

gives

4 + 9^/ + 9j/2 4- 37/^ =
I
^+^i^^+%;+ ^m' + fy ;

I
therefore, Ave must have 4p = 9, or p = |^, and 4y + 2^" =
9 = 4<7 + |i, or g = 1^: and the other terms will give

3 = 2pg + q"i/ = i-ll + q'y, or 567 + 128^2?/ = 384, or

1289"?/ = — 183; that is to say,

fi32
128 X iUTl/ = - 183, or

gl^^
^ - 183.

So that ?/ = — t|4t> ^"^^ '^ = — -rrrT' '"^"^ these values
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will furnish new ones, by following the methods which have
been pointed out.

123. It must be remarked, however, that if we gave our-

selves the trouble of deducing new values from the two,

which the known case of x — 1 has furnished, "we should

arrive at fractions extremely prolix ; and we have reason to

be surprised that the case, :r = 1, has not rather led us to

the other, x = 2, which is no less evident. This, indeed,

is an imperfection of the present method, which is the only

mode of proceeding hitherto known.
We may, in the same manner, set out from the case

J- rr 2, in order to find other values. Let us, for this pur-

pose, make .r =z 2 -f- 2/i ^"'^l i^ will be required to make a

square of the formula, 25 -\- 36?/ -\- 18iy- -f 3^'\ Here, if

we suppose its root, according to the first method, to be

5 -j- ^j/, we shall have

25 + 36j/ + 18y- + 3y = 25 + Wjjt/ + py

;

and, consequently, 10/; z= 36, or^j = '^ : then expunging

the terms which destroy each other, and dividing the others

by 7/^5 there results 18 + St/ cz p" rz \?^ ; consequently,

jj = — *.!, and a: rr ~ ; whence it follows, that 1 -j- 3*^^ is

a square, whose root is 5 -}- fij — — 4|4, or -j- \\\.
In the second method, it would be necessary to suppose

the root =: 5 + pi) -}- qij"^ and we should then have

.5 + 36y + ISy + 3y . {
"^ + "^^^^"^V^^^

}
the second and third terms would disappear by making
10/) = 36, or J) = 3^, and 10</ + // ~ 18, or

10</ =r 18 - Vt" — Vt5 or <7 = -i-V-5-' ^"d then the other

terms, divided by ?/"'. would give 'ipq + q-y = 3, or

fy^S- ^pq -'- 1^1 ; that is, y=- 1^, and
y, __ _6JL5_

I 3 1 3
•

124. This calculation does not become less tedious and
difficult, even in the cases where, setting out differently, we
can give a general solution ; as, for example, Avhen the

formula proposed is 1 — x — x^ -^^ cc^, in which we may
make, generally, x =. ti^ — \,hy giving any value Avhatever

to n : for, let n = 2; we have then x = 3, and the formula

becomes 1 — 3 — 9 + 27 = 16. Let n = 3, we have then

X = 8, and the formula becomes 1 — 8 — 64 -}- 512 = 441,

and so on.

But it should be observed, that it is to a very peculiar

circumstance we owe a solution so easy, and this circum-

stance is readily perceived by analysing our formula into

factors ; for we immediately see, that it is divisible by
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1 — X, that the quotient will be 1 — x", that tliis quotient

is composed of the factors (1 + x) X (1 — x) ; and, lastly,

that our formula,

] —x-X' + x^={l— x) x(l+.r) x(l—^^^(l — a:)'-x (l+x).

Now, as it must be a D [square'], and as a D , when divisible

by a D, gives a n for the quotient*, we must also have

1 + X = a ; and, conversely, it 1 l- a: be a D , it is certain

that(l — x)"^ X (1 + ^) will be a square; we have therefore

only to make 1 + .r = n^, and we immediately obtain

^= w2 - 1.

If this circumstance had escaped vis, it would have been

difficult even to have determined only five or six values of

X by the preceding methods.

125. Hence we conclude, that it is proper to resolve every

formula proposed into factors, when it can be done ; and we
have already shewn how this is to be done,by making the given

formula equal to 0, and then seeking the root of this equa-

tion ; for each root, as x =f, will give a factory— x ; and
this inquiry is so much the easier, as here we seek only

rational roots, which are always divisors of the known term,

or the term which does not contain x.

126. This circumstance takes place also in our general

formula, a + bx -\- cX- + dx^, when the first two terms dis-

appear, and it is consequently the quantity cx^" -\- dx^ that

must be a square ; for it is evident, in this case, that by di-

viding by the square a;', we must also have c \- dx a square
;

and we have therefore only to make c -{- £7.r = 7i% in order

to have x = r— , a value which contains an infinite num-
a

ber of answers, and even all the possible answers.

1S7. In the application of the first of the two preceding

methods, if we do not choose to determine the letter yj, for

the sake of removing the second term, we shall arrive at

another irrational formula, which it will be required to make
rational.

For example, let J"" -\- bx -^r- ex' -\- dx^ be the formula
proposed, and let its root ~y~{- px. Here we shall have

J'- -f bx + ex" + dx^ =y" + 4fp^^ + p"'^'^ ^'"^"^"^ which the

first terms vanish ; dividing, therefore by x, we obtain

* The mathematical student, who may wish to acquire an
extensive knowledge of the many curious properties of num-
berSj is referred, once for all, to the second edition of Legea-
dre's celebrated Essai sur la Theorie des Nombres ; or to Mr.
Barlow's Elemen'ary Investigation of the same subject.
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b + cx + dx^ r: ^/p + /;\t'% an equation of the second de-

gree, which gives

- P'- g+ a/(p'-Sc//--4- 8dfp-\-c —Ud)

So that the question is now reduced to finding such values

of p, as will make the formula p* — 2c// + 8(1/}} + c-—4<hd
become a square. But as it is the fourth power of the re-

quired number p which occurs liere, this case belongs to the

following chapter.

CHAP. IX.

Ofthe Method ofrcnder'm^ Rational tlie hicommensurable
Formula ^{(x + hx + cx"^ + dx^ + ex^).

128. We are now come to formula?, in which the indeter-

minate number, a-, rises to the fourth power; and this must
be the limit of our researches on quantities affected by the

sign of the square root ; since the subject has not yet been pro-

secuted far enough to enable us to transform into squares

any formulae, in which higher powers of a- are found.

Our new formula furnishes three cases : the first, when
the first term, a, is a square ; the second, Vv^hen the last

term, ex'^^ is a square ; and the third, when both the first

term and the last are squares. We shall consider eacli of

these cases separately.

129. 1st. Resolution of the formula

^/(y^ jfbx -^^ cx^ + dx^ + ex*).

As the first term of this is a square, we might, by the first me-
thod, suppose theroottobe/^+z^a', and determine/; in such a

manner, that the first two terms would disappear, and the

others be divisible by x"; but we should not fail still to find

X- in the equation, and the determination of a: would depend
on a new radical sign. We shall therefore have recourse to

the second method ; and represent the root byy+j^o; + qx" ;

and then determine p and q, so as to remove the first three

terms, and then dividing by x^% we shall arrive at a simple

equation of the first degree, which will give x without any
radical signs.



CHAl'. IX. OK ALGEUKA. 3G9

130. If, therefore^ the root hcf{px -{- qjc", and for that

reason

J"^ + bx ^- cx^ -f- dx^ A^ cx^ —
J- + ypx + fx" + ^fqx'' + 9,pqx^ -\--q'x\

the first terms disappear of themselves ; with regard to the

second, wc shall remove tlieni by making b = ^fp, or

p = —- ; and, for the third, we must make c — ^fq + p"^

c V'
or q= j. . This being done, the other terms will be di-

visible by x-\ and will give the equation d-{- ex = 2pq-\-q^x,

from which we find

d— 9,pq 2pq— d
X =

;;
, or X — .

q- — e e— q
131. Now, it is easy to see that this method leads to no-

tl)ing, when the second and third terms are wanting in our

formula ; that is to say, when 6 — 0, and c — ; for then

J)
= 0, and ^r :- ; consequently, x — , from which

we can commonly draw no conclusion, because this case

evidently gives dx^ -f-
ex'*' — ; and, therefore, our formula

becomes equal to the squarey-. But it is chiefly with re-

spect to such formulae as/"' -}- cx\ that this method is of no

advantage, since in this case we have d = 0, which gives

.1' = 0, and this leads no farther. It is the same, when
b rz 0, and d = 0; tliat is to say, the second and fourth

terms are wanting, in v>'hich case the formula is

c

f" -\- ex- -f- ex* ; for, then 2^ ~ 0, and q = -^,, whence

.r c= 0, as we may immediately perceive, from which no

further advantage can result.

132. 2d. Resolution of the formula

^/(a + bx + ex" + dx^ -\~ g^x^).

We might reduce this formula to the preceding case, by

supposing X ~ — ; for, as the formula

bed i'-

a + —+— + 3-:-—

^

must then be a square, and remain a square if multiplied

by the square j/% we have only to perform this multiplica-

tion, in order to obtain the formula
u B
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«y + *«/' + 'cy" + % +5'%

which is quite similar to the former, only inverted.

But it is not necessary to go through this process ; v/e

have only to suppose the root to be gx" -^ jpx ^ q^ or, in-

versely, q -\- jpx + ^cT^, and we shall thus have

a -\- hx \- cx^ + dx^ + g"x^ =
q" + 9.pqx + 9>gqx- + p^x- -\- 9,gpx^ -f ^''^*'

Now, the fifth and sixth terms destroying each other, we
shall first determine p so, that the fourth terms may also

destroy each other; which happens when d = ^gp, or

7} =. -r— : we shall then likewise determine a, in order to re-

move the third terms, making for this purpose

c = ^q+p\ or q = ^-^ ;

which done, the first two terms will furnish the equation

a-]- bx —q^ -\- %pqx ; whence we obtain

a—q"^ a" —

a

X = ; , or a: =
2pq-b' b- ^pq

133. Here, again, we find the same imperfection that was

before remarked, in the case where the second and fourth

terms are wanting ; that is to say, b — Q, and tZ = ; be-

c
cause we then find « = 0, and q = —— ; therefore

^g
a — q^

X = —^r— : now, this value being infinite, leads no farther

than the value, x = 0, in the first case ; whence it follows,

that this method cannot be at all employed with respect to

expressions of the form a -\- cx^ -}- g-x*.

134. 3d. Resolution of the formula

^/(/* + bx + ex'' + dx^ + g^x*).

It is evident that we may employ for this formula both

the methods that have been made use of; for, in the first

place, since the first term is a square, we may assume

y*-f- P^ ~\~ 9^^ for the root, and make the first three terms

vanish ; then, as the last term is likewise a square, we may
also make the root q -\-px -\- gx^, and remove the last three

terms ; by which means we shall find even two values of x.

But this formula may be resolved also by two other

methods, which are peculiarly adapted to it.

In the first, we suppose the root to he^f+ px + ^.i-, and
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p is determined such, that the second terms destroy each

otlier ; that is to say,

f + hx + ex"' 4- ^^ + g"x^ =
y"2 _|_ 2fpx + 2fgx- + fx- + 9.gpx^ -f ^V.

Then, making b = 9fp, or p = -^—
. ; and since by these

means both the second terms, and the first and last, are

destroyed, we may divide the others by ^^, and shall have
the equation c -{- dx = 9fg \- p'^ -\- ^gpx, from which we

C— ^.f'r—p^ p'^+yg-C
obtain x = —p,—-—4—^ ov x = —r~7i • Here, it ought

^gp-d ' ~d-2gp ' ^

to be particularly observed, that as g is found in the

formula only in the second power, the root of this square, or

g, may be taken negatively as well as positively ; and, for

this reason, we may obtain also another value of x ; namely,

^, ^ £±J^_p! or X ^tn^^— ^gp^d"" 2gp + d

135. There is, as we observed, another method of resolving

this formula ; which consists in first supposing the root, as

before, to bey-|- px -{- gx", and then determining p in such

a manner, that the fourth terms may destroy each other ;

which is done by supposing in the fundamental equation,

d
d = 2g'/?, or p — —', for, since the first and the last terms

disappear likewise, we may divide the other by x, and there

will result the equation b -\- ex = 2^ + ^g^ -\-p"^i which

b-'^fp

^gi-p'-c'

the square _/"- is found alone in the formula, we may sup-
pose its root to be —y, from which we shall have

b + 2fp
X zz ——777: . So that this method also furnishes two

p'-Ws-c
new values of j;; and, consequently, the methods we have
employed give, in all, six new values.

136. But here again the inconvenient circumstance occurs,

that, when the second and the fourth terms are wanting, or

when b = 0, and d = 0, we cannot find any value of x
which answers our purpose; so that we are unable to re-

solve the formula /^ -|- ex- + gx'^. For, if b — 0, and
B B 2

gives X =
^^

„
_^ ^ „ ^ . We may farther remark, that as
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*

d = 0, we have, by both method •=!, p — Q; tlie former

giving X =. —~-, and the other giving .r zz ; neither of

which are proper for furnishing any further conclusions.

137. These then are the three formulae, to which the

methods hitherto explained may be applied ; and, if in the

formula proposed neither term be a square, no success can

be expected, until we have found one such value of .r as will

malce the formula a square.

Let us suppose, therefore, that our formula becomes a

square in the case of a: rz /j, or that

a -h bh -h ch^ + dh" -h elv^ '= k"
;

if we make x z= h -i- 7/, we shall have a new formula, the

first term of which will be k- ; that is to say, a square, which

will, consequently^, fall under the first case : and we may also

use this transformation, after having determined by the pre-

ceding methods one value of x, for instance, x = h; for

we have then only to make x = h -^ 7/, in order to obtain a

new equation, with which we may proceed in the same
manner. And the values of x, that may be found in this

manner, will furnish new ones ; which will also lead to

others, and so on.

138. But it is to be particularly remarked, that we can in

no way hope to resolve those formulae in which the second and
fourth terms are wanting, until We have found one solution ;

and, with regard to the process that must be followed after

that, we shall explain it by applying it to the formula a + ex\
which is one of those that most frequently occur.

Suppose, therefore, we have found such a value of x =r h,

that a + eh* = A" ; then if we would find, from this, other

values of .r, we must make x zz ft, -\- ?/, and the following

formula, a + eJi* + 4!eh^7/ + 6ch^7/' + 4r/w/^ 4- fy^ must
be a square. Now, this formula being reducible to

k^ -\- ^ch^y -\- Gcli^y^ + 4<chij^ -f- ey*, it therefore belongs to

the first of our three cases; so that we shall represent its

square root by h -{ py -\- qy"'-, and, consequently, the

formula itself will be equal to the square

h" + ^kpy + p"y- + -MU' + '^PW^ + 2Y '>

from which we must first remove the second term by de-

termining p, and consequently q ; that is to say, by making

4(7/ ' — ^kpi or 2> — —77 ; and beh- n 9,fcq -\- p", or
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^"~ 2k
'~ ¥ ~ ¥ '

or, lastly, q z=. r^ , because cii^ r= Ic^ — a ; after

wliicli, the remaining terms, Achy"' + cij^, being divided by
j/^, will give 46'/* -|- etj =: ^Zpq -f (fy, whence we find

y IT —-—-— ; and the numerator of this fraction may be

thrown nito the form — t,
k''

"^

or, because eh^ = ^•- — «, into this,

\ehk'-^ch{lfi^a) x {h+ '2a) _ ieh( -ak'^+^n"-^ _ 4^aeh[2a—k-)

~/?
~

h
~

k'

With regard to the denominator q-- — e, since

ch"{k'{-2a)
, ^^ ,,.

q = T— , and c/r =: k- — a, it becomes

c{k"^a) X {k- + '^af - fA'' _ ^'(3aP-4«^) _ m(3A;* - 4a-)

p ~ 1? ~ ¥ '

so that the value sought will be

_ 'iaeh\9.a-k^) Jf_

^ ~ k' ^ ^F-4^)' ""'"'

4<hk\^a-k")
^ ^ ~3F-4^ ' '

consequently,

h{8ak"—k'-i<a')
..=^ + /, = —-—-—-, or

_ h{k*-8ak"-\-4>a-)
'^
^

4^--3A-* '

* By multiplying Qck^—p" by /?;-,and substituting for k-p' its

equal, 2eA'.

-|- For since k' = a -+- e/i't, therefore 3/t^ — 2<?A* = 3a -h e/i^

= ^- + 2a.

, - 4eM'^ , ehHk''- + 2a)
,

2eh^
X Here 4eft = —;— , also q = r-, , and p = —;— :

A* fc^ Ic

thereforc 2pq = -j- ; and, consequently,

I'cA — 2pQ = —i J).
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If, therefore, we substitute this value of x in the formula
a + ex*, it becomes a square ; and its root, which we have
supposed to be h + py -j- 5?/% will have this form,

^k{k'~a ) X {1a-h) Wile's—a ) x (F+ 2a) x {^tn—h'^Y

, ,
^eh^ eUHTc' \-2a)

because, as we have seen, v = -^- , n = ;- -,
k ^ k-^

4>hk'{2a-k)
y = ^^="4^' ^"d ''^'' = ^•'' - « *•

139. Let us continue the investi^jation of the formula

a + ex* ; and, since the case a + eh* = k'^ is known, let

us consider it as furnishing two different cases ; because

iv ^ + h, and x = — h; for which reason we may trans-

form our formula into another of the third class, in which
the first term and the last are squares. This trans-

formation is made by an artifice, which is often of great

utility, and which consists in making x = -^— - : by which

means the formula becomes

aa^^)*^e7i*{l + 7/)*

Tz TT , or rather

k^^4!{k^ -^a)y+6ky-{- 4(A:"- ^a)f+ky

Now, let us suppose the root of this formula, according to the

third case, to be —-p^—~-
; so that the numerator of our

(l-«/)'

formula must be equal to the square

k^ + n-py + py - ^^Y - ^^y^ + ^"y*'->

and, removing the second terms, by making

2y5:2_4^
4A:^ — 8a rr 2^p, or p = r— ; and dividing the

* Thus,

^eh^ Uk^'ia-k"') 8eh*k(2a-P) _Sk{k''-a) x (2a -k^) _

p^ = -rX'

eh'^[k^+ 2a) \Qh''k\2a-k'') l6eh'k{k'' + 2a)y.{2a—k'Y
also,9/= 75 X

^3 (3A-^_4a^'j^ {U*-^a'y

I6k{k^-a) X (/:= -f-2«) X {2a-k'y

(5k'-U

'

)
-•

"'^^ substituting eh' z=k^-a.

B.
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Oilier terms by //-, vvc shall have

6fc^ + ^7/(P -2a) ~— 2^2 _j_ pz _ 2kp^, or

^(4^2 _ 8a + 2^p) z^p" - 8k^; or

0p_4^
2^ =: —7— , and pk — 2/c- — 4rt ; so that

i/{8k^ - 16a) = -^^ , and

_ _i^—4fl^2_f.4^2

^~ k%2k''-4!a) '

If we now wish to find x, we have, first,

^ "^ -^ " ~P(2Fr4^y '

and, in the second place,

l - y = T^TTKr^
—1~\ ' so that

^ k-{^kr— ^a)

\^y ^•4_8a^2^4a-

1=5 = o^k^-^a^ ' ^"^' consequently,

_ h{k^-8ah'-S^^a^)

but this is just the same value that we found before, with

regard to the even powers of .r.

140. In order to apply this result to an example, let it be

required to make the formula 2jr* — 1 a square. Here,

we have a =.— 1, and e = 2 ; and the known case when
the formula becomes a square, is that in which .r = 1 ; so

that /i r= 1, and k" = 1 ; that is, A; =: 1 ; therefore, we shall

1 + 8 + 4
have the new value, x =. —^

—

-— =: — 13 ; and since the

fourth power of x is found alone, we may also write

^ := + 13, whence 2^^ - 1 - 57121 - (239)^
If we now consider this as the known case, we have

/j rr: 13 and A; = 239 ; and shall obtain a new value of x,

namely,

13 X (239H 8x 239^4) _ 42422452969

STssg^-i ~ 9788425919*

141. We shall consider, in the same manner, a formula

rather more general, a + cx^ + ex'^^ and shall take for the

known case, in which it becomes a square, x ~ 7i ; so that

a + ch- + clv^ — ¥.
And, in order to find other values from this, let us
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suppose .r = A -|- j/, and our formula will assume the Ibl

lowing form

:

a
ch--\-^chy -Ycrf-

eh*+ 4ich^y -\- Qeliy"+ '^ehy ^ \-ci/*

The first term being a square, we shall suppose the root

of this formula to be h -\- py -\- qij" j and the formula itseli"

will necessarily be equal to the square

h- -\-'ilhprj -^rp-'y- + Uqf -f ^pqy^ -^ q^ ;

then determining p and q, in order to expunge the second

and third terms, we shall have lor this purpose

ch-{-2eh^
2ch -|- Wt^ — ^Zicp ; or p zz r- ; and

n."

„
, ^, ,

c-\-6eh' — p'
c + OfA^ — ^a;^ -|- p- ; rq — ~y .

Now, the last two terms of the general equation being

divisible by y^, they are reduced to

4^/i -f- ey — 2pq -\- q"y ;

which gives 2/ = ,;
, and, consequently, the value also

of X ^= h -\- y. If we now consider this new case as the

given one, we shall find another new case, and may proceed,

in the same manner, as far as we please.

142. Let us illustrate the preceding article, by applying

it to the formula 1 — x- -\- x*, in which a ~ 1, c = — 1,

and e=l. The known case is evidently a," ==1 ; and, there-

fore, 7i = 1, and Jc = 1. If we make .r = 1 -{-y, and
the square root of our formula 1 -\- py -r Q]/') we must first

ch-\-S,ch^ C'[-6ch--~p"
have p = z = I, and then q — ——^. = t =2.^ k ilk

'

These values give y = 0, and x = \. Now, this is the

known case, and we have not arrived at a new one ; but it

is because we may prove, from other considerations, that the

proposed formula can never become a square, except in the

cases of a; = 0, and ^ = + 1

.

143. Let there be given, also, for an example, the

formula 2 — 3^'' + ^^-^ ; in which a = 2, c = — 3, and
e = 2. The known case is readily found ; that is, ar = 1

;

so that h = If and k = 1 : if, therefore, we make x= l-{^i/,

and the root = 1 + /^j/ J- qy", we shall have p = 1, and
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q= 4<; whence ?/ = 0, and a:=l ; which, as before, leads to

nothing new.

144. Again, let the formula ])e 1 + Sx' + je*; in which

« = Ij c — 8, and e = 1. Here a slight consideration is

sufficient to point out the satisfactory case, namely, x = 2;
for, by supposing h = 2, we find /c = 7 ; so that making
a; = 2 + ^, and representing the root by 7 + pj/ + qy'-, we
shall havep — y^, and q = ti:T' whence

y =~ 11-14, and x=- ^1^-

;

and we may omit the sign minus in these values. But we
may observe, farther, in this example, that, since the last

term is already a square, and must therefore remain a square

also in the new formula, we may here apply the metiiod

which has been already taught for cases of the third claies.

Therefore, as before, let .r = 2 + y, and we shall have

1

32 + 3% + 8/y"

16 + 32?/ + iXy- + Sif + y
49 + 64?/ + 3%" + 8^''^ H- y\

an expression which we may now transform into a square in

several ways. For, in the first place, we may suppose the

root to be 7 -[- yy -p 7/^ ; and, consequently, the formula

equal to the square

49 + Upy +- fy + 14j/2 + opy^ + ^^;

but then, after destroying 8^^, and 2/;//^, by supposing

2/; = 8, or p = 4, dividing the other terms by y, and de-

riving from the equation

64 + 32_?/ ^ 14p + 14^/ + f-y = 5Q -{- SOy,

the value of ?/ =— 4, and of ^ = — 2, or jt = + 2, we come
only to the case that is already known.

Farther, if we seek to determine such a value for p, that

the second terms may vanish, we shall have 14p = 64, and

p = y^ ; and the other terms, when divided by ^/^, form
the equation 14 + p- -{- 2pj/ = 32 + 8//, or

'^±.° -f 6_4 ^ — 32 _i_ 8^^ whence we find y =— |^ ; and,

consequently, x — — ±1-, or .r = -f It ; and this value trans-

forms our formula into a square, whose root is W+'-
Farther, as —y"^ is no less the root of the last term than

-f-j/^, we may suppose the root of the formula to be

7 + py — J/',
or the formula itself equal to

49 + I4py + ji'^y" — 14j/'' — ^Zpif + ?/*. And here we shall

destroy the last terms but one, by niakhig — 2p zz 8, or

p= — 4; then, dividing the other terms by y, we shall have
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64. + 32 y = Up - 14p -{.py -- 56~\- %,
which gives j/ = — 4 ; that is, tlie known case again. If

we chose to destroy the second terms, we should have
64 = 1 4/), and ;> = V- ; and, consequently, dividing the

other terms by 3/% we should obtain

32 + 8^ = - 14 -f ;>' - 2/>j/, or

32 + 8y = ^^L? _ yj/ ; whence

J/
=-

l-8-» and .r = - {4

;

tliat is to say, the same values that we found before.

145. We may proceed, in the same manner, with respect

to the general formula

a + bx + cx^ + dx^ + ex*,

when we know one case, as x = h, in which it becomes a

square, fc-'. The constant method is to suppose a; = /i + ?/:

from this, we obtain a formula of as many terms as the

other, the first of them being fc\ If, after that, we express

the root by ^ -j- /)// -|- gj/' ; and determine p and g so, that

the second and third terms may disa|)pear ; the last two,

being divisible by e/^, will be reduced to a simple equation

of the first degree, from wliich we may easily obtain the

value of 2/, and, consequently, that of .r also.

Still, however, we shall be obliged, as before, to exclude

a great number of cases in the application of this method

;

those, for instance, in which the value found for x is no
other than x = h, which was given, and in which, con-

sequently, we could not advance one step. Such cases

shew either that the formula is impossible in itself, or that

we have yet to find some other case in which it becomes
a square.

146. And this is the utmost length to which mathe-

maticians have yet advanced, in the resolution of formulas,

that are affected by the sign of the square root. No dis-

covery has hitherto been made for those, in which the quan-

tities under the sign exceed the fourth degree ; and
when formulae occur which contain the fifth, or a higher

power of X, the artifices which we have explained are not

sufficient to resolve them, even although a case be given.

That the truth of what is now said may be more evident,

we shall consider the formula

k^ -{- bx -[• ex" -H dx'^ 4- ex* -^J^^i

the first term of which is already a square. If, as be-

fore, we suppose the root of this formula to be k -\-px -\- gx",

and determine p and g, so as to make the second and third

terms disappear, there will still remain three terms, which,
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when divided by x^, form an equation of the second degree

;

and a- evidently cannot be expressed, except by a new irra-

tional quantity. But if we were to suppose the root to be

k -j- jiu; -{- qx- + rx^, its square would rise to the sixth

power; and, consequently, though we should even de-

termine p, q, and r, so as to remove the second, third, and
fourth terras, there would still remain the fourth, the fifth,

and the sixth powers ; and, dividing by x\ we should again

have an equation of the second degree, which we could not

resolve without a radical sign. This seems to indicate that

we have really exhausted the subject oftransforming formulai

into squares: we may now, therefore, proceed to quantities

affected by the sign of the cube root.

CHAP. X.

Ofthe Method qfrendering rational the irrational Formula

V(« 4- bx + ex"- -h dx^).

147. It is here required to find such values of ar, that the

formula a -\- hx -\- cx^ + dx^ may become a cube, and that

we may be able to extract its cube root. We see im-

mediately that no such solution could be expected, if the

formula exceeded the third degree; and we shall add, that

if it were only of the second degree, that is to say, if the

term dx^ disappeared, the solution would not be easier.

With regard to the case in which the last two terms dis-

appear, and in which it would be required to reduce the

formula a + bx to a cube, it is evidently attended with no
difficulty ; for we have only to make a -\- bx = p^, to find

p^— a
at once x = —^

—

-.

b

148. Before we proceed farther on this subject, we must
again remark, that when neither the first nor the last term
is a cube, we must not think of resolving the formula,

unless we already know a case in which it becomes a cube,

whether that case readily occurs, or whether we are obliged

to find it out by trial.

So that we have three kinds of formulae to consider.

One is, when the first term is a cube; and as then the

formula is expressed by J"^ -h bx -+ ex" -t- dx^, we imnie-
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diately perceive the known case to be tliat of x = 0. The
second class comprehends the fortniila a -+- bx + cx"^ + g-^x-';

that is to say, the case in whicli the last term is a cube.
The third class is composed of the two former, and com-
prehends the cases in which both the first term and the last

are cubes.

149. Case 1. Lety^ + bx + cx^ + dx"' be the proposed
formula, which is to be transformed into a cube.

Suppose its root to bey+ px ; and, consequently, that

the formula itself is equal to the cube

/3 + Sppx + Sfp"-x"- + p^x^ ;

as the first terras disappear of themselves, Ave shall de-

termine /;, so as to make the second terms also disa})pear

;

namely, by making b = Q/'-p, or p = ^, ; then the remain-
4/'

ing terms being divided by x\ give c h- dx = Qfp^^
+ p^x

;

c-Sfp^
or X = —~-T-

p^ — d

If the last term, (7a"\ had not been in the formula, we
might have simply supposed the cube root to be J', and
should have then hady * =y^' -*- ^'^ "*" ^^'-i oi' b + ex =r 0,

and X — ; but this value would not have served to
c

find others.

150. Case 2. If, in the second place, the proposed

expression has this form, a -^ bx -{- ex" + g^x^, we may
represent its cube root by p + gx, the cube of which is

pi + ^p'^gx + Sgp~x- -f g^x^ ; so that the last terms destroy

each other. Let us now determine p, so that the last terras

but one may likewise disappear : which will be done by

e
supposing c — Sg'P, ov p = ^r—„, and the other terms will

then give' a + bx = p^ + Sgp~x ; whence we find

_ a—p^

^ ~QgP'-t>'

If the first term, a, had been wanting, we should have

contented ourselves with expressing the cube root by gx,

and should have had

nr3^3 — ^^. ^ ^j;-' ^ g\v\ OY b -\- eX = 0,
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whence .%' r: - — ; l)iit this is oC no use for finding other

values.

151. Case 3. Lastly, let the fomuila be

in which the first and the last terms are both cubes. It is

evident that we may consider this as belonging to either of

the two preceding cases; and, consequently, that we may
obtain two values of x.

But beside this, we may also represent the root ^^yj-^gx,

and then make the formula equal to the cube

and likewise, as the first and last terms destroy each other,

the others being divisible by x, we arrive at the equation

h 4- ex = ^J'^g
-+- S/to'-^j which gives

152. On the contrary, when the given formula belongs

not to any of the above three cases, we have no other re-

source than to try to find such a value for x as will change

it into a cube; then, having found such a value, for ex-

ample, X = h, so that a -+- hh -t- cA- -t- dh^ = k^, we sup-

pose X =. h -h y, and find, by substitution,

a

hh + bij

ch- + 9,c}iy 4- c?/2

dlv" + Mhhj 4- Mhy' + dy^

Jci + (6 -f 2c/t + Qcnr)y h [c + 'Sdh)y' 4- di/.

This new formula belonging to the first case, we know-

how to determine y, and therefore shall find a new value of

Xy which may then be employed for finding othei- values.

153. Let us endeavour to illustrate this method by some
examples.

Suppose it were required to transform into a cube the

formula 1 -h x -t- x"-, which belongs to the first case. AVe
might at once make the cube root 1, and should find

X -H X- = 0, that is, .r(l -^ x) = 0, and, consequently, cither

^ =, 0, or X = — 1 ; but from this we can draw no con-

clusion. Let us therefore represent the cube root by
I -i- px; and as its cube is 1 + Qpx -+- 3p-x'- + p'Kv'-^, we
shall have 3/> — 1, or p =: ^; by which means the other
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terms, being divided by x-, give 3^^ -j- p^x = 1, or

\ ^w: 2.

X z=. ^— . Now, ^ r: ^, so that x :=:^ = 18, and our
P iT

formula becomes 1 + 18 + 324 = 343, and the cube root

1 + px = 7. If now we proceed, by making »r = 18 + «/,

our formula will assume the form 343 -\- oly + j/', and by
the first rule we must suppose its cube root to be 7 + i'j/

;

comparing it then with the cube

343 + 147/??/ + '^'^fy''- + 'p^y\

it is evident we must make 147/) = 37, or p = -^y ; the

other terms give the equation 21p' + p*?/ = 1, whence we
obtain the value of

\-9Xf _ 147 X (147--21 X 37=)
I + 9 5 S O

which may lead, in the same manner, to new values.

154. Let it now be required to make the formula 2 -f x^

equal to a cube. Here, as we easily get the case :r = 5, we
shall immediately make x = 5 -jr y, and shall have

27 + lOy + y"^
; supposing now its cube root to be 3 + py,

so that the formula itselfmay be 27 + 27pj/ -+- 9p y'^ + P'^y^,

we shall have to make 27p = 10, or p = i^; therefore

1 =z Qp^ 4- p^y, and

1—9// 27 X (27^-9x10^) ^ ,
7/ £_ i L 4617 anA
y - ^, - 1000

"'^""0^' •"""

a- = To-oV' therefore our formula becomes 2 + ^''"-—^^||||,
the cube root of which must be 3 + py = 4o|.

155. Let us also see whether the formula, 1 + x\ can

become a cube in any other cases beside the evident ones of

X = 0, and x =— 1. We may here remark first, that

though this formula belongs to the third class, yet the root

1 + j; is of no use to us, because its cube, 1 + 3^ + Sx"^ + x^,

being equal to the formula, gives Sx + 3a:'^=0, or'3^(l }-x)=Of
that is, again, a: — 0, or <r = — 1.

If we made ;r =— 1 + y, we should have to transform

into a cube the formula Sy — 2>y'^ + 3/^, which belongs to

the second case; so that, supposing its cube root to be

p -\- y, or the formula itself equal to the cube

p^ + Sp"y + Qpiy' + y^, we should have 3/j = — 3, or

p —— 1, and thence the equation 3j/= p"' + 3/?"j/= —1 +3j/,

which gives y — -^, or infinity •, so that we obtain nothing

more from this second supposition. In fact, it is in vain to

seek for other values of x ; for it may be demonstrated,

that the sum of two cubes, as t^ + x"\ can never become
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a cube*; so that, by making ^ = 1, it follows that the

formula, a^ + 1, can never become a cube, except in the

cases already mentioned.

156. In the same manner, we shall find that the formula,

a;3 _j_ 2, can only become a cube in the case of a; = — 1.

This formula belongs to the second case ; but the rule there

o-iven cannot be applied to it, because the middle terms are

wanting. It is by supposing a; = — 1 -f 2/» which gives

1 _j_ 3^ _ 3^/2 _|_ ^3^ |.|^g^j. ^i^g formula may be managed ac-

cording to all the three cases, and that the truth of what we
have advanced may be demonstrated. If, in the first case,

we make the root =z1-\-j/, whose cube is l^-3j/— 3j/--[-7/2,

we have — 3?/- — St/-, which can only be true when i/ = 0:

and if, according to the second case, the root be — 1 + ?/>

or the formula equal to — 1 + 3j/ — 3j/" + y^, we have

1 + 3^ = — 1 -1- 3j/, and t/ = ~, or an infinite value;

lastly, the third case requires us to suppose the root to be

1 -j. ^^ which has already been done for the first case.

157. Let the formula 3x^ + 3 be also required to be

transformed into a cube. This may be done, in the first

place, if a: = — 1, but from that we can conclude nothing:

then also, when a; — 2 ; and if, in this second case, we sup-

pose a; = 2 + y, we shall have the formula 27 -f 36y +
18z/- + 3?/^ ; and as this belongs to the first case, we shall

represent its root by 3 + pi/, the cube of which is

27 + ^Ipy + ^p^y'^ -\- p^y^ ; then, by comparison, we find

27/? = 36, or /? = 4- ; and thence results the equation

18 + 3?/ == 9/?' + p^U =^ 16 + If,?/,

_54 20
which gives y = —r^,, and, consequently, x = ——: there-

fore our formula 3 -{- Qx^ = - ^-ly, and its cube root

3 -f p?/ = -^i ; which solution would furnish new values, if

we chose to proceed.

158. Let us also consider the formula 4 + a:", which be-

comes a cube in two cases that may be considered as known

;

namely, x = 2, and x = 11. If now we first make x=^-\-y,

the formula 8 -}- 4<y -\- y" will be required to become a cube,

having for its root 2 + ^y, and this cubed being 8 -\- 4y -{-

\y^ + 2^VJ/^
w^ fii^d 1 =:

I-
4- -^y ; therefore ?/ = 9, and

^ = 11; which is the second given case.

If we here suppose x = 1 1 -]- ?/, we shall have

125 4- 22?/ -\-y~, which, being made equal to the cube of

5 -|-/w/, or to 125 + 75/??/ 4- 15/;'j/- + //j/^, gives p — ^i,

* See Article 2t7 of this Pmt.
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and tiicncc ]5/y -\- ])^\y = 1, or p^j/ =: 1 — \5p" rz — 4-|4

;

consequently, y ~ - '-A>%% and .r =: - t^^V-
And since .i- may either be negative or positive, x^ being

found alone in the given formula, let us suppose

X = ^ , and our torniuia will become -q v„» which
1-7/ (1-^)-

must be a cube ; let us therefore multiply both terms by
1 — y, in order that the denominator may become a cube

;

J ,. .,, . S—Sy+S7f-Sy^
, , „ 1and this will give 1"~"^\3 ' ^ '^^^ "'*^ shall only

have the numerator 8 — 87/ + 8?/'^ — 83/^, or if we divide by
8, only the formula 1 — y + y^ — ^^, to transform into a

cube ; which formula belongs to all the three cases. Let us,

according to the first, take for the root 1 — -^y '-, the cube of

which is 1 — y -j- ^-'/^ — ztI/^ '•> ^° ^'^^^ ^^^ have 1 — z/ =
4- — ^y?/, or 27 — 27?/ = 9 —y; therefore 3/ = -j\ ; also,

i -\- y ~ ^|-, and 1 — y = -/^ ; whence x — 11, as before.

We should have exactly the same result, if we con-

sidered the formula as coming under the second case.

Lastly, if we apply tlie third, and take 1 — j/ for the root,

the cube of which is 1 — 2y -\- 3j/' — y"\ we shall have
— 1 -\- y =: — 3 + 3y, and ?/ r= 1 ; so that^ = i, or in-

finity ; and, consequently, a result which is of no use.

159. But since we already know the two cases, x zz 2, and

2 + 11//
X z=. 11, we may also make .r — -^ ; for, by these

means, if ?/ n 0, we have j" = 2 ; and if ?/ <= oc, or infinity,

we have .r :— IL
2-flly

Therefore, let x = —:. ^, and our formula becomes
1

—

y
4-!-44vH-12W- 8+5%-hl25// ,, ^ .

, , ,

4 + , ^——-, or - ,/ ,0 • Multiply both

terms by 1 + y, in order that the denominator may be-

come a cube, and we shall only have the numerator

8 + QOy + 177^"' + 125^^ to transform into a cube. And
if, for this purpose, we suppose the root to be 2 + 5^, we
shall not only have the first terms disappear, ])ut also the

last. We may, therefore, refer our formula to the second

case, taking p + 5ij for the root, the cube of which is

// + 15p"i/ -\-15py^ + 125^^; so that we must make
15p = 177, or p = 11 ; and there will result 8 + 60j/ =
jP -H 15py, or - V\V^ = ^^h and^ - T^e^Vy' ''^'^^"^^

we mischt obtain a value of x.
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2+ lh/
But we may also suppose a: — —z ; and, in this case,

our formula becomes
4+ 44?/+ 121?/^- _ 8+ 36^ i- 1 25y

so that multiplying both terms by 1 — ?/, we have 8+ 28y +
89?/" — 125?/^ to transform into a cube. If we therefore

suppose, according to the first case, the root to be 2 + ^y,
the cube of which is 8 -|- 28t/ + "^-y" + ^-^^'if^ we have

89 - 125?/ - V + W-^' or H-f'J/ - 't^ ' ''"^» conse-

quently, j/ =: yy^T — z^ ' whcucc we gct ar = 11 ; that is,

one of the values already known.
But let us rather consider our formula with reference to the

third case, and suppose its root to be 2 — Sy ; the cube of

this binomial being 8 — 60j/ + 150//^ — \2bif\ we shall

have 28 + 89y = - GO + 150j/; therefore j/ =^ ||, whence
we get 0- ==: — '|^° ; so that our formula becomes ' 'y4|-' ^>

or the cube of S"-*^.

160. The foregoing are the methods which we at present

know, for reducing such formulae as we have considered,

either to squares, or to cubes, provided the higliest power of

the unknown quantity does not exceed the fourth power in

the former case, nor the third in t!ie latter.

We might also add the problem lor transforming a given

formulainto a biquadrate, in the case of the unknown quantity

not exceeding the second degree. But it will be perceived,

that, if such a formula as « -j- ^o: -f- cx^ were proposed to be

transformed into a biquadrate, it must in the first place be

a square ; after which it will only remain to transform the

root of that square into a new square, by the rules w hich we
have given.

If X- + 7, for example, is to be made a biquadrate, we
first make it a square, by supposing

1f-q-
^ q"—l]r" —

, or a-
— •

'^pq ' ^pq
'

the formula then becomes equal to the square

9*-14(7y+49/^^ <7^ + 14^>M-49/;*

the root of which -- '
^
- must likewise be transformed into

^pq
a square ; for this purpose, let us multiply the two terms by

9,pq, in order that the denominator becoming a square, we
may have only to consider the numerator 2pq{lp'' + q).
Now, we cannot make a square of this formula, without

c c
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having pi-eviously found a satisfactory case; so that sup-

posing q — pz, we must have the formula

^P'z{7p' + p-V) = 2p%l + Z-),

and, consequently, if we divide byjA the formula 2s (7 -p 2'^)

must become a square. The known case is here 2 — 1, for

wiiich reason we shall make 2; = 1 + ?/, and we shall thus

have

(2 + 2y) X (8 + 2^ + 7/) = 16 + SOz/ + 6/ +2j/\

the root of wluch we shall suppose to be 4 + 43/ ; then its

square will be 16 -\- 20j/ -j- yj/", which, being made equal

to the formula, gives 6 \- 2y r= y ; therefore
J/
= |, and

~ = |- : also, z = — ; so that q = Q, and p = 8, which

makes x = 4|.|-, and the formula 7 + .r' = VoVA'- ^^ ^e
now extract the square root of this fraction, we find vJt'
and taking the square root of this also, we find ^4; con-

sequently, the given formula is the biquadrate of fl.

161. Before we conclude this chapter, we must observe,

that there are some formula?, which may be transformed into

cubes in a general manner; for example, if ex- must be a

cube, we have only to make its root := px, and we find

c
cx' = p"x"\ or c = p^Xy that is, x = -rr , or x = cq"% if we

wri^te — instead of «.

7
The reason of this evidently is, that the formula contains

a square, on which account, all such formulae, as a{b + cx)-,

or ab"^ + 2ahcx + ac'Ki-, may very easily be transformed

into cubes. In fact, if we suppose its cube root to be

i>-{-cx (b + cxY
, we shall have the equation n{b + cjc)" = :;—

,

q
^ ^

q-

u "4" CJC
which, divided by {h -f- cx)\ gives a — —, whence we

get ^r =z ~
, a value in which q is arbitrary.

This shews how useful it is to resolve the given formulse

into their factors, whenever it is possible : on this subject,

therefore, we think it will be proper to dwell at some length

in the following chapter.
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CHAP. XI.

Of the Resolution of the Formula ax" + bxy -\- cy^ into its

Factors.

162. The letters a; and ?/ shall, in the present formula, re-

present only integer numbers ; for it has been sufficiently

seen, from what has been already said, that, even when we were

confined to fractional results, the question may always be

reduced to integer numbers. For example, if the number

sought, X, be a fraction, wc have only to make .r = — , and

may always assign t and u in integer numbers ; and as this

fraction may be reduced to its lowest terras, we shall con-

sider the numbers t and u as having no common divisor.

Let us suppose, tlierefore, in the present formula, that x
and y are only integer numbers, and endeavour to detei-raine

what values must be given to these letters, in order that the

formula may have two or more factors. This preliminary

inquiry is very necessary, before we can shew how to trans-

form this formula into a scjuare, a cube, or any higher

power.

163. There are three cases to be considered here. The
first, when the formula is really decomposed into two rational

factors ; which happens, as we have already seen, vvhen

b- — 4ac becomes a square.

The second case is that in which those two factors are

equal; and in which, consequently, the formula is a square.

The third case- is, when the formula has only irrational

factors, whether they be simply irrational, or at the same
time imaginary. They will be simply irrational, when
b' — 4<7C is a positive number without being a square ; ant!

they will be imaginary, if 6' — 4t7c be negative.

164. If, in order to begin with the first case, we suppose

that the formula is resolvible into two rational factors, we
may give it this form, (j^r-j- 5''/) X {hx + A:?/), which already

contains two factors. If we then wish it to contain, in a ge-

neral manner, a greater number of factors, we have onl}^ to

make^' + gy = pq, and hx + hj — rs; our formula will

then become equal to the product pqrs ; and will thus ncces

sarily contain four factors, and we may increase this number
c c 2
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at j)leiisiire. Now, from these two equations we obtain a

y 1 ^ 1 r i P'/ — ^'V i
'"•' ^3/

clouble value tor.r, namely, x — — J^ , ''ind .v — —
,

wlilch gives hpq — hgt/ =^frs — fky ; consequently,

fr.s-hpq . kpq~<rrrs
, .,,

, ,

// — -;^^ f— ,ana^:=-^7r;

—

^— : but ir we choose to nave

X and 7/ expressed in integer numbers, we must give such

values to the letters p, q, ?-, and s, that the numerator may
be really divisible by the denominator; which happens

either when p and r, or q and .v, are divisible by that de-

nominator.

165. To render all this moi-e clear, let there be given the

formula x" — 3/-, which is composed of the factors {x H- ?/) X
(.r — y). Now, if this formula must be resolved into a

greater number of factors, we may make x +7/ — ^^5 ^^^

1 n 1 ! pq + rs
;v — .3/

= r.s ; wesliali then have x — —-— , and

y = -—-— ; but, in order tlsat these values may become in-

teger numbers, the two products^, pq and r<y, must i)e either

both even, or both odd.

For example, let y? — 7, q — 5, r — 3, and 5 — 1, we
shall have pq — 35, and rs — 3; therefore, x — 19, and

?/ == IG ; and thence x' — y"^ — 105, which is composed of

the factors 7x5x3x1; go that this case is attended

with no difficulty.

166. The second is attended with still less; namely, that

in wliicli tlie formula, containing two equal factors, may be
represented thus :

(
/.V + gwY^ that is, by a square, which

can have no other factors than those which arise from the

root /x + gy ; for if Ave make fx + gy ~ pqi\ the formula

hecomQ% p'-(fr" , and may consequently have as many factors as

we choose. We must farther remark, that one only of the

two numbers x and y is determined, and the other may be

taken at pleasure; for .r — - , and it is easy to

give j/ such a value as will remove the fraction.

The easiest ibrmida to manage of this kind, is .r^ ; if we
make .r ~ pq)., the square .r' will contain three square fac-

tors, namely 2^', q~, and r\
167. Several difficulties occur in considering the third

case, which is that in which our formula cannot be resolved

into two rational factors; and here pnrticulnr artifices are
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necessary, in order to find such values for .v and //, that the

formula may contain two, or more lactors.

We shall, however, render this inquiry less difficult by
observing, that our forniula may be easily transfbnncd into

another, in which the middle term is wanting ; Cor, in fact,

we have only to suppose x--~—;t~^j '" order to have the fol-

lowing formula

:

z^ — ^hyz + Ifij' hyz— h"if- z' -f (4ac - h^\y'-
• — { —— + cir — -j ^

: so that,

neglecting the middle term, vve shall consider the formula

ax" + cij\ and shall seek what values we must give to x and

J/,
in order that this formula may be resolved into factors.

Here it will be easily perceived, that this depends on the na-

ture of the numbers a and c ; so that Ave shall begin with

some determinate formula; of this kind.

168. Let us, therefore, first })ropose the formula .r' +.?/',

which comprehends all the numbers that are tlie sum oF two
squares, the least of which we shall set down ; namely, those

betviTen 1 and 50

:

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20,25, 26, 29, ^^2,

34, 36, 37, 40, 41, 45, 49, 50.

Among these numbers there are evidently some prime
numbers which have no divisors, namely, the following:

2, 5, 13, 17, 29j 37, 41 : but the rest have divisors, and il-

lustrate this question, namely, ' What values are we to

adopt for x and y, in order that the formula x"^ + j/ ni^iy

have divisors, or factors, and that it may have any number
of factors V We shall observe, farther, that we may neg-

lect the cases in which .r and^ have a common divisor, be-

cause then x'^ -j- y- Avould be divisible by the same divisor,

and even by its square. For example, if x — T/-* and

y — Iq, the sum of the squares, or

49;>^ + mf - 490/- + <?')'

will be divi!?ible not only by 7, but also by 4;') : for which
reason, we shall extend the question no farther than the

formula?, in which x and^y are prime to each other.

We now easily see where the difficulty lies : for thougii it

is evident, when the two numbers x and y are odd, that the

formula x- -\- y- becomes an even number, and, consequently,

divisible by 2; yet it is often diflicult to discover whether

the formula have divisors or not, when one of the numbers is

even and the other odd, because the formula itself in that case

is also odd. We do not mention the case in which x and y
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are both even, because we have ah-eady said, that these num-
bers must not have a common divisor.

169. The two numbers x and 3/ must therefore be prime

to each other, and yet the ibrmula x- + y'' must contain

two or more factors. The preceding method does not apply

here, because the formula is not resolvible into two rational

factors; but the irrational factors, which compose the formula,

and which may be represented by the product

(x + y ^/—l) X (x - y s'- 1),

will answer the same purpose. In fact, we are certain, ifthe

formula x"' + y" have real factors, that these irrational factors

must be composed of other factors ; because, if they had not

divisors, their product could not have any. Now, as these

factors are not only irrational, but imaginary ; and farther,

as the numbers x and y have no common divisor, and there-

lore cannot contain rational factors ; the factors of these

quantities must also be irrational, and even imaginary.

170. If, therefore, we wish the formula ^r*^ +3/* to have

two rational factors, we must resolve each of the two irra-

tional factors into two other factors ; for which reason, let us

first suppose

X 4- yV - \-{'P + g- ^/- 1) X )r ^ s s/— 1)

;

and since ^ — 1 may be taken minus^ as well as plus, we

shall also have

X — y s/—\ — {p — q >^/ — V) y^ {r — s x/— 1).

Let us now take the product of these two quantities, and we

shall find our formula x"- + y"- — {p"- + q'') x {>' + *")

;

that is, it contains the two rational factors p- + q\ and

r2 + *-.

It remains, therefore, to determine the values of x and y,

which must likewise be rational. Now, the supposition we
have made, gives

X + y ^/— 1 = pr — qs + ps V - ^ + qr V - l,.and

X - y ^/ — 1 = p7- — gs — ps V— 1 - qr \/ ~ 1.

If we add these formulae togetiier, we shall have x~pr— qs ;

if we subtract them from each other, we find

23/ a/— 1 = 2/?5 v^— 1 + 2<7;- v' — Ij or y — ps -\- qr.

Hence it follows, if we make x =pr— qs, andy—ps+qr,_
that our formula x' +j/^ must have two factors, since we

find x^ +y' = if + q) X (7-2 + s"). If, after this, a

greater number of factors be required, we have only to as-

sign, in the same manner, such values to p and q, that

P' + q- may liave two factors ; we shall then have three
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factors in all, and the number might be augmented by this

method to any length.

171. As in this solution we have found only the second
powers of/;, q, r, and ,9, we may also take these letters minus.
If <7, for example, be negative, we shall have x = pr -{- gs,

and y = ps — qr; but the sum of the squares will be tlie

same as before; which shews, that when a number is equal

to a product, such as {p'^ + q"). x (r- + *'), we may resolve

it into two squares in two ways; for we have first found
X := jjr ~ qs, and y zz ps — qr, and then also

X zz pr + qs, and y z=. ps — qr.

For example, \ei p = % q = 2, r = 2, and s — 1: then

we shall have the product 13 x 5 = 05 — .t'^ + 2l''-> ^^

which a: == 4, and y = 7 ; or j; = 8, and y — \-, since in

both cases x^ -\- y" — Q^, If we multiply several numbers
of this class, we shall also have a product, which may be the

sum of two squares in a greater number of ways. For ex-

ample, if we xnultiply together 2^ + 1^ r=: 5, 3- + 2' =: 13,

and 4-
-f-

1^ = 17, we shall find 1105, which may be re-

solved into two squares in four ways, as follows

:

1. 33^ + 4', 2. 32^
-t- 9%

3. 3P + 12^ 4. 24- + 23".

172. So that among the numbers that are contained in

the formula x^ -\-
if',

are found, in the first place, those

which are, by multiplication, the product of two or more
numbers, prime to each other; and, secondly, those of a

different class. We shall call the latter simple factors of the

formula x' + j/% and the former compound Jactors ; then

the simple factors will be such numbers as the following:

1, 2, 5, 9, 13, 17, 29, 37, 41, 49, &c.

and in this series we shall distinguish two kinds of numbers

;

one are prime numbers, as 2, 5, 13, 17, 29, 37, 41, which

have no divisor, and are all (except the number 2), such,

that if we subtract 1 from them, the remainder will be di-

visible by 4 ; so that all these numbers are contained in the

expression 4« + 1. The second kind comprehends the

square numbers 9, 49, &c. and it may be observed, that the

roots of these squares, namely, 3, 7, &c. are not found in the

series, and that their roots are contained in the formula
4?i — 1. It is also evident, that no number of the form

4« — 1 can be the sum of two squares; for since all num-
bers of this form are odd, one of the two squares must be

even, and the other odd. Now, we have already seen, that

all even squares are divisible by 4, and that the odd squares

are contained in the formula 4« + 1 : if we therefore add
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together an even and an odd square, the sum will always
have the form of 4w + 1, and never of 4w — 1. Farther,
every prime number, which belongs to the formula 47i + 1,
is the sum of two squares ; this is undoubtedly true, but it

is not easy to demonstrate it*.

^173. Let us proceed farther, and consider the formula
X- + 2^\ that we may see what values we must give to .r

and y, in order that it may have factors. As this formula
is expressed by the imaginary factors {x -\- y \/ — 2) x

(f
~ y "•' — .~)» it is evident, as before, that, if it have di-

visors, these imaginary factors must likewise have divisors.

Suppose, therefore,

.,. + ^V^ _ 2 =:: (jO + ^,/ _ 2) X (r + s x/- 2),

whence it immediately follows, that

X - y ^/_ 2 = C^ ~ y v/ - 2) X (r - A' x/ - 2),

and we shall have

a- + 2j/- = {f + %') X (r^ + 2r) ;

so that this formula has two factors, both of which have the
same form. But it remains to determine the values of^ and
y, which produce this transformation. For this purpose, we
shall consider that, since

a- + 3, v/ - 2 zr: pr - ^s + qr ,/ ~ ^ + ps^/— 2, and
X -y^ ~ 2 ::^ pr - 2qs — qr / - 2 - psV - %

we have the sum 2x = 2pr - 'iqs -^ and, consequently,
X ~ pr — 2qs : also the difference

2// ^/ - 53 r^ i>qr s/- 2 + 2ps ^/-2;
so that y= qr +ps. When, therefore, our formula .r' + 9.y-

has factors, they will always be numbers of the same kind
as the formula; that is to say, one will have the form
p"- -\- 2<7% and the other the form r" + 2/- ; and, in order that
this may be the case, x and j/ may also be determined in two
different ways, because q may be either positive or negative

;

for we shall first have x — pr — 2qs, and y — ps -\- qr ;

and, in the second place, x = pr + 2qs; and y = ps — qr.

174. This formula ^'^ + 2j/^ comprehends tlierefore all the
numbers which result from adding together a square and
twice another square. The following is an enumeration of
these numbers as far as 50

;

1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 17, 18, 19, 22, 24, 25,
27, 32, 33, 34, 36, 38, 41, 43, 44, 49, 50.

* The curious reader may see it demonstrated by Gauss, in

Ills " Disquisitiones Arithnictica; ;'' and by De la Grange, in the
Memoirs of Berlin, 176S.



ClIAP. XI. OK ALGEUIIA. 393

We shall divide these numbers, as before, into simple

and compound; the simple, or those which are not com-

pounded of tiie preceding numbers, are these: 1, % 3, 11,

17, 19, 25, 41, 43, 49, all which, except the squares 25

and 49, are prime numbers ; and we may remark, in ge-

neral, that, if a number is prime, and is not found in this

series, we are sure to find its square in it. It may be ob-

served, also, that all prime numbers contained in our

formula, either belong to the expression 8« -j- 1, or 8n-\-Q;

while all the other prime numbers, namely, those which are

contained in the expressions Sn-^ 5, and 8n -\- 7, can never

form the sum of a square and twice a square : it is farther

certain, that all the prime numbers which are contained in

one of the other formula?, 8« -{- 1, and 8fi -f- 3, are always

resolvible into a square added to twice a square.

175. Let us proceed to the examination of the general

formula x" + ci/\ and consider by what values of a: and 3/

we may transform it into a product of factors.

We shall proceed as before; that is, we shall represent

the formula by the product

{x + i/ ^/ - c) X {.V — y ^^— c),

and shall likewise express each of these factors by two fac-

tors of the same kind ; that is, we shall make

X ^- y k'— c — [p -i-q s' - c) X {r + s v^— c), and

X ~ ?/v/ - c - {p —
<7 x/— c) X {? — s x' — c) ; whence

a;"+ cij- — {p'' + cq) x {r" + cs").

We see, therefore, that the factors are again of the same

kind with the formula. With regard to the values of .r and

?/, we shall readily find x — pr + cqs^ and y ~ qr — ps\ ox

X — pr — cqs, and y — p5 + q)- ; and it is easy to perceive

how the formula may be resolved into a greater number of

factors.

176. It will not now be difficult to obtain factors for

the formula x" — cy- ; for, in the first place, we have only

to write — c, instead of +c; but, farther, we may find

them immediately in the following manner. As our for-

mula is equal to the product

{x + y v'c) X {x — y v^<),

let us make x -\- y ^U- — {p + q \'c) x (ri- + \^c), and

X — ;/ x/c =z [p — q ^/c) X (r —s^/c), and we
shall immediately have x'^ — cj/- — (/?'' ~ cq^) x (?•- — cs);

so that this formula, as well as the preceding, is equal to a

product v.'hose i'actors resemble it in form. With regard to
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the values of x and ^, they will likewise be found to be
double ; that is to say, we shall have

X = pr + cgs, and t/ = qr + ps; we shall also have

X = pr — cqs, and y ^^ ps — qr. If we chose to make
trial, and see whether we obtain from these values the pro-

duct already found, we should have, by trying the first,

X- = p"r^ + 9.cpqrs -}- c'^q-s\ and

cy~ = cp^s- + ^cpqrs + c<f-r^ ; so that

x" — cy" = p"-r- — cp^s- + c'q^s- — cq"r-, which is just

the product already found, (p- — cq-) X (r^ — cs'^).

177. Hitherto we have considered the first term as with-

out a coefiicient ; but we shall now suppose that terra to be
multiplied also by another letter, and shall seek what factors

the formula ax" + cy^ may contain.

Here it is evident that our formula is equal to the product

{Xs/a-\;^y \/— c) X {x Va — y \/— r), and, consequently,

that it is required to give factors also to these two factors.

Now, in this a difliculty occurs ; for if, according to the

second method, we make

X \/a \- y \^ — c = (p \/a + 5 / — c) X (r ^/a -|- s \/ ~ c) =
apr — cqs + ps\/ — ac -{- qr ^^ — uc^ and
X s/a — y V — c = {p s^a — 9^/ - c) x (r\/a — Ss,/ — c) —
apr — cqs — ps ^/ — ac — qr^ — ac, we shall have

2x s/a = 2apr — ^cqs^ and

^i/ \/— c — Qps s/— ac + ^qr •/— ac; that is to say, we
have found both for x and for y irrational values, which

cannot here be admitted.

178. Bat this difficulty may be removed thus: let us

make

X x/a + y\/— c = (p sUi + </ x/ — c) X (r -!- .? V— ac) =
pr ^/a — cqs^/ a + <7;\/ — c -j- aps V — c. and
X s/ci — y >/ — c — (p s''a — q^,/ — c) x {r — s \' — ac) —
pr v/« — cqs\/'a — qr / — o — aps \' — c. This supposition

will give the following values for J and ?/; namely, xzzpr— cqs,

and y = qr •\- aps ; and our formula, ax- -j- a/*, will have

the factors (ap- + cq") x (?'- -\- <ics^), one of which only

is of the same form with the formula, the other being

different.

179. There is still, however, a great affinity betAveen

these two formulae, or factors; since all the numbers con-

tained in the first, if multiplied by a number contained in

the second, revert again to the first. We have already

seen, that two numbers of the second form o;^ + ox-y'> which
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returns to the formula x" + ci/-, and which we have already

considered, if multiplied together, will produce a number of

the same form.

It only remains, therefore, to examine to what formula we
are to refer the product of two numbers of the first kind, or

of the form ax" -{- cf.
For this purpose, let us multiply the two formulae

(ap- + cq^) X {ar^ + cs^), which are of the first kind. It

is easy to see that this product may be represented in the

following manner: {apr + cqsY + aci^ps — qr)-. If, there-

fore, we suppose

apr -f- cqs = x, and ys — qr = y,
we shall have the formula x'^ 4- ^cy", which is of the last

kind. Whence it follows, that if two numbers of the first

kind, ax^ + cy'-^ be multiplied together, the product will be
a number of the second kind. If we represent the numbers
of the first kind by I, and those of the second by II, we
may represent the conclusion to which we have been led,

abridged as follows

:

I X I gives II ; i x i! gives i; ii x ii gives ii.

And this shews much better what the result ought to

be, if we multiply together more than two of these num-
bers ; namely, that i x i X i gives i ; that i x i x ii

gives II ; that i x ii x ii gives i ; and lastly, that ii X ii x ii

gives II.

180. In order to illustrate the preceding Article, let

a = 2, and c — S ; there will result two kinds of numbers,
one contained in the formula 2x'- -j- Sy", the other contained

in the formula x" -;- 6j/". Now, the numbers of the first kind,

as far as 50, are

1st, 2, 3, 5, 8, 11, 12, 14, 18, 20, 21, 27,
- 29, 30, 82, 35, 44, 45, 48, 50;

and the numbers of the second kind, as far as 50, are

2d, 1, 4, 6, 7, 9, 10, 15, IG, 22, 24, 25,

28i 31, 33, 36, 40, 42, 49.

If, therefore, we multiply a number of the first kind, for

example, 35, by a number of the second, suppose 31, the

product 1085 will undoubtedly be contained in the formula
2a;- + Sy- ; that is, we may find such a number for t/, that

1085 — 3jj" may be the double of a square, or =: 2.r- : now,
this happens, first, when ?/ i^n 3^ in which case a- = 23; in

the second place, when y/ = 11, so that .r = 19; in the

third place, when tj ~ 13, which gives a- — 17; and, in the

fourth place, when ?/ =19, whence x = 1.

We may divide these two kinds of numbers, like the

others, into .nviplc and covqauml numbers: we shall applv
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this latter term to such as are composed of two or more of
the smallest numbers of either kind ; so that the simple

numbers of the first kind will be 2, 3, 5, 11, 29; and the

compound numbers of the same class Vvill be 8, 12, 14, 18,

20, 27, 30, 32, 35, 40, 45, 48, 50, &c.

The simple numbers of the second class will be 1, 7, 31
and all the rest of this class will be compound numbers

.

namely, 4, 6, 9, 10, 15, 10, 22, 24, 25, 28, 33, 36, 40.

42, 49.

CHAP. XII.

Of' the Transformation of the Formula ax^ -j- «/- into

Squares, and higher Powers.

181. We have seen that it is frequently impossible to re-

duce numbers of the form ax- -\- cif- to squares ; but when-
ever it is possible, we may transform this formula into an-

other, in which a = 1.

For example, the formula ^'p^—cf- may become a square;

for, as it may be represented by

i^Zp -h qr - ^{p -r q)\

we have only to make 2p + q = x, and p -\- q — y, and we
shall get the formula x- — 9.ij", in which a — 1, and c = 2.

A similar transformation always takes place, whenever such

formulae can be made squares. Thus, when it is required

to transform the formula ax' + cy" into a square, or into a

higher power, (provided it be even) we may, without

hesitation, suppose « — 1, and consider the other cases as

impossible.

182. Let, therefore, the formula x'^ + cy- be proposed,

and let it be required to make it a square. As it is com-
posed of the factors {x + j/ v^ — c) x {x — y x^— c), these

factors must either be squares, or squares multiplied by the

same number. For, if the product oi" two numbers, for

example, pq, must be a square, we must have p = ?•-, and

q — s^ ; that is to say, each factor is of itself a square; or

p — m?'^, and q = ms^ ; and therefore these factors are

squares multiplied both by the same number. For which

reason, let us make j? H-J/\/— c = m{p + ^v' — c)^; it will

follow that X — y \f— c = m{p — q^/ — c)% and
ue shrill have x- -\- cif =: vi"{p' -j- cq'^Y, which is a square.
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Fartlier, in order to determine x and t/, we li.ive the equa-
tions X + yV — c = mp" -f- %npq /— c — mcq^', and

X — y/ — c = mp" — 9,mpq v/— c — nicq^-^ in which
X is necessarily equal to the rational part, and y \^ — c to

the irrational part ; so that x zz mp^ — mcq'^ and

y \^ — c ^ 2mpq\/— c, or </ — 2>//pq ; and these ai-e the

values of .r and 1/ that will transform the expression

x^ + cj/- into a square, m\p'^ + cq'Y., the root of which is

mp'" + mcq'.

183. If the numbers x and 1/ have not a common divisor,

we must make m z=. 1. Then, in order that x' + cf' may
become a square, it will be sufficient to make x = p' — cq',

and j/ := 2/;y, which will render the formula equal to the

square {p^ -t- cq')-.

Or, instead of making .r ~ p- — cq"', we may also sup-
pose X = cq" — p^, since the square x" is still left the same.

Besides, the same formulae having been already found
by methods altogether different, there can be no doubt
with regard to the accuracy of the method which we have
now employed. In fact, if we wish to make .r^ + <?y'

a square, we suppose, by the foi-mer method, the root to be

Py 1 /. 1 n - ^ 2pxfj nhf
X -{ '-^. and find x- + cip = x' -^ ' '' -\- '~.

q
^

q q-

Expunge the ^\ divide the other terms by j/, multiply by
q", and we shall have

cq''y = ^pqx + j^'U '> oi' cq^y — P"y = 2pqx.

Lastly, dividing by ^pq, and also by «/, there results

— = „ . Now, as .r and y, as well as p and q, are to

have no common divisor, we must make x equal to the

numerator, and y equal to the denominator, and hence we
shall obtain the same results as we have already found,

namely, .r = ccf — p^, and // ^^
9^iq.

184. This solution will hold good, whether the number c

be positive or negative; but, farther, if this number itself

had factors, as, for instance, the formula x^ -\- acy'^, we
should not only have the preceding solution, which
gives X — acq- — p\ and y = 2pq, but this also, namely,
X = cq"^ — <ip\ and y ~ 2pq ; for, in this last case, we have,

as in the other,

x^ + acy"" = c'q^ -{- 2acp^q- + a'p* — (cq- -j- ap')-;

which takes place also when we make .r =: ap' — cq", be-

cause the square x- remains tl\e same.
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This new solution is also obtained from the last method,

in the following manner

:

If we make x + y^ —ac — {p /« + q 'J — c)°, and
X — ys^/ — ac =. {p x/a — q \^— cf, we

shall have x"^ + acy~ — (ap" -\- cq")-,

and, consequently, equal to a square. Farther, because

X + y>^ — ac =. ap"^ + %pq s/ — ac — ccf-^ and
X — yV — ac :=: ap~ — 2pq \/ — ac — cq^,

we find x z=. ap- — cq", and y — 2pq.

It is farther evident, that if the number ac be resolvible

into two factors, in a greater number of ways, we may also

find a greater number of solutions.

185. Let us illustrate this by means of some determinate

formulas ; and, first, if the formula x- + y^ must become a

square, we have ac = 1 ; so thato; = p^ ~ q^^ and^^ = 9jpq ;

whence it follows that o:^ + 3/" = (p*^ + qY.
If we v/ould have x" — y" t= n ; we have ac — — \; so

that we shall take x = p" -{- |7% andj/= S/.^r, and there will

result x"- - y^ — {p- — q^'Y — •
If we would have the formula x'^ -|- ^/^ — D, we have

GC = 2 ; let us therefore take a- = p2 — ^(^^ or x— 2p"—q\
and y -- ^pq, and we shall have

,r' +2y^ = {p"--Uq-)-,oYx' +%= ={9.p"- +qy.
If, in the fourth place, Ave would have x' — 9.y- =. D,

in which ac = — 2, Ave shall have x = p' + 9.q% and

y = 2pq; therefore x" — %' = (p" — ^'Y-
Lastly, let us make ^" + 6j/' ^ D . Here we shall have

ac =6; and, consequently, either a = I, and c = 6, or

a = 2, and c — 3. In the first case, .r ~ p' — 6q-, and

y = 2pq\ so that x" + Gy"' = {p- + 65'')"
; in the second,

X — 2/>" — 3(7% and j/ := 2pq; whence

a.- + 6j/^ = {2p' + 3?0^

186. But let the formula ax' + cj/' be proposed to be

transformed into a square. We know beforehand, that this

cannot be done, except we already know a case, in which

this formula really becomes a square; but we shall find

this given case to be, when x —f, and y =z »•; so that

(^f- 4. eg' — /i ; and we may observe, that this formula

can be transformed into another of the form t' + acu%

by making

t = -—r-^
, and u = ^-^

—

~
; lor if

k 11
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u' = 5
?^ > ^^^ ^^^^

a^f^x^ \-c-f>;-]j'' -\-ac!:('x- •\-acf-u'^
V + «cm' = -= ^

nfi
—^

' =

ax'{af'-^cg')\cy^{af^-\-cg^)_ .

also, since qf^-^ ^g"^ — ^^ > we have t^ + ncu^ = ax'^+cj/'^.

Thus, we have given easy rules for transforming the expression

f^ + acii^ into a square, to which we have now reduced the

formula proposed, a.r'' + cy^.

187. Let us proceed farther, and see how the formula

ax- + ci/^, in which x and t/ are supposed to have no com-
mon divisor, may be reduced to a cube. The rules already

given are by no means sufficient for this ; but the method
which we have last explained applies here with the greatest

success : and what is particularly worthy of observation, is,

that the formula may be transformed into a cube, whatever

numbers a and c are; which could not take place with

regard to squares, unless we already knew a case, and which
does not take place with regard to any of the other even

powers; but, on the contrary, the solution is always pos-

sible for the odd powers, such as the third, the fifth, the

seventh, Sec.

188. Whenever, therefore, it is required to reduce the

formula ax^ + ci/'^ to a cube, we may suppose, according to

the method which we have already employed, that

x\/a 4- ?/v/ — c = (p ^/a + qV — cY, and
x^/a — y \f— c = (pVa — g^ — cf

;

the product {ap^ + c?^)^ which is a cube, will be equal to

the formula ax^ + ct/^. But it is required, also, to deter-

mine rational values for x and i/, and fortunately we suc-

ceed. If we actually take the two cubes that have been
pointed out, we have the two equations

x^a -\-y ^—c=ap l/a -f ^ap-'q-/— c— 3cpq^a—cql/—c, and

X ^a—y^ —c=apl a— ^i'fq is/—c—'icpq"^a -^ cql/ — c\

from which it evidently follows, that

X = ap"^ — Qcpq", and y = Qap^q — cq^.

For example, let two squares x~, andy", be required,

whose sura, x" -{- j/-, may make a cube. Here, since « = 1,

and e = 1, we shall have x = p^ — Spq", and j/ — op"q— q^,

which gives x- + y" = {p^ -\- q'-y. Now, if /?
— 2, and

^ = 1, we find ,r = 2, and y = 11 ; wherefore
,7?^ + ?/'=: 125 = 5":
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189. Let US also consider the formula or- -f Sy^, for the

purpose of making it equal to a cube. As we have, in this

case, a — 1, and c = 3, we find

x z=. p^ — 9/J'7% and y — ^tp'-q — 89',

whence x^ -\- Sy^ =r (/>- + ^q^Y- This formula occurs very

frequently ; for which leason we shall here give a Table of

the easiest cases.

p q X

8

y ^^ -h 3^^

1 1 64 = 4'

2 1 10 9 343 = T
1 2 35 18 2197 = 13

1
3 1 24 1728 ^ 12"'

1 3 80 72 21952 := 28'

3 2 81 30 9261 =- 21^

2 3 154 45 29791 -- 31^
1

190. If the question were not restricted to the condition,

that the numbers x and y must have no common divisor, it

would not be attended with any difficulty; for if aa^ + cy^

were required to be a cube, we should only have to make
X rr tz, and y zz nz, and the formula would become
at^z'' -\- cii^z^ ; which we might make equal to the cube

^—r, and should immediately find z — v'-^iat^ --'- cu'^). Con-

sequently, the values sought of x and y would be

X ~ tv^laf' + cit/^), and y zz itv^{'it" -\- cu^), which, beside

the cube v^^ have also the quantity at^ + cu^ for a common
divisor; so that this solution immediately gives

ax^-\-c7f-v\at'--\cii'-Y X {at^-\-cifi)-v\ae^- cu'-y,

which is evidently the cube of t;*(a^* -f- cu^).

191. This last method, which we have made use of, is so

much the more remarkable, as we are b.rought to solutions,

which absolutely required numbers rational and integer, by
means of irrational, and even imaginary quantities ; and,

what is still more worthy of attention, oiu- method cannot be

applied to those cases, in which the irrationality vanishes.

For example, when the formula x'^ + c/'^ must become a

cube, we can only infer from it, that its two irrational

factors, x + y\/— c, and x — y ^/— c, must likewise be

cubes ; and since x and y have no common divisor, these

factors cannot have any. But if the radicals v.ere to dis-

appear, as in the case of r ^ -
I , this principle would no
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longer exist ; because tlie two factors, which would then be
X + }li and X — y, might have common divisors, even when
X and y had none ; as would be the case, for example, if

both these letters expressed odd numbers.

Thus, wlien x"^ — y'^ must become a cube, it is not neces-

sary that both X + ^> and x — y, should of themselves be
cubes; but we may suppose x ~\-y ~ 2j)^, and x ~7/:=4q^

;

and the formula x^ — ?/'- will undoubtedly become a cube,

since we shall find it to be 8p^q\ the cube root of which is

2pq. We shall farther have x = p^ V 9.n'\ and ij =p^—2g^.

On the contrary, when the formula a.i^ -\- a/^ is not re-

solvible into two rational factors, we cannot find any other

solutions beside those which have been already given.

192. We shall illustrate the preceding investigations by
some curious examples.

Question 1. Required a square, .t'^, in integer numbers,
and such, that, by adding 4 to it, the sum may be a cube.

The condition is answered when x^ — 121 ; but we wish to

know if there are other similar cases.

As 4 is a square, we shall first seek the cases in which
x'^ + y" becomes a cube. Now, we have found one case,

namely, \i x ~ p^ — Qpq", and 7/
— 3p^q — q"'

: therefore,

since 9/ = 4, we have y = + 2, and, consequently, either

Sp"q — q^ — -^ 2, or Sp'-g — q = — 9,. In the first case,

we have q{Qp^ — ^') — % so that gr is a divisor of 2.

This being laid down, let us first suppose q ^=1, and v/e

shall have 3^- — 1 — 2 ; therefore p z=.\; Avhence x = 2,

and .r^ = 4.

If, in the second place, we suppose ^r = 2, we have

Gp^ — 8 := + 2; admitting the sign +, we find 6/)^ = 10,

and p" z= ^-^ whence we should get an irrational value of p,
which could not apply here ; but if we consider the sign —

,

we have 6p^ ::: 6, and ^ =: 1 ; therefore x —.W: and these

are the only possible cases; so that 4, and 121, are the only

two squares, which, added to 4, give cubes.

193. Que--i'uon 2. Required, in integer numbers, other

squares, beside 25, which, added to 2, give cubes.

Since x" \~ 2 must become a cube, and since 2 is the

double of a square, let vis first determine the cases in which

X* -)- %j^ becomes a cube ; for which purpose we have, by
Article 188, in which a = 1, and c — % x = p^ — (ypq",

and j/ = Qp'-q — ^q^ ; therefore, since «/ = ± 1, we must
have i^p-q — q"\ or (/(Cx*- — 9.q^) = + 1 ; and, consequently,

q must be a divisor of 1.

Therefore let (7 = 1, and we shall have ^p'^ ~ 2 = +1.
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If we take the upper sign, we find Sjf =r 3, and p = 1

;

whence a: r: 5 : and if we adopt the other sign, we get a

value ox p, which being irrational, is of no use ; it follows,

therefore, that there is no square, except 25, which has the

property required.

194i. Question 3. Required squares, which, multiplied

by 5, and added to 7, may produce cubes; or it is required

that 5x- -\- 7 should be a cube.

Let us first seek the cases in which 5x^ + 1y" becomes a

cube. By Article 188, a being equal to 5, and c equal 7,

we shall find that we must have x = 5p^ — 9.\pq\ and

y zr \5p^q — Iq^'-, so that in our example j/ being = + 1,

we have \5p^q — Iq^ — q(i5p^ — Iq^) = ± 1 ; therefore q
must be a divisor of 1 ; that is to say, 5' ~ + 1 ; conse-

quently, Ave shall have 15;j»^ — 7 = + 1 ; from which, in

both cases, we get irrational values forjo: but from which

we must not, however, conclude that the question is im-

possible, since ^ and q might be such fractions, that ?/ = 1,

and that x would become an integer; and this is wliat

really happens ; for if p = i, and q = i, we find z/ z=: 1,

and X = 2; but there are no other fractions which render

the solution possible.

195. Question 4. Required squares in integer numbers,

the double of which, diminished by 5, may be a cube ; or

it is required that 207^ — 5 may be a cube.

If we begin by seeking the satisfactory cases for the

formula 2.r' - 5^^ we have, in the 188th Article, « = 2,

and c= — 5., whence x = 2,p^ + I5pq'', and y = iyp'^q f 5(f

:

so that, in this case, we must have j/ = + I ; consequently,

Gp'^q + 5q' - q{6p' -h 5f ) = ± 1

;

and as this cannot be, either in integer numbers, or even in

fractions, the case becomes very remarkable, because there

is, notwithstanding, a satisfactory value of x; namelv,
a; = 4 ; which gives 2x^ — 5 — 27, or equal to the cube
of 3. It will be of importance to investigate the cause of
this peculiarity.

196. It is not only possible, as we see, for the formula
^x" — 5^/^ to be a cube ; but, what is more, the root of this

cube has the form 2p^— 5q"^ as we may perceive by making
X z=. 4!,i/ zz \,p =2, and q =.!., so that we know a case

in which 9,x- — 5j/^ =: {^p^— 5q')\ although the two factors

of 9,x^ — 5y-^ namely, x ^/2 -\- y \/5^ and jrv'2 — y \^5)

which, according to our method, ought to be the cubes of

p \/2 4- /7v/5, and of pv'2 — q^/5, are not cubes; foi', in

our case, x a,/2 -|- y v^S :r 4 x/2 + ^^5 ; whereas
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{p v/2 + qy'Bf = (2 ^/2 + V^Y = 46 s/2 -f 29 ^a5,

which is by no means the same as 4 v/2 -|- v^5.

But it must be remarked, that the formula r" — IOa'^ may
become 1, or — 1, in an infinite number of cases; for ex-

ample, if r = 3, and s = 1, or if r = 19, and s = 6: and
this formula, multiplied by 2p'— 5q% reproduces a number
of this last form.

Therefore, letjT- — 10*^= 1; and, instead of supposing,

as we have hitherto done, S^r^ — 5i/' = (2/9^ — 5q'f, we
may suppose, in a more general manner,

2ar= - %= = (/= - 10^^) X {2p' - 5qy;
so that, taking the factors, we shall have

a:^/2 ±1/ V5 = (f ± g v/10) x {p ^2 ± q^/5)\

Now, {py2±qv5Y={2p-^ + 15pq') ,/^±{Gp'q +5q^)\/5 ;

and if, in order to abridge, we write a ^/S -|- b V5 instead

of this quantity, and multiply hy f -\- g ^10, we shall

have Af\/2 + b/'/S + 2a^ ^/5 + Sb^V^ to make equal

to X ^/2 + 1/V5; whence results x = Af + 5Bg, and

^ = b/'+ 2Ag: Now, since we must have j/ = ± 1, it is

not absolutely necessary that Bp^'q + 5q^ = 1 ; on the con-

trary, it is sufficient that the formula b/"+ 2Ag; that is to

say, iha.tf[6p-q-\-5q''') + ^g'{^p^-]-15pq') becomes = + 1

;

so thatyand
ff may have several values. For example, let

/=3, and^'=l, the formula ISp'q + IBq^ + 4p^+ SOy;^^

must become + 1 ; that is,

4p3 4- ISp'q + 30^17^ + 15^3 = ± 1-

197. The difficulty, however, of determining all the pos-

sible cases of this kind, exists only in the formula ax" -\-cy%

when the number c is negative; and the reason is, that this

formula, namely, x^ —acTj% which depends on it, may then

become 1 ; which never happens when c is a positive num-
ber, because, x'' + cy\ or x'' -\- aci/% always gives greater

numbers, the greater the values we assign to x andj/. For
which reason, the method we have explained cannot be suc-

cessfully employed, except in those cases in which the two
numbers a and c have positive values.

198. Let us now proceed to the fourth degree. Here
we shall begin by observing, that if the formula ax^ -\-cy^ is

to be changed into a biquadrate, we must have a = 1 ; for

It would not be possible even to transform the formula into

a square (Art. 181); and, if this were possible, we might
also give it the form t' + acir ; for which reason we shall

extend the question only to this last formula, which may be
reduced to the former, x" -\- cy- ,hy supposing a = 1. This

D 1)2
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being laid down, we have to consider what must be the

nature of the vakies of .r and 3/, in order that the formula

X" -|- ci/'' may become a biquadrate. Now, it is composed

of the two factors (-^ -|- ?/ %/— <?) x {x — y \/ — c); and each

of these factors must also be a biquadrate of the same kind

;

therefore we must make x + 7/ -,/ — c = {p + q V— c)*, and

X — y \/ — c — (p — g A,/ — c)^, whence it follows, that the

formula proposed becomes equal to the biquadrate {])--]- cq")*.

With regard to the values of x and y, they are easily de-

termined by the following analysis

:

X i-y \/ ~ c=p'^ + 4<p^q s/ —c—Qcp'^q'^ ^c^'q^—'^cpq^ ^/ — c,

x—y^/'-c—p'^—'^p^qV — c—€cp^q^ -{- c"^ q* -\- 4:cpq'^ -./ — c,

whence, x =p^— Gcp'^q^ + c'^q^ ; and 3/=: 4p^<7— 4c/75''.

199- So that when jr* + ?/^ is a biquadrate, because

c zz 1, we have

or n p* — 6p^q^ -|- q^ ; and y r: 4p^q — ^pq ;

50 that x"- -Yy"- — {p^ -h q"-)*.

Suppose, for example, j9 = 2, and q = 1; we shall then

find X = 1, and y = 24; whence x^ -^-y"^ = 625 = 5^.

If jJ = 3, and q ~ ^^ we obtain x ~ 119, and ?/ = 120,

which gives x^ -r y^ — ^^*-

200. Whatever be the even power into which it is re-

quired to transform the formula ax'^ 4- «/", it is absolutely

necessary that this formula be always reducible to a square

;

and for this purpose, it is sufHcient that we already know
one case in which it happens; for we may then transform

the formula, as has been seen, into a quantity of the form

t^ + acK^, in which the first term t^ is mulliplied only by

1 ; so that we may consider it as contained in the expression

a:* -\- cy^ ; and in a similar manner, we may always give to

this last expression the form of a sixth power, or of any

higher even power.

201. This condition is not requisite for the odd pov.ers;

and whatever numbers a and c be, we may always transform

the formula ax^ 4- cy^ into any odd power. Let the fifth,

for instance, be demanded ; we have only to make
X a/a -\- y V — c rz [p s/a + q V— cY, and
x^a — y v^— c — {p\/a — q v^— c)^

and we shall evidently obtain ax- -f c//^ =: (ap^ -h cq"Y.

Farther, as the fifth power ofp */a-\- q >/—c is ^^a^p'^ V

a

4-

tSa'^p^q^/ — c - lOacp^q'^^a — lOar/rg---/— c -}- 5c^p£*

^a -j- c^q^^— c, we shall, with the same facility, find

X = a^p^ — lOacp^q^ + Sc^pq^y and

y = Sa^p^q — lOacp^q^ + c^q^.

If it is required, therefore, that the sum of two squares,
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such as X- -{-9/^, may be also a fiftli power, we shall have

<z — 1, and c = 1 ; therefore, x = //' — 10/rV/^ + 5j)q^

;

and ^ — 5p'q — 10/r <?^ -\- q' '•> fi«d» fardier, making y = 2,

and (/ = 1, we shall find x = 38, and (/— 41 ; consequently,

x"- -\-if- - 3125 = 5^

CHAP. XIII.

Ofsome Expressions of the Form fla:* + i^/^ re^/wc/i fl?-e ?iof

reducible to Squares.

202. Much labor has been formerly employed by some

madieraaticians to find two biquadrates, whose sum or dif-

ference might be a sqisarc, but m vain ; and at length it has

been demonstrated, that neither the formula a;^ + i/, nor

the formula x^ — y^, can become a square, except in these

evident cases ; first, when x = 0, ox y = 0, and, secondly,

when y = x. This circumstance is the more remarkable,

because it has been seen, that we can find an infinite

number of answers, when the question involves only simple

squares.

203. We sliall give the demonstration to which we have

just alluded; and, in order to proceed regularly, we shall

previously observe, that the two numbers x and 7/ may be

considered as })rime to each other : for, if these numbers had

a common divisor, so that we could make x — dp, and

y = dq, our formulae would become d*p* + d*q^, and
<iip4. _ ^Hqi. ^v}ii(^.h formula?, if they were squares, would

remain squares after being divided hy d* ; therefore, the

formuke p^ + q\ and p^ — q\ also, in which j9 and q have

no longer any common divisor, would be squares; con-

sequently, it will be suflicient to prove, that our formulas

cannot become squares in the case of x and y being prime

to each other, and our deviionstration will, consequently,

extend to all the cases, in which x and y have common
divisors.

20k We shall begin, therefore, widi the sum of two

biquadrates; that is, with tlie formula .r^ -|-y, considering

X and y as numbers that are prime to each other : and we
have to prove, diat this formula becomes a square only in

the cases above-mentionetl ; in order to which, we shall enter
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upon the analysis and deductions which this demonstration

requires.

If any one denied the proposition, it would be maintain-

ing that there may be such values of x and ?/, as will make
^' _j_ 2/* a square, in great numbers, notwithstanding there

are none in small numbers.

But it will be seen, that \i x and ?/ had satisfactory values,

we should be able, however great those values might be, to

deduce from them less values equally satisfactory, and from

these, others still less, and so on. Since, therefore, we are

acquainted with no value in small numbers, except the two

cases already mentioned, which do not carry us any farther,

we may conclude, with certainty, from the following de-

monstration, that there are no such values of x and y as we

require, not even among the greatest numbers. The pro-

position shall afterwards be demonstrated, with respect to

the difference of two biquadrates, a* — ?/*, on the same

principle.

205. The following consideration, however, must be at-

tended to at present, in order to be convinced that x" -\-y^

can only become a square in the self evident cases which have

been mentioned.

1. Since we suppose x and y prime to each other, that is,

having no common divisor, they must either both be odd,

or one must be even, and the other odd.

2. But they cannot both be odd, because the sum of two

odd squares can never be a square; for an odd square is

always contained in the formula 4w -f- 1 ; and, consequently,

the sum of two odd squares will have the form hi -\- 2,

which being divisible by 2, but not by 4, cannot be a square.

Now, this must be understood also of two odd biquadrate

numbers.
3. If, therefore, x' + ^ must be a square, one of the

terms must be even and the other odd ; and we have already

seen, that, in order to have the sum of two squares a square,

the root of one must be expressible by 'p- — q", and that of

the other by ^pq ; therefore, .r^ — p" — ^% and j/^ = 9,pq ;

and we should have x' -\-y^ = {p'' + g^'Y-

4. Consequendy, i/ would be even, and .r odd ; but since

^i -. pi _ gi^ ^\^Q numbers^; and q must also be the one even,

and the other odd. Noav, the first, p, cannot be even ; for

if it were, p^ — q- would be a number of the form 4w — 1,

or 471 + 3, and could not become a square : therefore p
must be odd, and q even, in which case it is evident, that

these numbers will be prime to each other.

5. In order that p"- — q- may become a square, or
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p^ — q"- =. ,v^, we must have, as we have already seen,

p ~. r^ -|- s'', and q = ^rs ; for then r' =: {r" — s")", and
a: n r"- — s"-.

6. Now, j/- must likewise be a square; and since we had
7/- — 2/;<7, we shall now have y^ =: 4r6(/-^ + s"-) ; so that this

formula must be a square ; therefore rs{r^ + s^) must also

be a square: and let it be observed, that ?• and s are num-
bers prime to each other ; so that the three factors of this

formula, namely, r, s, and r"' + s-, have no common divisor.

7. Again, when a product of several factors, that have no
common divisor, must be a square, each factor must itself be
a square; I so that making r -— t', and s =r m^^ we must have
t* + u^ = a

.

If, therefore, i* + 9/* were a D , our formula t* + ?«*,

"whicii is, in like manner, the sum of two biquadrates, would
also be a n . iVnd it is proper to observe here, that since

a:'^ = f — u\ and i/- — 4tt u {t'' + W^) the numbers t and u
will evidently be much smaller than x and ^/, since a: and 7/

are even determined by the fourth powers of t and zi, and
must therefore become much greater than these numbers.

8. It follows, therefore, that if we could assign, in num-
bers however great, two biquadrates, such as x^ and j/*,

Avhose sum might be a square, we could deduce from it a

number, formed by the sum of two nuich less biquadrates,

which would also be a square ; and this new sum would en-

able us to find another of the same nature, still less, and so

on, till we arrived at very small numbers. Now, such a sum
not being possible in very small numbers, it evidently fol-

lows, that there is not one which we can express by very

great numbers.

9. It might indeed be objected, that such a sum does

exist in very small numbers ; namely, in the case which we
have mentioned, when one of the two biquadrates becomes
nothing : but we answer, that we shall never arrive at this

case, by coming back from very great numbers to the least,

according to the method wliich has been explained ; for if in

the small sum, or the reduced sum, i"^ — 7t^, we had t — 0,

or u = 0, we should necessarily have y- = in the great

sum ; but this is a case which does not here enter into con-

sideration.

206. Let us proceed to the second proposition, and prove

also that the difference of two biquadrates, or a:'' — ij"^, can

never become a square, except in the cases of^ = 0, and

7/ = :v.
-

1. We may consider the numbers .r and y as prime to

each other, and consequently, as being either both odd, or
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the one even and the other odd : and as In both cases the dif-

ference of two squares may become a square, we must con-

sider these two cases separately.

2. Let us, therefoi-e, first begin by supposing both the

numbers x andy odd, and that x rz p + q^ and ij = p — g
',

then one of the two numbers p and q must necessarily be

even, and the other odd. We have also x^ — j/" =: ^pq, and
X- +3/2 = 2/j2 + %"; therefore our formula x^ — y* =
4pg{^p- + ^/) ; and as this must be a square, its fourth

part, pq{2p^ + 2q') = Qpqip^ + 5'"), must also be a square.

Also, since the factors of this formula have no common di-

visor (because ifj? is even, q must be odd), each of these fac-

tors, ^2p, q, and j/ -J- q^, must be a square. In order, there-

fore, that the first two may become squares, let us suppose

S/; = 4r^, or j9 n 2r^, and q — s^; in which s must be odd,

and the third factor, 4r* + **, must likewise be a square.

3. Now, since s^ -\- 47-* is the sum of two squares, the

first of which, s*, is odd, and the other, 4r% is even, let us

make the root of the first s" -- t- — u", in which let t be odd,

and u even ; and the root of the second, fir'^ = 2tu^ or

r^ — tn, where t and u are prime to eucii other.

4. Since tti = r^ must be a square, both t and u must be
squares also. If, therefore, we suppose t — m^, and u — n",

(representing an odd number by m, and an even number by
n), we shall have s^ = m^ — n'*'; so that here, also, it is re-

quired to make the difference of two biquadrates, namely,

7n* — 7i% a square. Now, it is obvious, that these numbers
would be much less than x and ?/, since they are less than

r and 5, v^hich are themselves evidently less than x and 3/.

If a solution, therefoi-e, were possible in great numbers, and
x^ — y^ were a square, there must also l)e one possible for

numbers much less ; and this last would lead us to another

solution for numbers still less, and so on.

5. Now, the least numbers for which such a square can be
found, are in the case where one of the biquadrates is 0, or

where it is equal to the other biquadrate. In the first case,

we must have n — ^\ therefore %i = 0, and also r — 0,

p = 0, and, lastly, :r* — ?/* = 0, or a;* — 3/* ; which is a case

that does not belong to the present question ; if n = m, we
shall find f = w, then s — 0, q = 0, and, lastly, also x = 1/,

which does not here enter into consideration.

207. It might be objected, that since 7?i is odd, and n
even, the last difference is no longer similar to the first ; and
that, therefore, we can form no analogous conclusions from
it with respect to smaller numbers. But it is sufficient that

the first difference has led us to the second ; and we shall
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shew, that x^ — y* can no longer become a square, when one
of the biquadrates is even, and the otlicr odd.

1. We may observe, it" the first term, .r^, Avere even, and
2/^ odd, the impossibihty of the thing would be self-evident,

since we should have a number of the form 4w + 3 ; which
cannot be a square : therefore, let x be odd, and ij even

;

then a:'' = p^ + q~, and j/ = 2pq ; whence x^ — i/* = pi- —
^2p"q' + q^ = {p- — (jf-)2, where one of the two numbers p
and q must be even, and the other odd.

2. Now, as p"^ + q^ = x^ must be a square, we have

p — r- — s", and q = ^rs ; whence x = r^ + s'^ : but from
that resultsj/^ = 2(/-^ — s-) X 2rs, or y^ = 4r^ x {r^ — *^),

and as this must be a square, its fourth part, rs{r^ — **),

whose factors are prime to each other, must likewise be a
square.

3. Let us, therefore, make r = t-, and s = w", and we
shall have the third factor r^ — s^ ^=^ t^ — w^, which must
also be a square. Now, as this factor is equal to the dif-

ference of two biquadrates, which are much less than the

first, the preceding demonstration is fully confirmed; and it

is evident, that, if the difference of two biquadrates could
become equal to the square of a number (however great we
may suppose it), we could, by means of this known case,

arrive at differences less and less, which would also be re-

ducible to squares, without our being led back to the two
evident cases mentioned at first. It is irapossil)le, therefore,

for the thing to take place even with respect to the greatest

numbers.

208. The first part of the preceding demonstration,

namely, where x and y are supposed odd, may be abridged

as follows : if :r* — y^ were a square, we must have x" =
p" + q'^, and j/' = p" — q", representing by /; and q numbers,
the one of which is even and the other odd ; and by these

means we should obtain X'lj" = p"^ — q* ; and, consequently,

p* — q* must be a square. Now, this is a difference of two
biquadrates, the one of which is even and the other odd ; and
it has been proved, in the second part of the demonstration,

that such a difference cannot become a square.

209. We have therefore proved these two principal pro-

positions ; that neither the sum, nor the difference, of two
biquadrates, can become a square number, except in a very

few self-evident cases.

Whatever formulae, therefore, we wish to transform into

squares, if those formula require us to reduce the sum, or the

difference of two biquadrates to a squai-e, it may be pro-

nounced that the given formulae are likewise impossible

;
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which happens with regard to those that we shall now point

out.

1. It is not possible for the formula x'^ + 4?/* to become
a square ; for since this formula is the sum of two squares,

we must have ^^ — /;" — q-, and 2j/" = Sy;^', or y" — pq ;

now p and q being numbers prime to each other, each of

them must be a D. If we therefore make p zz r^, and

q = *% w^e shall have .r- = r'' — s* ; that is to say, the dif-

ference of two biquadrates must be a square, which is im-
possible.

2. Nor is it possible for the formula .r* — 4'i/* to become
a square; for in this case we must make i"^ = p- -4- q\ and
2y^ = ^pq, that we may have a:* — 47/'^ — {p^ - q")' ; but,

in order that _?/- = pq, both p and q must be squares : and
if w^e therefore makep^;", and q = -s'^, we have ^•'=ir'*+,s*;

that is to say, the sum of two biquadrates must be reducible

to a square, which is impossible!

3. It is impossible also for the formula 4.r* — _y^ to be-

come a square, because in this case^ must necessarily be an

even number. Now, if we make ?/ — 2s, we conclude that

4:X* — 1 6z^, and consequently, also, its fourth part, ^4 _ 4-4^

must be reducible to a square; which we have just seen is

impossible.

4. The formula 2^' + 2?/* cannot be transformed into a

sqviare ; for since that square would necessarily be even, and
consequently, 2^'^ + Sj/" = 4;:;^, we should have x* + i/*- := 2z-,

or 22^ + 2a-'z/^ = x'^ + ^t'lf- + ?/* = n ; or, in like man-
ner, 22- — *ix"y- — X* — 9,x"y" + y = d . So that, as

both 2;2- + ^xSj^, and 9.z" — ^'lx'^y\ would become squares,

their product, 4z* — 4.t"^j/*, as well as the fourth of that pro-

duct, or z" — x'^y'', must be a square. But this last is the

difference of two biquadratics ; and is therefore impossible.

5. Lastly, I say also that the formula 2x'' — 2j/'* cannot

be a square ; for the two numbers x and y cannot both be

even, since, if they were, they would have a common di-

visor; nor can they be the one even and the other odd, be-

cause then one part of the formula would be divisible by 4,

and the other only by 2 ; and thus the whole formula w^ould

only be divisible by 2 ; therefore these numbers x and j/ must

both be odd. Now, if we make x—i:)-\-q, and y—Jp— q-> one

of the numbers jp and q will be even and the other will be

odd ; and, since 2x^ — 2j/^ — ^{xr + ?/'-') x [x~ — «/-), and

X- ^y" — 2// + 9,q- = 2(p- -f- 5-'-), and x"— if — ^pq, our

formula will be expressed by ^^yq{p" + q"), the sixteenth

part of which, or p^ip^ + '?')> "i"st likewise be a square.

But these factors arc prime to each other, so that each of
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them must be a square. Let us, therefore, make the first

two p zz r*, and q = s", and the tliird will become r* + s*,

•\vhicii cannot be a square, therefore the given formula can-

not become a square.

210. We may likewise demonstrate, that the formula

sc^ + 2y* can never become a square : the rationale of this

demonstration being as follows

:

1. The number x camiot be even, because in that case ?/

must be odd ; and the formula would only be divisible by

2, and not by 4 ; so that x must be odd.

2. If, therefore, we suppose the square root of our formula

to be X- -j-
-^

-, in order that it may become odd, we shall

4tnx-ir 4»"v^ . 1-1 1

have a?* 4- 2y* = x* + ~—"^ +-^-^
, in which the terms

x*are destroyed ; so that if we divide the other terms by 3/%

and multiply by q", we find ^pqx"" + i^p^y"- = ^q^'if, or

, . JT* q^-2p'-
^pqx'^ — 9.q"jj" — ^p"y"^ whence we obtam —

-=—^^ ;

that is, X- — cf — 9.p% and y"- = 9,pq*, which are the same

formulae that have been already given.

3. So that q- — 2p'' must be a square, which cannot hap-

pen, unless we make q = r + 2^% and p = 9,rs, in order to

have x' =: (?-" - ^s"-)' ; now, this will give us 4rsvr-+ 9,S') —y- ;

and its fourth part, rs(f + 2s"') must also be a square : con-

sequently r and s must respectively be each a square. If,

therefore, we suppose r — t"^ and s = u', we shall find the

third factor r" + 2** = t^ + 2i^'*, which ought to be a

square.

4. Consequently, if a* + 2y were a square, t"^ + 2u*

must also be a square ; and as the numbers t and U would

be much less than x and y, we should always come, in the

same manner, to numbers successively less : but as it is easy

from trials to be convinced, that the given formula is not a

square in any small number; it cannot therefore be the

square of a very great number.

211. On the contrary, with regard to the formula :r4— 2j/%

it is impossible to prove that it cannot become a square;

and, by a process of reasoning similar to the foregoing, we

even find that there are an infinite number of cases in which

this formula really becomes a square.

In fact, if X* — 2j/* must become a square, we shall see

* Because x and y are prime to each other.
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that, by making a'* = p"- -^ Sf/*, and ?/^ = ^pq, we find

a;* — 2j/4 = (p^ — ^.q'-f. Now, p"- + 2<^^ must in that case

evidently become a square ; and this happens when
p = r"- — 2s'', and g — 2rs ; since we have, in this case,

a;^ — (r^ -j- 9,s^Y ; and farther, it is to be observed, that,

for the same purpose, we may take p=2.v^— 7-^, and q=2rs.
We shall therefore consider each case separately.

1. First, let p = r^ — 2^^, and q = %-s\ we shall then

have a: = r'^ -\- 2** ; and, since y^ = 2pq, we shall thus have
1^^ = 4/ o(r'' — 25^) ; so that r and s must be squares

:

making, therefore, r = t^, and s = u^, we shall find y^ 1=

4^^M^(^'—2«4). So that 7/=^tu -^/{t'-^.u"), and ^= i;^+2w*

;

therefore, when t^ — 9,u* is a square, we shall also find

j;* — 2j/"^ = D ; but although t and ic are numbers less than

X and^, we cannot conclude that it is impossible for x*—9,y*

to become a square, from our arriving at a similar formula

in smaller numbers; since a:^ — 2?/' may become a square,

without our being brought to the formula f^ — 2//"*, as will

be seen by considering the second case.

2. For this purpose, let p= 2,9^ — r^ and q = 2rs. Here,
indeed, as before, v/e shall liave j: — r^ + 2s' ; but then we
shall find ?/" ~ 2pq = 4!rs{2s'- — r^) : and if we suppose
r = t'^, and s — u"^, we obtain y- — Mhi' ( 2?<^ — t^) ; con-

sequently, y — 9,iu s/{^u^ —i*)i and x = t* + 2u\ by which
means it is evident that our formula x'^ — 2y^ may also be-

come a square, when the formula 2//''' — i^^ becomes a square.

Now, this is evidently the case, when ^ — 1, and w — 1
;

and we fi-oai that obtain x =^ 3, y — 2, and, lastly,

x^ - 2y^ =: 81 - (2 X 16) = 49.

3. We have also seen, Art. 140, that 2u'^ — f becomes a

square, when m--=13, and ^= 1; since then •/(2«-^— i!-^) = 2o9.

If we substitute these values instead of t and w, we find a

new case for our formula ; namely, x— I -{-2 X 13*— 57123,
and 7/ = 2 X 13 X 239 = 6214."'

4. Farther, since we have found values of x and y, we
may substitute them for t and u in the foregoing formula?,

and shall obtain by these means new values of j: and y.
Now, we have just found x — o^ and y — %% let us,

therefore, in the formulas, (No. 1.) make ^ = 3, and w =: 2

;

so that ^/(^ — 2^^*) — 7, and we shall have the following

new values; a; = 81 -f- (2 x 16) = 113, and 3/ = 2 x 3 x
^ X 7 = 84; so that x' ^ 12769, and x* ^^. 163047361.

Tarther, y^ = 7056, and y' = 49787136 ; therefore

.r* — 2^* = 63473089 : the square root of which number is

7967, and it agrees perfectly with the formula which was
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adopted at first, />» — ^q" ; for since ^ = 3, and u = 2, wc
have r =' 9, and 5 = 4; wherefore^ = 81 — 32 = 49, and

? = 72; whence p^ - ^^ = -'^^1 - l^^GS =-7967.

CHAP. XIV.

Solution of some Questions that belong to this part of
Algebra.

212. We have hitherto explained such artifices as occur

in this part of Algebra, and such as are necessary for re-

solving any question belonging to it : it remains to make
them still more clear, by adding here some of those questions

with their solutions.

213. Question 1. To find such a number, that if we add
unity to it, or subtract unity from it, we may obtain in both

cases a square number.
Let the number sought be x ; then both ^ + 1, and a^ — 1

must be squares. Let us suppose for the first case .r+ 1 =p",
we shall have x — p^ — 1, and a; — 1 = jy — 2, which

must likewise be a square. Let its root, therefore, be re-

presented by p — Q'-, and we

<?- +2
9,pq -f-

g"-
; consequently, p

shall have jf — 2 ':::z jf-

Hence we obtain
'iiq

, in v/hich we may give q any value whatever,
45--

even a fractional one.

If vv'e therefore make q = so that X-
r*-f-4*^

,we shall

have the followinjT values for some small numbers

If r = 1,

and 5 == 1,

we have a; — 4,

1, s. 4

2, 1, ]

6 S 8 5 6 S

"Te' 3"(5' I 6"

214. Question 2. To find such a number .r, that if we
add to it any two numbers, for example, 4 and 7, we obtain

in both cases a square.

According to this enunciation, the two formulae, x -\- 4;

and X + 1, must become squares. Let us therefore suppose

the first a; -1- 4 = p", which gives us x — p" — 4, and the
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second will become a- + 7 = /?" 4- 3 ; and, as this last

formula must also be a square, let its root be represented by

p + q, and we shall have 7/ -|- 3 = p"- + ^pq + q"; whence

, .
2-q"- 9_2V + ?\

we obtain p = —^7—, and, consequently, x = -r-- »

and if we also take a fraction— for q, we find

a: =

s

, in which we may substitute for r and
4r''5"

s any integer numbers whatever.

If we make r == 1, and * = 1, we find x = - 3; there-

fore X + 4 = 1, and x + 7 = 4<.

If a: were required to be a positive number, we might
make s = 2, and r = 1 ; we should then have x = 4t>
whence a- -f- 4 = VV? and x + '7 = VV-

If we make s = 3, and r = 1, we have .r = '|-^
; whence

j; + 4 = '1-% and X + 7 = "-^.^

In order that the last term of the formula, which ex-

presses X, may exceed the middle term, let us make ?• — 5,

and5=l, andwe shall have x=|i-; consequently, x-\-4i= '^V,

and^ + 7 = ;,V-
215. Qiiestion 3. Required such a fractional value of x,

that if added to 1, or subtracted from 1, it may give in both

cases a square.

Since the two formula? 1 + ^, and 1 — .r, must become
squares, let us suppose the first \ -\- x = p", and we shall

have X = p"^ — 1 ; also, the second formula will then be
1 — T = 2 — ^2. As this last formula must become a

square, and neither the first nor tlie last term is a square,

we must endeavour to find a case, in which the formula does

become a D, and we soon perceive one, namely, M'hen p ='[.

If we therefore make /? = 1 — §'» so that x = q- — Hq, we
have ^ — p^ = 1 + ^q — q' ; and supposing its root to be
1 — qr, we shall have 1 -\- 2q — q" s=l — ^qr -f- q'r' ; so

thai 2 — a = — 2r + qr', and q = ——-
; whence results

'^

r' +1
4;-— 4;-3 .... t

X = -—,—7T-„; and since r is a fraction, if we make r = —

>

(r^ + l)-' 11

we shall have x — ,,^ .
—j^-;- = -^-^-—

—

——^ where it is evi-

dent that 71 must be greater than t.

Let therefore u = 2, and t =1, and we shall find a; = 2.4



CIIAI'. XIV. OF ALGEBUA. 41.5

Let u = S, and t = 2; we shall then have x =
; |4 ; and

the formula? 1 + .f = ^^, and 1 — x' = -j-\^^, will both be

squares.

216. Question 4i. To find such numbers x, that whether

they be added to 10, or subtracted from 10, the sum and

the difference may be squares.

It is required therefore, to transform into squares the

formulae 10 + x, and 10 — ^, which might be done by the

method that has just been employed ; but let us explain

another mode of proceeding. It will be immediately per-

ceived, that the product of these two formuhe, or 100 — x',

must likewise become a square. Now, its first term being

already a square, Ave may suppose its root to be 10 — px,

by which means we shall have 100— .r" — 100— 20j5.^'-|-p-a:'

;

therefore p'x \x = 20/;, and x = - Z -, ; now, from this it

is only the product of the two formulas which becomes a

scjuare, and not each of them sepai-ately. But provided one

becomes a square, the other will necessarily be also a square.

^^ ,^ _
10/ + 20/; + 10 10(r + 2p + 1)

Now 10 + ^ = —-^ y^^
, and

since p^ -{- 2j) -\- I is already a square, the whole is reduced

,. , . • 10 lOo^ + lO
to niakmg the fraction -^—r, or - .

.,
, i^o » a square also.* p-±V (p-\~iy ^

For this puipose we have only to make 10/;- + 10 ^ square,

and here it is necessary to find a case in which that takes

place. It will be perceived that j; = 3 is such a case

;

for which reason we shall make p zz S -\- ([, and shall have

100 -|- 605^ + lO^^-. Let the root of this be 10 -{- qt, asul

we shall have the final equation,

100 -{- 60^ + lOq- = 100 + '^Qqt -1- qHS

QO— ^Qt
which aives q = z-r-, by which means we shall deter-

20/;
mme p z:z o -\- a, and x — -r-rr-

/;--f-l

Let t = 3, we shall then find q = 0, and^; = 3; there-

fore X = 6, and our Ibrmulas 10 -j~ ^ = 1(), and 10 — x =4.
But if ^ zz 1, we have q r= — %^, and p zz — y, so that

X zz — y^^ ; now it is of no consequence if we also make
X =-\- Vt ' therefore 10 -f a; = W*, and 10 - a.- =z 44,
which quantities are both squares.

217. Remark. If we wished to generalise this question,
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by demanding such numbers, x, for any number, a, that

botli a -\- .r, and a — x may be squares, the solution would
frequently become impossible ; namely, in all cases in which

a was not the sum of two squares. Now, we have already

seen, that, between 1 and 50, there are only the following

numbers that are the sums of two squares, or that are coii-

tained in the formula X' -\- if :

1, % 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32,

84, 36, 37, 40, 41, 45, 49, 50.

So that the other numbers, comprised between 1 and 50,

which are,

3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30,

31, 33, 35, 38, 39, 42, 43, 44, 46, 47, 48, cannot be re-

solved into two squares ; consequently, Avhenever a is one of

these last numbers, the question will be impossible ; which
may be thus demonstrated : Let a A- x =/;-, and a — x= q-^

then the addition of the two formulae will give 2a = p^ + (f ;

therefore 2a must be the sum of two squares. Now, if 2a
be such a sum, a will be so likewise*; consequently, when
a is not the sum of two squares, it will always be impossible

for « + X, and a — x, to be each squares at the same time.

218. As 3 is not the sum of two squares, it follows,

from what has been said, that, if « = 3, the question is im-

possible. It might, however, be objected, that there are,

perhaps, two fractional squares whose sum is 3 ; but we

answer that this also is impossible : for if"^ -|

—

- r= 3, and

we were to multiply by q^s"^, we should have
8(jr^5^ = p^s'^ + q'^r^ ; and the second side of this equation,

which is the sum of two squares, would be divisible by 3 ;

but we have already seen (Art. 170) that the sum of two
squares, that are prime to each other, can have no divisors,

except numbers, which are themselves sums of two squares.

The numbers 9 and 45, it is true, are divisible by o, but
they are also divisible by 9, and even each of the two
squares that compose both the one and the other, is divisible

by 9, since 9 = 3^ +0% and 45 = 6^ -f 3^ which is

therefore a different case, and does not enter into con-

sideration here. We may rest assured, therefore, of this

conclusion ; that if a number, «, be not the sum of two
squares in integer numbers, it will not be so in fractions.

* For, let X- -\- y- =. ^a ; and put x = s -\- d, and y — s—d\
then (s-|-rf)2+(s—G?)2=252+2d*: that is, <r'-|-/=2s24-2af''=2fl.
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On the contrary, wiicn the number a is tlie sum of two
squares in fractional numbers, it is also the sum of two
squares in integer numbers an infinite number of ways:
and this we shall illustrate.

219. Question 5. To resolve, in as many ways as we
please, a number, which is the sum of two squares, into

another, that shall also be the sum of two squares.

Let y- -J-
g" be the given number, and let two other

squares, x~ and y^', be required, whose sum a;- -}- j/~ may be
equal to the numbery*^ -|- g-". Here it is evident, that if x
is either greater or less thanyj y, on the other hand, must
be either less or greater than g: if, therefore, we make
X =y+ pz, and y ^=- g — g's;, we shall have

r- + y^pz + fz"' + g' - 2gqz + ^v -r- + /,
where the two terms J^ and g"- ai'e destroyed ; after which

there remain only terms divisible by z. So that we shall

have ^fp + p-z — ^gq + q"z — 0, or p^z + q"z —^q — 2/p

;

Oo'o— 2fp
therefore z — ^^^f

—

~
, whence we get the following values

p--\-q"
' ^ ^

tor X and ^/, namely, .r rr -
, -t-^
—^—

, and

^P^+^ip" - 9') • 1 • 1 1 • 11

V — —
„ ,

-—

—

^—
; m which we may substitute all pos-

p'^q-

sible numbers for p and q.

If 2, for example, be the number proposed, so that

/ = 1 , and ^ = 1, we shall have x~ -j~ ?/" = 2 ; and because

^pq^q'-p'^ . 2pq-^p'—q- .^ i r.
X - ^ ^ ^ ~, and y — ^ ^ / , ,

if we makeprrS,

and g = 1, we shall find x — |, and ?/ =: ^.

220. Question 6. If « be the sum of two squares, to

find such a number, a-, that a + x, and a— a;, may become

squares.

Let a = 13 = 9 + 4, and let us make 13 + a; == p",

and 13 — .r = q^. Then we shall first have, by addition,

9.Q — p- -\- q-
-^ and, by subtraction, 9,x =i p" -^ q"-

-,
con-

sequently, the values of^j and <7 must be such, that j5- -|- T
may become equal to the number 26, which is also the sum
of two squares, namely, of 25+1. Now, since the ques-

tion in reality is to resolve 26 into two squares, the greater

of which may be expressed by /r, and the less by cp, we

shall immediately have p = 5, and 5' = 1 ; so that x = 12.

But we may resolve the number 26 into two squares in an
E E
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infinite number of other ways: tor, since/; = 5, and q = 1,

if we write t and u, instead of p and fj, and p anil (j, instead

of .r and y, in the formulie of the foregoing example,

we shall find

2tu-\- 5(11'' -t")
,

1 0^?^ -f- f-- ir

Here we may now substitute any numbers for / and ?/, and
by those means determine p and q, and, conscqvicntly, also

the value of x = —
^
—

.

For example, let t = % and 71 = 1 ; we shall tiien have

p = y, and <7 = ^ ; wherefore p- — q- = "V^^^?, and

221. But, in order to resolve this question generally, let

a =. c' + d'\ and put z for the unknown quantity ; that is

to say, the formula?, a+z, and a -z, must become squares.

Let us therefore make a -f 2 = a'-, and a — z = y'-, and
we shall thus have first 9,a = 2(c'- + cP) = .r- + y-, then

2s = ^''' — 7/'^. Therefore the squares .r- and y- must he

such, that .r' + y" = 2(c'' + f/-) ; where 2(c- -}- <:Z0 is really

the sum of two squares, namely, (c + df- + (c — d^ ; and,

in order to abbreviate, let us suppose c + fZ = /^ and
c— d=g-; then we must have x'- 4 y- =J"^+ g^

-^ and this

will happen, according to what has been already said, when

p-^r '^

F^q-
from which we obtain a very easy solution, by making

p — \^ and q — \; for we find x zz ~ — g — c — d, and

y =.f— c -\- d-^ consequently, z — ^2cd; and it is evident

that a -\- z — c" + 2cd + d~ = (c + d)'\ and

a - zznc"- — 2cd -)- d- = {c - d)".

Let us attempt another solution, by making p = 2, and

<7 = 1 ; we shall then have .r = —-— , and ?/ = ,

5 '^ 5

where c and <Z, as well as x and y, may be taken mhius,
because we have onl}^ to consider tlieir squares. Now, since

X must be greater than y, let us make d negative, and we

1 n 1 ^ + "^^^
1

lie - d
shall have x = —

, and ?i
— —

: hence
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35
; and this value beino; added to

a = c- + ri% gives ^ , the square root of which

is —-—
. If we then subtract z from a, there remains

5

-rp , which IS the square or —-— ; the former

of these two square roots being x, and the latter ?/.

222. Question 7. Required such a number, x, that

whether w^e add unity to itself, or to its square, the result

may be a square.

It is here required to transform the two formulas x + 1,

and X"- + 1, into squares. Let us therefore suppose the

first x-\-lzzp~; and, because x = p^ — 1, the second,

x" + I ~ p* — 2;?' + 2, must be a square : which last

formula is of such a nature as not to admit of a solution,

unless we already know a satisfactory case ; but such a case

readily occurs, namely, that of ^= 1 : therefore let p = l-^q,

and we shall have .r'--}-! = 1 + 417- -f 4:q'^ -{- q^, which may
become a square in several ways.

1. If we suppose its root to be 1 + T-) we shall have
1 + 4(?2 ^ 4^3 _|_ ^4 3^ 1 ^ 2(7^+ g*; so that 4g' + 4g'= 2g,
or 4 + 45' = 2, and q =^ — \-^ therefore p = h and

2. Let the root be 1 — q\ and we shall find

1 -\- 'iq'- -{' q'^ -{ q^ = 1 —^q" + <7* ;_ consequently q =— \,
and p = — -i, which gives x = —A, as before.

3. If we represent the root by 1 -|- 2g' -}- g-^, in order to

destroy the first, and the last two terms, we have

1 f 45-^ + 4^^" -Vq^ = 1 + 4(7 -f Qq" -[ 4q"^
-J- q\

whence we get q = — 2, and p = — 1 ; and therefore

^ = 0.

4. We may also adopt 1 — ^q — q- for the root, and
in this case shall have

1 + 4^^ + 4^3 _(. ^1 _. 2 - 4(7 + 2(7" + 4q^ + q* ;

but we find, as before, q ~ — 2.

5. We may, if we choose, destroy the first two terms,

by making the root equal to 1 + 2q^
-^

for we shall then

have 1 + 4q' -f 4!q^ -h q^ = 1 + 4(7" + 4:q*; also, q = j,

and p = L; consequently, x = \° ; lastly, x+1 =:*^=[:'^)'',

and x'~ + 1 = 'II-' = (\-')\

E E 2
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A greater number of values will be founel for q, by

making- use oi" those which we have already determined.

Thus, having found q = — \\ let now 5 = — i + r, and

we shall have p = \ -\- r\ also, jf- — :l + r •{ r-, Jind

p' = -^'^ + J-r + Ir- + Sr^ + r*; whence the expression

p' — 2jr +2 = 34 - |r — i?-- + 2r^ + r\

to which our formula, .r- + 1, is reduced, must be a square,

and it must also be so when multiplied by 16; in whicli case,

we have 25 - 24>r - Sr- -|- 32r' -\~ IGr' to be a square.

For which reason, let us now represent

1. The root by 5 -{-Jr + 4r^ ; so that

25 — 24r - 8r"'-f-32r3 4-l6?i =
25 4- 10/7- ± 40r= -i-f'r" ± ^fr"^ -f i6r'.

The first and the last terms destroy each other; and we.may
destroy the second also, if we make 10/"= — 24, and, con-

sequently, /" = — '-5? ; then dividing the remaining terms

by r\ we have — 8 -f S2r = i 40 -\-f'- ± 8fr; and, ad-

mitting the upper sign, we find 7- = ^.—'-^. Now,bc-

cause f=— V"'
^^'^ have r = i-l; therefore p = l-l, and

,r = 14-^; so that a; H- 1 = (|a)% and ^^ -|- 1 = (H'^y.
2. If we adopt the lower sign, we have

- 8 + S2r = - 40 + /- - 8/5',

f^ _ 30
whence r — cio _i_ q/- ' ^"^ i\ncG f — — y", we have

r = — 44^ ; therefore p = li, which leads to the ))receding

equation.

3. Let 47-2
-f- 4/- + 5 be the root ; so that

IGr* + 32r3 - 8r°- - 24;- -f 25 =
16/-* + 82r3 + 40r^ -I-

16;-^ ± 40;- -}- 25

:

and as on both sides the first two terms and the last destroy

each other, we shall have

- 8;- — 24 = ± 40/- + ICv + 40, or

- 24r — 24 = + 40r ± 40.

Here, if m'c admit the upper sign, we shall have

- 24r - 24 = 40;- -f 40, or - G4r + C4, or

= r + 1, that is ; = — 1, and p =^ — \\ but this is a

case already known to us, and we sliould not have found a

different one by making use of the other sign.

4. Let now the root be 5 -{-.//• -f- gr-^ and let us deter-

mine /"and g so, that the first three terms may vanish:

then, since
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.'25 - 24./- - 8/-^ + 32/-3 + 16/-' =
.'25 + lOfr + '[Of-r'+ 10^>t^ + '2/gr^ + fr\

we sh;i!l first have 10/"r:— 24, .so that y— — y- ; then

..... .
-8-/^ -344 -172

106>- +f^ = -b, org = -j^ =-^- -To-5-

When, therefore, we have substituted and divided the re-

maining terms by r^, we shall have

ofa — 32
32 + IGr =z yg -l-^-r, and r = ^%—r-

Now, tlic numerator *ilfg — 32 becomes here

+ 24 X 172- 32 X G25 __ -32x 496 _ - 16 x 3.2 x 31

5x125 "" 625 ~ 025

the denominator

, ^
8x32x41x2116-^-c= (4-o)x(4 + o.)^|||x4^^- 25^C25~ '

so that r—— '-J if" ; and hence we conclude that j>— ~rril->
by means of wliich we obtain a new value of x = jj^ — 1.

223. Qiicstlon 8. To find a number, x, which, added to

each of the given numbers, «, b, c, produces a square.

Since here the three formulae x + a, x + h, and x ^- c,

must be squares, let us make the first x -\- a =: z", and we
shall have x =: z- — a, and the tv/o other formula; will be

changed into z"^ + b — a, and ;:s^ -\- c -~ a.

It is now required for each of these to be a square; but
this does not admit of a general solution : the problem is

frequently impossible, and its possibility entirely depends on

the nature of the numbers b — a, and c — a. For example,

if 6 — a = 1, and c — « — — 1, that is to say, if Z» = a + 1,

and c = a — 1, it would be required to make ,':*
-f- 1, anti

;:;- -- 1 squares, and, consequently, that z should be a frac-

tion; so that we should make ;; — — , and it would be ne-

cessary that the two formulae p- + </-, and ^;'^ — q\ should

be squares, and, consequently, that their product also,

p* - g*, shoidd be a square. Now, we have already shewn
(Art. 202) that this is impossible.

Were we to make b — a = ^2, and c — a = — 2, that is,

b = a \- ii, and c = « — 2; and also, if :: = —, we should

have the two formulae, p-+2(f, and p^ — 2q'\ to transform

into squares ; consequently, it would also be necessary t()r
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tlicir product, p* — 4^*, to become a square ; but this wc

have hkewise shewn to be impossible. (Art. 209.)

p
In general, let h — a — m, c — a = n, and z—— : then

the formulae p" + 7715% and p' + nq% must become squares

;

but we have seen that this is impossible, both when 7n= +1,
and n = — I, and when 771 = -}- 2, and ;« = — 2.

It is also impossible, when in =y', and n = —f' ; for,

in that case, we should have two formulae, whose product

would be = p^ —f^^^i that is to say, the difference of two

biquadratcs ; and we know that such a difference can never

become a square.

Likewise, when m = 2/% and 71 — — 9f% we have the

two formulae p- + %f'<r , and p' — %f'q\ which cannot

both become squares, because their product;/ — ^f^q^ must

become a square. Kow, if we make/^ = 7-, this product is

chano-ed into p^ — 47-^, a formula, the impossibility of which

has been already demonstrated.

If we suppose vi ~ 1, and n = 2, so that it is required to

reduce to squares the formulas p- + ?% and /;' -5-25'% we

shall make p- -^ q" =. r" , and p"' ^r 9.q- ^=1 s' \ the first

equation will give p- = r' — q% and the second will give

r" + q- = s^ ', and therefore both r' — q\ and ;•" + g\
must be squares : but the impossibility of this is proved,

since the product of these formulae, or 7-* — q^, cannot be-

come a square.

These examples are sufficient to shew, that it is not easy

to choose such numbers for m and n as v.ill render the solu-

tion possible. The only means of finding such values of m
and n, is to imagine them, or to determine them by the fol-

lowing method.

Let us raakey= + viff- =z h%andf' + vg' = k'' ; then

we have, by the former equation, m = :.
— , and, by the

b

k' — f'
latter, ?i = f— ; this being done, we have only to take

for^,
ff,

h, and k, any numbers at pleasure, and we shall

have values of m and 7i that Avill render the solution possible.

For example, let h — 3, A: — 5,f= 1, and g = 2, we

shall have m = 2, and n = 6; and we may now be certain

that it is possible to reduce the formulae p- -}- 2q' and

p^ -}- 6q^ to squares, since it takes place when ^ = 1,

and q — 2. But the former formula generally becomes a

square, if/; = r" - 2s", and q — 2rs ; for then p^ + 2<7' —
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(/•^ + 2^-)"^. The latter formula also becomes p^ -\~ Qq- —
r* -\- 20/- 5^ + 4.V* ; and we know a case in wliich it becomes
a square, namely, when p = I, and q z=: 2, which gives

r z= 1, and ^ = 1 ; or, generally, r = s; so that the formula

is ii5s\ Knowing this case, therefore, let us make 7'=^s+t;
and we shall then have r' = *^ -j- 2si + ^', or r* = s* +
4,y3^ -}- Gn't' + ^'sf' -f- P ; so that our formula will become
25.y* -|- MsH + ^^Gs'-t'- -\- "ist^ -|- t^ : and, supposing its root

to be 5s^ -}" /*^ + ^^ w^ shall make it equal to the square

25s* + lOfsH +f^sH^ + WsH' + 2fsf + t\ by which
means the first and last terms will be destroyed. Let us

likewise make 2/'= 4, orf= 2, in order to remove the last

terms but one, and we shall obtain the equation

44a> + ilGt ^ \0/:<s+lOt -\-fH = 20* + 14^, or 2.v = -
^,

and —
- = — \- ; therefore * =— 1, and ^ = 2, or ^ ~ — Sis ;

and, consequently, r ~ — s, also r" = s"^, which is nothing

more than the case already known.
Let us rather, therefore, determiney in such a manner,

that the second terms may vanish. We must make 10/'— 44,

or /"— ^-5? ; and then dividing the other terms by st", we
shall have 265-J-4/ = 10s -\-f''s + ^ft, that is, -1+6'= %+^

'

T
which gives t= — v'o^j ^'^d r= s + t~ ^^s, or— =to 5 ^*^ ^^^^

r

—

3, and 5=10; by which means we find p= 2*^ — ?"= 19
J

,

and q = 2rs = 60, and our formul.-e will be

p^ + ^q"' = 43681 = (209)"^ and
p"- f 6q^- = 580S1 = (241)^.

224. Remark. In the same manner, other numbers may
be found for 9ii and n, that will njake our formuljv squares •,

and it is proper to observe, that the ratio of m to 11 is

arbitrary.

Let this ratio be as a to b, and let vi = az, and 01 — hi:,

it will be required to know how 2 is to be determined, in

order that the two formulas p- + azq"^, and p"- + b::q", may
be transformed into squares : the method of doing which we
shall explain in the solution of the following problem.

225, Question 9. Two numbers, a and 6, being given, to

find the number z such, that the two formula?, p'^ -\- <t:q'-,

and p^ -\- bzq~, may become squares ; and, at the same time,

to determine the least possible values of /; and q.

Here, if we make p- -{- azq' = r-, and jr -f- bzq^ = s^,

and multiply the first equation by a, and the second by b,

the difference of the two products will furnish the etiuation
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(b-'a)p^=br'^ -as^, and, consequently, />"=
,
— ; which

formula must be a square : now, this happens when r zz s.

Let us, therefore, in order to remove the fractions, suppose

1' := s -\- {b — a)t, and we shall have

^
_br-—as''_bs'+ 'ib{b-a)st+ b{b— aft^-as-_

" ~ b—a
~~

b—a
{b-a)s''+ ^b{b-a)st+ b{b - a)H'-_

b — n

s^ + ^hst + b{b — a)t-.

Let us now make p = s -\ 1, and we shall have
y

pi ~ s~ + —St +.^t- = s"- + ^bst + b[b- a)t",

y y
in which the terras s"- destroy each other ; so that the other

terms being divided by t^ and multiplied by ^/^, give

^sxy + tx^ = 9,bsy^ + b(b — a)ty'^ ; whence

_ 9.sxy— 2sbij~
i ^ _ ~-^'^—^%^

~ b{b — a)y- —a;"' s
~ b{b — d)y^ — x''

So that t = '^xy — 'ibif, and s — b{b — d)y^ — x'' ; farther,

r = 9,(b — o)xy — b{b — a)y" — x" ; and, consequently,

X
p = s { 1= b(b — a)y'^ -\- x" — 9>bxy = {x — by)-—ciby'.

Having therefore found j^, r, and s, it remains todetei-mine

z ; and, for this purpose, let us subtract the first equation,

jr i- azq" = r% from the second, p" -j- /:~q- = s" ; the re-

iiiainder will be zq-{b — a) = s" — r" = (5 -j- ?•) x (5 — r).

Now, s + r — 2(6 — a)iy — S^r^, and
s - r = 2b{b-a)y^ - 2{b — a)xy, or

s + r = 2x{ (b — a)y — x), and

s — r = 2(6 — a) X {by — x)y; so that

{b — a)zq^ = 2a:( {b — «)?/ — x) x 9,{b — a) x (by - x)y, or

zq^ = 2ar( {b — a)y -^ x) X {by — x)2y, or

zq- = 4:xy{ {b — a)y - x) x {by - x) ;

4!Xi/l ib — 0)7/ — .r) X (6?/ — x)
consequently, z = —'^^^ ^—^-^ ^-^ \

We must therefore take the greatest square for q^, that

will divide the numerator ; but let us observe, that we have
already found p— b{b — a)y- + x- — 2bxi/= {x— byY— aby^ ;

and therefore we may simplify, by making x :=: v •{ by, or

X — by — V ; for then p z=. i»" — <'^% and
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_ 4(t>+%) X 1)1) Y (f+«?/), _Jk)y'\v-^ay) x {v-\-bi/)

z- -, ,or._ -

By these means we may take any numbers for v and y, and
assuming for q' the greatest square contained in the nu-

merator, we shall easily determine the value of z ; after

which, we may return to the, equations in — az, n = hzy

andp = V'' — cchy' , and shall obtain the formulas required.

1. />'- + azq'' — (v' — ahij-)~ + 4:avy(v + ay) x {v + by),

which is a square, whose root is ?• = — u '
— 9.avy — ahy'

.

2. The second formula becomes

p- -f bruf ~ {v' — aby-y + ^bvy(v + ay) x (t; + by),

which is also a square, whose root is 5= —v' —^bvij —
and the values both of r and s may be taken positive.

It may be proper to analyse these results in some ex-

amples.

226. Example 1. Let a =z — 1, and b = -\- \^ and let us

endeavour to seek such a number for z, that the two formula3

p" — zq-, and p- + zq'^, may become squares ; namely, the

first r~, and the second s^.

We have therefore j) — ir -{ y^ ; and, in order to find z,

we have only to consider the formula

^V7i{v— ij)x{v+y) , , . . ,.„ -

z = — •„ ^— ; and, by givmg ditterent values to

V and y, we shall see those that result for z.

aby-

1 2 3 4 5 6

V 2 3 4 5 16 8

y 1 2 1 4 9 1

v-y 1 1 3 1 7 I

'^+.y 3 5 5 9 25 9

Zq^ 4x6 4x30 16x15 9x16x5 36x25x16x7 16x9x14

f 4 4 16 9x16 36x25x16 16x9
6 30 15 5 7 14

p\ 5\ 13 17 41 337 65

And by means of these values, we may resolve the following

formulae, and make squares of them

:

1. We may transform into squares the formulas p' — Gq",

and p'-{- bq' ; which is done by supposing^" 5, and q= ^;
for the first becomes 25 — 24 = 1, and the second

25 + 24 = 49.

2. liikewisc, the two formula? p'—30</', and p' -i^SOq' ;
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namely, by making p ~ 13, and 5- = 2 ; for the first be-

comes 169 - 120 = 49, and the second 169 + 120 = 289.
3. Likewise the two formulEe^' — 15y% and 7?' + \5q- ;

for if we make p = 17, and q = 4;, we have, for the first,

289 - 240 = 49, and for the second 289 -f 240 = 529.

4. The two formulae p^ — 5q-, and p'' + 5?S become
likewise squares : namely, when p =: 41, and </ =1 12 ; for

thenp' - 5q^ = IC8I - 720 == 961 = 31s and
p^' + 5q^ = 1681 + 720 = 2401 = 49\

5. The two fovmi\\xp^ — Iq'^, and p'^ -}- Iq^, arc squares,

if ;> = 337, and q = 120; for the first is then

113569-100800 = 12769= 113% and the second is

113569 + 100800 = 214369= 463\
6. The formulae p" — 14(7% J^iidp^ _j_ Hf/'-, become squares

in the case of^; = G5, and 5' = 12 ; for then

p^ — Uq"- := 4225 — 2016 = 2209 = 47-, and

i?' -h Uq^ = 4225 + 2016 = 6241 = 79'-.

227. Example 2. "When the two numbers m and n aie

in the ratio of 1 to 2 ; that is to say, when a = 1, and
Z» = 2, and therefore m — z, and n = 2z, to find such

values for z, that the formula? p- + zq- and p- + 2zq'^ may be

transformed into squares.

Here it would be superfluous to make use of the general

formulas already given, since this example may be im-

mediately reduced to the preceding. In fact, if p
"

-^zq''= ?•'-,

and /7^ -{- 2c</^ = s-, we have, from the first equation,

p" = r- — zq"; which being substituted in the second, gives

r" -\- zq" = 6'" ; so that the question only requires, that the

two formulae, r^ — zq", and t^ -f zq", may become squares

;

and this is evidently the case ofthe preceding example. We
shall consequently have for z the following values: 6, 30,

15, 5, 7, 14, &c.

We may also make a similar transformation in a general

manner. For, supposing that the two formula? p^ + mq\
and p"^ +nq", may become squares, let us make p- +mq'— 7",

and p^ + nq" = s" ; the first equation gives ^r = r"^ — niq^

;

the second will become
5* = r'- — mq" + i\(^, or r"^ + («— ?;?.) q^ = s"-: if, therefore,

the first formulae are possible, these last r^ — '>nq", and
r^ + {n — m)q', will be so likewise ; and asm and n may be

substituted for each other, the formulae r* — nq^, and
r" + {m — n)q-, will also be possible : on the contrary, if

the first are impossible, the others will be so likewise.

228. Example 3. Let m be to n as 1 to 3, or let // = 1,

and 6 = 3, so that m. = z, and n = 3:, and let it be re-

quired to transform into squares the fbrmuke p" + -</% and
p" + ^zq\
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Since a = 1, and 6 = 3, the (]ucstion will be possible in

all the cases in which zq- = 4>vij{v + ?/) X [v + %), and

p = V- — 3t/'^. Let us thei'efore adopt the following values

for V and ?/

:

V

y

1

1

2

4
16x2

3

2

5

9
4x9 x30

4

1

5

7

4x4x35

1

8

9
•25

4x9x25x4x2

16

9
25
43

4x9 X 16x25x43

p

16

2
2

4x9
30
3

4x4
35
13

4 X 4 X 9 X 25

2

191

4x9 X 16x25
43
13

us

Now,
to tr

4-6^

we
ansfo

lave he

rni, in

re two
two wa

cases for z —

^s, the fornii

: 2, which enab!

he p- -}- 2(7'-, ai

The first is, to make p = 2, and </ = 4, and consequently

also p :^1, and g z=: 2 ; for we have then from the last

p"" + 2g"- = 9, and /f- + 6q^ = 25.

The second is, to suppose p =. 191, and q =. 60, by which
means we shall have/»'-+ 2g'^=i(209)-, and p^-f 65''^=(241)-.

It is difficult to determine whether we cannot also make
ri = 1 ; which would be the case, if zq^ were a square : but,

in order to determine the question, whether the two formuhe
p^' -}- <7^, and p^ -{- Sg--, can become squares, the following-

process is necessary.

229. It is required to investigate, whethei we can trans-

form into squares the formulae /;'• + g^ and p" -{- Sg'", with

the same values o^p and q. Let us here suppose^/ + 5-^=r%
and p"' -r 2>(f

= *^, which leads to the investigation of the

following; circumstances.

1. The numbers p and q may be considered as prime to

each other; for if they had a common divisor, the two
formulae would still continue squares, after dividing j) and
q by that divisor.

2. It is impossible for p to be an even number ; for in

that case q would be odd ; and, consequently, the second
formula would be a number of the class 4w -f 8, which can-
not become a square ; wherefore p is necessarily odd, and p"^

is a number of the class 8/i -|- 1.

3. Since p therefore is odd, q must in the first formula
not only be even, but divisible by 4, in order that q- may
become a number of the class 16w, and that ;r' -}- q" may be
of the class 8w -|- 1.

4. Farther, p cannot be divisible by 3 ; for in that case,

/>' would be divisible by 9, and <? not; so that 3r/- would
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only be divisible by 3, and not by 9; consequently, also,

p' + Qq'' could only be divisible by 3, and not by 9, and
therefore could not be a square; so that j) cannot be di-

visible by 3, and^r will be a number of the class 3/i + 1.

5. Since p is not divisible by S, q must be so ; for other-

wise q^ v/ould be a number of the class 3;i H- 1, and con-

sequently p- -\- q"^ 2L number of the class o7i + 2, -which can-

not be a square : therefore q must be divisible by 3.

6. Nor is p divisible by 5 ; for if that were the case, q
would not be so, and q"^ would be a number of the class

5n -\- 1, or 5n -{• 4 ; consequently, Qq^ would be of the class

5n + 3, or 5« + 2 ; and as p- + Qiq'- would belong to the

same classes, this formula therefore could not in that case

become a square ; consequently }) must not be divisible by
5, and p'^ must be a number of the class 5w + 1, or of the

class 5n + 4.

7. But since /; is not divisible by 5, let us see whether q is

divisible by 5, or not ; since if q were not divisible by 5, q^

must be of the class 57i + 2, or 5n -\- 3, as we iiave already

seen ; and since p- is of the class 5?' + 1 , or 5n -]- 4',

p^ -}- %^ must be the same ; namely, 5/t -}- 1, or 5/i-j-4 ; and
therefore, of one of the forms 5« + 3, or 5)1 + 2. Let us

consider these cases separately.

If we suppose p- (f)5;i + 1 *, tlien we must have q^ (f)

5n + 4, because otherwise p^ + q- could not be a square

;

but we should then have oq"(y)5n -f 2 and p- + 3(7" (f)

5n + 3, which cannot be a square.

In tiie second place, let p- (f) 5?i H- 4 ; in this case avc

must have q'' (f) 5n •\ 1, in order that p' + q- may be a

square, and Sq'^ (f) 5n + 3 ; therefore ^y- + Sg' (f) 5n + 2,

wliich cannot be a square. It follows, therefore, that q-

niust be divisible by 5.

8. Now, q being divisible first by 4, then by 3, and
in the third place by 5, it must be such a number as

4 X 3 X 5?7t, or g — 607/i ; so that our formulae would be-

come 7/ + 36007/i- = r\ and p' -j- 10800?/r = 6^
: this be-

ing established, the first, subtracted from the second, will

give 7200w- = s" ^ r" = {s -\- r) X {s — r) ; so tliat s + 7-

and s — 7' must be factors of 7200w^, and at the same time

* In the former editions of this work, the sign = is used to

express the words, " of the form." This was adopted in order

to save the repetition of these words ; but as it may occasionally

produce ambiguity, or confusion, it was thought proper to sub-

stitute (f) instead of= , which is to be read thus: p* (f) 5n -f-1,

of theform 5n + 1.
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it should 1)0 obsci'vcd, that s and r must be odd numbers,
and also prime to each other*.

{). Farther, let 7200?m'' = 4/^, or let its factors be 2/and

2g, supposing s + r = ^f, and s — r = '2g, we shall have

s —J'-\-g, and r —f— ^; /'and g^ also, must be prime

to each other, and the one must be odd and the other even.

Now, ^i'S'fg = 1800;7i-, we may resolve 1800;?i^ into two fac-

tors, the one being even and the other odd, and having at

the same time no common divisor.

10. It is to be farther remarked, that since ?•- =: jf + q-,

and since ?• is a divisor of
f)'^ + q^, r ~J~ ^*must likewise

be the sum of two squares (Art. 170) ; and as this number
is odd, it must be contained in the formula 4?^ -f 1.

11. If we now begin with supposing m = 1, we shall have

fg — 1800 = 8 X 9 X 25, and hence the following results

:

/^ 1800, and ^ = 1, or/= 200, and ^ = 9, or/= 72,

and g — .25, oYf= 225, and^' — 8.

r r =/-- g = 1799(f)4w + 3

;

.^ves\'^=f-S= 191(F)4;. +3;

( r =f— g = 217(F)47i + 1 ;

So tliat the first three must be excluded, and there remains

only the fourth : from which we may conclude, generally,

that the greater factor must be odd, and the less even ; but
even the value, r =. 217, cannot be admitted here, because

that number is divisible by 7, which is not the sum of two
squares

"f*.

12. If 7;i = 2, we shall have./^' = 7200 r= 32 x 225; for

which reason wc shall make /"n 225, and ^ = 32, so that

?• rry — g =^ 193 ; and this number being the sum of two
squares, it will be worth while to try it. Now, as g' =: 120,

and r — 193, and p- = r'^ — q- = (r + q) x {r — q, we
shall have r + q = 313, and r — g r: 73 ; but since these

factors are not squares, it is evident that p~ does not become
a square. In the same manner, it would be in vain to sub-

stitute any other numbers for m, as we shall now shew.

230. Theorem. It is impossible for the two formula;

p" + g", and p- -{- Qq"^, to be both squares at the same time

;

so that in the cases where one of them is a square, it is cer-

tain that the other is not.

* Because p is odd and q is even ; therefore p^ + q^ '= '"? ^"d
p^ + 3q" = s"^, must be both odd. B.

H" Because the sum of two squares, prime to each other, cau
only be divided by numbers of the same form. B.
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Demonstration. We have seen that j) is odd, and q
even, because p" + q" cannot be a square, except when

q -z^ 2rs, and j!> = r- ~~ s- ; andp- + Sq^ cannot be a square,

except when q = 9,tu, and /; == f — 3//^, or ^ = 3ii^ — f

.

Now, as in both cases q must be a double product, let us

suppose for both, q — 2abcd; and, for the first formula, let

us make r = ab^ and s ^= cd:, for the second, let t = ac,

and u = bd. We shall have for the former p-=.a^b-— c-d",

and for the latter p — a^c"- — ^b-d^, or p — Qb\P — a^c",

and these two values must be equal; so that we have either

a^b^-c'-d^=a-c^ -Qb^d\ or a^b^ -c^d^=3b'-d^ —a^c^ ;

and it will be perceived that the numbers a, b, c, and d, are

each less than p and q. We must however consider each

case sepai'ately : the first gives a^b^ + S¥d- = c'^d'- + a-c"^,

or ^Ha^ + Qd'-) — c"(ar + d'), whence „ = -r—im ^
^

c- a +od
fraction that must be a square.

Now, the numerator and denominator can here have no

other common divisor than 2, because their difference is

2d\ If, therefore, 2 were a common divisor, both

a'+d^ -a- +3^*
, , i i—-— , and —-—

, must be a square ; but the numbers a

and d are in this case both odd, so that their squares have

. . . , a^+ Sd' . . , .

the form 8n +1, and the formula —^
— is contamed m

the expression 4:n-\-2, and cannot be a square; wherefore

2 cannot be a common divisor ; the numerator «^ + c?^, and

the denominator a^ -{ Sd^ are therefore prime to each other,

and each of them must of itself be a square.

But these formula? are similar to the former, and if the

last were squares, similar formulae, though composed of the

smallest numbers, would have also been squares ; so that we

conclude, reciprocally, from our not having found squares in

small numbers, that there are none in great.

This conclusion however is not admissible, unless the

second case, crb'^ — c-d" = Qb-d" — ac^ furnishes a similar

one. Now, this equation gives a-b' + a^c- = ob^d- + c^d--,

or a'-ib' + c") = d-{Sb- + c") ; and, consequently,

a- b-+c^ c^+b'
, ,. „ . i.^ 1

-:r-=.-, ;= ?rr7 ; so that as this traction ought to be a

square, the foregoing conclusion is fully confirmed ; for, if in

great numbers there were cases in which^''-i--<?", and p"-\-^q ,

were squares, such cases must have also existed with regard

to smaller numbers ; but this is not the fact.
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231. (^/(cstinn 10. To determine tlircc numbers, .r, //,

and z, such, that nuiltiplying them together two and two,

and adihng 1 to the product, we may obtain a S(juare eadi

time ; that is, to transform into squares the three following

formulas

:

X9/ + \, a:z -{- 1, andi/z + 1.

Let us suppose one of the last two, as xz + 1, = jf-^

and the other i/z -{- 1 = q^^ and we shall have

X = , and y = —
-^
— . The first formula is now trans-

^ (p-_l)x(<7^-l) , ,.,
formed to :7~^~— + ^ ' which must consequently

be a square, and will be no less so, if multiplied by z- ; so

that {if- _ 1) X (g'^ — 1) -j- ~^ must be a square, which it

is easy to form. For, let its root be t'\-r^ and we shall have

(;;2 - 1) X ((?- — 1) == 'Irz + r2, and

z = -^ , ui which any numbers may l)e

substituted for p, </, and r.

For example, if r = ^Vi '^ -'^)> ^^ shall have

p^ -f 2/7<7 + q"

r- = pY -r 2?p 4- 1, and z = ^ ,^ ; wherefore

(f-1) X (S/--7-'rS) _ g(/.r/+l) X (/r- 1)
^^^^

'^~
_

iP-HT
But if whole numbers be required, we must make the

first formula xj/ + 1 = p", and suppose z = -^ -\~ i/ -\- q

;

then the second formula becomes
X'^ -f- xi/ -}- xq -|- 1 = .r- -j--

(l-^ -h P"5 and the third will be

•V/ ~\~
'if'

4- 5'J/H" 1 = y" + ?i/
-{- P"' Now, these evidently

become squares, if we make g' = + 2y; ; since in that case

the second is a;- + ^px + p^^ the root of which is x ± jf?,

and the third is y" ± ^py -j- ^r, the root of which is ?/ ± p.
^Ve have consequently this very elegant solution : a^/ 4- 1 =://',

or xy =. p^ — 1, which applies easily to any value of j!;

;

and from this the third number also is found, in two ways,
since we have either z = x \- y { 'ilp^ ox z = x -{ y — Qp.
Let us illustrate these results by some examples.

1 . I^et p = 3, and we shall have p- — I = S; if we
make x = 2, and y = 4, we shall have either z — 12, or
s r= ; so that the three numbers sought are 2, 4, and 12.
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2. Ifp = 4, we shall havcp'^— I = 15. Now, if a.' r: 5,

and j/ == S, we find z = 16, or z =0; wherefore the three

numbers sought are S, 5, and 16.

o. If p — 5, we sliall have j}^ — 1 — 24; and if we
farther make x = Q, andj/ = 8, we find ;s = 21, or s = 1 ;

wlience the following numbers result ; 1, 3, and 8 ; or 3, 8,

and 21.

232. Question 11. Required three whole numbers oc, j/,

and z, such, that if we add a given number, a, to each pro-

duct of these numbers, multiplied two and two, we may
obtain a square each time.

Here we must make squares of the three following formula?,

xy \- a, xz •\- a, and yz •{- a.

Let us therefore suppose the first xy + a =z p^, and make
zmx-i-i/-{-q; then we shall have, for the second formula,

x'^ -\- xi/ -{- xq + a =. .T- + xq -|- p- ; and, for the third,

^y "^ y" + ^? + ^ — 3/' "^
S'Z/ + P' » ^"^ these both be-

come squares by making q — ± 2;) : so that 2 = .r-{- j/±2o

;

that is to say, we may find two different values for z.

233. Question 12. Required four whole numbers, x, ?/,

;:;, and v, such, that if we add a given number, a, to the pro-

ducts of these numbers, multiplied two by two, each of the

sums may be a square.

Here, the six following formulae must become squares

:

1. xi/ + o, 2. xz + a, 3. yz -\- a,

4. XV -j- «, 5. yx) 4- «5 6. zv -j- a.

If we begin by supposing the first xy -^-a = /?'', and

take z = X -V y ^ 2p, the second and third formulas will

become squares. If we farther suppose v :ri x -\- y — 2p,

the fourth and fifth formulae will likewise become squares

;

there remains therefore only the sixth formula, which will

be x^ + 2.CT/ -}- j/^ — 4j5* + a, and which must also become

a square. Now, as p^ = xy -{- a, this last formula becomes

X — ^xy + y" ~ Sa ; and, consequently, it is required to

transform into squares the two following formulae

:

xy ~\- a — p^, and {x — yY — ^a.

Xf the root of the last be (.r — y) -• q, we shall have

(.r - y)" — 3a zz (<r — yY — 2q{x — j/) + 5'^ ; so that

o'-f3a— 3« = - 9.q{x — y) + q^, oxiA x - y - -q—'j ox

q"+^a
, o , ,

q^-\-^a
x-y\- -Q—

;
consequently, i>-= ?/--}- -IJ^y + "

If /; z=. y -\- r, we shall have
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2r7/ + r = y -\- a, or

^ry -\- ^qr" r= {(f + 3«)7/ + ^aq^ or

Sfyr^ — S^^jr =
{(f- + 3fl)j/ - ^qry^ and

•^ — 5-2 4-3^-4^7'

where (7 and r may have any vakies, provided r and y be-

come whole numbers; for since p =y -\- r, die numbers,
2 and V, will likewise be integers. The whole depends
therefore chiefly on the nature of the number a, and it is

true that the condition which requires integer numbers
might cause some difficulties; but it must be remarked,
that the solution is already much restricted on the other
side, because we have given the letters, z and v, the values
X 4 y + 2/j, notwithstanding they might evidently have a
great number of other values. 1 he following observations,

however, on this question, may be useful also in other

cases.

1. When xy + a must be a square, or xi) =z p^- — a, the

numbers .r and y must always have the form r^ - as"-

(Art. 176); if, therefore, we suppose

X :zz b^ — ac'., and
J/
= d'- — ae^,

we find xy = ibd — aceY — a{bc — cdy.
If be — cd = ±1, we shall have xy — {bd — aceY — «»

and, consequently, xy -{- a = {bd — ace)"".

2. If we farther suppose z =jf'^ — «,"^> and give such
valuer iof and g, that bg—cf=±l, and also dg-—ef=±l,
the formulas xz -}- a,, and yz + a, will likewise become
squares. So that the whole consists in giving such values
to b, c, d, and e, and also toyand g, that the property which
we have supposed may take place.

3. Let us represent tlicse three couples of letters by the

r b d f
iiactuns — , — , and ^^; now, they ouo-ht to be such, that

c e g
tb.e difference of any two of them may be expressed by a

fraction, whose numerator is 1. For since

b d be—dc—
, this numerator, as has been seen, must

c e ce

be equal to 4: 1- Besides, one of these fractions is ar-

bitrary ; and it is easy to find another, in order that the

given condition may take place. For example, let the first

F Y
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b
,

d— = 1, the second — must be nearly equal to it ; if, there-

fore, we make — = *, we shall have the difference z = ^.

We may also determine this second fraction by means of the

n ^^ n ' d 3e—2d
nrst, generally ; tor smce l — — = — , we must have

3e — 2d = 1, and, consequently, ^d = 3e — 1, and

d = e -\ ^. So that making —^— = m, or e rz 2m + 1,

we shall have d = 3m + 1, and our second fraction will be

d 3m+l _ , . . ,— = „

—

^j-r. In the same manner, we may determme the

second fraction for any first whatever, as in the following

Table of examples

:

6 _,
T-"^

5
•3- 8 11

'
1

'
.3
8

'_7
7

d 3m + l 5m + 1 7m + 2 «m-f3

5m 4-

2

11?k4-3

4»j +

1

13m + 5

8m+ 3

17m 4-

5

7m4-2e 2ff?+

1

3m + 1 3«i +

1

4. When we have determined, in the manner required,

the two fractions, —, and — , it will be easy to find a third

also analogous to these. We have only to supposey*— b + d,

and ^ = c + ^j so that ^^ =
; for the two first givmg

r» 7 i_ *|

be -- cd = -\- 1, we have = -r=— : and subtract-~~ g c c--\- ce

ing likewise the second from the third, we shall have

/ d_ hc-cd _ ±1

g e e--\-cc ce-\-e^'

5. After having determined in this manner the tln-ee

fractions, — , — , and — , it will be easy to resolve our ques-

tion for three numbers, a-, 7/, and s, by making the three

formulae xy + 0, xz -\- «, and yz + a, become squares

:

since we have only to make x = b- — ac^, y = d" — ae",

and z —J"^ — ag". For example, in the foregoing Table,
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let US take — =4-, and — = ^, we shall then have
c

f
TJ

J ; whence a: = 25 ^ 9«, ?/ = 49 — 16a, and
s

z = 144 — 49«; by which means we have

\. ai/ + a = 1225 - 840a + 144a* = (35 - UaY;
% xz +a = 3600 - 2520a + 441a^ = (60 - 21a)^
5. yz + a = 7056 - 4704a + 784a* = (84 - 28a)\

234. In order now to determine, according to our ques-

tion, four letters, x^ ?/, z, and v, we must add a fourth

fraction to the three preceding : therefore let the first three

. b d f b+d ^ , ,..,..
be — , — , ^ =

, and let us suppose the lourth Irac-

h b+d 2d+b
, .

, , •

tion -r- =z z=. , so that it may have the given
k. e+g 2e + c

^ ^

relation with the third and second ; if after this we make
X = b"^ — ac", y =z d" — ae", z =f" — ag^, and v= h"— aJc^,

we shall have already fulfilled the following conditions

:

xy -j- a ~ D , xz -f a =r D
,

yz -\~ a = D
,

yv -{- a zz: n , zy -{- a rz D.

It therefore only remains to make xv + a become a square,

which does not result from the preceding conditions, because
the first fraction has not the necessary relation with the

fourth. This obliges us to preserve the indeterminate

number ??« in the three first fractions ; by means of which,
and by determining m, we shall be able also to transform

the formula xv + a into a square.

6. If we therefore take the first case from our small

mil 11^ 1 ^ Sm + l
lable, and make — = |, and — = -; ^ ; we shall have

c e 2m + 1

./ 3m +4 . h 6m+5 . ^ ^ ,— — o—Tb? and-;-= -; :, whence x — \) — 4a, and
g 2??^^-3 k 4m + 4

V = {6m + 5)^' — a(4m + 4)-

;

so that ^-t, + « =
i

9(6™ + 5); - M6» + 5);
( —9a(4m + 4)- + 4a-(4m + 4)

or XV + a- I
9(6m + 5)* + 4a2(4m + 4)"-

^
t - «(288m* + 528ra + 244),

which we can easily transform into a square, since m- will

be found to be multiplied by a square ; but on this we shall

not dwell.

7. The fractions, which have been found to be neces-

F F 2
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sary, may also be represented in a more general manner

;

for if— = -^7-, — = , we shall have
c 1 e n

=^— = —;— , and ^- — —-—:-,— ; if m this last frac-

g n-\-\ h %i^\
/Sot—2

tlon we suppose 2n -\-\ = w^, it will become ; con-

sequently, the first gives x ^= $^ — a, and the last furnishes

V = {$m — 2Y — am^. The only question therefore is,

to make xv -{- a a square. Now, because

V =. (&~ — a)m^ — 4/3wi + 4, we have

xv-\-a = {0^ - afm^ - 4(/3' — a)Bm + 4^' - 3a ; and

since this must be a square, let us suppose its root to be

(/3^ — a)m — p; the square of which quantity being

(j3" — ci)~m^ — 2((3" — a)mp -f p% we shall have
~ 4(^- — a)^m + 4/3'-3a=— 2(/3- — a)7np +p'^ ; wherefore

w =
, o, \

—77) T^x' I*\P = ~'^ + ^> "^^^ shall find

4;Sq + q^ + Qa . , .
, , •^ = —77-7-z; r-) 111 which we may substitute any num-

bers whatever for jS and q.

For example, if a =: 1, let us make /3 =r 2 : we shall then

have m =.
7. ; and making 5' = 1, we sliall find

m 4. ; farther, m — %i -{- \ \ but without dwelling any

longer on this question, let us proceed to another.

235. Question 12. Required three such numbers, x, 7/,

and 2, that the sums and differences of these numbers, taken

two by two, may be squares.

The question requiring us to transform the six following

formulae into squares, viz.

X ^-y, X -^z, j/ + r,

^ —y^ ^ - "> z/
- *»

let us begin with the last three, and suppose x - y — p~,

X -^ z = q^, and 7/ — z = r- ; the last two will furnish

x= q^ + Zy and y= r'^+z; so that we shall have q"=p^ + r*,

because x — 7/ — q- — 7-" = p^ ; hence, p* 4- ^*, or the sum
of two squares, must be equal to a square q"'

; now, this hap-

pens, whenj9 — 2ab, and r=^ oJ- — Jr, since then q— a^--{-h'.

But let us still preserve the letters p, q, and r, and consider

also the first three formula'. We shall have,
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\,_x + y = q^ + r2 + 22;

2. X + z — q- -\- 9.Z
-^

S.i/+z=r' + 2s.

Let the first q^-^-r'^+^z^ =t", by which means ^z=i^-q^—r'';

we must also have f — r" = D , and f' — q^ = ; that is

to say, f" -(a^ — b'-y = U, and f — (a- + b'Y = ; we
shall have to consider the two formulae t'^ — a'^ — 6*+ 2a^6'',

and t" — a'^ — ¥ — ^a^b". Now, as both c~ + d^ + 2cJ,

and c^ + d'' ~ 9.cd, are squares, it is evident that we shall

obtain what we want by comparing f- — a* — b\ with

c'- + d^^ and 2aVr with 2cJ. With this view, let us suppose

cd = a'b' =f'g"-JrJi% and take c =f'g%and d = h'k" ;

a' — f-li\ and b' ~ g'l^" , or a =J\ and b — gk\ the

first equation V — a^— b^ =^ c" -{ d% will assume the fiDrm

r -f*h^ - g%* =f*g* + l^^li* '> whence

r- =f*g* +f*h*-!^^k^ + h'k', or t'-{f^+Jc*)x(g'+h*);

consequently, this product must be a square; but as the re-

solution of it would be difficult, let us consider the subject

under a different point of view.

If from the first three equations x — 7/
' p", x - 2 = q' >

y — z — r% we determine the letters ?/ and z, we shall find

y z=. X — p^, and « = a: — (7 ; whence it follows that

q^ =Ll)'' -\-r' ' Our first form ula? now become x-\-y~%x—jf )

X -^ z = 2x — q% and y + z = 2x — p' — q'. Let us

make this last 2j7- p"--q^=t% sothat 2^:=^' +/)' f {?% and

there will only remain the formulae t- + q', and t' + p', to

transform into squares. But since we must have q' —p' +^%
let q z= a" + b% and p = a' - b' ; and we shall then

have r = 2ab, and, consequently, our formulee will be

:

1. f + (a' + b"Y = t^ + a* + b-^ + ^a'^b'i - D ;

2. t^ + (a'- — b'Y = t" + a* + b*— 'Zci^b'- — u.

In order to accomplish our purpose, we have only to com-

pare again ^« + «* + b^ with c' + d% and 2«^6'", with

^cd. Therefore, as before, letc =f^g% d = h'k% a=fh,
and b = gk; we shall then have cd—(rb% and we must

again have

p j[.fVv^ + gU-* = c^ + d' —f'g' + h'k'^ ; whence

f =f^g' -f'h'^ + h'k' —g^V - (/4— k') X ig'— h*).

So that the whole is reduced to finding the differences of

two pair of biquadrates, namely,/"^— 7i;% and^"*— h\ which,

multiplied together, may produce a square.

For this purpose, let us consider the formula 7n* — n^ ;

let us see what numbers it furnishes, if we substitute given

numbers for m and n, and attend to the squares that will be
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found among those numbers; the property of

w*— n* — [vf + n-) X {m^ — n"), will enable us to con-

struct for our purpose the following Table

:

A Table of Numbers contained in the Formula m*— ?<*.

m" n^ ni^—n" m ^ -}- n
- 7)1*— 71"

4 1 3 5 3x5
9 1 8 10 16x5
9 4 5 13 5x13
16 1 15 17 3x5x 17

16 9 7 25 25x7
25 1 24 26 16x3x13
25 9 16 34 16x2x17
49 1 48 50 25x16x2x3
49 16 33 65 3x5x11x13
64 1 63 65 9x5x7x13
81 49 32 ISO 64x5x13

121 4 117 125 25x9x5x13
121 9 112 130 16x2x5x7x13
121 49 72 170 144x5x17
144 25 119 169 169x7x17
169 1 168 170 16 x3x5x7xl7
169 81 88 250 25x16x5x11
225 64 161 289 289x7x23

We may already deduce some answers from this. For,

if/" = 9, and Jc' = 4, we shall have/+— /t^ = lSx 5;
farther, let g^ = 81, and 7i* = 49, we shall then have

g4 „/i4 = 64 X 5 X 13; therefore f- = 64 x 25 X 169,

and t = 520. Now, since f- = 270400, /= 3, g = 9,

]c = 2, h = 7, we shall have a = 21, and 6=18; so that

p = 117, g = 765, and r = 756; from which results

2a; = f- + p" + q' = 869314; consequently, x = 434657;
then j/ = a;—i?-= 420968, and lastly, zr=a—<7^=-.—150568.
This last number may also be taken positively; the dif-

ference then becomes the sum, and, reciprocally, the sum
becomes the difference. Since therefore the three numbers
sought are

:
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X = 434657

J/
= 420968

z = 150568

439

we have x +y = 855625 = (925)-

X ^ z = 585225 = (765)^

and?/ + ^ = 5,71536 = (756)-

also, a; -J/ = 13689 = (117)^

X ~ z = 284089 = (533)^

and^- 2 = 270400 = (520)^

The Table which has been given, would enable us to find

other numbers also, by supposing jf- n 9, and k" =. 4,

g^ = 121, and 7r' =4; for then ^-' = 13 x 5 x 5 x 13 x

9 X 25 = 9 X 25 X 25 X 169, and
/r^3x5x5xl3 = 975.

Now, asy=: 3, ^ = 11, 7t = 2, and ?i = 2, we have

a =fh ~ 6, and 6 = ^A; = 22 ; consequently,

p = a' -b' = - 448, q= a^ + b'= 520, and 7-=2fl6= 264;

whence 2x = t'-{-]y'-^q' = 950625 + 200704 + 270400 =
1421729, and x = ' + ^^7^9; wherefore y = x — j)^ =:
iozo32i^ and:^ = x — q^ = 88o_9Z9,

Now, it is to be observed, that if these numbers have the

property required, they will preserve it by whatever square

they are multiplied. If, therefore, we take them four times

greater, the following numbers must be equally satisfactory :

X = 2843458, 3/ = 2040842, and z = 1761858 ; and as

these numbers are greater than the former, we may con-

sider the former as the least which the question admits of.

236. Question 14. Required three such squares, that the

diiference of every two of them may be a square.

The preceding solution will serve to resolve the present

question. In fact, if x, 3/, and z, are such numbers that the

following formula?, namely,

X -\- 7/ = n, X — 7/ = n, X + z = Hi
X — z = a, 1^ + z = D, 7/ — z = a,

may become squares ; it is evident, likewise, that the pro-

duct x'^ — y^ of the first and second, the pi'oduct x"- — z^ of

the third and fourth, and the product y~ — z^ of the fifth

and sixth, will be squares; and, consequently, .r-,_3/%and z-,

will be three such squares as are sought. But these num-
bers would be very great, and there are, doubtless, less

numbers that will satisfy the question ; since, in order that

x' — y' may become a square, it is not necessary that x -\- y^
and x—y^ should be squares : for example, 25—9 is a square.
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although neither 5 + 3, nor 5 — 3, are squares. Let us,

therefore, resolve the question independently of this con-

sideration, and remark, in the first place, that we may take

1 for one of the squares sought : the reason for which is, that

if the formulae x^ — y", ^^ — z\ and y' — z', are squares,

they will continue so, though divided by ;2-
; consequently,

we may suppose that the question is to transform

/x^ y^\ (x"' \ ^ fy" \.[— — ^1, 1-^ — Ij, and {'—„ 11 mto squares, and it

then refers only to the two fractions — , and —

.

CC W ~T* 1 ?/ O^ '\~ 1

If we now suppose —— -r—7, and —= —

—

-r. the last
z p —

1

z 5'"—

1

two conditions will be satisfied; for we shall then have

T — 1 = r~l—TTi> ^"d — — 1 = .-^—r-,. It onlv re-

mains, therefore, to consider the first formula

Now, 'the first factor here is —-,—^—-
, .,, ; the second

0>^-l) X ((?--!)'

IS 7——---—7—;—=-., and the product of these two factors is
(//-l)x(g--l) ^

4(77-0-— l)x ((7-- /r) _ . .,
, , 1= ——;—7-

—

-—z—TTT- . It is evident tliat the denominator

of this product is already a square, and that the numerator
contains the square 4 ; therefore it is only required to trans-

form into a square the formula (/^-(/^ — 1) x {q' — J^'), or

{p^q^ — 1) X (1 — 1) ' 3^d t^is ^^ done by making

pn z=i- ^ „ , and— = —rrr,— ? because then each factor'^ 2fir' p 2/t/c

separately becomes a square. We may also be convinced of

this, by remarking thatp<7 x —-1=5-=-—^ x -^gr- i

and, consequently, the product of these two fractions must
be a square; as it must also be when multiplied by
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^f^g"' X /t"^'% by which means it becomes equal to

fgkf^ + g"^ X hkiji'^ + li"). Lastly, this formula becomes
precisely the same as that before found, if we makey= a + Z>,

g = a — b, h = c + d, and ]<::=. c — d; since we have then

2(^4 _ ^4) X 2(c4 - d') = 4< X (a4 _ b*) x (c^ - d*),

which takes place, as we have seen, when a' = 9, 6' r= 4,
c' =81; and (Z^' ^ 49, or a = 3, Z> = 2, c = 9, and (Z = 7.

Thusj^^ 5, g — 1, h -— 16, and k = 2, whence /i^r =^ _%

and — = \^^° — 14 ' the product of these two equations

65x13 13x13 . „ ,. ^ v^,gives q = XTT,
—~ = ——^— ; wneretore q = v , and it lol-° ^ Ibxo 16 i 4 '

lows that p = ^, by which means we have

X p^ -i-1 y q- + l

T-p^:^ = - V» and ^ = —^ = -;4f ; therefore,

41r
, 185s . ^ , • , ,since X = — , and 7/ = ^7:^? m order to obtain whole

numbers, let us make s= 153, and we shall have ^' = ~ 697>
and ^ — 185.

Consequently, the three square numbers sought are,

0^^ = 485809 ) Cx"- -f- :r^ 451584 = (672)2

y = 34225 I and ]i/"-z^ = 10816 = (104)^
z" = 23409 j C^- - z' = 462400 == (680) ^

] t is farther evident, that these squares are much less than
those which we should have found, by squaring the three
numbers x, y, and z of the preceding solution.

237. Without doubt it will here be objected, that this

solution has been found merely by trial, since we have made
use of the Table in Article 235. But in reality we have
only made use of this, to get the least possible numbers ; for
if we were indifferent Avith regard to brevity in the calcula-
tion, it would be easy, by means of the rules above given, to
find an infinite number of solutions ; because, having found

X ;?^+ l j^/^' + l— = —a
—

Tj and '— = -—
-

, we have reduced the question
2; p^—

1

z q~—

i

^

to that of transforming the product {y-q^ — 1) x (—^ — 1)

into a square. If we therefore make — = ttz, or q^=. mp,

our formula will beccme (w^p* — 1) x (r/i' — 1), which is

evidently a square, when p ir 1 ; but we shall farther see.
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that this value will lead us to others, if we write yo = 1 + *

;

in consequence of which supposition, we have to transform

the formula

(m* — 1) X (w^ — 1 + 4/ns' + Gm-s' + ^m-s^ + m-**)

into a square; it will be no less a square, if we divide it by
(rn- — 1)-; this division gives us

4m"* i^iu^s" ^m's"^ m'^s'^

^ + ^IT:::! + m' -i "^ ^^I^in • m'^'^^
'

m

'

and if to abridge we make -——^ =: a, we shall have to re-^ VI-—

1

duce the formula 1 + 4a.9 + 6as- ~\- 4fas^ -\- as* to a square.

Let its root be 1 +Js + gs% the square of which is

1 + 2fs -i- 2gs' +f"s' + ifgs' + g"-s*, and let us deter-

miney'and g in sucli a manner, that the first three terms

may vanish; namely, by making 2/"= 4a, ory= 2a, and

6a = ^g- -f-y% or g = ^— = 3a— 2a', the last two

terms will furnish the equation 4a -|- oi? = ?;S'4"^"'^'

4a -2^- 4a --12a +8^/^
whence s =—;;

—

'-^-^ = .-^

—

_ _ ^ . „ „
=

g"-a 4a' - 12a3 4-90^ - a

4-12a + 8a-' v -v , ^
4(2a-l)

A~l
—

in 2. , r> T> or, dividmg by a — 1, 5 = j—,—3——:

.

4a^— 12a'' +9a—

1

* 4a-— 8a+ l

This value is already sufficient to give us an infinite number
of ansAvers, because the number m, in the value of a,

zz—
7,—T- , may be taken at pleasux'e. It will be proper to

illustrate this by some examples.

1. Let m — 2, we shall have a = ^ ; so that

5

* = 4 X -rrfJ
^ - It ; whence^ =: - |^, and q=- ^;

lactlv ——949 and— =-^°i-.lasuy, — __-^, anu — ^.g^j'
z •*

2. If w = I, we shall have a = |-, and

5 = 4 X -:irri = ~ Vt ' consequently, p = — VV, and

g = — y/, by which means we may determine the fractions

X y— , and —

.

There is here a particular case that deserves to be at-

i
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tended to ; which is that in which « is a square, and takes

place, for example, when w = |- ; since then « = 44* I^

here again, in order to abridge, we make a = b^y so that our

formula may be 1 + 46'* + Qb's'- + 46V + 6V, we may-

compare it with the square of 1 + 26-5 + 65% that is to say,

with 1 + 46-5 + 265'-' + 46*s'- + 46V + 6V ; and ex-

punging on both sides the first two terms and the last, and

dividing the rest by s', we shall have 66" + 46^.9 = 26 +
662—26-46+ 36-1-26^ ,

U^ + 463., whence .= "^^^^^^ =-26^26" ' ^"'

this fraction being still divisible by 6 — 1, we shall, at last,

1-26-262 l—^b"
have s ^ , and p = ^^.
We might also have taken 1 + 26<s + bs^ for the root of

our formula ; the square of this trinomial being

1 + 465 + 26r + 46'-5^ + 46^-5'' + 6^5^, we should have de-

stroyed the first, and the last two terms ; and dividing the

rest by s, we should have been brought to the equation

46' + Qh"-s = 46 + ^hs + 46=5. But as b~ = .i|, and 6 = 1,

this equation would have given us s = — 2, and /> = — 1

;

consequently, ^9' — 1 = 0, from which we could not have

drawn any conclusion, since we should have had z = 0.

To return then to the former solution, which gave

1 — 26*

p = ——— ; as 6 = |, it shews us that if w = |-, we have

p = iJ^^ and q = mp = -^'y consequently, — = ^4t, and

143'

238. Question 15. Required three square numbers such,

that the sum of every two of them may be a square.

Since it is required to transform the three formulas

x^ -f ?/% x'^ 4- 2% and y' + s^ into squares, let us divide

them by z\ in order to have the three following,

X p"— 1 ,

The last two are answered, by makmg — = —^—, and

—=^——, which also changes the first formula into this,

SE—H—- 4 ^:^^— -, which ouffht also to continue a square
4/j^ 4</-

"^
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after being multiplied by 4j9^<7- ; that is, we must have
«7'(/)^ — 1)' + p^^q"- — ly z= D . Now, this can scarcely be
obtained, unless we previously know a case in which this

formula becomes a square : and as it is also difficult to find

such a case, we must have recourse to other artifices, some
of which we shall now explain.

1. As the formula in question may be expressed thus,

q\p + 1)'^ X {p - \Y \-'p\q ^- 1)^ X (y — 1)^ = D, let

us make it divisible by the square (/? + 1)- ; which may be
done by making (7 — 1 = /j -|- 1, or </ = p + 2 ; for then
5" + 1 = j5 + 3, and the formula becomes

so that dividing by (;; -|- 1)% we have {p + 9.Y X(p— l)^-[-

p^(p + 3)% Avhich must be a square, and to which we may
give the form 2/j^ + 8p^ + Qp"- _ 4/; + 4. Now, the last

term here being a square, let us suppose the root of the

formula to be 2
-{-J'p + gp'^^ or gp^ -\-fp + 2, the square

of which is g^ + 2;^?' -f 4^?' ^PP" + ¥p + 4, and
we shall destroy the last three terms, by making 4/= — 4,

oxf— — 1, and 4^ + 1 = 6, or ^ =: ^ ; also the first terms
being divided by p^^ will give 'ilp-\-'^=g^p-\-9.fg=-Wp — | ;

or j3 = — 24, and q — — 22 ; whence—=^—-— = — 5 7?

.

z %p **

or x=- 1^=2, and |-=: ?^ .= - ^t » or.y = - Vt~.

Let us now make x = 16 x 3 x 11 ; we shall tlicn have
,r — 575 X 11, and y = 483 x 12; and, consequently, the

roots of the three squares sought will be :

X = 6325 = 11 X 23 X 25

;

y :=z 5796 = 12 X 21 X 23

;

andz := 528 =^ 3 x 11 x 16;
for from these result,

cc^ -^if = 23^(275^ + 252^) = 23^ x 373'1

^- + s2 = 112(575^ + 48^) = IP X 5772.

and 7/2 + 22 =: 12^(4832 + 44^) = 12^ x 485=.

2. We may also make our formula divisible by a square,

in an infinite number of ways ; for example, if we suppose

{q + ly = 4(/; + 1)', or ^ '-f 1 = 2(p + 1), that is to say,

q = 2p -\- 1, and q — In: 9.p, the formula will become
(2^-1-1)- X (p^-\r X {p - 1)- +;;' x 4(^ + 1)^ x 4ja" = D ;

which may be divided by {p -f 1)% by which means we have

(2p + 1)" X (p - 1)' + I6p^ = D, or

20/?'* - 4p^ — 3/;" + 2/; + 1 = D ; but from this we de-

rive nothing;.
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3. Let us then rather make {q — 1)- = 4(p -|- 1)^, or

q — \ — 2{p + 1); we shall then have q =z 2p -[- 3, and

q + 1 = Qp + 4<, or g- + 1 — 2{p + 2), and after having
divided our formula by {p -\- 1)-, we shall obtain the fol-

lowing; (2/? + 3)^ X (/> — 1)" + I6p"{2)+ 2)\ or

9 - 6/j 4- 53/;" + GSp"- + ^Op\ Let its root he3-p + gp"-,

the square of which is 9 — 6p +. Qgp^ + p' — 2gp^ -j- g"p'^
;

the first two terms vanish, and we may destroy the third by
making 6^ + 1 = 53, or ^ = y^ ; so that the other terms
are divisible by p, and give 20/; + 68 = g^p — 9g\ or
4 9 6^ = ^|.6 . therefore p ~ +|, and q = i^, by which
means we obtain a new solution.

4. If we make q — 1 =: *(/? — 1), we have q :=i ±p — j.,

and gr + 1 rz: 4/? + |. = ^ (2/; + 1), and the formula, after

being divided by {p — 1)% becomes

r^^Vx (p + ly + Wi^P + 1)' ; multiplying by 81,

we have 9(4/? - 1)' x (/' + !)- + 64p*(2/; + 1)^ =
400p^ -f 472^=* + 73/;^ - 54/? + 9,

in which the first and last terms are both squares. If,

therefore, we suppose the root to be 20/:>'^ — 9/? + 3, the
square of which is 400/;* — 360/;^ -j- 1 20/;" + 81/;" - 54p + 9,
we shall have 472/; + 73 = — 360/; + 201 ; wherefore

p - ^3-, and q = ^-^= — ^5_.

We might likewise have taken for the root 9,0p^-\-Qp— 3,
the square of which is 400/)* -j- 360/;"'— 1 20/j-+ 81 p-— 54p+ 9

;

but comparing this square with our formula, we should have
found 472/; + 73 = 360p — 39, and consequently p = — 1,

a value which can be of no use to us.

5. We may also make cur formula divisible by the two
squares, (p + 1)^, and (p — 1)-, at the same time. For

this purpose, let us make q = ; so that

pt^p^t^rl (p-U)x(^+l)
^ "^ ^ ^ —hT- =^

—

^t— '

^"^

^ ^ pt-p-t^ \ jp-l)^i^t-l)
^

Pft p^t
this formula will be divisible by (/; + 1)* x (p — 1)% and

will be reduced to -^^^ _i_\-X_Z._J_ ^ f: If we

multiply by (p + 0% the foi-mula, as before, must be trans-

formable into a square, and we shall have

{pt + 1)- X (p + tf + p'-{t + ir X (/ - \Y, or
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<y+2i(^^+i)p'+2fy+(f'+i)y+(<'—i)y+2^(''+i)/^+^"-

in which the first and the last terms are squares. Let us

therefore take for the root tp" + {f -f- V^V— ^» the square of

which is

t^p^ + nit"- + \)p^- 2^y + {t" -f \yf - ^K^" + i)/>+^^'

and we shall have, by comparing,

^fp 4- (r- + 1)^/? + ^t{f- + 1) + {t' - i)> -
— ^f-p -\- [t- -f 1)-P - ^i{^' + l)j or, by subtraction,

^fp 4- 4>t(t' + 1) + (^^ - 1)> = 0, or

that IS to say, ^ + 1 = ; whence p =—
-^

; conse-

-3/^+ 1 ,
^^-3^ , -

quently, pt + I = ^7—^, and p + t = -pr^ '> lastly,

Q

For example, let t = ^; we shall then have p = —-

11 ^ p" \

and q = 3 ; so that -- = ,> =+14^ and

q = —--—-\, where the value of the letter t is arbitrary.

2p

...<13
,

...^-
L'-Z , or A' = -;

:;
pS, and y =. -. tx: z.

+ +' 4x4x5 ^ 4x11
2^ ^^-1 . 3x13 ,

9x13

Farther, if a; — 3 x 11 x 13, we have

«/ = 4 X 5x9x13, and
2=i4x 4x5x11,

and the roots of the three squares sought are

a: = 3 x 11 X 13 = 429,
w = 4x 5x9x13 = 2S40, and

2 = 4 X 4 X 5 X 11 = 880

:

where it is evident that these are still less than those found

above, from which we derive

x^+y- = 3= X 13^121 + 3600) = 3^ x 13= x 61%
^^ + z^ = 11^- X (1521 + 6400) = IV X 89%
y^+z" = 20^- X (13689 + 1936) = 20^- x 125\

6. The last remark we shall make on this question is, that

each answer easily furnishes a new one ; for when we have

* Thus, (r-— l)"- = i!*— 2i!* + 1, which multiplied by p be-

comes pt* 2pt^ + J)y

Then adding 4pl-

We have pt^ + 2/i/ " + p = ((" + 1 ) ^p* as above.
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found three values, x = a,y =^ b, and z =l c, so that

a^ -\- h"- = D , a^ 4- c- = J and 6' + c- = D , the three

following values will likewise be satisfactory, namely, x = «6,

y =z be, and z = ac. Then we must have

^' -f ^r^ = a'-b- + aV — aX^" + <^) ~ ,
2/2 -j- ^- = a"c^ + b-c'^ = t'-(«' + b) = n •

Now, as we have just found

a; =:: fl = 3 X 11 X 13,

y = b = ^ X 5 X 9 X 13, and
s = c = 4 X 4 X 5 X 11,

we have, therefore, according to the new solution,

^' = «6 r= 3 X 4 X 5 X 9 X 11 X 13 X 13,

7/ — 6c = 4x4x4x5x 5x 9x11x13,
2 = flc = 3 X 4 X 4 X 5 X 11 X 11 X 13.

And all these three values being divisible by

3 X 4 X 5 X 11 X 13,

are reducible to the following,

a? = 9 X 13, i/ = 3 X 4 X 4 X 5, and z = 4 y 11 ; or

X — 117, J/
= 240, and z = 44,

which are still less than those which the preceding solution

gave, and from them we deduce

s-^ + y"- = 71289 = 267\
x-' +'z" = 15625 ^ 125%
3/2 + z^' = 59536 = 244^

239. Question 16. Required two such numbers, jt and

y, that each being added to the square of the other, may
make a square ; that is, that x^ + 3/ = D , and i/"^ + a: = a

.

If we begin with supposing .r' + y = /r, and from that

deduce y = p'^ — x^, we shall have for the other formula

jp^ — ^p"x" + x'^-]- X = D , which it would be difficult to

resolve.

Let us, therefore, suppose one of the formulae

x'^-\-y = [p ~ x)^ z:i p" — ^px + x^ ; and, at the same

time, the other y- + x — {q— yY = q' — '^qy + y, and
we shall thus obtain the two following equations,

y -f- 2px z=. p', and x + 2pj/ — g^,

from which we easily deduce

9,qp" — q^ 9>pq^— q-

~
4>pq — 1 ' " ^ ~

4!pq~ 1

'

in which p and q are indeterminate. Let us, therefore,

suppose, for example, p = % and y — 2, then we shall have
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for the two numbers sought x = 4|, and y — |y, by which
means o,-^ + .y = \\L + 14 = ||i. = (14.)^ and

3/^ + X = VV/ + fI-
- VW = (It)'- It' ^^'<^ made p^^,

and 5^ = 3, we should have a* = — -/,-, and «/ = 44? ^^^i

answer which is inadmissible, since one of the numbers
sought is negative.

But let p = 1, and j' = |, we shall then have x rr J^,

and y = ^, whence we derive

•^- +2/ = t!^ + -i^ -m = (ins and
^' + ^ - -i*JV+^ = .^ - (A>-

2-10. Question 17. To find two numbers, whose sum
may be a square, and v.hose squares added together may
make a biquadrate.

Let us call these numbers x and y ; and since x- -f w'

must become a biquadrate, let us begin with making it a
square : in order to which, let us suppose x = p- — 5", and

y r= 9.pq, by which means, x" -\- y- = [p- -}- q'-y. But, in

order that this square may become a biquadrate, p^ + q"

must be a square; let us tlierefore make p — r^ — 6-2^ and

q = 2rs, in order that p^ -\- q- = {r- + s'^Y '> and we
immediately have x'^ -V y^ = {r^ -\- *^)% which is a biqua-

drate. Now, according to these suppositions, we have
.r = r* — Cr^*"^ + s*, and y — 4;'^a' — 4;'6'; it therefore

remains to transform into a square the formula

X \-y = r* -1- 4/-'5 — 6r^5- — Ars^ + s*.

Supposing its root to be r^ + Qrs + **, or the formula
equal to the square of this, r* + 4r's \- Gr^s"^ + 4;-5' + 6*,

we may expunge from both the first two terms and also s'^,

and divide the rest by is^, so tliat we shall have

Qr -{- 4s =— 6r — 4s, or 12r + 8s ~ 0; so that

12r
s = — — — Ir. We might also suppose the root to be

r^ — 2rs -j- 5^, and make the formula equal to its square

r* — 41 ^s -\- 67-^ s^ — 4}-s^ -f- s'^; the first and the last two
terms being thus destroyed on both sides, we should have,

by dividing the other terms by r^Sf 4r — Gs = — 4r + 65,

or 8;- —. V^s\ consequently, r — \s ; so that by this second

supposition, (if r = 3, and # = 2, we shall find a'=— 119,

or a negative value.

But let us make r zz l^s + t, and we shall have for our

formula
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Therefore r' = ^l^s* + y&H + ^qsW + Qtst^ -\- t*

+ 4r^* = ys' + 27sH + 18*^^- + 4>st^

— 4>?-s^ = — (js* — 4>sH

+ s' = + s*; and, consequently, the formula will

, 1 . 37 , 51
^ 16 + ~2''^ + T^'^ + ^^''^' + ^*-

This formula ought also to be a square, if multiplied by
16, by which means it becomes

s^ + '296sH 4- 408A'=f -j- 160sP -f 16^*.

Let us make this equal to the square of 5^
-f- 1485^ — 4^",

that is, to 6* -f 296s't + 9A8dGsH- - MMsf + 16^+ ; the
first two terms, and the last, are destroyed on both sides,

and we thus obtain the equation

21896* — 1 184^ = 408s -f imt, which gives

s
-— I 3 44. _OJL ^ *_

/ 2I4-S8 S37Z I34-3*

Therefore, since s = 84, and t = 1343, we shall have
r =z \s -\- 1 = 1469, and, consequently.

— -..+X z= 7 6;V + 5* = 4565486027761, and

y = 4r's - 4>rs' - 1061G52293520

CHAP. XV.

Solutions ofsome Questions, i7i which Cubes a?-e requ'nrd.

241. In the preceding chapter, we have considered some
questions, in which it was required to transform certain

formula? into squares, and they afforded an opportunity of
explaining several artifices requisite in the application of the

rules which have been given. It now remains, to consider

questions, which relate to the transformation of certain

formulas into cubes; and the following solutions will throw
some light on the rules, which have been already explained
for transformations of this kind.

242. Qjiestion 1. It is required to find two cubes, x%
and if, whose sum may be a cube.

Since x^ + y^ must be a cube, if we divide this formula
by 3/3, the quotient ought likewise to be a cube, or

x^ X-— 4-1 = 0. If, therefore, — = ~ — 1, we shall have
.r ' y

G G
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^3 _ 3r.2 _|_ 3^; — 13 :r c. If wc should here, according to

the rules already given, suppose the cube root to be z— u, and,

by comparing the formula with the cube z^—Quz'^-\-3irz— u^,

determine ic so, that the second term may also vanish, we
should have ti = 1 ; and the other terms forming the equa-

tion 3z = Sit'z — u^ = Qz — 1, we should find z = cc,

from which we can draw no conclusion. Let us therefore

rather leave u undetermined, and deduce z from the qua-

dratic equation — oz^ -\- 3z = — Quz^ -\- Qu'z — w\ or

Suz'--3z''= Su!'z-3z-ti\ or Q{u-l)z''= 3{u^-l)z~n\ or

z'^ =: Ut 4- l)z -^ rr, r: ; from this we shall find
^ 6{u—l)

^^-~^ ^ '^^
4 3{u-iy

u + 1 _ -u^+Su'—Su-S^
, ,

or z = —^— + a/( -.Q. _^ ) ; so that the ques-

tion is reduced to transforming the fraction under the radical

sign into a square. For this purpose, let us first multiply

the two terms by S{u — 1), in order that the denominator

becoming a square, namely, i]6{ii — 1)'^, we may only have

to consider the numerator — 3?** + 12?*^ — ISii^ -\- 9 : and,

as the last term is a square, we shall suppose the formula,

according to the rule, equal to the square of ^w" +Jic -|- 3,

that is, to g-tt^ + Qfg7i' -\-f'u^ -f Ggu"" + 6/w -f 9.^ We
may make the last three terms disappear, by putting (}f~ 0,

ox f-=z 0, and Qg +y- = — 18, or ^ r= — 3; and the

remaining equation, namely,

— 3z^ + 12 = ghi + 2fu = 9u,

will give ?< r: 1. But from this value we learn nothing; so

that we shall proceed by writing u = \ + t. Now, as our

formula becomes in this case — I2t ~ St\ which cannot be

a square, unless t be negative, let us at once make t = — s;

by these means we have the formula 12* — 3^*, which be-

comes a square in the case of s = 1. But here we are

stopped again; for when * = 1, we have ^ = — 1, and

u = 0, from which we can draw no conclusion, except that

in whatever manner we set about it, we shall never find

a value that will bring us to the end proposed ; and hence

we may already infer, with some degree of certainty, that

it is impossible to find two cubes whose sum is a cube.

But we shall be fully convinced of this from the following

demonstration.

243. Theorem. It is impossible to find any two cubes,

whose sum, or difference, is a cube.
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We sliall begin by observing, that if this impossibility

applies to the sum, it applies also to the difference, of two
cubes. In fact, if it be impossible for x^ + j/^ = z^, it is

also impossible for z^ — 3/^ = x^. Now, 2^ — ?/^ is the dif-

ference of two cubes ; therefore, if the one be possible, the

other is so likewise. This being laid down, it will be suf-

ficient, if we demonstrate the impossibility either in the case

of the sum, or difference ; which demonstration requires the
following chain of i*easoning.

1 . We may consider the numbers x and y as prime to

each other; for if they had a common divisor, the cubes
would also be divisible by the cube of that divisor. For
example, let x zz ma, and j/ rz mb, ^ve shall then have
x^ + y^ = m?a? -\- iix'h^ ; now if this formula be a cube,

a^ -j- 6^ is a cube also.

2. Since, therefore, x and y have no common factor, these

two numbers are either both odd, or the one is even and the

other odd. In the first case, z would be even, and in the

other that number would be odd. Consequently, of these

three numbers x^ y, and z, there is always one which is

even, and two that are odd ; and it will therefore be suf-

ficient for our demonstration to consider the case in which x
and y are both odd : because we may prove the impossibility

in question either for the sum, or for the difference ; and
the sum only happens to become the difference, when one of
the roots is neoative.

3. If therefore x and y are odd, it is evident that both
their sum and their difference will be an even number.

Therefore let —^ = p, and —-~ = q, and we shall have

X — p -{- q, and y rz p — q ; whence it follows, that one of
the two numbers, p and q, must be even, and the other odd.
Now, we have, by adding {p -{- qY = x^, to (/; — qY = y^,
jps + y = 2^3 + 6pq^=2p{p" + 3q^); so that it is required

to prove that this product ^p{p^- + Sq") cannot become a
cube; and if the demonstration v/ere applied to the dif-

ference, we should have x^ ~y^= 6p^q-\- 9,q^ = Qq{q'^+ Sp"),

a formula precisely the same as the former, if we substitute

p and q for each other. Consequently, it is sufficient for

our purpose to demonstrate the impossibility of the formula

^p{p- + ^q"), since it will necessarily follow, that neither

the sum nor the difference of two cubes can become a

cube.

4. If therefore 2p{p^ + Sq"") were a cube, that cube
would be even, and, con.sequently, divisible by 8: con-

V. G 2
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sequently, the eighth part of our formula, or ^p{p' + Sg"),

would necessarily be a whole number, and also a cube.

Now, we know that one of the numbers p and q is even,

and the other odd ; so that /?^ -\- 3q^ must be an odd
number, which not being divisible by 4, p must be so, or

J- must be a whole number.
4

5. But in order that the product -^pip" + Sg"^) may be a

cube, each of these factors, unless they have a common
divisor, must separately be a cube ; for if a product of two

factors, that are prime to each other, be a cube, each of itself

must necessarily be a cube ; and if these factors have a

common divisor, the case is different, and requires a par-

ticular consideration. So that the question here is, to know
if the factors p, and p- + 3g^', might not have a common
divisor. To determine this, it must be considered, that if

these factors have a common divisor, the numbers p", and
p" + ^g"i will have the same divisor ; that the difference

also of these numbers, which is 3g", will have the same com-
mon divisor with p- ; and that, since p and g are prime to

each other, these numbers p'', and 3q-^ can have no other

common divisor than 3, which is the case when p is divisible

6. We have consequently two cases to examine : the one is,

that in which the factors p, and p" -\- 3ry'^, have no common
divisor, which happens always, when p is not divisible by 3 ;

the other case is, when these factors have a common divisor,

and that is when p may be divided by 3; because then the

two numbers are divisible by 3. We must carefully distin-

guish these two cases from each other, because each requires

a particular demonstration.

7. Case 1. Suppose that p is not divisible by 3, and,

consequently, that our two factors —-, and p^ + Sg^, are

prime to each other ; so that each must separately be a cube.

Now, in order that p^ + Sg" may become a cube, we have
only, as we have seen before, to suppose

P+j7a/—3= (^fw^/— 3)\ and p - q ^/—3= {t-n ^/— 3f,
which gives p"- + 3q- = [l- + Qu-y, which is a cube, and
gives usp = i^ — Qtn" = t{t" — 9i("), also

q = Qf^u — 3m^ = 3u{t- - u"). Since therefore g is an odd
number, u must also be odd; and, consequently, t must be
even, because otherwise P — u- would be even.

8. Having transformed p" + 3q'- into a cube, and having
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SOfound p = t{t- - 9u-) = t{i + Su) X {i— 3u), it is al

required that -^, and consequently 2/?, be a cube; or,

M'liich comes to the same, that the formula

^/{t + 3u) X {t — 3m) be a cube. But here it must be ob-

served that t is an even number, and not divisible by 3

;

since otherwise j9 would be divisible by 3, which we have

expressly supposed not to be the case: so that the three

factors, % t + 3m, and t — 3z^ are prime to each other

;

and each of them must separately be a cube. If, therefore,

we make t + 3m —f^, and ^ — Sm = g^, we shall have

^t =f^ + g'^. So that, if 2t is a cube, we shall have two

cubes/', and g^, wliose sum would be a cube, and which

would evidently be much less than the cubes x^ and y^ as-

sumed at first; for as we first made .r=p + q, and ^=p— q,

and have now determined^ and q by the letters t and u, the

numbers x and j/ must necessarily be much greater than

t and u.

9. If, therefore, there could be found in great numbers

two such cubes as we require, we should also be able to

assign in less numbers two cubes whose sum would make a

cube, and in the same manner we should be led to cubes

always less. Now, as it is very certain that there are no

such cubes among small numbers, it follows that there are

not any among the greater numbers. This conclusion is

confirmed by that which the second case furnishes, and which

will be seen to be the same.

10. Case % Let us now suppose, that p is divisible by

3, and that q is not so, and let us make p = 3?- ; our formula

3r
will then become -r- x (Or^ + S^-), or "^iXor^ + q^) ; and

these two factors are prime to each other, since ?>r"- + q^ is

neither divisible by 2 nor by 3, and- r must be even as well

as f ; therefore each of these two factors must separately be

a cube.

11. Now, by transforming the second factor 3r- + 5", or

q- + 3r^, we find, in the same manner as before,

q = t{e — 9m^), and r — 3u{t'' - m") ; and it must be ob-

served, that since q was odd, t must be here likewise an odd

number, and u must be even.

12. But -7- must also be a cube ; or multiplying by the

cube j?y, we must have -^, or
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2u(t'^ — 11^) = 2u{t -{-u) X {t — u) a cube ; and as these

three factors are piime to each other, each must of itself be

a cube. Suppose therefore t -\- ti =y ^ and t — u = g^,

we shall have ^u =y^ — g^ ; that is to say, if 2u were a

cube,y^ — g^ would be a cube. We should consequendy

have two cubes, f^ and g^, much smaller than the first,

whose difference would be a cube, and that would enable us

also to find two cubes whose sum would be a cube ; since

.

we should only have to makey^ — g^ = Jr, in order to have
y-'^ n: /i'^ -j- ^3^ or a cube equal to the sum of two cubes.

Thus, the foregoing conclusion is fully confirmed ; for as we
cannot assign, in great numbers, two cubes whose sum or

difference is a cube, it follows from what has been before

observed, that no such cubes are to be found among small

numbers.

244. Since it is impossible, therefore, to find two cubes,

whose sum or difference is a cube, our first question falls to

the ground : and, indeed, it is more usual to enter on this

subject with the question of determining three cubes, whose

sum may make a cube ; supposing, however, two of those

cubes to be arbitrary, so that it is only required to find

the third. We shall therefore proceed immediately to this

question.

245. Question 2. Two cubes fJ, and b\ being given, re-

quired a third cube, such, that the three cubes added to-

gether may make a cube.

It is here required to transform into a cube the formula

a^ 4- b^ -i- x^; which cannot be done unless we already

know a satisfactory case; but such a case occurs imme-

diately ; namely, that o£ x = — a. If therefore we make
X = y — a, we shall have x'^ — if — Say"- -f- 3a't/ — a^ ;

and, consequently, it is the formula ^c" — ^ai/^ + 3a"i/ + b^

that must become a cube. Now, the first and the last term

here being cubes, we immediately find two solutions.

1. The first requires us to represent the root of the

formula by ?/ + b, the cube of which is i/'-\-Sbi/~ + Sb^y+ b'^ ;

and we thus obtain —So?/ -f 3a- = 3bj/ + 36s and, con-

^ 7 2

sequently, t/ = r- =:: a — b; but x = — b, so that this

solution is of no use.

2. But we may also represent the root hyjy + ^j the

cube of which isJ'Y + ^^f^f + ^b"fi/ + b\ and then de-

terminey in such a manner, that the third terms maybe

destroyed, namely, by making 3a'- = 36;/,' or /' = -j^ ; lor
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we thus arrive at the equation

y - 3a =f\^ + Shf" =z -^ -1- — , which multipUed by h\

becomes b'^y - Qab^ = a^y + 3aV>'. This gives

y = W^a^~= ~l^^a~ = jFr73'and,consequently,

2ab'+a^ 2b^+ a^ ^
,X = if — a = -^-. r- = a X -r. 7 . So that the two^

b^ — a^ b^ — a^

cubes a^ and b^ being given, we know also the root of the

third cube sought ; and if we would have that root positive,

we have only to suppose &' to be greater than g3. Let us
apply this to some examples.

1. Let 1 and 8 be the two given cubes, so that a = \,

and 6 = 2; the formula 'd -\- x^ will become a cube, if

X = L7
; for we shall have ^ -\- x- = ^Vt =

(
V°)'-

% Let the given cubes be 8 and 27, so that a = 2,
and 6 r= 3 ; the formula 35 -{- x^ will be a cube, when
^ — 124

"^"^ *

3. If 27 and 64 be the given cubes, that is, if « = 3,

and 6 = 4, the formula 91 + -^^ will become a cube, if
^ — 46 5

And, generally, in order to determine third cubes for

any two given cubes, we must proceed by substituting

2«63+a* . -, o • ^

—Tx
:

—\- z mstead of x, in the formula a^ + b^ + x^i
«*

—

a^

for by these means we shall arrive at a formula like the pre-

ceding, which would then furnish new values of z ; but
it is evident that this would lead to very prolix cal-

culations.

246. In this question, there likewise occurs a remarkable
case ; namely, that in wliich the two given cubes are equal,

or a = 5 ; for then we have x = jr- = go ; that is, we have

no solution ; and this is the reason why we are not able to

resolve the problem of transforming into a cube the formula
2a^ + x^. For example, let a = 1, or let this formula be
2 + x^, we shall find that whatever forms we give it, it will

always be to no purpose, and we shall seek in vain for a
satisfactory value of x. Hence, we may conclude with

sufficient certainty, that it is impossible to find a cube equal

to the sum of a cube, and of a double cube ; or that the

equation 2«^
-f- x^ = if is impossible. As this equation
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gives 2a^ =y/^ — x^, it is likewise impossible to find two

cubes having their difference equal to the double of another

cube ; and the same impossibility extends to the sum of

two cubes, as is evident from the following demonstration.

247. Theorem. Neither the sum nor the difference of

two cubes can become equal to the double of another cube ;

or, in other words, the formula a;^ ± y^ =: Sz^ is always

impossible, except in the evident case ofj/ = x.

We may here also consider x and y as prime to each

other; for if these numbers had a common divisor, it would

be necessary for z to have the same divisor; and, con-

sequently, for the whole equation to be divisible by the cube

of that divisor. This being laid down, as x'^ + y^ must be

an even number, the numbers x and y must both be odd, in

consequence of which both their sum and their difference

must be even. Making, therefore, —r^ =p, and ^ = q,

we shall have x = p -\- q and ?/ = /> ~ 9 '> ^"d of the two
numbers^? and q, the one must be even and the other odd.

Now, from this, we obtain

a;3 -f ?/- = 2/?3 -f Gpq"- = 2/;( p^ -[- Sf?^),

and ^' — j/5 = ^P'^ -\- %^ = 2g'(3/)''-|- g'),

which are two formulae perfectly similar. It will therefore

be sufficient to prove that the formula ^j){p'^ + Sq^) cannot
become the double of a cube, or that p{p' + Qq') cannot

become a cube : which may be demonstrated in the follow-

ing manner.
1. Two different cases again present themselves to our

consideration : the one, in which the two factors y?, and
p^ -\- 2tq-, have no common divisor, and must se[)arately be

a cube ; the other in which these factors have a common
tlivisor, which divisor, however, as we have seen (Art.

243), can be no other than 3.

% Case 1. Supposing, thereft)re, that p is not divisible by
3, and that thus the two factors are prime to each other, we
shall first reduce p'^-\-3q~ to a cube by making p - t(l'- — 9w'-),

and q — Qu{t" — 9m^) ; by which means it will only be far-

ther necessary for 2> to become a cube. Now, t not being

divisible by 3, since otherwise ;; would also be divisible by 3,

the two factors t, and P — du-, are prime to one another,

and, consequently, each must separately be a cube.

3. But the last factor has also two factors, namely ^ + 3//,

and t — ilii, which are prime to each other, first because ^is

not divisible by 3, and, in the second place, because one of
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the numbers t or u is even, and the other odd ; for if these

numbers were both odd, not only /), but also q, must be odd,

which cannot be : therefore, each of these two factors, t-rSu,

and t — 3i{, must separately be a cube.

4. Therefore let t + Su —f^, and t — ou = g^, and we
shall then have 9.t =f^ + g^. Now, t must be a cube,

which we shall denote by /i"*, by which means we must have
y:; _|_^3 _ 0/^3 . consequently, we should have two cubes

much smaller, namely, y^ and g^, whose sum would be the

double of a cube.

5. Case 2. Let us now suppose p divisible by 3, and,

consequently, that q is not so.

If we inake ;> = 3r, our formula becomes
3/-(9?'- + 35^) — 9r(3/-- + <7-), and these factors being now
numbers prime to one another, each must separately be a

cube.

6. In order therefore to transform the second q" + 3r^,

into a cube, we shall make qrzt(p—Siiir), and r— 3i<^(^"— m'^) ;

and again one of the numbers t and ic must be odd, and the

other even, since otherwise the two numbers q and r would
be even. Now/ from this we obtain the first factor

9r = ^iu[t- — ti") ; and as it must be a cube, let us divide

it by 27, and the formula M(i!'^ — n-), or u(t + u) x {t — ii),

must be a cube.

7. But these three factors being prime to each other, they

must all be cubes of themselves. Let us therefore suppose

for the last two f -\- u =y^, and t — tt = g-\ we shall then

have Qn =y^ —
ff'^ ; but as u must be a cube, we should in

tlfis way have two cubes, in much smaller numbers, whose
difference would be equal to the double of another cube.

8. Since therefore we cannot assign, in small numbers, any
cubes, whose sum or difference is the double of a cube, it

is evident that there are no such cubes, even among the

greatest numbers.

9. It will perhaps be objected, that our conclusion might
lead to error; because there does exist a satisfactory case

among these small numbers ; namely, that ot'J'=g\ But
it must be considered that wheny— g\ we have, in the first

case, t -J- 5u = t — Su, and therefore u rz ; consequently,

also q z=iO; and, as we have supposed x = p -^ q, and
7/ = p — q, the first two cubes, x^ and ?/^, must have already

been equal to one another, which case was expressly ex-

cepted. Likewise, in the second case, lij'zzg, we must
have t -\- u =:.t — u, and also ?t = : therefore r = 0, and

jj — Q., so that the first two cubes, x^ and y^, would again
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become equal, which does not enter into the subject of the

problem.

248. Question 3. Required in general three cubes, j;', 3/',

and s^, whose sum may be equal to a cube.

We have seen that two of these cubes may be supposed to

be known, and that from them we may determine the third,

provided the two are not equal ; but the preceding method
furnishes in each case only one value for the third cube, and
it would be difficult to deduce from it any new ones.

We shall now, therefore, consider the three cubes as un-

known ; and, in order to give a general solution, let us make
x^ -\-i/^ + z^ = v\ Here, by transposing one of the terms,

we have x^ -\- tj^ z= v^— z^, the conditions of which equa-

tion we may satisfy in the following manner.

1. Let X == p -j- q, and y — p — q, and we shall have, as

before, x^ -^if — %p{p~ -|- ^q°). Also, let v — r -\-s, and
2 = r— 5, which gives v^ — z^ == 9>s{s^ -\- Qr~) ; therefore

we must have 9,p{p^ •\- ^q-) — 2s[s'^ + 3r^), or

^j(p" + Sg--) - s{s- + 3r2).

2. We have already seen (Art. 176), that a number, such

as p- + 3^^ can have no divisors except numbers of the

same form. Since, therefore, these two formula, /)^ + 3^*^,

and s' + 3r', must necessarily have a common divisor, let

that divisor be t^ -\- 3u-.

3. And let us, therefore, make
p"' + 3^2 -= (j-i ^ 3^2) X {t^ + Su"'), and

s"~ -j- 3r2 = (/i^ + 3k"-) X {t^ + Sit'),

and we shall have p =J'i + 3g'7i, and q = gt —fu ; con-

sequently, p- =J'-t'^ + Wgf^^'' + ^g'u'^i and
q^ = gH^ — 2fg-tu -{-f-ii^ ; Avhence,

_p2 + 3g,. = (y 2 + 3^2)^2 j_ (3/--- + 9g"-)M2 . or

4. In the same manner, we may deduce from the other

formula, s = lit -\- oku, and r = kt — 7m ; whence results

the equation,

{ft + 3gu) X (/^ + 3^"^) X (t' + 3n"-) =
{ht + 3ku) X (/i^ + 3k'') X (;!'- + 3ii''),

which being divided by t^ + 3?/", and reduced, gives

Mr- + 3^"^) + 3gu (/^ + 3^^) =
ht{h^ + 3^-2) + 3ku{h"' + 3k^), or

3/m(/i^ + 3k"') - 3gu{f^ + 3g%

^ w^ . 3k{lf-^3k"-)-3g{f- + 3g"-)

by which means t = 7(7qr3^ipA(7,-^T3^"'
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5. Let us now remove the fractions, by making

u =f{p + 3^"') - li{h" + 3A;2) ; then

t = Uih- + 2k^) - Qffir- + Sg%
wliere we may give any values whatever to the letters j^ g,

h, and Jc.

(j. When tlierefore we have determined, from these four

numbers, the values of t and u, we shall have

r = hi — hu, s = hi -j- Shu ;

whence we shall at last arrive at the solution of the question,

X =
J)

-\- q, y = p — g, z = r ~ s, and v = r -\- s ; and

this solution is general, so far as to comprehend all the

possible cases, since in the whole calculation we have ad-

mitted no arbitrary limitation. The whole artifice con-

sisted in rendering our equation divisible by f^ -|- Su^ ; for

we have thus been able to determine the letters t and 7c by
an equation of the first degree : and innumerable applica-

tions may be made of these formulae, some of which we shall

give for the sake of example.

1. Let k = 0, and h =. 1, we shall have

t = — 3^(/- + 3o2), and u = f(f" + 3^^) — 1 ; so that

P=-mf' + %"') -h¥g{r+ ?>g') - 3^-, or ;. = - Sg

;

r = —J'if^ + 3^'-) -}- 1 ; consequently,

^ = (% -/) X (/'^ + %'^) + 1

'

lastly, v=- {3g +/) x (/"- + 2>g-) + L
If we also supposey= — 1, and g = -\- 1, we shall have

.r =— 20, ?/ — l4, z = 17, and v =— 7; and thence re-

sults the final equation, - 20^ + 14* + 17^ = — V, or

143 + 173 + 7' = 20^
2. LetjT— % g = Ij and consequently y^ + Sg^ = 7;

farther, h = 0, and 7c = 1; so that h- + Qk"^ = 3 ; we shall

then have t =—12, and ?/ = 14 ; so that

p = 2t +3u = 18, q = t — 2u =— 40,

r=t=-l'2, and s = Sit = 42.

From this will result

X z= p + q =— 9>2, 7/ = p — q = 58,

z = r — s =~ 54, and v = r + s = 30;

therefore, 30^ = 22^ + 58" — 54^ or

583 _- 303 ^ 54,3 ^ 223

.

and as all these roots are divisible by 2, we sliall also have

293 = 153 + 273 + IP.
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3. Lety= S, g = 1, /a = 1, and Z; = 1 ; so that

f"- +Qg^ = 12, 7i" + 3^^ = 4 ; also t = - U, and u = 32.

Here, these two values being divisible by 8, and as we con-

sider only their ratios, we may make t = — S, and u = 4.

Whence we obtain

p = Si + Su = + 3, g = t - Su = - 15,

r = t —tt =:—• '7, and s — t + Su = + 9

;

consequently, x = — 12, and ?/ = 18,

z = — 16, and v = 2,

whence - IS^ + 18^ - 16' = 2\ or 18' = 16^ -f 12^ + 2^
or, dividing by the cube of % 9^ = 8^ 4" 6^ "h 1^*

4. Let us also suppose g zz 0, and Tc = h, by which
means we leavey and It undetermined. We shall thus have

f" 4- Sg" -f~, and h"- + 3A'2 - 4/i2 ; so that t - l'^h\ and
n =/3 - 4/i3 ; also, p = st ^ \2fh\ q = —f* + 4/7i^

r = Wt^ - Jif^ + 47*^ = 16/i* - hf% and * = &if' ; lastly,

.r = JO + ^ = 16/7i' —/^ y=p-q^ ^fW +f\
z = r - s = 16h* - 4/</"', andy = r + s = 16¥ +2hjf\

If we now makey= h = 1, Ave have j; = 15, y = 9, 2 = 1-,

and t> = 18 ; or, dividing all by 3, x = 5, ij = 3, z = 4,

and V = 6 ; so that 3"' -\- 4^ -j- 5^ = 6\ The progression

of these three roots, 3, 4, 5, increasing by unity, is worthy
of attention ; for which reason, we shall investigate whether
there are not others of the same kind.

249. Question 4. Required three numbers, whose dif-

ference is 1, and forming such an arithmetical progression,

that their cubes added together may make a cube.
Let X be the middle number, or term, then x — 1 will be

the least, and x -\r\ the greatest ; the sum of the cubes of
these three numbers is 3a;^ -{- Qx ~ 3x{x- -f 2), which must
be a cube. Here, we must previously have a case, in which
this property exists, and we find, after some trials, that that

case IS X •=. 4i.

So that, according to the rules already given, we may
make a: = 4 4- ?/ ; whence j?- = 1 6 -j- 8j/ -{- y\ and
j;3 — g4 _j_ 48^ _|_ ;i2j/- -\- 3/3, and by these means our
formula becomes 216 + 15% + 36j/2 -f 3y\ in which the
first term is a cube, but the last is not.

Let us, therefore, suppose the root to be 6 +j^, or the
formula to be 216 -|- 108;^ + WY -VfY^ and destroy
the two second terms, by writing 108/"= 150, ovf— \^\
the other terms, divided by y-, will give

36 ^- 3y = 18/^ -f/V =^ +g-3.y, or
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183 X S6 + 18^ X 3e/ = 18^ x 25^ + 25^?/, or

18^ X 36 - 18^ X 25'= 25'i/— 183 x Si/; therefore

_ 183 ^ 36 - 18"- X 25^_ 18"- x (18 x 36 — 25^)

^ ~~ 253 _ 3 X 183 - 053 _ ^ ^3 '
that

— 324x23 -7452
IS,

J/ - ^^— = "~1871 ' '
consequently, x=^^\}^.

As it might be difficult to pursue this reduction in cubes,

it is proper to observe, that the question may always be re-

duced to squares. In fact, since 3x{x" + 2) must be a

cube, let us suppose 3x{cV^ -j- 2) = a^^tj^ ; dividing by ^, we
shall have 3x~ -{ Q = x'^-if' ; and, consequently,

x" =. 2^= 77-^ T7,. Now, the numerator of this frac-
yp' — o by — 1

8

tion being already a square, it is only necessary to transform

the denominator, 6?/"' — 18, into a square, which also re-

quires that we have already found a case. For this purpose,

let us consider that 18 is divisible by 9, but 6 only by 3,

and that j/ therefore may be divided by 3 ; if we make

y = Sz, our denominator will become 162^3 — 18, which

being divided by 9, and becoming 18s^ — 2, must still be a

square. Now, this is evidently true of the case z = 1. So

that we shall make z ~1 + v, and we must have

16 + 54i; + 54u'- + 18^3 = d. Let its root be 4 + yv,
the square of which is 16 -\- 54i7 -\- VV^^ and we must have

54 4- 18f = '-^ ; or 18z; =— VV? or ^v=- 1^; and,

consequently, v = — ||^ ; which produces z =^1 + v = -fl,

and then 3/ = —.
Let us now resume the denominator

6^/3 _ 18 = 162^3 — 18 = 9(18^3 - 2)

;

and since the square root of the factor, 18^3 __ 2, is

4 -1- y t; = -1^1., that of the whole denominator is -|4t • ^^*

the root of the numerator is 6 ; therefore x = j^^ = ^l-^, a

value quite different from that which wc found before. It

follows, therefore, that the roots of our three cubes sought

are x — 1 = ^th ^ = H-h -^ + 1 = t^ '• and the sum of

the cubes of these three numbers will be a cube, whose root,

J-,, — ^ 5 6^ y LL — 13056 408
•''J/» 10'7 ^3 2 3 4-T4: ro"T*

250. We shall here finish this Treatise on the Indeter-

minate Analysis, having had sufficient occasion, in the ques-

tions which we have resolved, to explain the chief artifices

that have hitherto been devised in this branch of Algebra.
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QUESTIONS FOR rRACTICE.

1. To divide a square number (16) into two squares.

A?is. Vt^ and W.
2. To find two square numbers, whose difference (60) is

given. Jjis. 72i, and 132^.

3. From a number x to take two given numbers 6 and 7,

so that both remainders may be square numbers.
IllAns. X j-g .

4. To find two numbers in proportion as 8 is to 15, and
such, that the sum of their squares shall make a square

numl)er. Ans. 516, and 1080.

5. To find four numbers such, that if the square number
100 be added to tlie product of every two of them, the sum
shall be all squares. A71S. 12, 32, 88, and 168.

6. To find two numbers, whose difference shall be equal

to the difference of their squares, and the sum of their squares

a square number. Ans. 4, and ^.

7. To find two numbers, whose product being added to

the sum of their squares, shall make a square number.
Jns. 5 and 3, 8 and 7, 16 and 5, &c.

8. To find two such numbers, that not only each number,
but also their sum and their difference, being increased by
unity, shall be square numbers. Ans. 3024, and 5624.

9. To find three square numbers such, that the sum of
their squares shall be a square number.

A71S. 9, 16, and '^Y-
10. To divide the cube number 8 into three other cube

numbers. Ans. |-^, ^y , and 1.

11. Two cube numbers, 8 and 1, being given, to find two
other cube numbers, whose difference shall be equal to the
sum of the given cubes. Ans. y^°°, and "tUJ.

12. To find three such cube numbers, that if 1 be sub-
tracted from every one of them, the sum of the remainders
shall be a square. Ans. j^^-}, VtW 5 and 8.

13. To find two numbers, whose sum shall be equal to

the sum of their cubes. Ans. f, and
-f.

14. To find three such cube numbers, that the sum of
them may be both a square and a cube.

/In <f 1 2084-383 15252992
'^"<'- -Ij TT +^iT' aT+6'aT '



ADDITIONS

BY

M. DE LA GRANGE.

ADVERTISEMENT.

The geometricians of the last century paid gx'eat atten-

tion to the Indeterminate Analysis, or what is commonly
called the Dlophant'me Algebra; but Bachet and Fermat
alone can properly be said to have added any thing to what

Diophantus himself has left us on that subject.

To the former, we particularly owe a complete method
of resolving, in integer numbers, all indeterminate problems

of the first degree * : the latter is the author of some methods

for the resolution of indeterminate equations, which exceed

the second degree
-f*;

of the singular method, by which we
demonstrate that it is impossible for the sum, or the dif-

ference of two biquadrates to be a square \ ; of the solution of

a great number of very difficult problems ; and of several

admirable theorems respecting integer numbers, which he

left without demonstration, but of which the greater part has

since been demonstrated by M. Euler in the Petersburg

Commentaries ||.

* See Chap. 3, in these Additions. I do not here men-
tion his Commentary on Diophantus, because that work, pro-

perly speaking, though excellent in its way, contains no dis-

covery.

t These are explained in the 8th, 9th, and 10th chapters of

the preceding Treatise. Pere Billi has collected them from dif-

ferent writings of M. Fermat, and has added them to the new

edition of Diophantus, published by M. Fermat, junior.

X This method is explained in the 13th chapter of the pre-

ceding Treatise; the principles of it are to be found in the Re-

marks of M. Fermat, ontheXXVIth Question of the Vlth Book

of Diophantus.

II
The problems and dieorems, to which we allude, are
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In the present century, this branch of analysis has been

almost entirely neglected ; and, except M. Euler, I know no

person who has applied to it: but the beautiful and nu-

merous discoveries, which that great mathematician has

made in it, sufficiently compensate for the indifference

which mathematical authors appear to have hitherto enter-

tained for such researches. The Commentaries of Peters-

burg are full of the labors of M. Euler on this subject,

and the preceding Work is a new service, which he has ren-

dered to the admirers of the Diophantine Algebra. Before

the publication of it, thei-e was no work in which this science

was treated methodically, and which enumerated and ex-

plained the principal rules hitherto known for the solution

of indeterminate problems. The preceding Treatise unites

both these advantages : but in order to make it still more
complete, I have thought it necessary to make several Ad-
ditions to it, of which I shall now give a short account.

The theory of Continued Fractions is one of the most
useful in arithmetic, as it serves to resolve problems with

facility, which, without its aid, would be almost unmanage-
able ; but it is of still greater utility in the solution of inde-

terminate problems, when integer numbers only are sought.

This consideration has induced me to explain the theory of

them, at sufficient length to make it understood. As it is

not to be found in the chief works on arithmetic and algebra,

it must be little known to mathematicians ; and I shall be
happy, if I can contribute to render it more familiar to them.

At the end of this theory, which occupies the first Chapter,

follow several curious and entirely new problems, depending
on the truth of the same theory, but v/hich I have thought
proper to treat in a distinct manner, in order that their

solution may become more interesting. Among these will

particularly be remarked a very simple and easy method of

reducing the roots of equations of the second degree to Con-
tinued Fractions, and a rigid demonstration, that those frac-

tions must necessarily be always periodical.

The other Additions chiefly relate to the resolution of in-

scattered through the Remarks of M, Fermat on the Questions

of Diophantus ; and through his Letters printed in the Opera

Mathematica, &c. and in the second volume of the works of

Wallis.

There are also to be found, in the Memoirs of the Academy
of Berlin, for the year 1770, & seq. the demonstrations of some
of this author's theorems, which had not been demonst'rated

before.
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determinate equations of tlio first and second degree ; for

these I give new and general methods, both for the case in

which the numbers are only required to be rational, and for

that in which the numbers sought are required to be integer

;

and I consider some other important matters relating to the

same subject.

The last Chapter contains researches on the functions *

which have this property, that the product of two or more
similar functions is always a similar function. I give a general

method for finding such functions, and shew their use in the

resolution of different indeterminate problems, to which the

usual methods could not be applied.

Such are the principal objects of these Additions, which

might have been made much more extensive, had it not been

for exceeding proper bounds ; I hope, however, that the sub-

jects here treated will merit the attention of mathematicians,

and revive a tase for this branch of algebra, which appears to

me very worthy of exercising their skill.

CHAPTER I.

CONTINUED FRACTIONS.

1. As the subject of Continued Fractions is not found in

the common books of arithmetic and algebra, and for this

reason is but little known to mathematicians, it will be pro-

per to begin these Additions by a short explanation of their

theory, wliich we shall have frequent opportunities to apply

in what follows.

In general, we call every expression of this form, a con-

tinuedjraction^

b
« + — . 1 ^

7^8^~+^ + ,&c.

* A term used in algebra for any expression containing a

certain letter, denoting an unknown quantity, however mixed
and compounded with other known quantities or numbers.

Thus, ax + yx; 2x— a V( ) ; 3x/ + ^/ (
—-=^),are al}

functions of x.

H H
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in which the quantities a, /3, y, $, &c. and b, c, d, &c. are

integer numbers positive or negative ; but at present we shall

consider those Continued Fractions only, whose numerators

6, c, d, &c. are unity ; that is to say, fractions of this form,

1 1

r^ + -+4+>&c.

a, /3, y, &c. being any integer numbers positive or negative

;

for these are, properly speaking, the only numbers, which are

of great utility in analysis, the others being scarcely any
thing more than objects of curiosity.

2. Lord Brouncker, I believe, was the first who thought
of Continued Fractions ; we know that the continued frac-

tion, which he devised to express the ratio of the circum-

scribed square to the area of the circle was this

;

but we are ignorant of the means which led him to it. We
only find in the Arithmetica injinitorum some researches on
this subject, in which Wallis demonstrates, in an indirect,

though ingenious manner, the identity of Brouncker's ex-

, . , . 3 X 3 X 5 X 5 X 7, &c. ^_ ,

pression to his, which is, ^—^—^

—

j^
—
r~Y~ ' "^^ there

also gives the general method of reducing all sorts of con-

tinued fractions to vulgar fractions ; but it does not appear

that either of those great mathematicians knew the principal

properties and singular advantages of continued fractions

;

and we shall afterwards see, that the discovery of them is

chiefly due to Huygens.
3. Continued fractions naturally present themselves, when-

ever it is required to express fractional, or imaginary quan-

tities in numbers. In fact, suppose we have to assign the

value of any given quantity a, which is not expressible by
an integer number ; the simplest way is, to begin by seeking

the Integer number, which will be nearest to the value of a,

and which will differ from it only by a fraction less than

unity. Let this number be a, and we shall have a — a equal

to a fraction less than unity ; so that will, on the
•' a— cc

contrary, be a number greater than unity: therefore let M
1

'
z= b ; and, as b must be a number greater than unity,
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we may also seek for the integer number, which shall be
nearest the value of h ; and this number being called /3, we
shall again have h — ^ equal to a fraction less than unity

;

1
and, consequently, '7

—

- will be equal to a quantity greater

than unity, which we may represent by c ; so that, to assign
the value of c, we have only to seek, in the same manner,
for the integer number nearest to c, which being represented
by 7, we shall have c — y equal to a quantity less than

1
unity ; and, consequently, —— will be equal to a quantity,

c y
d, greater than unity, and so on. From which it is evident,

that we may gradually exhaust the value of a, and that in

the simplest and readiest manner; since we only employ
integer numbers, each of which approximates, as nearly as
possible, to the value sought.

1 1
Now, since = b, we have «—« = —, and

a — a. b

a — a.-\- -z-', likewise, since -r—o= c, we have b= ^-\ ;

'

. 1
and, smce = d, we have, in the same manner,c—y ' '

1
<? = y + -Tj &c. ; so that by successively substituting these

values, we shall have

b

1

J +

«^=* + i4-i.

=«+4-.l ]

and, in general, «= a+ -^ ,
1 i

It is proper to remark here, that the numbers a, /3, y, &c.
which represent, as we have shewn, the approximate integer
values of the quantities a, 6, c, &c. may be taken each in
two different ways; since we may with equal propriety
take, for the approximate integer value of a given quantity,
either of the two integer numbers between which thatquan-

H H 2
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tity lies. There is, however, an essential difference between

these two methods of taking the approximate values, with

respect to the continued fraction which results from it : for

if we always take the approximate values less than the true

ones, the denominators ^, y, J, &c. will be all positive;

whereas they will be all negative, if we take all the ap-

proximate values greater than the true ones; and they

will be partly positive and partly negative, if the approximate

values are taken sometimes too small, and sometimes too

great.

In fact, if a be less than a, a ~ a will be a positive quan-

tity ; wherefore b will be positive, and |3 will be so likewise :

on the contrary, a— a will be negative, if a be greater than

a ; then b will be negative, and ^ will be so likewise. In

the same manner, if ^ be less than 6, 6 — /3 will always be

a positive quantity ; therefore c will be positive also, and,

consequently, also y ; but if /3 be greater than b, b — /3 will

be a negative quantity ; so that c, and consequently also y,
will be negative, and so on.

Farther, when negative quantities are considered, I un-

derstand by less quantities those which, taken positively,

would be greater. We shall have occasion, however, some-

times to compare quantities simply in respect of their ab-

solute magnitude; but I shall then take care to premise,

that we must pay no attention to the signs.

It must be remarked, also, that if, among the quantities

b, c, d, &c. one is found equal to an integer number, then

the continued fraction will be terminated ; because we shall

be able to preserve that quantity in it : for example, if c

be an integer number, the continued fraction, which gives

the value of a, will be

1 1

'^ c

It is evident, indeed, that we must take y = c, Avhich

gives d = = i = 00 ; and, consequently, <Z = oo

;

so that we shall have

7 -Tqo '

the following terms vanishing in comparison with the infinite
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quantity oc. Now, ^ = ^> wherefore we shall only have

1 1

"^ c

This case will happen whenever the quantity a is com-
mensurable ; that is to say, expressed by a rational fraction

;

but when a is an irrational, or transcendental quantity, then

the continued fraction will necessarily go on to infinity.

4. Suppose the quantity a to be a vulgar fraction,

—, A and B being given integer numbers; it is evident,
,

B

A
that the integer number, a, approachmg nearest to—, will

be the quotient of the division of a by b ; so that supposing

the division performed in the usual manner, and calling

a, the quotient, and c the remainder, we shall haveAC B
a = — ; whence h = —. Also, in order to have

B B c

the approximate integer value (3 of the fraction — , we have

only to divide D by c, and take /S for the quotient of this

division; then calling the remainder d, we shall have

D C
Z> — /S = —, and c = — . We shall therefore contmue'^

c D

to divide c by d, and the quotient will be the value of

the number y, and so on ; whence results the following

very simple rule for reducing vulgar fractions to continued

fractions.

Rule. First, divide the numerator of the given fraction

by its denominator, and call the quotient a ; then divide the

denominator by the remainder, and call the quotient /3;

then divide the first remainder by the second remainder,

and let the quotient be y. Continue thus, always dividing

the last divisor by the last remainder, till you arrive at a

division that is performed without any remainder, which must

necessarily happen when the remainders are all integer

numbers that continually diminish ; you will then have the

continued fraction
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^ y -h-f, &c.

which will be equal to the given fraetion,

5. Let it be proposed, for example, to reduce y^' to a

continued fraction.

First, we divide 1103 by 887, which gives the quotient 1,

and the remainder 216; 887 divided by 216, gives the

quotient 4, and the remainder 23 ; 216 divided by 23, gives

the quotient 9, and the remainder 9 ; also dividing 23 by 9,

we obtain the quotient 2, and the remainder 5 ; then 9 by

5, gives the quotient 1, and the remainder 4 ; 5 by 4, gives

the quotient 1, and the remainder 1 ; lastly, dividing 4 by 1,

we obtain the quotient 4, and no remainder ; so that the

operation is finished : and, collecting all the quotients in

order, we have this series 1, 4, 9, 2, 1, 1, 4, whence we
form the continued fraction

I I o 3 —. 1 I JL
Ts"? "^ + _(_ I

~"a
I ±
* ' 4-JL

6. As, in the above division, we took for the quotient the

integer number which was equal to, or less than, the fraction

proposed, it follows that we shall only obtain from that

method continued fractions, of which all the denominators

will be positive numbers.

But we may also assume for the quotient the integer

number, which is immediately greater than the value of the

fraction, when that fraction is not reducible to an integer,

and, for this purpose, we have only to increase the value of

the quotient found by unity in the usual manner ; then the

remainder will be negative, and the next quotient will ne-

cessarily be negative. So that we may, at pleasure, make the

terms of the continued fraction positive, or negative.

In the preceding example, instead of taking 1 for the

quotient of 1103 divided by 887, we may take 2; in which

case we have the negative remainder —671, by which we
must now divide 887; we therefore divide 887 by —671,

and obtain either the quotient — 1, and the remainder 216,

or the quotient — 2, and the remainder — 455. Let us take

the greater quotient — 1 : then divide the remainder —671
by 216; whence we obtain either the quotient —3, and the

remainder -23, or the quotient — 4, and the remainder

193. Continuing the division by adopting the greater

quotient —3, wc have to divide the remainder 216 by the
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remainder —23, which gives either the quotient — 9j and
the remainder 9, or the quotient —10, and the remainder
— 14, and so on.

In this way, we obtain

1103 _ _i_ 1
887- +-l-f-3+-L+,&e.

in which we see that all the denominators are negative.

7. We may also make each negative denominator po-

sitive by changing the sign of the numerator ; but we must
then also change the sign of the succeeding numerator ; for

it is evident that

Then we may also, if we choose, remove all the signs — in

the continued fraction, and reduce it to another, in which all

the terms shall be positive ; for we have, in general,

{f' +i+,&c.}={'^-l+T+;^+,&c.}

as we may easily be convinced of by reducing those two
quantities to vulgar fractions *.

We may also, by similar means, introduce negative terms

instead of positive ; for we have

f^+T+,&C. ='^ + l-T+-;ij+,&C.

whence we see, that, by such transformations, we may always

simplify a continued fraction, and reduce it to fewer terms

:

which will take place, whenever there are denominators equal

to unity, positive, or negative.

In general, it is evident, that, in order to have the con-

tinued fraction approximating as nearly as possible to the

1 V
* Thus, the mixed number, 1 A -= —-; therefore

V— 1 V—

1

and, consequently,
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value of the given quantity, we must always take a, ^, 7,

&c. the integer numbers which are nearest the quantities

a, 6, c, &c. whether they be less, or greater than those quan-

tities. Now, it is easy to perceive that if, for example, we
do not take for a the integer number which is nearest to a,

either above or below it, the following number ^ will neces-

sarily be equal to unity ; in fact, the difference between a

and a will then be greater than 4, consequently, we shall

have b = less than 2 ; therefore )3 must be equal to
a—

a

unity.

So that whenever we find the denominators in a con-

tinued fraction equal to unity, this will be a proof that we
have not taken the preceding denominators as near as we
might have done; and, consequently, that the fraction

may be simplified by increasing, or diminishing those de-

nominators by unity, which may be done by the preceding

formulae, without the necessity of going through the whole

calculation.

8. The method in Art. 4 may also serve for reducing

every irrational, or transcendental quantity to a continued

fraction, provided it be expressed before in decimals ; but as

the value in decimals can only be approximate, by aug-

menting the last figure by unity, we procure two limits,

between which the true value of the given quantity must

lie ; and, in order that we may not pass those limits, we
must perform the same calculation with both the fractions

in question, and then admit into the continued fraction

those quotients only which shall equally result from both

operations.

Let it be proposed, for example, to express by a con-

tinued fraction the ratio of the c'u-cumference of the circle to

the diameter.

This ratio expressed in decimals is, by the calculation of

Vieta, as 3,1415926535 is to 1 ; so that we have to reduce

, . . 3, 1415926535
^ .• i r .• 1 .1

the fraction
i nAQQAnnnQQ ^^ ^ contmued fraction by the

method above explained. Now, if we take only the fraction

3 14159
\ nnnnn ' ^^ ^^^ ^^^ quotients 3, 7, 15, 1, &c. and if we

, , n . 3, 14160 ^ ,

take the greater fraction nnnno^ ^^'^ ""^ ^"^ quotients J,

7, 16, &c. so that the third quotient remains doubtful;
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whence we see, that, in order to extend the continued frac-

tion only beyond three terms, we must adopt a value of the
circumference, which has more than six figures.

If we take the value given by Ludolph to thirty-five

decimal places, which is 3,14159, 26535, 89793, 23846,
26433, 83279, 50288 ; and if we work on with this fraction,

as it is, and also with its last figure 8 increased by imity, we
shall find the following series of quotients, 3, 7, 15, 1, 292,
1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, ], 84, 2, 1, 1, 15,

3, 13, 1, 4, 2, 6, 6, 1 ; so that we shall have

Circumference
= ^ + 7+ _i.

^'+i- + ,&c.

Diameter '' + 1-5

And as there are here denominators equal to unity, we may
simplify the fraction, by introducing negative terms, ac-

cording to the formula of Art. 7, and shall find

Circumference
;

—

± = 3 4- ±
Diameter ^ + tV_ •

T I + , &c.

Circumference ] ,

Diameter ~ 7 +T3 ^
1

294 + 3 +-^-3 + ,&c.

9. We have elsewhere shewn how the theory of continued
fractions may be applied to the numerical resolution of
equations, for which other methods are imperfect and in-

sufficient *. The whole difficulty consists in finding in any
equation the nearest integer value, either above, or below
the root sought ; and for this I first gave some general rules,

by which we may not only perceive how many real roots,

positive or negative, equal or uneqvial, the proposed equation
contains, but also easily find the limits of each of those roots,

and even the limits of the real quantities which compose the
imaginary roots. Supposing, therefore, that x is the un-
known quantity of the equation proposed, we seek first for
the integer number which is nearest to the root sought, and
calling that number a, we have only, as in Art. 3, to make

* See the Memoirs of the Academy of Berlin, for the years
1767 and 1768; and Le Gendre's Essai sur la Theorie des
Nombres, page 133, first edition.
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X = a -] ; ^, j/, 2, &c. representing here what was de-

noted in that article by a, 6, c, &c. and substituting this

value instead of x, we shall have, after removing the frac-

tions, an equation of the same degree in j/, which must have
at least one positive, or negative root greater than unity.

After seeking therefore for the approximate integer value

of the root, and calling that value /3, we shall then make

J/
= jS + — , which will give an equation in z, having like-

wise a root greater than unity, whose approximate integer

value we must next seek, and so on. In this manner, the

root required will be found expressed by the continued

fraction

^ ^ d +, &c.

which will be terminated, if the root is commensurable;
but will necessarily go on ad infinitum, if it be incom-
mensurable.

In the Memoirs just referred to, there will be found all

the principles and details necessary to render this method
and its apphcation easy, and even different means of abridg-

ing many of the operations which it requires. I believe

that I have scarcely left any thing farther to be said on this

important subject. With regard to the roots of equations

of the second degree, we shall afterwards give (Art. 33 et

seq.) a particular and very simple method of changing them
into continued fractions.

10. After having thus explained the genesis of continued

fractions, we shall proceed to shew their application, and
their principal properties.

It is evident, that the more terms we take in a continued

fraction, the nearer we approximate to the true value of the

quantity which we have expressed by that fraction ; so that

if we successively stop at each term of the fraction, w^e

shall have a series of quantities converging towards the given

quantity.

Thus, having reduced the value of a to the continued

fraction,

^ S +, &c.

we shall have the quantities.
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or, by reduction,

'''
/3 ' /3y+l '^^-

which approach nearer and nearer to the value of a.

In order to judge better of the law, and of the con-

vergence of these quantities, it must be remarked, that, by
the formulae of Art. 3, we have

1 1 1

a = a -f —, 6 = /3 + — , c = y + -^, &c.

Whence we immediately perceive, that a is the first ap-

proximate value of a ; that then, if we take the exact value

of a, which is —j— , and, in this, substitute for b its ap-

proximate value |3, we shall have this more approximate

value —-— ; that we shall, in the same manner, have a

third more approximate value of a, by substituting for b its

^ - /3c4-l .... {cc0+l)c+a
exact value , which mves a = —r =

, and then

taking for c the approximate value y; by these means
the new approximate value of a will be

Continuing the same reasoning, we may approximate nearer,

by substituting, in the above expression of a, instead of c,

its exact value, ^-—j—, which will give

and then taking for d its approximate value $, we shall have,

for the fourth approximation, the quantity

( («/3+l)7+ a)5+a^-i^l
^^-^^ 7—-—TTi;

—

w > and so on.
{By + l)S + '

Hence it is easy to perceive, that, if by means of the

numbers a, /3, y, J, &;c. we form the following expressions,

* See note, p. 471.
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A = a a' = 1

B = |Sa 4- 1 b' = ^
c = yB + A c' = 7b' + a'

D = JC + B d' = Jc' + b'

K = £D + C e' = Ed' + c'

&C. &C.

we shall have this series of fractions converging towards the

A B c D E r p

tiuantity a, —.—r —^

; .—-, &c.^ ' a' b' c' d' e' f'

If the quantity a be rational, and represented by any
V . . .

fraction —j- , it is evident that this fraction will always be the

last in the preceding series ; since then the continued frac-

tion will be terminated, and the last fraction of the above

series must always be equal to the whole continued fraction.

But if the quantity a be irrational, or transcendental, then

the continued fraction necessarily going on ad infimticm, we
may also continue ad iitfinitum the series of converging

fractions.

11. Let us now examine the nature of these fractions.

1st, It is evident that the numbers a, b, c, &c. must con-

tinually increase, as well as the numbers a', b', c', &c. for

1st, if the numbers a, /3, y, &c. are all positive, the numbers
a, b, c, &c. a', b', c', Sic. will also be positive, and we shall

evidently have b 7 a, c 7 b, d 7 c, &c. and b' =, or 7 a',

c* 7 b', d' 7 c', &c.

2dly, If the numbers a, /3, y, &c. are all, or partly ne-

gative, then amongst the numbers a, b, c, &c. and, a', b', c',

there will be some positive, and some negative ; but in that

case we must consider that we have, by the preceding

formulae,

B Ic ad^b„— =^+-, -=y-f— , _ = J + _, &C.
A a b ' b c c

whence we immediately see, that, if the numbers a, ^, y, &c.

are different from unity, whatever their signs be, we shall

necessarily have, neglecting the signs, — 7 1 ; and there-

A C
fore — ^ 1 ; consequently, — 7 1, and so on : therefore

b 7 A, c 7 B, &c.

There is no exception to this but when some of the num-
bers a, /3, y, &c. are equal to unity. Suppose, for example,

that the number y is the first which is equal to + 1 ;
wc
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shall then have b 7 A, but^c L b, if it happens that the frac-

tion — has a different sign from y ; which is evident from

the equation— = y H ; because, in that case, y H^ B B ' B

will be a number less than unity. Now, I say, in this case, we
must have d 7 b ; for since y =: + 1 , we shall have (Art. 10),

c = +14-^, and c 7 —. + 1 ; but as c and d are~ a a

quantities greater than unity (Art. S), it is evident, that

this equation cannot subsist, unless c and d have the same

signs ; therefore, since y and J are the approximate integer

vSues of c and d, these numbers y and ^ must also have the

C A
same sign. Farther, the fraction —= y -\ must have

the same sign as y, because y is an integer number, and

A C— a fraction less than unity; therefore— , and ^, will be
B •' B

quantities of the same sign ; consequently, — will be a po-

sitive quantity. Now, we have — = 8-\ ; and hence,

multiplying by— , we shall have — = [- 1 ; so that

— being a positive quantity, it is evident that — will be

greater than unity ; and therefore d 7 b.

Hence we see, that, if in the series A, b, c, &c. there be

one term less than the preceding, the following will ne-

cessarily be greater ; so that putting aside those less terms,

the series will always go on increasing.

Besides, if we choose, we may always avoid this incon-

venience, either by taking the numbers a, |3, y, &c. positive,

or by taking them different from unity, which may always

be done.

The same reasonings apply to the series a', b', c', &c. in

which we have likewise

d

whence we may form conclusions similar to the preceding.

3' - c . A' D' . b'
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12. If we now multiply cross-ways the terms of the con-

secutive fractions, in the series —r. —r» —r> &c. we shall
a' b' c"

find ba' — ab' = 1, cb' — Bc' —. ab' — ba',

DC' — CD' = Bc' — cb', &C.

whence we conclude, in general, that

ba' — ab' = 1

cb' — bc' = — 1

Dc' -- Cd' =: 1

ed'— dk'zt — 1, &C.

This property is very remarkable, and leads to several

important consequences. ABC
First, we see that the fractions —7, —r» —7, &c. must be

b' b' c'

already in their lowest terms ; for if, for example, c and c'

had any common divisor, the integer numbers cb' — bc'

would also be divisible by that same divisor, which cannot

be, since cb' — bc' zr — 1.

Next, if we put the preceding equations into this form,

B A 1

b'"!'"""!^'

C B 1

c' b'
~

c'b'

D C 1

d' c' ~c'd'

---=-— &c.
e' d' d'e"

^

it is easy to perceive, that the differences between the ad-

. A B C • 11

joining fractions of the series -j, —^, —7-, are continually

diminishing, so that this is necessarily converging.

Now, I say, that the difference between two consecutive

fractions is as small as it is possible for it to be ; so that

there can be no other fraction whatever between those two

fractions, unless it have a denominator greater than the de-

nominators of them.

c D
Let us take, for example, the two fractions—^, and — , the

1
difference of which is -j-y, and let us suppose, if possible,
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in
that there is another fraction, —, whose value . falls between

n

the values of those two fractions, and whose denominator n
Tit

is less than c', or less than d'. Now, since — is between
n

-7-, and —:, the difference of — , and -r, which is r— ,or
c' d" n d nd '

nc — md
, , , 1 1 T«. 1

D
1^— .must be less than —,—;, the diiierence between —r

nd c'd' d'

and -7- ; but it is evident that the former cannot be less than
c'

—
J

; and therefore if w z d', it will necessarily be greater than

-TT . Also, as the difference between — , and —, cannot be less
CD' w' d'

than—:, it will necessarily be greater than -7-7, if w z. c',
wd' -^ ° do'

whereas it must be less.

13. Let us now see how each fraction of the series

A B
—j-, —|-, &c. will approximate towards the value of the

quantity a. For this purpose, it may be observed that the

formulae of Article 10 give

a6 -f- 1 _ cd-{-B

BC-|-0 D^+C
a — —,—;—

:

a —
B'c-f-A' B'e-\-d

and so on.

c
Hence, if we would know how nearly the fraction —, for

example, approaches to the given quantity, we seek for the

c
difference between ~ and a ; taking for a the quantity

-n ;, we shall have
c'a + B'

c _ cfZ + B c Bc' — cb' 1

" ~
c'
~ dlT^'" d ~ d{dd + b')

"" d{dd + b'Y

because bc' — cb' = 1, (Art. 12). Now, as we suppose S the
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approximate value of d, so that the difTcrence between d
and 5" is less than unity (Art. 3), it is evident that the value

of d will lie between the two numbers J and <J + 1, (the

upper sign being for the case, in which the approximate

value ^ is less than the true one d, and the lower sign for the

case, in which J is greater than cZ), and, consequently, that

the value of c'^ + b', will also be contained between these

two, c'J + b', and c^^" ± 1 ) + b', that is to say, between d'

c
and d' ± c' ; therefore the difference a r will be contained

G

between these two limits -r-r, —r—r-.—rr ; whence we may
c'd' c'(d ± c')

^

c
judge of the degree of approximation of the fraction -j .

14. In general, we shall have,

A< ' A'b

B 1

a =
b' b'(b'c+a')

- £ 1
"* ~ d "^

c'(c'd!+B')

a — —, —r-—. ;., and so on.
d' d'(d'^ + c')

Now, if we suppose that the approximate values, a, jS, y,
&c. are always taken less than the real val ues, these numbers
will all be positive, as well as the quantities b, c, d, &c. (Art. 3.)

and, consequently, the numbers a', b', c', &.c. will be likewise

all positive ; whence it follows, that the differences betweenABC
the quantity a, and the fractions —p, —j, — , &c. will be

alternately positive and negative ; that is to say, those frac-

tions will be alternately less and greater than the quantity a.

Farther, Si% b 7 $, c 7 y^ d 7 $, &c. by hypothesis, we
have b 7 b', (b'c + a') 7 (b'/ -\- a'), and also 7 c'*,

(c'^ + b') 7 (c'^" + b'), and therefore 7 d', &c. and as

6 /. (/3 + 1), c z (y + 1), (i z (J + 1), we have 6 z (b' + 1),

* For since c 7 y, therefore b'c 7 By ; and, consequently,
(b'c + a') 7 (s'y + a') which is 7 c', because n'y + a' = c',

page 476. And it is exactly the same with the other quan-
tities. B.
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(b'c + a') Z (B'(y + 1) + a') z (c' + b'), also

(c'd + b') z (c'(^ + 1) + b') z (d' + c'), &c. so that the

A B C
errors in taking; the fractions —r, —7, —7, &c. for the value

'^
a' b" c'

•11, 1 1 1 n ,
ot «, would be respectively less than -7-., -7-7, -r~7 5&c.butr ^ a'b' b'c' cd'111.
greater tha

,, , ,

—;;, ,, :
,
—n-, -,,

, ,

—rr,&c. which shews^
a'(b'-|-a')' b'(c'-I-b') c(d'-|-c')

how small those errors are, and how they go on diminishing

from one fraction to another. ABC
But farther, since the fractions —r, —r, ^—r, 8cc. are al-

a' b' c

ternately less and greater than the quantity «, it is evident,

that the value of that quantity will always be found between
any two consecutive fractions. Now, we have already seen

(Art. 12), that it is impossible to find, between two such

fractions, any other fraction whatever, which has a denomi-

nator less than one of the denominators of those two frac-

tions ; whence we may conclude, that each of the fractions

in question, express the quantity a more exactly than any.

other fraction can, whose denominator is less than that of the

c
succeeding fraction ; that is to say, the fraction —p, for ex-

ample, will express the value of a more exactly than any

other fraction — , in which n would be less than d'.
n

15. If the approximate values a, /3, y, &c. are all, or

partly, greater than the real values, then some of those num-
bers will necessarily be negative (Art. 8), which will also

render negative some terms of the series a, b, c, &c. a', b', c',

&c. consequently, the differences between the fractions

—
J-,
—, —J-, &c. and the quantity «, will no longer be al-

ternately positive and negative, as in the case of the pre-

ceding articles : so that those fractions will no longer have
the advantage of giving the limits in plus and minus of the

quantity a ; an advantage which appears to me of very great

importance, and which must therefore in practice make us

always prefer those continued fractions, in which the de-

nominators are all positive. Hence, in what follows, we
shall only attempt an investigation of fractions of this kind.

1 1
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A B C D
16. Let us, therefore, consider the series —,» -rj —,> —r' '

a' b' c' d'

&c. in which the fractions are alternately less and greater

than the quantity a, and which it is evident, we may divide

into these two series

:

A -£_ — Jl

a'* c" e"^""'

JB_ _D_ J^
b" d'* f"

•

of which the first will be composed of fractions all less than

a, and which go on increasing towards the quantity a ; the

«econd will be composed of fractions all greater than a, but
which go on diminishing towards that same quantity. Let
us therefore examine each of those two series separately ; in

the first we have (Art. 10, and 12),

c

c'

A
'7 = y

a'c'

r. C = e

c'e"
&c.

and in the second we have,

B D =

D

d'
- F

V =
d'f"

&c.

Now, if the numbers y, 8, s, &c. were all equal to unity, we
might prove, as in Art. 12, that betAveen an}' two consecutive

fractions of either of the preceding series, there could never be
found any other fraction, whose denominator would be less

than the denominators of those two fractions ; but it will not
be the same, when the numbers y, J, s, &c. are greater than
unity ; for, in that case, we may insert between the fractions

in question as many intermediate fractions as there are units

in the numbers y— 1, 5 — l,e— 1, &c. and for this pur-
pose we shall only have to substitute, successively, in tlie

values of c and c', (Art. 10), the numbers 1, ~, 3, y, in-

stead of y ; and, in the values of n and d', the numbers
1, S, 3, S, instead of 5", and so on.

17. Suppose, for example, that y=4, we have c= 4b+a
and c' = 4b' + a', and we may insert between the fractions

A C—, and —7) three intermediate fractions, which will be
a' c' ,
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B+A 2b + A Sii+A

7+7" 2b'+a" 3n' + A''

Now, it is evident, that the denominators of these fractions

form an increasing arithmetical series from a' to c' ; and we
shall see that the fractions themselves also increase con-

A C
tinually from — to -y ; so that it would now be impossible

to insert in the series

A B + A 2b + A 3b + A 4b+ A C

T" 7+1" 2b'+ a" 3b' + a" 47+1" °^ "7'

any fraction, whose value would fall between the values of
two consecutive fractions, and whose denominator also would
be found between the denominators of the same fractions.

For, if we take the differences of the above fractions, since

ba' — ab' z: 1, we have,

B+A A 1

b'+ a'
~

a^ ~
a'(b' + a')

2b + A B + A 1

2b' +a' b' + a' (b'+a') X (2b'+ a')

3b + a 2b+a 1

3b'+ a' 2b'+ a'
"

(2b'+ a') X (3b'+ a')

c 3b+a _ 1

c' ~ 3b'+ a'
"

(3b'+ a')c'
'

whence we immediately perceive, that the fractions

—.-, —. r, &c. continually increase^ since their differences
a" b' +a" ^ '

are all positive ; then, as those differences are equal to unity, if

divided by the product of the two denominators, we may
prove, by a reasoning analogous to that which we employed

(Art. 12), that it is impossible for any fraction, —, to fall be-

tween two consecutive fractions of the preceding series, if

the denominator n fall between the denominators of those

fractions ; or, in general, if it be less than the greater of the

two denominators.

Farther, as the fractions of which we speaR are all greater

than the real value of a, and the fraction —r is less than it, it
b'

is evident that each of those fractions will approximate to-

wards the value of the quantity a, so that the difference

1 1 2
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will be less than that of the same fraction and the fraction

—r; now, we find
b'

A B 1

a' b'
~

a'b'

B +

A

B 1

b' + a' b'
~

(b' + a')b'

2b+a B 1

2b' + a' b'
~ (2b'+a')b'

3b +A B 1

3b' + a' b' ~(3b' + a')b'

c B 1

c' b'
~

c'b''

Therefore, since these differences are also equal to unity

divided by the product of the denominators, we may apply

to them the reasoning of Article 12, to prove that no fraction,

77t—, can fall between any one of the fractions
n •'

A B-f"A 2b4-A B—r, —. 7, r—

;

,, &c. and the fraction —r, if the denomi-
a" b'+ a" 2b' + a' b"

nator n be less than that of the same fraction ; whence it

follows, that each of those fractions approximates towards

the quantity a nearer than any other fraction less than a, and
having a less denominator ; that is to say, expressed in

simpler terms.

18. In the preceding Article, we have only considered the

\ c
intermediate fractions between —r, and—r ; but the same will

A C'

C
be found true of the intermediate fractions between -r, and

c'

E EG.
—,, between -7 and -7, &,c. if e, ij, &c. are numbers greater
E E G

thain unity.

AVe may also apply what we have just said with respect to

,„ .AC„ ,, .BDF„
the iirst series -;, —,, &c. to the other series -,, —:, —r, &c.

a' c" b' d' f'

so that if the numbers ^, ?, are greater than unity, we may

insert between the fractions —r and —r, -7 and —r, &c. dif-
b' d" d' f'
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ferent intermediate fractions, all greater than a, but which
will continually diminish, and will be such as to express the

quantity a more exactly than could be done by any other

fraction greater than a, and expressed in simpler terms.

Farther, if /3 is also a number greater than unity, we may
a

likewise place before the fractiotis -: the fractions^
b'

A+1 2a+1 3a4-1 „ ^ jSa+1
, . b—

:j
—, —^— , —5—

, ccc. as tar as —r—
, that is -, and

these fractions will have the same properties as the other in-

termediate fractions.

In this manner, we have these two complete series of

fractions converging towards the quantity a.

Fractions increasing and less than a.

A B+A 2b+a 3b+ a yB+A
7" 7+v' 2b' + a" Sb'+a" ^^' ^^7+^"

c D + c 2d+c 3d + c „ fD + C— fie
c" d' + c" 2d'+c" 3d' + c" £d' + c"

I F+E 2f + e 3f + e -

e" f' + e" 2f' + e" 3f' + e''

Fractioms decreasing and greater than a.

a + 1 8a + 1 3a+ 1 /3a + 1

B C -1- B 2c+ B Jc + B

"7' 7+T" 27T7' ^^7+7'

D E+ D 2e+D 3e+D
1^' eT^" 2e'+d" 3e' + d"

If the quantity a be irrational, or transcendental, the two

preceding series will go on to infinity, since the series of

ABC
fractions —,, -r, —„ &c. which in future we shall call

a' b' c'

principal fractions, to distinguish them from the intermediate

fractions, goes on of itself to infinity. (Art. 10.)

But if the quantity a be rational, and equal to any fraction,

V ...— , we have seen in that article, that the series in question

will terminate, and that the last fraction of that series will be
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V .

the fraction —r itself; therefore, this fraction must also ter-
v'

minate one of the above two series, but the other series will

go on to infinity.

In fact, suppose that 5 is the last denominator of the

continued fraction ; then —y will be the last of the principal

fractions, and the series of fractions greater than a will be

terminated by this same fraction —p. Now, the other series

of fractions less than a, will naturally stop at the fraction

—jj which precedes —p ; but to continue it, we have only

to consider that the denominator e, which must follow the

last denominator J, will be = x (Art. 3) ; so that the

fraction —p, which would follow — in the series ofprincipal

c • ,,, OOD + C D ,1, /..
tractions, would be -, r = —; * ; now, by the law of in-

ood'-j-c' d'
•'

termediate fractions, it is evident that, since g = x , we

C E
might insert between the fractions —;- and -y, an infinite

C E

number of intermediate fractions, which would be

D-f-c 2d-(-c 3d-|-c

d4^' Sd'H-c" anH-"^'

So that in this case, after the fraction —,in the first series of

fractions, we may also place the intermediate fractions we
speak of, and continue them to infinity,

19. Problem. A fraction expressed by a great number
of figures being given, to find all the fractions, in less terms,

which approach so near the truth, that it is impossible to

approach nearer without employing greater ones.

* Because an infinite quantity cannot be increased by ad-
dition ; and therefore go d + e = oo d, and oo d' -|- c == ood' ;

consequently,

OCD -f C CCD D

qod'+c ood
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This problem will be easily resolved by the theory which
we have explained.

We shall begin by reducing the fraction proposed to a

continued fraction after the method of Art. 4, observing to

take all the approximate values less than the real ones, in

order that the numbers jS, 7, $, &c. may be all positive

;

then, by the assistance of the. numbers found, a, (3, y, &c.

we form, according to the formulae of Art. 10, the fractions

^l '

c—p, &c. the last of which will necessai'ily be the

same as the fraction proposed ; because in that case the con-

tinued fraction terminates. Those fractions will alternately

be less and greater than the given fraction, and will be suc-

cessively expressed in greater terms ; and farther, they will be
such, that each of those fractions will be nearer the given

fraction than any other fraction can be, which is expressed

in terms less simple. So that by these means we shall

have all the fractions, that will satisfy the conditions of

the problem, expressed in lower terms than the fraction

proposed.

If we wish to consider separately the fractions which are

less, and those which are greater, than the given fraction, we
may insert between the above fractions as many interviediate

fractions as we can, and form from them two series of con-

verging fractions, the one all less, and the other all greater

than the fraction proposed (Art. 16, 17, and 18) ; each of

which series will have separately the same properties, as the

A B P
series of principal fractions — , -^ , —|^, &c. for the frac-

tions in each series will be successively expressed in greater

terms, and each of them will approximate nearer to the

value of the fraction proposed than could be done by any
other fraction whether less, or greater, than the given frac-

tion, but expressed in simpler terms.

It may also happen, that one of the intermediate fractions

of one series does not approximate towards the given fraction

so nearly, as one of the fractions of the other series, although

expressed in terms less simple than the former; for this

reason, it is not proper to employ intermediate fractions, ex-

cept when we wish to have the fractions sought either all

less, or all greater, than the given fraction.

20. Example 1. According to M. de la Caille, the solar

year is ^665^. 5''. 48'. 49", and, consequently, longer by 5''

48'. 49" than the common year of 365**. If this difference
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were exactly 6 hours, it would make one day at the end of

four common years : but if we wish to know, exactly, at the

end of how many years this diffeience will produce a certain

number of days, we must seek the ratio between S^*", and
5^ 48'. 49'', which we find to be 1-^4—; so that at the end
of 86400 common years, we must intercalate 20929 days, in

order to reduce them to tropical years.

Now, as the ratio of 86400 to 20929 is expressed in very

high terms, let it be required to find ratios, in lower terms,

as near this as possible.

For this purpose, we must reduce the fraction |o4t^ ^^ ^

continued fraction, by the rule given in Art. 4, which is

the same as that by which the greatest common divisor of
two given numbers is found. This will give us

20929)86400(4 = a
83716

2684)20929(7 = ^
18788

2141)2684(1 = y
2141

543)2141(3 = *

1629

512)543(1 = £

512

31)512(16 = ^

496

16)31(1 = r,

16

15)16(1 = 6

15
»

1)15(15 = I

15

0.

Now, as we know all the quotients a, |3, y, &c. we easily

A B
form from them the series —, . —r, &c. in the following

a' b'
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manner

:

4, 7,
4 19

1,

3 3

3,
I 7.8
TV »

I, 16, I,

I6i 1704 1865
To" ? 6 5 5' S'9+ J

1,

S 5 69
I 3 4 y

'

15.
86400
10 9 1 9 J

489

the last fraction being the same as the one proposed.
In order to facilitate the formation of these fractions, we

first write, as is here done, the series of quotients 4, 7, 1, &c.
and place under these coefficients the fractions 4} V, V, &c.
which result from them.
The first fraction will have for its numerator the number

which is above it, and for its denominator unity.

The second will have for its numerator the product of
the number which is above it by the numerator of the first,

plus unity, and for its denominator the number itself which
is above it.

The third will have for its numerator the product of
the number which is above it by the numerator of the
second, plus that of the first ; and, in the same manner,
for its denominator, the product of the number which is

above it by the denominator of the second, plus that of the
first.

And, in general, each fraction will have for its numerator
the product of the number which is above it by the nu-
merator of the preceding fraction, plus that of the second
preceding one ; and for its denominator the product of the
same number by the denominator of the preceding fraction,

plus that of the second preceding one.

So that 29 = 7 X 4 + 1, 7 = 7; 33 = 1 x 29 + 4,

8 = 1x7 + 1; 128 = 3 X 33 + 29, 31 = 3 x 8 + 7,
and so on; which agrees with the formulae of Art. 10.

Now, we see from the fractions 4, ^j ¥> &c. that the
simplest intercalation is that of one day in four common
years, which is the foundation of the Julian Calendar; but
that we should approximate with more exactness by inter-

calating only 7 days in the space of 29 common years, or
eight in the space of 33 years, and so on.

It appears farther, that as the fractions 4, y, y, &c. are
alternately less and greater than the fraction |||4|^, or

24''
.

e-i, . Q, .Q„ , the intercalation of one day in four years would

be too much, that of seven days in twenty-nine years too

little, that of eight days in thirty-three years too much, and
so on ; but each of these intercalations will be the most
exact that it is possible to make in the same space of time.

Now, if we arrange in two separate series the fractions
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that are less, and those that are greater than the given
fraction, we may also insert different secondary fractions

to complete the series ; and, for this purpose, we shall follow

the same process as before, but taking successively, instead

of each number of the upper series, all the integer numbers
less than that number, when there are any.

So that, considering first the increasing fractions,

I, 1, I, 15,
± 3 3 I 6 1 2_8 6 5 ^6 4^°£
I' T' 39' 69+' a'bgio'

we see that, since unity is above the second, the third, and
the fourth, we cannot place any intermediate fraction, either

between the first and the second, or between the second and
the third, or between the third and the fourth ; but as the

last fraction stands below the number 15, we may place,

between that fraction and the preceding, fourteen inter-

mediate fractions, the numerators * of which will form the

arithmetical progression 2865 + 5569, 2865 + 2 x 5569,
2865 + 3 X 5569, &c. their denominators will also form
the arithmetical progression 694 + 1349, 694 + 2 x 1349,

694 + 3 X 1349, &c.

So that the complete series of increasing fractions will be

1 6 I g 8 6 5 8 4 3 4 I 400 3 19 57^ Z 5 i 4 i

39' 694' X043> T39i' 4TTT ' 6 O 9 O '

3 6_2 7 9 41848 47417 5 2, 986 S 8 S 5 S

8 7 TS" ' 10 13 7' I I486' i 2.TTT' T4: 184'
6969 3 7 5 ^ 6 g 8 o 8 3 I ^_AJ1P1688 2,5 I823I' I 9 5 b o5 2 o y z 9 •

And, as the last fraction is the same as the given fraction, it

is evident that this series cannot be carried farther. Hence,
if we choose to admit those intercalations only in which the

error is too much, the simplest and most exact will be those

of one day in four years, or of eight days in thirty-three

years, or of thirty-nine in a hundred and sixty-one years,

and so on.

Let us now consider the decreasing fractions,

7, 3, J6, I.

2 9 i as a 7 o 4 5 5 6 9
T ' TT > "S 5 S ' TT+ 9 •

And first, on account of the number 7, which is above the

first fraction, we may place six others before it, the nume-
rators of which will form the arithmetical progression,

4 -{- 1, 2 x 4 -f 1, 3 X 4 + 1, &c.

and the denominators of which will form the progression

* Because 44tt is the principal fraction between Vt^ >
^^^

i^T-TTJ ^s is found in the foregoing scries. See page 485. B.
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1, 2, 3, &:c. * ; also, on account of the number 3, we may
place two intermediate fractions between the first and the

second; and between the second and the third we may-

place fifteen, on account of the number 16 which is above the

third ; but between this and the last we cannot insert any,

because the number above it is unity.

Farther, we must remark, that, as the preceding series is

not terminated by the given fraction, we may continue it as

far as we please, as we have shewn, Art. 18. So that we
shall have this series of decreasing fractions.

5 9 I 3 17 Z 1

> T5
2 s 29
6- > T >

62 95
15' 23

123
J

2 8 9
To J

450 6
I 9 > I

11 7 7 2 9 3^
7> 226>

I 094
26 5 J

12 5 5

30+ J

1416
3 + 3 »

15 7 7 17 3 8
4- 2 I >

1899
4-60 J

2 6
4-9 9 J

2 2 2 1 2

5 T 8" '

i 3 8 2
S 7 7 5

2 543
6 I 6 >

2704. S 5 69
13+95

91969 I 7 8 3 <

> +320
)9 2647 69 3 5 I I 69

6 5 S > a 2. 2 7 S 7 > 6 + 113 6' 8 506S
437 569 Sjc
I 0T9 94' "

which are all less than the fraction proposed, and approach
nearer to it than any other fractions expressed in simpler

terms.

Hence we may conclude, that if we only attend to the

intercalations, in which the error is too small, the simplest

and most exact are those of one day in five years, or of two
days in nine years, or of three days in thirteen years, &c.

In the Gregorian calendar, only ninety-seven days are in-

tercalated in four hundred years ; but it is evident, from
the preceding series, that it would be much more exact, to

intercalate a hundred and nine days in four hundred and
fifty years.

But it must be observed, that in the Gregorian reforma-
tion, the determination of the year given by Copernicus was
made use of, which is 365*^. 5\ 49'. 20''

: and substituting

this, instead of the fraction 1%-—, we shall have ||4§^|, or
rather 444 ; whence we may find, by the preceding method,
the quotients 4, 8, 5, 3, and from them the principal

fractions,

4, 8, 5, 3.

± 33 I_69 5 40
iJ 8' 4i' I3i>

which, except the first two, are quite different from the

fractions found before. However, we do not perceive

among them the fraction tj^° adopted in the Gregorian
calendar; and this fraction cannot even be found among
the intermediate fractions, which may be inserted in

* See page 4<85.
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the two series ±, '^-j? , and y , 44I ; for it is evident, that it

could fall only between those last fractions, between Avhich,

on account of the number i^, which is above the fraction 4tt>
there may be inserted two intermediate fractions, which will

be '^-^~, and y^' ; whence it appears, that it would have
been more exact, if in the Gregorian reformation they had
only intercalated ninety days in the space of three hundred
and seventy-one years.

If we reduce the fraction 'L^°, so as to have for its nu-
merator the number 86400, it will become -|o4^y|, which
estimates the tropical year at 365'^. 5^. 49'. 12".

In this case, the Gregorian intercalation Avould be quite

exact; but as observations make the year to be shorter

by more than 20'', it is evident that, at the end of a certain

period of time, we must introduce a new intercalation.

If we keep to the determination of M. de la Caille, as

the denominator 97 of the fraction tP/ hes between the de-

nominators of the fifth and sixth principal fractions already

found, it follows, from what we have demonstrated (Art. 14),

that the fraction '3— will be nearer the truth than the frac-

tion "^ ; but as astronomers are still divided with regard

to the real length of the year, we shall refrain from giving a

decisive opinion on this subject ; our only object in the

above detail is to facilitate the means of understanding con-

tinued fractions and their application : with this view, we
shall also add the following example.

21. Example 2. We have already given, in Art. 8, the

continued fraction, which expresses the ratio of the circum-

ference of the circle to the diameter, as it results from the

fraction of Ludolph ; so that we have only to calculate,

according to the manner taught in the preceding example,

the series of fractions, converging towards that ratio, which
will be

3j 7, 15, 1, 292, 1, 1,

Z^ a a 3 3 3 3^5 5 103993 10434.8 g 08 3 4 1

1 > T ' 10 65 I TT> 33I02> 33215? 663I7>

1, 2, 1, 3, 1,
31a 6 8 9 8 3 3 7 i 9 i i 4. 6 4- O 8 4, 2 729 4 3 54. 1 935 i

9 9 STl ' X'STTTTJ 3 6 4-9'J i > i 3 6 I 2" O > TTi 5 O 3 T>

14, 2, 1, 1,

8 14 3 8 5 7 16 5707065 2 4 5 8 5 09^1 41155 7^9 8 T
ass 1058 2J 5274 6 197 ' 7 8 256779 ' » 3 i O 6 2 9 77'

2, 2, 2
I 06 8 96 6 8 9_6 a 54949 I779 61679504 5 4
T40 2 6 2TT1 ' T'lSas+SS ' i 9 6i i'i'9 6C1i

2, 1, 84,
I 4 8 8 5 3 9^-68 7 a 1 O 53343i4i 1783366 2 1 6 5 3 I

47 5 8 I 67 6 S a J TTCTTTTTTs"



5 3 7 115
1,

19917 34-
I 7 09690779+83'

15,
l397SS2i8Sa6789
4-4-4iii+6770Z853 >
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2,
3 S87785776I03
I I + 2 O 17632075

I,

8 9589 37 7 68937
285I7IS+61558'

3, 1 3,
4. 2822 45 9334-9304- AZ£ 66 749320 6 7 74 I

1 3 6 3 8 I 2 I 5 7 O Ii7> ' I8i^49i0 48 i 14 37 "4

'

61348 9952 5417045 3024627303 3735921
195279916 9 6 8 4 4 9I» 9627687726S5 2:TT'8" '

2, 6,
666 27445 5 9 ^8888 87 4 3001O 9 46591O69243
21 208 174623389 I67> 13687673 5467 I87340>

6, I,

2 6 46 693125 1 39304 34s 30767 040 71730373588
842468587 4 2 6 5 i 3 20 7? 9793453 22893 700547 •

These fractions will therefore be alternately less and
greater than the real ratio of the circumference to the

diameter ; that is to say, the first -f
will be less, the second

y: greater, and so on; and each of them will approach
nearer the truth than can be done by any other fraction ex-

pressed in simpler terms ; or, in general, having a deno-

minator less than that of the succeeding fraction : so that we
may be assured that the fraction 4- approaches nearer the

truth than any other fraction Avhose denominator is less than

7; also the fraction "^^ approaches nearer the truth than

any other fraction whose denominator is less than 106 ; and
so of others.

With regard to the error of each fraction, it will always
be less than unity divided by the product of the deno-
minator of that fraction, by the denominator of the following

fraction. Thus, the error of the fraction 4 will be less than

1
~, that of the fraction V will be less than =—ttt^., and so^ ' 7x 106

on. But, at the same time, the error of each fraction will

be greater than unity divided by the product of the de-

nominator of that fraction, into the sum of this denominator,

and of the denominator of the succeeding fraction; so

that the error of the fraction 4 will be greater than ~,

1
that of the fraction %? greater tlian ^ ttt,? and so on

^ ^ 7 X 113

(Art. 14).

If we now wish to separate the fractions that are less than
the ratio of the circumference to the diameter, from those

which are greater, by inserting the proper intermediate

fractions, we may form two series of fractions, the one in-
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creasing, and the other decreasing, towards the true ratio in

question ; in this manner we shall have

Fractions less than the ratio of the circumference to the

diameter.

i z} ±L ^9 51 113 135 157 I_7J
1' 8'> i5> ia' a'9» 3 6' TT ' To' 5 57'
2_oj gas a 4 5 a 6 7 2_8_9 3 i_i 33^ AJ.1.6+' 71' 78' TT ' 9 2.' 9~9 ' id6> ai9>
J O 4 3 1398 1753 ai08 1463 Sirf,
33 n i 4Trr ' TTT ' "eTT ' TT4 '

"''"•

Fractions greater than the ratio of the circumference to the

diameter.

4 7_ lO 13 i_6 19 ii 3 5 5 1 04 3 4 3
iJ 2» 3' T' 5' 6' T' 113' 33215'
3 116 8 9* 114 6 40 8 5 4 I 9 3 5 I 855632.08 16570 7 06 5

99531' 364913' 1725033' 17 13 5 6 1 5' 5 1? 4 (5 1 9 7 '

4 1 1557987 148O514883 Q^r-,

T 3 100 2976' 47 i 1 6 5 7 O 7 5
^^*^'

Each fraction of the first series approaches nearer the

truth than any other fraction whatever, expressed in simpler

terms, and the error of which consists in being too small

;

and each fraction of the second series likewise approaches

nearer the truth than any other fraction, which is expressed

in simpler terms, and the error of which consists in its being

too large.

These series would become very long, if we were to con-

tinue them as far as we have done that of the principal

fractions before given. The limits of this work do not

permit us to insert them at full length ; but they may be

found, if wanted, in Chap. XI. of Wallis's Algebra. {Opcr.

Mathemat.).

SCHOLIUM.

22. The first solution of this problem was given by Wallis

in a small treatise, which he added to the posthumous works

of Horrox, and it is to be found in his Algebra as quoted
above ; but the method of this author is indirect, and veiy

laborious. That which we have given belongs to Huygens,
and is to be considered as one of the principal discoveries of

that great mathematician. The construction of his pla-

netary automaton appears to have led him to it : for, it is

evident, that, in order to represent the motions and periods

of the planets exactly, we should employ wheels, in which
the teeth are precisely in the same ratios, with respect to

number, as the periods in question ; but as teeth cannot be
multiplied beyond a certain limit, depending on the size of
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the wheel, and, besides, as the periods of the planets are in-

commensurable, or, at least, cannot be represented, with any
exactness, but by very large numbers, we must content our-

selves with an approximation ; and the difficulty is reduced

to finding ratios expressed in smaller numbers, which ap-

proach the truth as nearly as possible, and nearer than

any other ratios can, that are not expressed in greater

numbers.
Huygens resolves this question by means of continued

fractions as we have done; and explains the manner of
forming those fractions by continual divisions, and then

demonstrates the principal properties of the converging

fractions, which result from them, without forgetting even

the intermediate fractions. See, in his Opera Posthuma, the

Treatise entitled Desc7-iptio Automati Planetarii.

Other celebrated mathematicians have since considered

continued fractions in a more general manner. We find

particularly in the Commentaries of Petersburgh (Vol. IX.
and XI. of the old, and Vol. IX. and XI. of the new),

Memoirs by M. Euler, full of the most profound and ingenious

researches on this subject; but the theory of these fractions,

considered in an arithmetical view, which is the most
curious, has not yet, I think, been cultivated so much as it

deserves; which was my inducement for composing this

small Treatise, in order to render it more familiar to mathe-
maticians. See, also, the Memoirs of Berlin for the years

1767, and 1768.

I have only to observe farther, that this theory has a
most extensive application through the whole of arithmetic

;

and there are few problems in that science, at least among
those for which the common rules are insufficient, which do
not, directly or indirectly, depend on it.

John Bernoulli has made a happy and useful application

of it in a new species of calculation, which he devised for

facilitating the construction of Tables of proportional parts.

See Vol. I. of his Recueilpour les Astronomes.

CHAP. II.

Solution ofsome curious and new Arithmetical Problems.

Although the problems, which we are now to consider, are

immediately connected with the preceding, and depend on
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the same principles, it will be proper to treat of them in a

direct manner, without supposing any thing of what has been

before demonstrated: by which means we shall have the

satisfaction of seeing how necessarily these subjects lead

to the theory of Continued Fractions. Besides, this theory

will be rendered much more evident, and receive from it a

greater degree of perfection.

23. Problem 1. A positive quantity a, Avhether rational or

not, being given, to find two integer positive numbers, p and

q, prime to each other ; such, that p — aq (abstracting from

the sign), may be less than it would be, if we assigned to p
and q any less values w'hatever.

In order to resolve this problem directly, we shall begin

by supposing that we have already found values ofp and q,

which have the requisite conditions ; wherefore, assuming for

7- and s, any integer positive numbers less than p and q, the

value of p — aq must be less than that of r — as, abstract-

ing from the signs of these two quantities; that is to say,

taking them both positive : now, if the numbers r and s be

such, that ps — qr — ±i 1, (the upper sign applying when

p — aq is a positive number, and the under, when p — aq
is a negative number) we may conclude, in general,

that the value of the expression y — az will always be

greater (abstracting from the sign) than that of p — aq, as

long as we give to s and i/ only integer values, less than

those of p and q, we may hence draw the following con-

clusion.

Fii'st, it is evident, that we may suppose, in general,

7/ = pt + ru, and z = qt -\- ru, t and u being two unknown
quantities. Now, by the resolution of these equations, we

,
sy— rz qy—pz -, -, o •

have t zz — , u =. =^
; and therefore, smce

ps—qr qr—ps
ps — qr = ± 1, t = ± [si/ — 7-z), and u = ± [qi/ ~ pz)

;

whence it is evident, that t and 7i will always be integer num-
bers, since p, q, r, s, y, and z are supposed to be integers.

Therefore, since t and n are integer numbers, and p, q, r, s

integer positive numbers, it is evident, in order that the values

of j/ and z may be less than those of/? and q, that the num-
bers t and u must necessarily have different signs.

Now, I say, that the value of r — as will also have a dif-

ferent sign from that of p — aq; for, making p — aq = r,

7) P ?' It

and r — as =. r, we shall have - = a -\- -, - = aA—

;

q
* q s s

. , p r 1
but the equation, ps— qr = + 1, gives -— - = +— ;
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wherefore — ±_-— ; and, since we suppose the doubt-

ful sign to be taken conformably to that of the quantity

1 .PR
,

/? — «2', or p, the quantity must be positive, if r be

positive ; and negative, if p be negative : now, as * Z gf, and

R P
a 7 P {hup.), it is evident that - 7 -, (abstracting from

s q ^

the sign) ; therefore, the quantity will always have

its sign different from that of - ; that is to say, from that

of R, since s is positive ; and, consequently, p and r will ne-
cessarily have different signs.

This being laid down, we shall have, by substituting the

above values ofy and z,

y — az — {p — aq)t + (;• — as)u =. vt -\- rz«.

Now t and u having different signs, as well as p and r, it is

evident, that vt and ku will be quantities of like signs;

therefore, since t and u are integer numbers, it is clear that

the value of j/ — az will always be greater than p ; that is

to say, than the value oip — aq, abstracting from the signs.

But it remains to know whether, v/hen the numbers p and
q are given, we can always find numbers r and s less than
those, and such that ps — qr = +1, the doubtful signs being
arbitrary ; now, this follows evidently from the theory of
continued fractions ; but it may be demonstrated directly,

and independently of that theory. For the difficulty is re-

duced to proving, that there necessarily exists an integer and
positive number less than p, which being assumed for r,

will make qr ± 1 divisible by p. Now, suppose we suc-

cessively substitute for r the natural numbers 1, 2, 3, &c. as
far as /?, and that we divide the numbers g' ± 1 , 9,q ±\,
Sq + \, &.C.

i^g' + 1 by p, we shall then have p remainders
less than p, which will necessarily be all different from one
another ; since, for example, \i mq ±_ 1, and nq ±1 (vi and
n being distinct integer numbers not exceeding p), when di-

vided by p, give the same remainder, it is evident that their

difference {m — n)q, must be divisible by p ; now, this is im-
{)ossible, because q is prime to p, and m — 11 is a. number
ess than p.

Therefore, since all the remainders in question are integer,

positive numbers less than p, and different from each other,

K K
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and are p in number, it is evident that must be among
those remainders, and, consequently, that there is one of the

numbers q + ^, ^q + I, Qq + 1, ^c. pq ± 1, which is di-

visible by^:>. Now, it is evident that this cannot be the last ; so

that there is certainly a value of r less than p, which wiU
make rq + 1 divisible by p ; and it is evident, at the same
time, that the quotient will be less than q ; therefore there

will always be an integer and positive value of r less than j),

and another similar value of s, and less than q, which will

satisfy the equation s = —-^, or ps — q?- — + 1.

24). The question is therefore now reduced to this ; to find

four positive whole numbers, p, q, r, s, the last two of which

may be less than the first two ; that is, rip, and s L q, and
such, that ps— qr = ±: 1 ; farther, that the quantities p — aq,

and r — as^ may have different signs, and, at the same time,

that r — as may be a quantity greater than p—aq, abstract-

ing from the signs.

In order to simplify, let us denote r by p\ and s by ^', so

that we have p^ — gjj' r=: + 1 ; and as q 7 q {hi/p.), let a be

the quotient that would be produced by the division of q by

q\ and let the remainder be q', which will consequently be
Z (^ ; also, let /x' be the quotient of the division of q' by q',

and q;" the remainder, which will be Z q" ; in like manner,

let jw," be the quotient of the division of q^' by g'"', and q" the

remainder Z g-'", and so on, till there is no remainder ; in

this way, we shall have

9 = ^ ^ + ?"

q^ =^q" -'rq'"
qi = [x,"q"i + q'"

q'" = [x,"'q'''+ q\ &c.

where the numbers p., ju-', /x", 8cc. will all be integer and

positive, and the numbers j)-> q\ q") <?'"> ^^.c. will also be in-

teger and positive, and will form a series decreasing to

nothing.

In like manner, let us suppose

p = [J'P' + p"

p' =ijjp" +p"'
pf = fjip'" + p^'-

p"' =
fjj''p'" + J)\ &c.

And as the numbers p and^ are considered here as given,

as well as the numbers /x, |u,', ,a", &c. we may determine from

these equations the numbers p", p'", /?*", Sec. which will

evidently be all integer.
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Now, as we must have 'pq — qi^ — + 1» wc shall also

have, by substituting- the preceding values of }) and §', and
effacing Avhat is destroyed,^Y — q'p^ = ± 1. Again, sub-

stituting in this equation the values of p' and 5^', there will re-

sult 'p^q" — q''p"' =: + 1, and so on ; so that we shall have,

generally,

p q' — q p' = ± 1

p' q' — q' p" = + 1

So that, if 5'"', for example, were = 0, we should have
— (^'p" = + 1 ; also, §-" rr 1, and p^" = + 1 : but if </'' were
= 0, we should have — q^^'p^" rr :f 1 ; therefore g'"' — 1, and
p^^ = + 1 ; so that, in general, if qz = 0, we shall have
qo—^ z= 1 ; and then /^? = + 1, if p is even, and j!;^ = ^ 1,

if p is odd.

Now, as we do not previously know whether the upper, or

the under sign is to take place, we must successively sup-

poLS^e = 1, and == — 1 : but I say that one of these cases

Ya:.j at all times be reduced to the other ; and, for this pur-

pose, it is evidently sufficient to prove, that we can always

make the ^ of the term q?, which must be nothing, either

even, or odd, at pleasure.

For example, let us suppose that q^^' = 0, we shall then

have q" = 1, and q' 7 1, that is q" = 2, or 7 2, because

the numbers q, q\ q", &;c. naturally form a decreasing series ;

therefore, since q" = iJ'q'" -\- q" ; we shall have g'' — (J', so

that ju,"rr or 7 2 ; thus, if we choose, we may diminish yJ'hy

unity,without that number being reduced to nothing, and then

q", which was 0, will become 1, and q^zzO ; for putting [^"—1,

instead of ^a", we shall have q' =. {i^"
— 1)q" + q''' ; but

5" rr ju,", q'" = 1 ; wherefore, q^" =. 1 ; then having
q'" zz ^"q'^ + q'', that is, 1 =. ju,'" -j- q"'\ we shall necessarily

have ju-'" = 1, and q"' zz 0.

Hence we may conclude, in general, that if qi =: 0, we
shall have q^

—
^ = 1, and^? =: + 1, the doubtful sign being

arbitrary.

Now, if we substitute the values of^ and q, given by the

preceding formulas, in /? — aq, those of p' and <^', in p^— aq\
and so of others, we shall have

p — aq = y. (p' —aq'
) + p" — aq"

p' — aq' = ijJ Ip" —aq" ) + p'" — aq'"

p" — aq'' = (J^''{p"' ~aq"') -l-p'^ — aq'"
pin _ ^^111 _ ^y;"^^iv_^^iv^ + p^ — aq% Sec.

whence Ave find

K K 2
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acf — p" p —aq
p'— ag' p — aq

^ aq"'-p"' p'-ag'
f* pii-og" '^ pi'— ag<'

II _ ^^" ~ P'^ P" "~ ^^'

^ ~ p"~uf ^ f~af

2^" — ag^^ p'" — aq''-

Now, as by hypothesis the quantities p — oq, and p'— aq',

are of different signs ; and farther, as p' — aq' (abstracting

from the signs) must be greater than p — aq, it follows

that — „ will be a negative quantity, and less than unity.

Tliereforc, in order that ^^ may be an integer, positive num-

aq"-p"
bar, as it must, it is evident, that -r ; must be a po-

p — aq'

sitive quantity greater than unity ; and it is obvious, at the

same time, that fL can only be the integer number, that is

immediately less than ~~ —
; that is to say, contained be-

, ,. . aq"—j)" , aq" — p" , ^
tween the limits -^ ,» and -r —, — 1 ; tor since

p — aq' p — aq

p — aq aq"— rl'

I 7 0, and Z l,we shall have y^ Z -^
j
and

p'—aq '
' ~ p—ap
aq" — p
p— aq'

an" — p"
Also, since we have seen, that -7 y must be a positive

p — ctd
quantity greater than unity, it follows that — 7, Avill be

a negative quantity less than unity, (I say less than unity,

abstracting from the sign). Wherefore, in order that i^J may
aq"— p'"

be an integer, positive number, -^
j^
must be a positive

quantity greater than unity, and consequently the number jw.

can only be the integer number, which will be immediately

aq'"—p"'
below the quantity -~j ^,.

In the same manner, and from the consideration, that f*"
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must be an integer, positive number, we may prove, that the

quantity -~
;;•, will necessarily be positive, and greater

than unity, and that f^" can only be the integer number im-
mediately below the same quantity ; and so on.

It follows, 1st, that the quantities p — ag, p — aq',

p'' — aq", &c. will successively have different signs ; that is,

alternately positive and negative, and will form a series con-
tinually increasing. 2dly, that if we denote by the sign Z
the integer number which is immediately less than the value
of the quantity placed after that sign, we shall have, for the

determination ojf the numbers ju,, yJ, |u,", &c.

ad'— p"

f* ^1—

^

' p'— aq

^ ^ f-a^'

l^ ^p"'-aq"'

Now, we have already seen, that the series q, q\ q'^ &c.

must terminate in ; and that then the preceding term will

be 1, and the term corresponding to in the other series

p, p', p", &c. will be = + 1 at pleasure.

For example, let us suppose that 5*" = 0, we shall then

have q'" = 1, and p^" — 1; therefore

p'" — aq'" = p'" — a, and
p'"— aq'" = 1;

therefore p'"— a must be a negative quantity, and less than

1, abstracting from the sign ; that is, a — p'" must be 7 0,

and Z 1 ; so that p'" must be the integer number im-

mediately below a ; we shall therefore know the values of

these four terms,

p^ = 1 q" =
p'" L a f = 1

by means of which, going back through the former formulae,

we may find all the preceding terms. We shall first have
the value of /x", then we shall have p" and q', by the formulae,

p" =z
fjj'p'" + p'% and

q" = ^y + ^'v

;

from which we shall get {j^', and then p' and q' ; and so of the

rest.

In general, let q? — 0, then we shall have q=.—^, and

p^ zi I ; and shall prove, as before, that p"—^ can only be the
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integer number immediately below a ; so that we shall have

these four terras,

p^ = 1 ^e =
joe— 1 /_ a ^?—1 = 1 ;

M'e shall then have

cm—pi 1
P-s-- z.—r

—

-—I ^p^— — aqi—' a — p?—

JO.?—^ zl

aq^—'^ — pi

jn— — aqi—
^f—3 =r ixi—^pi—'^ + /»?—', g'e—^ = fj/^—^q?—- + ??—

S

and so on.

In this manner, therefore, we may go back to the first

terms, ^ and q; but it must be observed, that all the suc-

ceeding terms, p', q', p', q\ &c. possess the same properties,

and serve equally to resolve the problem proposed. For it

is evident, in the preceding formulae, that the numbers

P-> p'j P "> &c- ^'^d g, g-', g-", &c. are all integer and positive,

and form two series continually decreasing; the first of

which is terminated by unity, and the second by 0.

Farther, we have seen that these numbers are such, that

Vi ~ ^P' =^ i I5 pV — (ZP" — + 1> ^c. and that the quan-

tities p — aq, p' — a(f, p' — aq", &c. are alternately positive

and negative, and at the same time form a series continually

increasing. Whence it follows, that the same conditions

which exist among the four numbers p, q, r, s, or p, q, p\ q,
and on which, as we have seen, the solution of the problem

depends, equally exist among the numlxrs p\ q, ;;", q'\ and

among these, p", q'', p'\ cf, and so on.

Therefore, beginning with the last terms p% and 0?, and
going back always by the formula; we have just fou.iJ, we
shall successively have all the values ofp and q that can re-

solve the question proposed.

25. As the values of the terms ^e, p^—
', &c. q%, qv-^i Sec.

are independent of the exponent, c, we may abstract fi*om it,

and denote the terms of these two increasing series thus,

p% p\ p\ /', p'\ &c. q\ q', cf, q", q\ &C.

so that we shall have the following results.

/ = 1 (70 =
p' = 1^ 9\

= '^

?>' z= u! p' -\- \ <?'' := U,'

p"l = yj'f + p< q'" ^ iu,"/ -f.
q'

f^ = |.c"|p"' + p" q'^- = /x"'y'"+ q<

&C. &C.
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Then

>03

, p^-af 1

P Z. —7
,
Z-

aq —p a— [A

p"-aq"

,„
p" - aq"

^ ^ af—p"'

iw.'^ Z -f —^ &c.

Where the sign Z. denotes the integer number imme-
diately less than the value of the quantity placed after that

sign.

Thus, we shall successively find all the values ofp and q
that can satisfy the problem ; these values being only the

correspondent terms of the two series p°, jp', p", p'", &c. and

<t\ r/, /, /', &c.

26. Corollarij \. If we make

h =
p^ — ap^

aq'—p'

p"— aq^'

we shall have^ as it is easy to perceive,

1
b =

a—if'

_ 1

*" "~ b^<

d = :„ &C.
C— jM-"

and iJ!. L ci, yJ /L b, ijJ' L c, yJ" L d, &c. therefore the num-
bers jtjt, (jJ, jjJ', &c. will be no other than those which we have

denoted by a, /3, y, &c, in Art. 3 ; that is to say, these

numbers will be the terms of the continued fraction, which

represents the value of a ; so that we shall have here

,
1

Consequently, the numbers /V, p", p", &c. will be the nu-

/.'-h4,+,&c.
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merators, and </', q', (f\ &c. the denominators of the fractions

converging to a, fractions which we have already denoted byABC
^> ^> -n ^^' (Art. 10).

So that the whole is reduced to converting the value of a
into a continued fraction, having all its terms positive

;

which may be done by the methods already explained, pro-

vided we are ahvays careful to take the approximated values

too small ; then we shall only have to form the series of

principal fractions converging towards a, and the terms of

each of these fractions will give the values of p and q,

which will resolve the problem proposed ; so that — can

only be one of these fractions.

*^1. Corollary 2. Hence results a new property of the

fractions we speak of; calling — one of the princijjal frac-

tions converging towards a, (provided they are deduced
from a continued fraction, all the terms of which are positive),

the quantity j9 — aq will always have a less value (abstract-

ing from the sign), than it would have, were we to substitute

in the room of p and q any other smaller numbers.
28. Problem 2. The quantity

Ap"" + &p"'-^q -f cp"'-^q- +, &c. + yq"\

being proposed, in which a, b, c, &c. are given integers,

positive or negative, and p and q unknown numbers, which
must be integer and positive; it is required to determine
what values we must give to p and q, in order that the

quantity proposed may become the least possible.

Let a, /3, y, &c. be the real roots, and p + v V— 1,

ir + f //— Ij &c. the imaginary roots of the equation

AX'" -1- B>C'"-1 -I- CH»'-"- + , &C. + V = 0,

then we shall have, by the theory of equations,

Ap™ + iij)'"-^q + cf"--q- +, &c. + \q'" =
a(p - aq) X {p - ^q) X {p - yq) x

(/? - (/^ + V a/— l)y) X (;; - (^ - V v^ 1)<7) X

(i?
- C* + P V-l)q)x (p _ (tf _p -/- l)*^)....^:

A{p -aq)x {p - ^q) x (p — yq) X

( ip — i^qY-\-yY-) x i(p- mY+ f'?') * • • •

* Because (p—{i^ + v A/—l)q) x (p-{[x, - v^-l)q)
=.p- — 'ipiuq -f- [i/q^ 4- v'^q^ = (p — [uqY + v^y% and the same
with the others. B.
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Therefore the question is reduced to making the product

of the quantities /; — «(/, p — (^q, p — yq, &c. and

ip - mT' -h "'?% (p - "^^y + fq\ &c.

the least possible, when p and q are integer, positive numbers.

Now, suppose we have found the values of/; and q which
answer to the minimum ; and if we substitute other smaller

numbers for p and q, the product in question must acquire

a greater value. It will therefore be necessary for each of

the factors to increase in value. Now, it is evident, that if

a, for example, were negative, the factor p— aq would
always diminish, when p and q decreased ; the same thing

would happen to the factor {p — l^qY -\- V^q^, if {^ were
negative, and so of the others; whence it follows, that

among the simple real factors none but those where the roots

are positive, can increase in value ; and among the double

imaginary factors, those only, in which the real part of the

imaginary root is positive, can increase. Farther, it must
be remarked, with regard to these last, that in order that

{p ~ t^^V + "'2'" "i^y increase, whilst /> and q diminish, the

part {p ~
ix,q)- must necessarily increase, because the other

term -/q"^ necessarily diminishes ; so that the increase of this

factor will depend on the quantity p —
l^^q ', and so of the

others.

Therefore, the values of p and q, which answer to the

minimum, must be such, that the qviantity p — aq may in-

crease, by giving less values to /; and q, and taking for a one
of the real positive roots of the equation,

AX» + B?t™-1 + CK™-- +, &C. + V =: 0,

or one of the real positive parts of the imaginary roots of the

same equation, if there be any.

Let r and s be two integer, positive numbers less than p
and q; then r — as must be 7 (p — aq), abstracting from
the sign of the two quantities. Let us therefore suppose, as

in Art. 23, that these numbers are such, thatps — qr= + l,

the upper sign taking place, when p — aq is positive ; and
the under, when p — aq is negative ; so that the two quan-
tities p - aq, and r — as, become of different signs, and we
shall exactly have the case to which we reduced the pre-

ceding problem. Art. 24, and of which we have already
given the solution.

Hence, by Art. 26, the values of p and q will necessarily

be found among the terms of the principal fractions con-

verging towards a ; that is, towards any one of the quantities,

which we have said may be taken for a. So that we must
reduce all these quantities to continued fractions ; which
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may easily be done by the methods elsewhere taught, and then

deduce the converging fractions required: after which,wemust
successively make p equal to all the numerators of these

fractions, and q equal to the corresponding denominators,

and of these suppositions, that which shall give the least

value of the proposed function will necessarily answer like-

wise to the minimum required.

29. Scholium 1. We have supposed that the numbers ;;

and q must both be positive ; it is evident that if we were to

take them both neg-ative, no change would result in the

absolute value of the formula proposed ; it would onb"-

change its sign in the case of the exponent m being odd ; and
it would remain quite the same, in the case of the exponent
in being even : so that it is of no consequence what signs we
give the numbers p and q, when we suppose them both of

the same kind.

But it will not be the same, if we give different signs to p
and q ; for then the alternate terms of the equation proposed

will change their signs, which will also change the signs of

the roots a, /3, y, &c. /'- ± '' a/— 1, tj" ± f V— 1, &c. so

that those of the quantities a, p, y, &c. /x, tt, &:c. which

were negative, and consequently useless in the first case, will

become positive in this, and must be employed instead of the

other.

Hence, I conclude^ generally, that when Ave investigate tlie

minimum of the proposed formula, without any other re-

striction, than that of p and q being whole numbers, we
must successively take for a all the real roots a, /3, y, &:c.

and all the real parts p, tt, &c. of the imaginary roots of the

equation ah'" + b>c"'~^ + c->i"'~- +, &c. + v — 0; abstract-

ing from the signs of these quantities ; but then we must
give the same signs, or different signs, to ^; and q, according

as the quantity we have taken for a, had originally the

positive, or the negative sign.

30. Scholium 2. When amon^ the real roots a, p, y, &c.

there are some commensurable, then it is evident that the

quantity proposed will become nothing, by making— equal

to one of these roots ; so that in this case, properly speaking,

there will be no minimum. In all the other cases, it will be

impossible for the quantity in question to become 0, whilst

p and q are whole numbers. Now, as the coefficients a,

B, c, &c. are also whole numbers, by hypothesis, this quan-

tity will always be equal to a whole number; and, con-

sequently, it can never be less than unity.
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If we had, therefore, to resolve the equation

A/»"' + B/?^"-^<7 + cp"'-^q~ +, &c. + v<7"' = + 1,

in whole numbers, we must seek for the values ofp and q by

the method of the preceding problem, except in the case

where the equation

ax'" + BJC'"-^ + oC'-^ +, &C. + V = 0,

had roots, or any divisors commensurable ; for then, it is

evident, that the quantity

Aj)'" + Bjr-^q + cf'-^'q'^ 4- , &c.

might be decomposed into two or more similar quantities of

less degrees ; so that it would be necessary For each of these

partial formula? to be separately equal to unity, Avhich would

give at least two equations that would serve to determine p
and q. »

We have elsewhere given a solution of this last problem

{Memoires pour VAcademie de Berlin pour l'Amite 1768);

but the one we are going to explain is much more simple and

direct, although both depend on the same theory of con-

tinued fractions *.

31. Problem 3. Required the values of p and q, which

will render the quantity Ap"- + Bpq -\- cq" the least possible,

supposing that whole numbers only are admitted forp and 5.

This problem evidently is only a particular case of the

preceding ; but it may be proper to consider it separately,

tjecause it is capable of a vei-y simple and elegant solution ;

and, besides, we shall have occasion afterwards to make use

of it, in resolving quadratic equations for two unknown
quantities in whole numbers.

According to the general method, we must begin, there-

fore, by seeking the roots of the equation ax- -|- bx -j- c = 0,

I,- 1 I .1 -B+ V(b^-4ac)
which we know to be, -x •

' 2a
1st, If b"" — 4ac be a square number, the two roots will

be commensurable, and thfere will properly be no minimum,

because the quantity \p- + Tipq + cq' will become 0.

2d, If B^ — 4ac be not a square, then the two roots will

be irrational, or imaginary, according as b^ — 4ac will be

7, or Z. 0, which makes two cases that must be considered

separately ; we shall begin with the latter, which it is most

easy to resolve.

First case, when b^ — 4<ac z. 0.

32. The two roots being in this case imaginary, we shall

* See also Le Gendre's Essai sur la Theoric des Nombrcs,

page 169.
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have -^ for the whole real part ofthese roots,which mustcon-

sequently be taken for a. So that we shall only have to reduce

the fraction -^, abstracting from the sign it may have, to a

continued fraction, by the method of Art. 4, and then deduce
from it the series of converging fractions (Art. 10), which
will necessarily terminate. This being done, we shall suc-

cessively try for /; the numerators of these fractions, and the
corresponding denominators for g, taking care to give p and

q the same, or different signs, according as -^— is a positive,

or negative number. In this manner, we shall find the

values of 'p and q, that may render the formula proposed a
mhiimum.

Example. Let there be proposed, for example, the quantity

49p' - 238/7<7 + %)0q':

Here, we shall have a = 49, b = — 238, c - 290

;

wherefore b- — 4ac — — 196, and -^— = y^? — y . Work-

ing with this fraction according to the method of Art. 4, we
shall find the quotients 2, 2, 3 ; by means of which, we shall

form these fractions (see Art. 20),

2, 2, 3.

' ii i- L7
oJ 1 ' a> 7 •

So that the numbers to try with will be 1, 2, 5, 17, for p,
and 0, 1, 2, 7, for q. Now, denoting the quantity proposed
by p, we shall have

p q -P

1 49
2 1 10
5 2 5

17 7 49;

whence we perceive, that the least value of y is 5, which

results from these suppositions p = 5, and q = S.; so that

we may conclude, in general, that the given formula can

never become less than 5, while p and q are whole numbers

;

so that the minimum will take place, when p = 5, and

<7 =2.

Second case, when b'^ — 4ac 7 0.

33. As, in the present case, the equation ak" -\- -rk -j- c = 0,
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has two real irrational roots, they must both be reduced to con-

tinued fractions. This operation may be performed with the

greatest ease by a method which we have elsewhere explained,

and which it may be proper to repeat here, since it is na-

turally deduced from the formulae of Art. 25, and likewise

contains all the principles necessary for the complete and ge-

neral solution of the problem pi^oposed.

Let us, therefore, denote the root which is to be thrown
into a continued fraction by a, which we shall suppose to be
always positive ; at the same time, let b be the other root,

and we shall evidently have a + b = , and ab — ~;
A A

v'(b^ — 4ac)
whence a — b = ; or, for the sake of abride-

A *

ment, making b- — 4ac — e, a — b — , where the ra-
A

dical v^ F- i^ay he positive, or negative : it will be positive,

when the root a is the greater of the two, and negative, when
that root is the less ; therefore

— B-|- v^E , —B— a/e
"=-—27—'* =

-IE—-
Now, if we preserve the denominations of Art. 25, we shall

only have to substitute for a the preceding value, and the
difficulty will only consist in determining the integer, ap-
proximate values, fx', /x", |U<"', &c.

To facilitate these determinations, I multiply the numerator
and the denominator of the fractions,

^?3^" /3^' <3?" ^^- ^'^'Vectiyely by

a(%' - p'), A{p" - bq"), A{bq'" - p"% &c.

and as we have

/ /

A{aq' — p') X {bq' ~ p') = Ap" - A{a + b)p'^ -\- Aabq~ =

Ap" + sp'q' + cq\

A{p" - aq") X {p" — bq") = Ajf - A{a + b)p"q" + Aabq' =
II II

Ap"- 4- B^"^" + C^^, &C.
a(/ - af) X {bq' - p') = ~ fx,A - iB - 4 Ve,
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A(a9' — p') X ip' ~ bq") =
- Ap'p" -j- Aap"(/ + Abp'q'' — Aabq'q'' =

- Ap'p" - cq'q" _ iB(;;V/' h q'])") + ^ •/ F-lfq' ~ q"l>%
A{p" ~aq') X (bq'" '-p"') =

~ apY' + Aopy + Abp'f - Aahq'Y =
— Aff - cq"f - iB(p"q"' + qY) + i a/ v.{p"'q" ~ q'Y),
and so on. Now, in order to abridge, let us make

P«= A

/ I

P = Ap~ -}- up' q' -j- cq-

II II

p" =. Ap" + iip"q" -{- cq-

'" III

t"'= Ap^ + ^p'Y -f cq% &c.

q' = AfX- -f 4B
q" =: Ap'p" -f -IbC/?" -L

<2;p") -\- cq'q"

q!" =z Ap"p"' + iB( p"?'" + 9>'") + cq"q"', &c.

Because

p''9' - qY - 1, 2^"^" - q'Y' = - 1, Z^"«?"'
- Q'Y" = 1, &c.

we shall have the following values,

t^ I- pO

I-' L
-q! I v/e

p'

il" L
-q!' + i ^/E

^ p"

..III /
—a" a a/E

' p"f

Now, if in the expression of q" we put, for
i^" and q",

their values, [jJp' -\- 1, and /^", it will become p-'p' + q'
; also,

if we substitute iu the expression of q"', for p'" and q'", tlieir

values ijJ'p'' -\-p', and [J'"q" + q', it will be changed into

jjj'v" -\- «", and so on ; so that we shall have

q' = f*
p« + q}'

0." — [/J v' + q!

Q"'=f^"i>" + a"

Q'^=[JJ"V"' -1- q'", &c.

Likewise, if we substitute the values ofp'', and q", in tlie

expression of p", it will become ^'-p' -{- ^jjJq! + a ; and if we
substitute the values of p'", and u'", in tl)e expression of p"',
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it will become (x'p" + ^ijJ'q." -i- p', and so on ; so that we
shall have

P' = l^t^pO + ^IM (f +C
I

iu,2p' + 2f^' q! + p'*

III

By means of this formulae, therefore, we may continue the

several series of numbers, /x, /*', p"; q", q', q", and p*^, p', p",

&c. to any length, which, as we see, mutually depend on
each other, without its being necessary, at the same time, to

calculate the numbers ;;°, p', p", &c. and 5-", g', q", &c.

We may also find the values of p', p", p'", &c. by more
simple formulas than the preceding, observing that we have

q2 _ p/ =: (^'a -]- 4b)^ - A(ft2A + _u,B 4- C) = ^B^ - AC,

a^ - p'p" = {[^.'p' + q!Y - pV^p' -f 2^'q! + a) = or - ap',

and so on ; that is to say,

q2 _ pOpf _ ^jj

//

0^ — p'p" = ' E

Whence we ffet

III

iT - P"P"' = iE, &C.

a- - iE

//

p'l — ±_a'f —

p" = -^ , &c.

The numbers
f/-,

jw,', jx", &c. having thus been found, we
have (Art. 26), the continued fraction,

,
1

f' +L + , &c.

and, in order to find the minimum ofthe formula
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Aj)^ + Bp5' + C(7S we shall only have to calculate the num-
bers iA /^',/, p'", &c. and (/«, 5', q\ q\ &c. (Art. 25), and
then to tr}^ them instead of/? and q\ but this operation may
likewise be dispensed with, if we consider, that the quantities

P°, p', p", &c. are nothing but the values of the formula in

question, when we successively make p = p", p', p", &c. and

q =. 5-0, 9', ^", &c. We have, therefore, only to consider

which is the least term of the series p'\ p', p", &c. which we
calculate at the same time with the series, ju., ju,', ju.", &c. and
that will be the minimum required ; we shall then find the

corresponding values of p and q by means of the formulae

above quoted.

34. Now I say, that continuing the series, p", p', p", &;c.

we must necessarily arrive at two consecutive terms with dif-

ferent signs ; and that then the succeeding terms, also, will

all have different signs two by two. For, by the preceding

Article, we have
po =z A(pO - af) X {f - hq%
p' = a( p' - a(() X Ip' — bq), Sec.

And, from what we demonstrated in Problem 2, it follows,

that the quantities if— a(/'\ p'— aq'^ p" — aq'', &c. must
have alternate signs, and go on diminishing; therefore, Ist,,

if 6 is a negative quantity, the quantities if— bq^, p' — bq',

&c. will all be positive ; consequently, the numbers p°, p', p",

will all have alternate signs ; 2diy, if 6 is a positive quantity,

as the quantities p'— aq', p" — aq", &c. and much more the

• • P' P" n • 1
• •

quantities—— a, -j— a, form a series, decreasing to in-

finity, we shall necessarily arrive at one of these last quan-
p'"

titles, as —, — a, which will be z (a— b), abstracting from

p" p''

the sign, and then all the followino-, —— a, — a, will» ®' q"- ' q^' '.

be so likewise ; so that all the quantities

p'' p'^'

a — b -—n — (i-> a — b + —-. a, Sec. will necessarily have
q'' q'^ '

the same sign as the quantity a — b ; consequently, the

p'" if'
quantities —^ — 6, —r^,

— i, &;c. and these p'"— bq''\

p'^' — 6<y'*', &c. to infinity, will all have the same sign ; there-

fore, all the numbers p'', p'*', will have alternate signs.

Suppose now, in general, that we have arrived at terms,

with alternate signs, in the series p', p'', p"', &c. and that
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Pk is the first of those terms, so that all the terms Px, P^+ ',

p'^+2, &c. to infinity, are alternately positive and negative;

I say that none of those terms can be greater than E. If, for

example, p'", p*', p% &c. have all alternate signs, it is evident

that the products, two by two, p'''p'", p''p
, See. will neces-

sarily be negative ; but (by the preceding Article), we have

q2 — p"'piv — p^ Q^ _ pivpv _ [.-^ g^c. wherefore the positive

numbers, — p"'p'', — p'^p , will all be less than e, or at least

not greater than e; so that, as tije numbers p', p'', p'", &c.

must be integers, the numbers p"', p'% Sic. and, in general,

the numbers pa, p^ + i, &c. abstracting from their signs, can

never exceed the number E.

Hence it follows, also, that the terms q}^', q.'', &c. and, in

o-eneral, a^+^, a'^ + '^, &c. can never be greater than ^/e.

Whence it is easy to conclude, that the two series p'^,

px+i^ p^ + ^, &c. and Q^+ ', Q'' + ^, &c. though carried to in-

finity, can never be composed but of a certain number of

different terms, those terms being, for the first, only the na-

tural numbers as far as E, taken positively, or negatively

;

and for the second, the natural numbers as far as ^ E, with

the intermediate fractions i, |, |, &c. likewise taken posi-

tivelv, or negatively ; for it is evident, from the formulae of

the preceding Article, that the numbers q', q", q'", &c. will

always be integer, when B is even ; but that they will each

contain the fraction 4, when b is odd.

Therefore, continuing the two series p', p', p"', &c. and

q', q", q'", &c. it will necessarily haupen, that two correspond-

ing terms, as P'' and Qt, will return after a certain interval

of terras, the number of which may always be supposed

even; for, as the same terms P"- and Q^^, must return to-

gether an infinite number of times, because the number of

different terms in both scries is limited, and consequently

also the number of their different combinations, it is evident,

that if these two terms always returned, after the interval of

an odd number of terms, we should only have to consider

their returns alternately, and then the intervals would all be

composed of an even number of terms.

Denoting, therefore, the number of intermediate terms by

2f, we shall have p7r + 2? = ptt^ and Q'^ + ^i-
— q'^, and then all

the terms p^ P'='+i, p"+^, &c, q'^, q'+i, q'^+'^, and f/.^,

ju,t:+i, /XT + 2^ &c. will also return at the end of each interval

of 2f terms. For it is evident, from the formuhe given in

the preceding Article, for the determination of the numbers,

jw-'j i"-") l^"'->
&-C. q', q", q'", &c. and p', p", p'", &c. that, since we

shall have pi- + 2o — ptt^ aiid q'^ + ^j = q^^, we shall also have
I. L
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p,w + 2g= |u.«, then QTf + 2a+i = Q'^+i, and p'r + 2g+i ^^ p^+i
;

whence, also, ft.'r + 254-1 _ jj^tt + 'Jp^ and so on.

So that, if Q is any number equal, or greater than ir, and

m denotes any integer positive number, we shall have, in

general,

therefore, by knowing the tt + 2f leading terms of each of

the three series, we shall likewise know all the succeeding,

which will be only the 2^ last terms repeated, in the same

order, to infinity.

Fn-m all this it follows, that, in order to find the least

value of p — Ap- -h npq + cq^, it is sufficient to continue

the series r", p, p', ^vc. and q", q', q'', &c. until two cor-

responding terms, as v and a'^ appear again together, after

an even number of intermediate terms, so that we may have

P7r + 2g - p;r^ and Q.^' + '^'i — Q'^ ; then the least term of the

series P", p', p'', &c. p'^+^s will be the minitnum required.

35. Corollary \. If the least term of the series p", p', p",

&c. p'!^ + 2o is not found before the term v, then that term

will be repeated an infinite number of times in the same

series infinitely prolonged ; so that we shall then have an

infinite number of values ofp and q answering to the mml-
mum, and all discoverable by the formulae of Art. 25, by

continuing the series of the numbers ju.', jw,', ju,'", &c. beyond

the term iiJ^i+^ by the repetition of the same terms ^''+',

jt/,'^+2j as we have already said.

In this case we may likewise have general formula? repre-

senting all the values of p and q in question ; but an ex-

planation of the method for arriving at this, would carry me
too far; for the present, I shall only refer to the Men.o'ires

de Berlin already quoted, ann. 1768, page 123, &c. Avhere

will be found a general and new theory of periodical con-

tinued fractions.

86. Corollary 2. We have demonstrated (Art. 34), that,

by continuing the series p', p', p'", Jk.c. we ought to find con-

secutive terms with different signs. Let us suppose, there-

fore, for exaniple, that p ' and p' are the first two terms, with

this property. We shall necessarily have the two quantities

p' — hq'i and jt?'^ — /q' , with ihe same signs, because the

quantities //' — aq\ and p'" — aq'', have from, their nature

ciifferent signs. Now, by putting in tlie quiintities J9^
— bq'^,

p ' — og^', i>Lc. the values of p'^', p"', &c. q", q \ &c. (Art.

25j, we shall have

p'- — bq" = i^^'Xp'''
- bq") +p"' - hq"

p' - bq'''= [Ji^'Xp^- — bq') -i-p^' - A^*% &C.
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Whence, because jWr'^ ju,^, &,c. are positive numbers, it is

evident that all the quantities jf — 6<7^', /?' — h(f\ &c. to in-

finity, will have the same sig-ns as the quantities y — 65''",

and p^^ — bq'^' ; consequently, all the terms p'", p'*', p'', &c.

to infinity, will alternately have the signs phis and minus.

From the preceding equations, we shall now have

,^,_ p^-bf j^^ — bq'"

p^' — bq" p'^—bq^'

i— bq'''~p^'—bq'"

p'"— bq"' p''—bq'^

f^-bq^^ ^ p^'-^bq^- ^^
^ p^'— bq"' p'-'—bq"''

where the quantities, ^-r^;^

—

t\, ——
j^, , &c. are all positive.

Wherefore, since the numbers jw,'^', y.^', fo^', &c. must be all

p^—bq"
positive integers, by hypothesis, the quantity .^ , ^^

must

be positive, and 7 1 ; so also must the quantities

;— , ——j^-r, &c. wherelore the quantities
py — bq-' ' p^'^—bq^'

' ^

p'' — bq''- p'—bq'- „ ...

,

. . ,, ,~ ^-^~
,

- -:

—

r—, &c. Will be positive, and less than unity ;

p^—bq'' 2)''— bq'''
f ' J '

SO that the numbers i"-^,
jW'^', &c. can only be the integer

numbers, which are immediately less than the values of

7^, -—^ r^? Sec. As to the number w,'^' it will
pv __ bq' ' p"— bq'--'

also be equal to the integer number, which is immediately

p^ — bq^'

less than the value of =^7; £-—,, whenever we have
p'^— oq'^

f— hf

Thus, we shall have

. zi.

'' p'-bf

^ p""— i^r^''

L l2
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the sign /. placed after the numbers |u."', jw,'^,
fy,^,

&c. de-

noting as before, the integer numbers which are immediately

under the quantities which follow that same sign.

Now, by reductions similar to those of Art. 133, it is easy

to transiorm the quantities -^——r--, ~~> &c. into^ p" — 6<7" j9'— bq^

these, }-—

,

—
, &:c. Farther, the condition of

plN pV

pf-bf , , ^ J ^. — p'" af-f'
^-4 j-4- z 1 may be reduced to this, —— z -^ —^

;

which, because —^ ^ 7 1, will certainly take place, when
p"^— «' "^ ^

_p"'—— = or Z 1 ; wherefore we shall have
piv

Q^'+lv'E ..-P"'
u," z —

, if—T- =: or z 1."
piv ' plV

iv/r.

pv. ^ ^^•

Combining now these formulae with those of Art. 33,

which contain the law of the series p', p", p'", &c. and o!, o.",

q'", &c. we shall easily see, that, if two corresponding terms

of these two series be supposed to be given, the rank of

which is higher than 3, we may go back to the preceding

terms, as far as p" and a% and even to the terms p'" and a",

— p'"

if the condition of

—

— = or Z 1 takes place; so that all

these terms will be absolutely determined by those which we
have supposed to be given.

For example, knowing p", and q", we shall immediately

know p' from the equation q- — pV' = i-E; then, having

ft"" and p^', we shall find the value of a'' ; by means of which,
we shall next find the value of q" from the equation

Q"' = iL^'p" + Q\ Now, the equation q- — p''p' =: i-E, will

— p'"

give p'"
; and if we previously know, that —— must be = or

/ 1, we shall find p.'"'; after which, wc shall have q*'' from



CHAP. II. ADDITIONS. 517

the equation a'' = [ju'^'e'"' + ^'% ^^^^ t^^'-'" ^"' ^^'^^ ^^•^'

Jll-n'lV _ 1Q- — P"'P'" = ^E.

Whence it is easy to draw this general conclusion, that if

p>. and p^+i are the first terms of the series p', p", p'", &c.

which-are successively found witli different signs, the term
p'^ + \ and the following, will all return, after a certain number
of intermediate terms, and that it will be the same with the

term p'^, if we have -=—: — or Z 1.

For let us imagine, as in Art. 34, that we have found
pT+2j = prr^ and 0.-^ + ^$ = Q% and suppose that iris 7^,
that is to say, ir = X -\- v ; Avlierefore we may go back, on

the one hand, from the term p- to the term p'^+ ', or pa, and

on the other, from the term T^^ + 'i to the term ff^ + '2g+\^ or

¥^ + '^§; and, as the terms from which we set out are equal

on both sides, all the terms derived from them will hkewise

be respectively equal ; so that we shall have p?^ + 2§ + 1 = pA + j
^

.^ +PA 1

or even p^ + p = pa, it ——- = or Z. 1.

We may, therefore, judge beforehand of the beginning of

the periods in the series p"^, p', p'', p'", &c, and consequently

in the other series also, a°, o!, a", o!", &c. /x, ^', ^a", ^u,", &c.

but as to the length of the periods, that depends on the

nature of the number E, and entirely on the value of that

number, as 1 could demonstrate, were I not afraid of being

led into too long a detail.

37. Corollary 3. What we have demonstrated in the

preceding corollary, may serve to prove the following theo-

rem : Every equation of the form p^ — Kq'^ — 1, (in zohich

K is a positive integer nmnher, but not a, square, and p
and q tzoo indeterminate numbers) is resolvlble in integer

mimhers.

For, by comparing the formula/?^ — Kg-' with the general

formula, a^' + Tipq + eg''', we have a = 1,b = 0, c=— k;
wherefore e = b- — ^ac = 4k, and |\/e = a/k (Art. 33).

Wherefore, p° = 1, a" = 0; likewise a Z v'K, a' — jW-, and
p' = ju,2 — K ; whence we see first, that p' is negative, and

consequently has a diff'erent sign from p°; secondly, that

— p' is = or 7 1, because k and jw. are integer numbers;
pO

so that we shall have r = or Z 1 ; whence we shall
— p'

find, from the preceding Article,

X = 0, and p^J = p° = 1

;
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SO that by continuing the series p", p', p", &c. the term,
p*^ = 1, will necessarily return after a certain interval of

terms; consequently, we may always find an infinite num-
ber of values for p and ^, which will render the formula
j)"^ — Kq^ equal to unity.

38. Corollary 4. We may likewise demonstrate this

theorem : If the equation v" — Kq" = ± n be resolvible in

integer numbers, by supposing k a positive number, not

square, andn a positive number, less than a''k, the numbers

p and q must be such, that — may be one of the principal

Jifactions converging to the value of ^/k.

Let us suppose that the upper sign must take place, so

that p^ — v.q" = H ; wherefore, we shall have

D — o a/k = —;

, and /k = .

^+'^'' '

,'(f
+ v'K)

Now, let us seek two integer positive numbers, r and s, less

than p and q, and such, that ps — qr = 1, which is always
possible, as we have demonstrated (Art. 23), and we shall

p r ^
have =: — : subtracting this equation from the pre-

q S qs
a 1 r

ceding, we shall have

— — A / K = ; so that we have
^ P s 2^

q\^ + ^^K)

p-qsf^^——^ ,

!7(y + VK)

1 y sn ^,
r - s v^K = —(—T !)•

p
Now, as ^— 7 A.^K, and h Z. a/ k, it is evident, that

q

will be z i^ : whence p — nJ'^ will be Z — ;« ^ ' x^ i V Qq— +^/K ^

1
Vw

wherefore, will much more be Z i, since s I q\
V

w that r - j> /K will ])c a negative (juantity, which taken
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1

positively, will be 7^, because that 1 —
q p

So that we shall have the two quantities, j) ~ q \/k, and
r — .? \/K ; or rather, makinoj a — \/k, p — aq^ and r — as:

which will be subject to the .same conditions as we have
supposed in Art. 24, and from which we shall draw
similar conclusions : therefore, &c. (Art. 26), if we had
p~ — Kq- = — H, then it would be necessary to seek the

numbers r and s such, that ps — qr = — 1, and we should

have these two equations,

qVK — p =
q{ ,/K+^)

s s/K - r = —( 1).

^ ^(v/k4-|-)

As H Z v^K, and s Z q, it i» evident, that
*H

9(v/K+|-)

will be Z 1 ; so that the quantity S\/k — r will be negative.

ISow, I say that this quantity, taken positively, will be

greater than q^K — p; to prove which, it must be demon-

strated, that — (1 ) 7 ,

H(l+ -)
'

q
or rather, that Iv ; that is to say,

try OXJ"

y^K-| 7H H ; but HZ v/K(/ij/p.) ; it IS therefore

7) S aX K
sufficient toprove,that— 7 , or that p? S\/ii\ which is

evident, because the quantity s^Jk — r being negative,

we must have rys^/K, and much more py^^/K, since

pjr.
Thus, the two quantities, p — q \/k, and r — s^k, will

have different signs, and the second will be greater than the
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iirst (abstracting i'roiu the signs), as in the precedujg case;

therefore, See.

So that when we have to resolve, in integer numbers, an
equation, of the fomi,p'- — k^'- = + h, where h Z ^ k, we
liave only to follow the same process as in Art. 83, making
A — 1, B =: 0, and c — — k; and, if in the series p", p',

p", p"', &c. r^+-?, we find a term = ± H, we shall have the

solution required; if not, we may be certain that the given
equation admits of no solution in integer numbers.

39. Scholium. We iiave considered (Art. 33) only one
root of the equation a^* + b" + c = 0, which we have sup-
posed positive ; if this equation have both its roots positive,

we must take them successively for a, and perform the same
(operation with both ; but if one of the two roots, or both,

were negative, then we should first change them into positive,

by only changing the sign of b, and should proceed as be-

fore : but then we should take the values of p and g with
contrary signs ; that is to say, the one positive, and the other

negative (Art. 29).

In general, therefore, we shall give the ambiguous sign

± to the value of b, as well as to .\/'e ; that is to say, we
sliall make q! — + Ib, and let us put + before v^e, and
we must take these signs, so that the root

a —
A

may be positive, which may always be done in two different

ways: the upper sign of b will indicate a positive root; in

which case, we must take both p and q with the same signs

;

on the contrary, the lower sign of b will indicate a negative
root; in which case, the values of/? and q must be taken
with contrary signs.

40. Example. Required what integer numbers must be
taken for p and q, in oider that the quantity,

9/>2- 118;79 +378?-
may become the least possible.

Comparing this quantity with the general formula of
Problem 3, \ve shall have a = 9, b = — 118, c = 378;
wherefore, b^ — 4<ac = 316; whence we see that this case

belongs to that of Art. 33. We shall therefore make
K = 316, and i-v'E = .,/79, where we at once observe, that

a/79 7 8, and Z 9 ; so that in the formula? of which we shall

only have to find the approximate integer value, we may
immediately take, instead of v^79, the number 8, or 9, accord-

ing as that radical shall be added, or subtracted, from the

/otliL-r numbers of the .same funnulu.
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V\'e shall now give the ambiguous sign + to b, as well as

to \/e, and shall then take these signs such, that

±59 ± N^79
"^ ^

—
may be a positive quantity (Art. 39) ; wlience we see, that

we must always take the upper sign for the number 59 ; and,
that for the I'adical a/79, we may either take the upper, or
the under. So that we shall always make a^ = — lu, and
^/E may be taken, successively, p us and minus.

First, therefore, if i v^e = x/79 with the positive sign, we
shall make (Art. 33), the following calculation :

5?

RT

X

X

+
-5

II

X
C5

CO

X
Or

©
X

X

+

X

Or

Or

00 CO

1—

'

?o t*^ C5 •i^ COO
1

Cn O
, Kt' ^

,u 1 o.
-^ <>- ^ ii 1 o

;o o zo CD CO CO

K-i CO

CO
1

N

Or

CO

N IS

1
or

I
00

1 CO 1

t +
,

-5
1 +

,

-:! +
1

*>

1 ;o 1 1 o» 1

<, CO 1' <. -5
1 o

^
"-5

CO ^ CO -J
CO ^ CO

Or
CO

+

CO

^ ^ ^ S^ 3^ r r cr^

Here I stop, because I perceive that q.'" = ^'^ and
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p^'" = p', and that the difference between the two indices,

1 and 7, is even ; whence it follows, that all the succeeding

terms will likewise be the same as tlie preceding; so that we
shall have q^" =z 4, q^"* = — 3, o.'" = 7, &c. p^" = — 7,
pviii _ 20^ ^(.^ so that, if we choose, we may continue the

above series to infinity, only by repeating the same terms.

Secondlyi let us take the radical v/79 with a negative

sign, and the calculation Avill be as follows

:

9P
1

o
1

(—1

O 1

Ct
I CO

o
1

o X -1 X CO
X Ci X X

X L_l X HJ X CO
1

X 1—*
Or

^o 1 t—

'

I

Or 1 I—"
1

1

+ hf^ + -4 + -J
1 —"

C^T II w
II

CO

00 il 1-1 I*'

II

1

II
Oj

II II

00
II

II

1

J
1 I 1

1

t—

'

M J-l
>—

'

*>

t ri hi
< fl tJ w - X •v nn

05
CO

Oi CO

-^ CO
CO

Ol oo CO

II II II II II II

1 ^
1 o 1

Ci ~3 i^

-?.
<

"?_
<

N n' N ^ ^ N

^ CO
CO "
05

Or

N

•?

N

Or

-JS 1
»^

1
-5 1

~5 h-' H-

+

1

Or

1 CO
+

1

CO
+

1

<^ CO

00

> u + CO

-1 ^ -I
CO

-:{ -^ -I <l
CO CO CO CO CO CO CO 1

II II

CO ?o CO

We may stop here, since we have found a"' = a'", and
pix _ pW^

^i^g difference of the indices 9 and 3 being even

;

for, by continuing the series, we should only find the same

terms that we have found already.

I
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Now, if we coiiskler the values of the terms r", p', p", p'",

&c. found in the two cases, we shall perceive that the least

of these terms is equal to — 3 ; in the first case, it is the

term v'", to which the values p'" and q" answer; and, in the

second case, it is the term p'", to which die values p'"'' and q^''

answer.

Whence it follows, that the least value, which the given

quantity can receive, is —3 ; and, in order to have the values

ofp and q, which answer to it, we shall take, in the first

case, the numbers ju-, jo.', jw-", namely, 7, 1, and 1, and shall

form with them the principal converging fractions {, |, y ;

the third fraction will, therefore, be ^, so that we shall have

p'" =: 15, and q" = 2; that is to say, the values required

will be p = 15, and q = ^. In the second case, we shall

take the numbers ju,, pt', (jJ', uJ", namely, 5, 1, 1, 3, which will

give these fractions, -f, -^, V, V; so that we shall have
/>=>' — 39, and q'" = 7 ; therefore, p = 39, and q = 7.

The values which we have just found for p and q, in the

case of the minimum, are also the least possible ; but if we
choose, we may likcAvise successively find others greater : for

it is evident, that the same term, •—3, will always return at

the end of every interval of six terms ; so that, in the first

case, we shall have p'" = — 3, p'-^ = - 3, p'^' r= — 3,

&c. and, in the second, p'^rz - 3.. p^ rr -3, P''" =—3, &c.

Therefore, in the first case, the satisfactory values of j9

and q will be these ; p'", q'", p'", q"", /?"', q''^ &c, ; and, in

the second case, p'", §'"', p", (7", p''^'', g'""', &c. Now, the

values of jw-, [jJ, itJ', &c. are in the first case 7, 1, 1, 5, 3, 2, 1
;

1, 1, 5, 3, 2, 1 ; 1, 1, 5, 3, &c. to infinity, because ju-'" = jO-',

and ju,""' = ,a'', &c. so that we shall only have to form, by
the method of Art. 20, the fractions,

7, I, I, 5, 3, 2, I, I, 1, 5,
7 8 i5 83 26+ 611 375 I4 8j5 2J6 I i 3 i 9J ijp
T> T> T 5 TT> TT > TT » TT6» 19 7' 3 i 3 » i 7 6 a ' "'"^"

And we may take for p the numerators of the third,

ninth, &c. and for q the corresponding denominators: we
shall therefore havej9 = 15, y = 2, orp = 2361, q = 313,

&c.

In the second case, the values of yJ, [jJ', jjJ", &c. will

be 5, 1, 1, 3, 5, 1, 1, 1, 2; 3, 5, 1, 1, 1, 2, &c. be-

cause /*''', ijJ", jM.'' = jw.'"', 8ec. We shall, therefore, form these

fractions,

5, 1, 1, 3, 5, 1, 1, I, 2, 3,

5 6 II ,19 a06 14S +51 696 18 + 3 61*5 firf

,

T> T> T 3 T > TT ' T*' » TT > I "iT? TTT ? i i i s' *
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And the fourth fraction, the tenth, kc. will give the
values of 7; and q ; which will therefore be

p ^ 39, ? =: 7, or p = 6225, q = 1118, &c.

In this manner, therefore, we may regularly find all the
values of j5 and 5, that will make the given formula :^ — 3,
the least value it can receive. We might even have a ge-
neral value, which would comprehend all these values ofp
and q. Any person who has the curiosity may find it by a
method which we have elsewhere explained, and which has
been already noticed (Art. 35).

We have .just found, that the minimum of the quantity
proposed is —3, and consequently negative ; now, it mio-ht

be proposed to find the least positive value, that the same
quantity can receive : Ave should then only have to examine
the series P^, p', p'', ?'", &c. in the two cases, and we should
see that the least positive term is 5 in both cases ; and as in

the first case it is p"', and in the second p'", which is 5, the
values of ;? and ^, that will give the least positive value of
the quantity proposed, will be p'\ q'\ ov p^, q"", or Sec. in the

first case, andp'", q''\ or p''', q""', &c. in the second ; so that

we shall have, from the above fractions, p = 83, q = 11 ; or

p = 13291, q = 1762, kc. or p:=-il, q = 2; p = 1843,
q = 331, &c.

We must not forget to observe, that the numbers y^, [jJ,

jw,'', &c. found in the above two cases, are no other than the

terms of the continued fractions, which represent the two
roots of the equation Qyf- — 118;c -f 378 — 0.

So that these roots will be,

^^+i-f, &C.

' '+T_^|-f,&C.

expressions which we might continue to infinity merely by
repeating the same numbers.

Thus, we perceive how we are to set about reducing to

continued fractions the roots of every equation of the second
degree.

41. Scholium. In volume XI. of the New Commen-
taries of Petersburg, M. Eulee has given a method similar

to the preceding ; but deduced from principles somewhat
different, for reducing to a continued fraction the root of any
integer number, not a square, and has added a Table, in

which the continued fractions are calculated for all the
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natural numbers, that arc not squares, as far as 100.

This Table being useful on various occasions, and par-

ticularly for the solution of indeterminate numbers of the

second degree, as we shall afterwards find (Chap. 7), we
shall here present it to our readers. It will be observed,

that there are two series of integers answering to each
radical number; the upper is that of the numbers p'', — p',

p", — p'", &c. and the under that of the numbers, «,, a', uJ',

iJ\ &c.

V '^
1111 &c.

12 2 2 &c.

v/ 3
1 2 1 2 1 2 1 &c.
112 12 1 2,&c.

V 5
1 1 1 1 &c.

2 4 4 4 &c.

1/ 6
12 12 12 1 &c.

2 2 4 2 4 2 4 &c.

v^ 7
1 o 2 3 1 3 2 3 1 &c.
2 1 1 1 4 1 1 1 4 &c.

V 8
1 4 1 4 1 4 1 &c.

2 14 14 1 4 &c.

yio 1 1 1 1 &c.

3 G 6 6 &c.

-v/ll
1 2 1 2 1 2 1 &'c.

3 3 6 3 6 3 6 &c.

v/12
1 3 1 3 1 3 1 &c.

3 2 6 2 G 2 6 &c.

v/13
1 4 3 3 4 1 4 3 3 4 1 &c.

3 1 1 1 1 6 1 1 1 1 6 &c

v/14
1 5 2 5 I 5 2 5 1 &c.

3 1 2 1 6 1 2 1 6 &c.

^15
1 6 1 6 1 6 1 &c.

3 1 6 1 6 1 6 &c.

^17
1 1 1 1 1 &c.

4 8 8 8 8 &c.

v'18
1 2 1 2 1 2 1 2 1 &c.
4 4 8 4 8 4 8 4 8 &c.

^/19
13 5 2 3 3 13 5 2 5 3 1

4213128213128
&c.

&:c.

r-°
1 4 1 4 1 4 1 4 1 &c.
428282828 &c.

v/21
15 4 3451543451
4 112 118 112 118

&c.
&c.
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x/22
1 6 3 2 3 6 1 6 3 2 3 6 1 &c.

4124218124218 &c.

v/23
1 7 2 7 1 7 2 7 1 &c.
4 1 3 1 8 1 3 I 8 c<tc.

/^,
i

1 8 1 8 1 8 1 &c.
^ -^

1 4 1 8 1 8 1 8 &c.

v/26
1111 &c.
5 10 10 10 &c.

v/27
1 2 1 2 1 2 1 ^.c.

.T 5 10 5 10 5 10 &c.

v/28
13 4 3 13 4 3 1 <S:c.

5 3 2 3 10 3 2 3 10 &c.

^29
14 5 5 4 14 5 5 4 1 &c.

5 2 1 1 2 10 2 1 1 2 10 &c.

^/30
15 15 15 15 1 &c.

5 2 10 2 10 2 10 2 10 &c.

^/31
16 5 3 2 3 5 6 1 6 5 &c.
5 1 1 3 5 3 1 1 10 1 1 &c.

x/32
17 4 7 17 4 7 1 &c.
5 1 1 1 10 1 1 ] !0 &c.

v/33
18 3 8 18 3 8 1 &c.
5 1 2 1 10 1 2 1 10 cS^c.

v/S-t
19 2 9 19 2 9 1 &c.
5 1 4 1 10 1 4 1 10 &c.

/.^ 1 10 1 10 1 10 1 10 &c.
^'^^

f) 1 10 1 10 1 10 1 &c.

^/57
1 1 1 1 1 &c.
6 12 12 12 12 &c.

^/S8
12 12 12 1 &c.
6 6 12 6 12 6 12 &c.

v/39
13 13 13 1 &c.

6 4 12 4 12 4 12 &c.

^^40
14 14 14 1 &c.
6 3 12 3 12 3 12 &c.

v/41
15 5 1 5 5 1 ike.

6 2 2 12 2 2 12 &c.

^^42
16 16 16 1 &c.

6 2 12 2 12 2 12 &c.

v/43
17 6 3 9 2 9 3 6 7 1 7 6 &c.

6 1 1 3 I 5 1 3 1 1 12 1 1 &c.

v/44
18 5 7 4 7 5 8 1 8 5 &c.

6 1 1 1 2 1 I 1 12 1 1 &c.

v/4-5
194549 194549 194 &c.
6 1 2 2 2 1 12 1 2 2 2-1 12 1 2 &c.
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v/46
I 10 .3 7 6 5 2 5 6 7 3 10 1 10 3 &c.

6 13 112 6 2 113 1 12 1 3 &c.

v/47
i 11 2 11 1 11 2 11 1 &c.

G 15 1 12 I ,5 1 12 &c.

v/48
1 12 1 12 1 12 &c.

6 i 12 1 12 1 &c.

^/50
1 1 1 1 &c.

7 14 14 14 &c.

v/51
12 12 1 2 &c.

7 7 14 7 14 7 ^c.

v/52
13 9493 139493 13 &c.

7 4 1 2 1 4 14 4 1 2 1 4 14 4 &c.

V53
14774 14774 147 &c.

7 3 1 1 3 14 3 1 1 3 14 3 1 &c.

V5^
15 9 2 9 5 15 9 2 9 5 1 5 &c.

7 2 1 6 1 2 14 2 1 6 1 2 14 2 &c.

^55
1 6 5 (i 116 5 6 1 &c.

7 2 2 2 14 2 2 2 14 2 &c.

^/56
17 17 17 1 &c.

7 2 14 2 14 2 14 &c.

a/57
18 7 3 7 8 1 8 7 &c.

7 1 1 4 1 1 14 1 1 &c.

A/-58
19 6 7 7 6 9 1 9 6 &c.

7 1 1 1 1 1 1 14 1 1 &c.

^/.59
i 10 5 2 5 10 1 10 5 &c.

7 12 7 2 1 14 1 2 &c.

^/60

v^Sl

1 11 4 11 1 11 4 &c.

7 12 1 14 1 2 &c.

1 12 3 4 9 5 5 9 4 3 12 1 12 3 &c.

7 14 3 12 2 13 4 1 14 1 4 &c.

^62
1 13 2 13 1 13 2 &c.

7 16 1 14 1 6 &c.

v/6S

^/65

1 14 1 14 1 14 &c.

7 1 14 1 14 1 &c.

1 1 1 1 &c.

8 16 16 16 &c.

^/66

v/67

12 12 1 »cc.

8 8 16 8 \6 &:c.

13 6 7 9 2 9 7 6 3 1 3 6 &c.

8 5 2 1 1 7 1 1 2 5 16 5 2 &c.

a/SS

.v/69

14 14 1 4 &c.

8 4 16 4 16 4 &c.

15 4 113 114 5 1 5 4 ike.

8 3 3 14 1 3 3 16 3 3 &c.
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V70
1 6 9 5 9 G 1 6 9 &c.
8 2 1 2 1 2 16 2 1 &c.

Wl I 7 5 11 2 II 5 7 1 7 5 &c.
8 2 2 17 1 2 2 16 2 2 &c.

vn 18 18 1 8 &c.

8 2 16 2 16 2 &c.

v^73
983389 198 &c.
1 1 5 5 1 1 16 1 1 &c.

v/T'i
10 7 7 10 1 10 7 &c.
Ill 1 16 1 1 Ac.

a/75
11 6 11 1 11 6 &c.
11 1 16 11 &c.

^76
12 5 8 9 3 4 3 9 8 5 12 1 12 5 &c.
12 115 4 5 112 1 16 1 2 &c.

V77
13 4 7 4 13 1 13 4 &c.
13 2 3 1 16 1 3 &c.

a/78
14 3 14 1 14 3 &c.
14 116 1 4 &c.

a/79
15 2 15 1 15 2 &c.

17 1 16 1 7 &c.

^/SO
16 1 16 1 16 &c.

1 16 1 16 1 ike.

a/82
1 1 1 &c.

18 18 18 &c.

a/SS
2 12 1 2 &c.

9 18 9 18 9 &c.

v/84<
3 13 13 i^c.

6 18 6 18 9 &c.

\/85
4 9 9 4 1 4 9 &c.
4 1 1 4 18 4 1 &c.

v/86
5 10 7 11 2 11 7 10 5 1 5 10 &c.

3 11 18 11 1 3 18 3 1 &c.

.s/Sl
6 16 1 6 &c
3 18 3 18 3 &c.

v/88
17 9 8 9 7 1 7 9 &c.

9 2 1 1 1 2 18 2 1 &c.

18 5 5 8 1 8 5 &c.

9 2 3 3 2 18 2 3 &c.v/89

a/90
1 9 1 &c.

18 2 18 <!vc.

v/91
10 9 3 14 3 9 10 1 10 9 &c.

115 15 1 1 18 11 ^.c.

x/92
118 7 4 7 8 11 1 11 8 &c.

112 4 2 1 1 18 11 &c.



en A I*, ir. ADniTIONS. 529

^/93
1

9

12

1

7 114 3 4 117
1 14 6 4 11

12 1 12 7 &c.
1 18 1 1 &c.

v/94
1

9

13

1

6 5 9 10 3 15 2

2 3 1 15 18
15 3 10 9 5 6 13 1 &c.
15 113 2 1 18 &c.

V95
1

9

14

1

5 14 1 14 &c.

2 1 18 1 &c.

v/96
1

9

15

1

4 15 1 15 &c.

3 1 18 1 &c.

^/97
1

9

16

1

3 11 8 9 9 8 11

5 11111 1

3 16 1 16 &c.
5 1 18 1 &c.

^98
1

9

17

1

2 17 1 17 &c.
8 1 18 1 &c.

v/99
1

9

18

1

1 18 1 &c.

18 1 18 &c.

Thus, for example, we sliall have

a/S = 1 + i
+ i+, &c.

and so of others.

And, if we form the converging fractions,

^ I. I. ^ S^r
qO> q,' q'ly yf«»^c-

according to each of these continued fractions, we shall have

{py - 2{qy = \,f- 2^"- = - 1,

V = Ij &c.

and likewise,

// //

p"- - 3g2 = 1, &c.

M M
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CHAP. in.

Ofthe Resolution, in Integer Numbers, o/"Equations of the

first Degree, containing tz&o unTcnoion Quantities.

[appendix to chap. I.]

42. When we have to resolve an equation of tins form,

ax — hif — c,

in which a, b, c, are given integer numbers, positive, or

negative, and in which the two unknown quantities, .r and ?/,

must also be integers, it is sufficient to l^now one solution,

in order to deduce with ease all the other solutions that are

possible.

For, suppose we know that these values, x = a, and

y =. /3, satisfy the conditions of the equation proposed, a and
jS being any integer numbers, we shall then have aa— h^—c\
and, consequently,

ax — hif •=. a% — h^, or a[x — a) — h{y — ;S) =: 0;

whence we find ^ = — . Let us reduce the fraction

— to its least terms, and supposing, in consequence of this

V
reduction, that it becomes — , where V and «' will be prime

to one another, it is evident that the equation,

X —OL b'

could not subsist, on the supposition o^ x — a, and y — /3,

being integers, unless we,have x—a, rz ml', and^

—

B zn ma\
m being any integer number ; so that we shall have, in

general, .z^ =: a + mb', and j/ =: /3 -|- ma' ; m being an in-

determinate integer.

Now, as we may take m either positive, or negative, it is

easy to perceive, that we may always determine the number
111 in such a manner, that the value of x may not be greater

V a' .

than -^, or that of ^/ not greater than—, (abstracting from

the signs of these quantities) ; whence it follows, that if the
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given equation ax — bij =: c, is resolvible in integer num-
bers, and we successively substitute for x all the integer

numbers, positive as well as negative, contained between

these two limits-—, and , we shall necessarily find one

that will satisfy this equation : and we shall likewise find

a satisfactory value of y among the positive, or negative

a' —d
whole numbers, contained between the limits ;r-, and ~-pr-.

By these means we may find the first solution of the

equation proposed ; after which, we shall have all the others

by the preceding formulae.

43. But, Avithout employing the method of trial, which
we have now proposed, and which would sometimes be very
laborious, we may make use of the very simple and direct

method explained in Chap. I. of the preceding Treatise, or of
the following method.

First, if t!ie numbers a and b are not prime to each other,

the equation cannot subsist in integer numbers, unless the

given number, c, be divisible by the greatest common
measure of a and b. Supposing, therefore, the division

performed, and expressing the quotients by «', b\ c', we
shall have to resolve the equation,

a\v — b'y n d,

where a! and b' are prime to each other.

Secondly/, if we can find values of /j and q that satisfy the

equation, a'p — b'q = ±1, we may resolve the preceding
equation ; for it is evident that, by multiplying these values

by ±c', v/e shall have values that will satisfy the equation,

ahv — b'lf —. c' ;

that is to say, we shall have

cc = f pc', and ?/ = + qc'.

Now, the equation a!p — h'q = + 1 is always resolvible

in integers, as we have demonstrated, Art. 23 ; and, in order

to find the least values of ^7 and q tiiat can satisfy it, we shall

only have to convert the fraction —
:

, into a continued frac-

lion by the method of Art. 4, and then deduce from it a
series o't principal fractions, converging to the same fraction,

—, by the formulae of Art. 10; the last of these fractions

b'

will be the same fraction —, ; and if we represent the last
a ^

M M 2
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but one by — , we shall liave, by the law of these fractions,

(Art. 12) a'p — b'g = + 1 ; the upper sign being for the

case, in which the rank of the fraction is even, and the under

for that in which it is odd.

These values of^ and q being thus known, we shall first

iiave r = + pc', and // = + yd, and then taking these values

for a and (3, we shall have, in general, (Art. 42),

X = + pd -{- mV, ?/ = + 5'c' -}- vid^

expressions which necessarily include all the solutions of the

given equation that are possible in integer numbers.

That we may leave no obstacle to the practice of this

method, we shall observe, that although the numbers a and
h may be positive, or negative, Ave may notwithstanding

take them always positive, provided we give contrary signs

to X, when a is negative, and to ?/, when h is negative.

44. Kxample. To give an example of the preceding me-
thod, we shall take that of Art. 14, Chap. I. of the pre-

ceding Treatise, w here it is required to resolve the equation,

39/? = 5Gq H- 11. Changing j» into x, and q into j/, we shall

have 39.r — 5Qy =11.
So that we shall make a = 39, b = 5^, and c = 1 1 ; and

as 5Q and 39 are already prime to each other, we shall have

a! = 39, b' = 56, e' = 11. We must therefore reduce the

fraction —r = 44» to a continued fraction; and, for this
a' ^^

purpose, as we have already done (Art. 20), we shall make
the following calculation ;

39)56(1
39

17)39(2
34

5)17(3
15

2)5(2
4

1)2(2
2

0.
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Then, with the quotients 1, 2, 3, &c. \vc may t'onn the

fractions,

n O <5 o c>
1, ^5 O, ^, ~,
I 3 I O 11 5 6

and the last fraction but one, 44j will be that which we have

expressed in general by — ; so that we shall have p = 23,

q = 16" ; and, as this fraction is the fourth, and consequently,

of an even rank, we must take the upper sign ; so tliat wo
shall have, in general,

X = 23 X 11 -|- 56m, and

?j = 16 X 11 -l-^9"«;

m being any integer whatever, positive, or negative.

45. SchoUiwi. We owe the lirst solution of this problem
to M. Bacliet de Meziriac, who gave it in the second edition

of his Mathematical Recreations, entitled Problemcs jjlaisan.'!

et delectables, &c. The first edition of this work appeared
in 1612; but the solution in question is there only an-

nounced, and is only found complete in the edition of 1624.

The method of M. Bachet is very direct and ingenious, and
cannot be rendered more elegant, or more general.

I seize with pleasure the present opportunity of doing
justice to this learned author, having observed that the ma-
thematicians, who have since resolved the same problem, have
never taken any notice of his labors.

The method of M. Bachet may be explained in a few
words. After having shewn how the solution of equations

of the form ax — by = c, [a and h being prime to each

other), may be reduced to that of ax — ^3' = r: 1, he ajj-

plies to the resolution of this last equation ; and, for this

purpose, prescribes the same operation with regard to the

numbers a and 6, as if we wished to find their greatest com-
mon divisor, (and this is what we have just done); then
calling c, d, e, f, &c. the remainders arising from the dif-

ferent divisions, and supposing, for example, that f is tlie

last remainder, which will necessarily be equal to unity (be-

cause a and h are prime to one another, by hypothesis), lie

makes, when the number of remainders is even, as in the

present case,

^d±\ . ^c+1 yh±\ .

(3rt+l
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and these last numbers ^, and a, will be the least values of

X and j/.

If the number of the remahiders were odd, ff for instance

being the last remainder — 1, then we must make

f±l = K, —77- = B, —— = S, S.C.

It is easy to see that this method is fundamentally the

same as that of Chap. I. ; but it is less convenient, because

it requires divisions. Those who are curious in such specu-

lations, will see with pleasure, in the work of M. Bachet, the

artifices which he has employed to arrive at the foregoing-

Rule, and to deduce from it a complete solution of equations

of the form, ax — hi/ = c.

CHAP. IV.

General methodfor resolving, in Integer Numbers, Equa-
tions ivith hvo ttnhnoxen Quantities, of which one does not

exceed thefrsi Degree.

[appendix to chap. III.

46. Let the general equation,

a + hx \-cij-\- dx" + exy -\-gx-y +fx' + hx'^+ kxy-^, &c.

= be proposed, in which the coefficients a, b, c, &c. are

sriven integer numbers, and x and ?/ two indeterminate num-
bers, which must also be integers.

Deducing the value of j/ from this equation, we shall have

a + hx + dx" +fx^ +hx^ -\- , &c.

^ ~ c+ex+gx^+JiX^ + , &c.

so that the question will be reduced to finding an integer

number, which, when taken for .r, makes the numerator of

this fraction divisible by its denominator.

Let us suppose

17 = a + hx -\- dx'^ +f-^^ + h^v'^ +? &c.

q = c + ex + gx^ + l^x^ +, &c.

and taking x out ofboth these equations by the ordinary rules

of Algebra, we shall have a final equation of this form,

A -|- B/? + eg' + D// + ^pq + 'pff+ ^p"' 4-j Sic. = 0,

where the coefficients A. b, c, &c. will be rational and integer

functions of the numbers a, b, c, &c.
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P
Nov/, since 1/ = — —, we shall also have p = — q7/ ; so

that by substituting this value ofp, we shall get

A - -ni/q + cq + D?/V - Ti/q^- + F^/^ +, &c. = 0,

where all the terms are multiplied by q, except the first, a ;

therefore the number a must be divisible by the number q,
'

otherwise it would be impossible for the numbers q and 5/ to

be both integers.

We shall therefore seek all the divisors of the known in-

teger number a, and shall successively take each of these

divisors for q ; from each of which suppositions we shall have
a determinate equation in .r, the integer and rational roots of
which, if it have any, will be found by the known methods ;

then substituting these roots for x, we shall see whether the

p
values ofyj and q, which result, are such, that — may be an

integer number. By these means, we shall certainly find all

the integer values of .r, which may likewise give integer

values of // in the equation proposed.

Hence we see, that the number of integer solutions of such

equations must always be limited ; but there is one case

which must be excepted, and which does not fall under the

preceding method.

47. This case is when there are no coefficients e, g^ k, &c.

So that we have simply,

a-l-bx+dx"'4-fx^-\-hx*-{-, &c.
^ ^ ._

In order to find all the values of x, that will render the

quantity a + bx + dx'+ fx^ 4- hx'^ +, &c. divisible by the

quantity c, we must proceed as follows. Suppose we have

already found an integer, w, which satisfies this condition ;

it is evident that every number of the form n + [x,c will

likewise satisfy it, jw, being any integer number ; farther, li^n is

c
7 -^ (abstracting from the signs of n andc), we may always

determine the number /x, and the sign which precedes it so,

Q
that the number n + ftc, may become /_ -^ ; and it is easy

to perceive that this could only be done in one way, the

values of n and c being given ; whei'efore, if we express by
c ...

/«' that value of n + fxc, which is L -^, and which satisfies
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the condition in question, we shall have, in general,

11 z= n' + \uc, If.
beinf; any number whatever.

Whence I conclude, that if we substitute successively, in

the formula, a + bx -\- dx^ -\-fa^ +5 &c. instead of a-, all the

c
integers positive, or negative, that do not exceed — , and ifwe

denote by ?«', ii\ w", &c. such of those numbers as will render
the quantity, a -\- hx + dx^ -{-, &c. divisible by c, all the

other numbers that do the same, will necessarily be included

in the formulae w' + /x'c, n" ± ^J'c, n'" ± \jJ"c, &c. p.', fx",
,«-'''',

&c. being any integer numbers.
Various remarks might here be made to facilitate the finding

of the numbers 91', ?i", 7i"', &c. but it is the more unnecessary
to enlarge upon this subject, as I have already had occasion

to treat of it, in a Memoir published among those of the

Academy of Berlin for the year 1768, and entitled Noiivelle

Metliode pour resoudre les Prohlcmes indctermines.

48. I shall, however, say a word on the method of de-

termining two numbers, a; and 7/, so that the fraction

ay" -\- by'^-^x + dj/'"^'x''+fy"--'x^+, &c.

c

may become an integer number, as this investigation will be
very useful to us in the sequel.

Supposing that 3/ and x must be prime to each other, and
farther, that 7/ must be prime to c, we may always make
X — ny — cz\ n and z being indeterminate numbers ; for,

considering x^ y, and c, as given numbers, we shall have an
equation always resolvible in whole numbers by the method
of Chap. III., because ?/ and c have no common measure, by
the hypothesis. Now, if we substitute this expression of x
in the quantity, aj/'" + by"~^x + dy"'~~x- +, &c. it will be-

come,

(a -\- bn + dri'+Jii^ -f , SvC.)y"

- {b i- Mn+Sfn"-^, &c.) cy-H
+ (fZ + 3/>i + , &c.) cy-^z'-
— , &c.

and it is evident, that this quantity could not be divisible by
c, unless the first term, (a-\-bn-\- dn^ +fn^ +, &:c.) y'" w -re

so, since all the other terms are multiplied by c. There-
fore, as c and y are supposed to be prime to each other, the
quantity a -{- in -\- dn"- +/h^ +, kc. must itself be divisible

by c ; so that we shall only have to seek, by the method of
the preceding Article, all the values of 11 that can satisfy this
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condition, and then we shall have, in general, x = ny — az,

z being any integer number whatever.

It is proper to observe, that although we have supposed
the numbers .r and // to be prime to each other, as well as

the numbers 3/ and c, our solution is still no less general;
for if X and 7/ had a common measure a, we should only have
to substitute a.r' and a.jj\ instead of x and y, and should
then consider y and y as prime to each other; likewise if

y and c were a common measure /3, we might put %", in-

stead of y, and considery and c as prime to each other.

CHAP. V.

A direct and general method for Jind'mg the 'values of' x,

that will render Rational Quantities of the form
v^Ca^ bx + cx^), and for resolving, in Rational Num-
bers, the indeterminate Equations of the second Degree,
which hate tzoo unl'nown Quantities, when they admit of
Solutions of this hind.

[appendix to chap. IV.]

49. I suppose first that the known numbers a, h, c, are

integers ; for if they were fractions, we should only have to

reduce them to a common square denominator, and then it is

evident, that we might always abstract from their denomina-
tor ; but with respect to the number x, we shall suppose

that it may be integer, or fractional, and shall see, in what
follows, how the question is to be resolved, when we admit
only integer numbers.

Let then a/ {a -\- hx •{ cx"^) ~ y, and we shall have
'Hex -Js-h = V (4<c?/'' + 6- — 4ac) ; so that the difficulty will

be reduced to rendering rational the quantity,

x/(4cy -f h'' - A'Cic).

50. Let us suppose, therefore, in general, that we have to

make rational the quantity a/(a//'- + u) ; that is to say, to

make Aif + i? equal to a square, a and b being given integer

numbers positive or negative, and y an indeterminate num-
ber, which must be rational.

It is evident that if one of the numbers a, or b, were 1,

or any other square, the problem would be resolvible by
the known methods of Diophantu^^, which arc detailed in
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Chap. IV. ; we shall therefore abstract from those cases, or
rather we shall endeavour to reduce all the rest to them.

Farther, if the numbers a and b, were divisible by any
square numbers, we might likewise abstract from those

divisors ; that is to say, suppress them, only by taking for a
and B the quotients, which we should have, after dividing the

given values by the greatest squares possible ; in fact, sup-
posing A = a"a', and /3 = ^-b', we shall have to make the

number, A'a'j/" + b'|3' a square ; therefore, dividing by /3'-,

and making —~q/'; w-e shall have to determine the un-

known quantity ?/' ; so that Ay^ + b may be a square.

Whence it follows that, when we have found a value of^
that will make Aj/- + b become a square (rejecting in the

given values of a and b the square factors a^ and ^^, which

they might contain), we shall only have to multiply the

value found for 2/ by — , in order to have that which answers

to the quantity proposed.

51. Let us, therefore, consider the formula aj/^ -]- b, in

which A and b are given integers, not divisible by any square ;

and, as we suppose that j/ may be a fraction, let us make

y = — , p and q being integers prime to each other, in order

that the fraction may be reduced to its least terms -, we shall

A'J'

therefore have the quantity ——-{-b, which must be a square; .

wherefore, hp^ -\- v>q" must be a square also ; so that we
shall have to resolve the equation, Kp~ + -aq^ == =^, sup-

posing p, q^ and 2, to be integer numbers.

Now, I say that q must be prime to a, and p prime to b ;

for if q and a had a common divisor, it is evident that the

term sg- w ould be divisible by the square of that divisor

;

and the term hn- w^ould only be divisible by the first power

of the same divisor, because p and q are prime to each other,

and A is supposed not to contain any square factor ; where-

fore the number Ap^ + Bg^ would only be once divisible by

the common divisor of 5' and a ; consequently, it would be im-

possible for that number to be a square. In the same man-

ner, it may be proved, that p and b can have no common
divisor.
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Resolution of the Equation xp* + uq"^ = z^ iti integer

Numbers.

52. Supposing a greater than b, the equation will be

written thus,

Ap^ = 2^ — wq"-,

and as the numbers ji, q, and-;: must be integer,, z- — Bq"

must be divisible by a.

Now, since a and q are prime to each other (Art. 51), we
shall, according to the method of Art. 48, make

Z =. nq — Ag'',

n and q^ being two indeterminate integers ; which will change

I

the formula, s- - iiq-, into (?r — b)§'-— %ikqq^ -\- A-q", in

which li^ — B must be divisible by a, taking for n an integer

number, not 7 -^.

We shall try therefore for n all the integer numbers that

do not exceed — , and if we find none that makes n" — b

divisible by a, we conclude immediately, that the equation

Ap" = z'^ ~ Bg'^ is not resolvible in whole numbers, and

therefore that the quantity Ay" + b can never become a

square.

But if we find one or more satisfactory values of n, we
must substitute them, one after the other, for «, and proceed

in the calculation, as shall now be shewn.

I shall only remark farther, that it would be useless to

j^

give n values greater than —, for calling 7t', n", n'", &c. the

values of ?i less than -^, which will render n'-—B divisible by

A, all the other values of n that will have the same effect will

be contained in these formulas, 7^' + /^'a, n" ± i^"a, n'" ± ijJ"a,

8cc. (Chap. IV. 47). Now, substituting these values for 7i,

in the formula, (n^— b)(/* — ^nAqq' + A"q", that is to say,

(nq — Aq'Y — nq'^ it is evident that we shall have the same

results, as if we only put n', n", n'", &;c. instead of 7i, and
added to 5^' the quantities +yJq, +H'"q, +l^"qr> &c. so that,

as q' is an indeterminate number, these substitutions would

not give formulae different from what we should have, by the

simple substitution of the values n', 7i", 7i"', &c.

53. Since, therefore, 7i' — b must be divisible by a, let a'
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be the quotient of this division, so that aa' — n- — b, and
the equation,

Ap"^ = z- — Bg"- == (7i» — ]i)g' - 2nAgq' + A-q\
being divided by a, will become

p* = A'q'^ — %iq(l + A(fi

where a' will necessarily be less than a, because
. n" — B A

a' = , and B L a, and n not 7 -x.

First, if a' be a square number, it is evident this equation
will be resolvible by the known methods ; and the simplest
solution will be obtained, by making ^' = 0, <7 = 1, and
p = \/a'.

Secondli/, if a' be not a square, we must ascertain whether
it be less than b, or at least whether it be divisible by any
square number, so that the quotient may be less than b,

abstracting from the signs; then we must multiply the

whole equation by a', and, because aa' — n^ -zz — b, we

shall have a'/)^ = {Alq — ng'Y — Bq^ ; so that mg^' + A'p'^

must be a square ; hence, dividing by ^% and making

—= y\ and a' z= c, we shall have to make a square of the

/

formula By"^ -{- c, which evidently resembles that of Art. 52.

Thus, if c contains a square factor y*, we may suppress it,

by multiplying the value which we shall find for j/' by y, in

order to have its true value ; and we shall have a formula
similar to that of Art. 51, but with this difference, that the

coefficients, b and c, of our last will be less tlian the co-

efficients, A and b, of the other.

54. But if a' be not less than b, nor becomes so when di-

vided by the greatest square, which measures it, then we
must make g — vg' -\- q" ; and, substituting this value in the

equation, it will become

p" r: A'q-— ^nq"q' -f A"q",

where n' = n — va',

and a" = A"y'- 2nv-|- a -^-^—j^.
A

We must determine the whole number v, which is always

A'

possible, so, that n' may not be 7 -7,-, abslraclnii; lioDi \]\c
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signs, and then it is evident, that a" will become /_ a', be-

/

7i^—

B

cause a" — p-, and b =, or z. a', and n=^ or /. ^.

We shall therefore apply the same reasoning here that we
did in the preceding Article ; and if a" is a square, we shall

have the resolution of the equation : but if a" is not a square,

and Z B, or becomes so, when divided by a square, we must
multiply the equation by a', and shall thus have, by making

~ = ^/, and a" — c, the formula b«/^ + c, which must be a

square, and in which the coefficients, B and c, (after having
suppressed in c the square divisors, if there are any), will be

less than those of the formula K-if' + b of Art. 51. But if

these cases do not take place, we shall, as before, make

(f z=. v'g" -j- <7'", and the equation w^ill be changed into this,

/// /; /; //;

where n" z=. v! — ?i'a",

//

and a"' = a"w- — 2w'v' + a' =
A"

We shall therefore take for v' such an integer number, that

a"
7i" may not be 7 -^, abstracting from the signs ; and, as b

n

71^— B
is not 7 a" [hi/p.), it follows, from the equation, a'"=—r-

,
A

that a'" will be /_ a" ; so that we may go over the same
reasoning as before, and shall draw from it similar con-

clusions.

Now, as the numbers a, a', a", a'", &c. form a decreasing

series of integer numbers, it is evident, that, by continuing

this series, we shall necessarily arrive at a term less than the

given number b ; and then calling this term c, we shall have,

as we have already seen, the formula b^' + c to make equal

to a square. So that by the operations we have now ex-

plained, we may always be certain of reducing the formula,

Ay^ + B, to one more simple, such as By" + c ; at least, if

the })roblem is> resolvible.

55. Now, in the same manner as we have reduced the
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formula, aj/' -f b, to By' -|- c, wc might reduce this last to

cif' + D, where d will be less than c, and so on ; and as the

numbers a, b, c, d, &c. form a decreasing series of integers,

it is evident that this series cannot go on to infinity, and
therefore the operation must always terminate. If the ques-

tion admits of no solution in rational numbers, we shall

arrive at an impossible condition ; but, if the question is re-

solvible, we shall always be brought to an equation like that

of Art. 53, in which one of the coefficients, as a', will be a

squaz'e ; so that the known methods will be applicable to it

:

this equation being resolved, we may, by inverting the

operation, successively resolve all the preceding equations,

up to the first A/?" -{- eg- = z'.

We will illustrate this method by some examples.

hQ). Example 1. Let it be proposed to find a rational

value of x^ such, that the formula, 7 -|- 15a; -f- ISa--, may
become a square *.

Here, we shall have « = 7, i rz 15, c rr 13 ; and there-

fore 4c = 4 X 13, and Z»^ — 4ffc — — 139; so that calling

the root of the square in question y, we shall have the

formula 4 x 13^'^ — 139, which must be a square. We
shall also have a n 4 X 13, and b = ~ 139, where it will

at once be observed, that a is divisible by the square 4 ; so

that we must reject this square divisor, and simply suppose
A rz 13; but we must then divide the value found for y by
2, as is shewn. Art. 50.

Making, therefore, y =. •'—, we shall have the equation,

\op- — 139q" = ^-; or, because 139 is 7 13, let us make

y = — , in order to have — 139/?^ + ISq- = z", an equation

which we may write thus, — 139/?^ z=: z- ~ 13cf.

We shall now make (Art. 52) z = nq — 139*7', ^"^ must
take for n an integer number not 7 'f^, that is to say,

Z 70 such, that n"- — 13 may be divisible by 139. As-
suming now n — 41, we have n- — 13 = 1668 zz 139 x 12

;

so that by making the substitution, and then dividing by
— 139, we shall have the equation,

^

p- = — 12<7- + 2 X 41(7(7' - 139?"-.

Now, as —12 is not a square, this equation has not the

* See Chap. IV. Art. 57, of ihc p^ecc(^ing Treatise.
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requisite conditions; since 12 is already less than 13, we
shall multiply the whole equation by —12, and it will be-

come -V2p- = (- ISy-l-lly)^— 13^^ so that 13^2 _ia^2

must be a square; or, making ~ = ^, 13j/* - 12 must be

so too. Where, it is evident, we should only have to make

7/ r= 1 ; but as we have got this value merely by chance, let

us proceed in the calculation according to our method, until

Ave arrive at a formula, to which the ordinary methods may
be applied. As 12 is divisible by 4, we may reject this

square divisor, remembering, liowever, that we must mul-

tiply the value of y by 2 ; Ave have therefore to make a

/ .
I r

square of the formula 13?/'' — 3 ; or making j/= — , (sup-

posing r and s to be integers prime to each other ; so that

the fraction — is already reduced to its least terms, as well

9
as the fraction - -), the formula 13r'-~3,$- must be a square.

P

Let the root be z'^ which gives lSr=z"+Ss'; and, making

z' — ms — 13*', in being an integer not 7 V, that is, l_l,

and such, that m' 4- 3 may be divisible by 13. Assuming

m — 6, which gives vv ~f 3 r= 39 =: 13 x 3, we have, by
substituting the value of z\ and dividing the whole equation

by 13, r- = Qs" — 2 x Qss' + IS-s". As the coefficient 3 of

s" is neither a square, nor less than that of s"-, in the pre-

ceding equation, let us make (Art. 54), s — (x^' + /, and

substituting, we shall have the transformed equation,

r~ - 3/2 - 2(6— 3f/0A' + (3^' - 2 X 6/0, -|- 13)6^

and here Ave must determine jw, so, that 6 — ^{x may not be

7|-, and it is clear that Ave must make ^. — 2, Avhich gives

6 — 3jx —. ; and the equation Avill become r- = 3*' + s^

Avhich is evidently reduced to the form required, as the co-

efficient of the square of one of the two indeterminate

quantities of the second side is also a square. In order to

have the most simple solution, we shall make s" =r 0, V = 1,
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and r = 1 ; therefore, s =z
fj.
— ^, hence 9j' = — —

4; ; ^^^

we know that we must multiply the value of t/' by 2 ; so that

we shall have ?/' =r 1 ; wherefore, tracing back the steps, we

obtam — := 1 ; whence q' z= p; and the equation

-l2f:^{-12q + 4>'lg'Y-13'q' will give

{-l2q+4>lpY=p"-;

that is, —12^ + 4<lp =z p; so that I2q zn 40/? ; therefore,

«/ = — =. ±^ — '-S
; but as we must divide the value ofy

by 2, we shall have ?/ = |- ; which will be the root of the

given formula, 7 + 15x + ISx'^ ; so that making
7 + 15-^^ + 13a;- = y, we shall find, by resolving the

equation, that 26a; -|- 15 = ± ~; Avhence, .r = — i^
3 9' or

We might have also taken —l2q-\-4:lp =•—;?, and

should have had y ziz — =. y ; and, dividing by 2, ?/r:-|4

;

then making 7 + 15jr + 13a'" =: (^4)"> we shall find

26a; + 15 rz + I ; whence, x — —
5 4, or zz — 1.

If we wished to have other values of x, we should only

have to seek other solutions of the equation r- rr Ss^ -f *%
which is resolvible in general by the methods that are known ;

but Avhen we know a single value of x^ we may immediately
deduce from it all the other satisfactory values, by the

method explained in Chap. IV. of the preceding Treatise.

57. Scholium. Suppose, in general, that the quantity

n -]- bx + cx' becomes equal to a square g^, when x rzj", so

that we have a + bf+ cf^ =z g^ ; then a — ^-^ — hf— cf'\
substituting this value in the given formula, it will become
g" + b{x —f) + cix"^ -/')• Now, let us take

g + m{x —f) for the root of this quantity, (m being an in-

determinate number), and we shall have the equation,

g- + b{x -/•) + c{x"- -f) =
g- + 2mg{x ~f) + m^(.r —fY

that is, expunging g^ on both sides, and then dividing

by X — f, we have

h + c{x -f/) = 2mg + m-(ar -/)

;

,
. - fm"—2gm.-\-h-\-cf . , . .

whence we find x zz —, . And it is evident,
VI —c
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on account of the indeterminate number m, that this ex-

pression oF X must comprehend all the values that can be

given to .v, in order to make the formula proposed a square ;

for whatever be the square number, to which this formula

may be equal, it is evident, that the root of this number may
always be represented by g + m(x —J"), giving to m a

suitable value. So that when we have found, by the method

above explained, a single satisfactory value of a:, we have

only to take it for^^ and the root of the square which results

for^-; and, by the preceding formula, we shall have all the

other possible values of x.

In the preceding example, we found z/ = i-, and a;= — y ;

so that, making g -— -|-» and/" — — |, we shall have

_ \^-\0m-^

which is a general expression for the rational values of x,

by which the quantity 7 + 15a: + 13.r^ may be made a

square,

58. Example 2. Let it also be proposed to find a rational

value of//, so that 23^' — 5 may be a square.

As 23 and 5 are not divisible by any square number,

we shall have no reduction to make. So that making

P
y = i-^ the formula 23;;^ — 5q" must become a square, 2-

;

so that we shall have the equation 23/?~ — z' + 5q-.

We shall therefore make z = nq — 9.'6q^, and we must

take for n an integer number, not 7\S such, that n" -\~ 5

may be divisible by 23. I find n r= 8, which gives

w^ -[- 5 = 23 X 3, and this value of n is the only one that

has the requisite conditions. Substituting, therefore, 8§'— 235'',

in the room of z, and dividing the whole equation by 23^ we

shall have |r = 37- — 2 x Sqq + 235-% in which we see

that the coefficient 3 is already less than the value of b,

which is 5, abstracting from the sign. Art. 52.

Thus, we shall multiply the whole equation by 3, and

shall have ^p" — {Qq — Sq'Y -\- 5q"' ; so that making

— —
?/, the formula —5^" + 3 must be a square, the co-

efficients 5 and 3 admitting of no reduction.

Therefore, let tj = —(r and .v being supposed prime to
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each other, whereas g' and p cannot be), and we shall have

to make a square of the quantity —5;-* + Ss^; so that

calling the root ^, we shall have —5r* + 3*^ = z^, and

/

thence —5r" = z- — 3*^.

We shall, therefore, take z' zz ms + 5s, and m must be
an integer number not 7|, and such, that m^ - 3 may be

divisible by 5. Now, this is impossible ; for we can only

take m = 1, or m = 2, which gives m^ — 3 :z: — 2, or — !•

From this, therefore, we may conclude that the problem is

not resolvible ; that is to say, it is impossible for the formula
232/^ — 5 ever to become a square, whatever number we
substitute for y *.

59. Corollary. If we had a quadratic equation, with

two unknown quantities, such as

a + bx + cy + dx^ + exy
-\-f}j'

= 0, and it were pro-

posed to find rational values of x and y that would satisfy

the conditions of this equation, we might do this, when it is

possible, by the method already explained.

Taking the value of y in x, we have

yy-^ex\c^ ^/((c - exf — 4f{a -f Z)a: -f- dx^) ) ;

or, making a =. c^ — ^ivf, /3 = 9.ce — ^hf, y — e^ — 4^
9^y + f'.r + c = ^/(a + /3a: -{- yo;") ; the question will be

reduced to finding the values of x, that Avill render rational

the radical quantity V {ol -\- Qx -\- y.r-).

60. Schol'mm. I have already considered this subject,

rather differently, in the Memoirs of the Academy of Sciences

at Berlin, for the year 176*7, and, I believe, first gave a direct

method, without the necessity of trial, for solving indeter-

minate problems of the second degree. The reader, who
wishes to investigate this subject fully, may consult those

Memoirs ; where he will, in particular, find new and im-

portant remarks on the investigation of such integer num-
bers as, when taken for ??, will render «*• — b divisible by
A, A and B being given numbers.

* The impossibility of the formula 23y-—5=z= is readily de-

monstrated: for 7/^ must be of one of the forms 4-?2, or 4h + 1-

In the first case, 23j/«—5 is of the form 2vS x4'W— 5,whichis the

same as 4?j — 1, and this is an impossible form for square num-
bers. In the second case, 283/^— 5 is of the form 23 x(4n-i-l)— 5,

which is the same as 4n— 18, or \n— 2, and this again is an im-

possihle form for square numbers. Therefore, the formula

23j/^ — 5 = z* is always impossible. B.
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In the Memoirs for 1770, and the following years, in-

vestigations will be found on the form of divisors of the

numbers represented by z- — b^'^ ; so that by the mere
form of the number a, we shall often be able to judge

of the impossibility of the equation Ap^ — z'^ — nq", where

A7/2 + B = D
,
(Art. 52).

CHAP. VI.

Of Double a7id Triple Equahties.

61. We shall here say a few words on the subject ofdouble

and triple equalities, which are much used in the analysis

of Diophantus, and for the solution of which, that great

mathematician, and his commentators, have thought it ne-

cessary to give particular rules.

When we have a formula, containing one or more un-
known quantities, to make equal to a perfect power, such as

a square, or a cube, &c. this is called, in the Diophantine
analysis, a simple equality ; and when we have two formulae,

containing the same unknown quantity, or quantities, to

make equal each to a perfect power, this is called a double
equality, and so on.

Hitherto, we have seen how to resolve simple equalities,

in which the unknown quantity does not exceed tlie second
degree, and the power proposed is the square.

Let us now see how double and triple equalities of the

same kind are to be managed.
62. Let us first propose this double equality,

a + bx ziz D
;

c + dx — D ;

where the unknown quantity is found only in the first

degree.

Making a + bx ~ C, and c -\- dx — u-, and expunging
X from both equations, v/e have ad — be — dt^ — 6w';

therefore,

df = he" + ad — 6c, and {dtf — dbu- -f- {ad — bc)d;

so that the difficulty will be reduced to finding a rational

value of 11, such, that dbu" -{- ad- — bed may become a

square. This simple equality will be resolved by the method
N X i:
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already explained, and knowing w, we shall likewise have

v^ — c

d

If the double equality were

ax^ ^ bx = D

,

ex" -^ dx ^= n,

we should only have to make x = —7, and then multiplying

both formulae by the square a:% we should get these two

equalities, a-\- bx = D , and c -^ dx = , which are similar

to the preceding,

Thus, we may resolve, in general, all the double equa-

lities, in which the unknown quantity does not exceed the

first degree, and those in which the unknov/n quantity is

found in all the terms, provided it does not exceed the

second degree ; but it is not the same when we have equali-

ties of this form,

a + bx -\- cx~ = D

,

a + (Sjr + yx^ — D

.

If we resolve the first of these equalities by our method, and

caliythe value o^ x, which makes a -\~ bx -\- cx^ = g^-, we
shall have, in general (Art. 57.),

_fm--9.gm-\-b\cf
in-— c

wherefore, substituting this expression of x in the other

formula ; a \-Bx-\-yx-, and then multiplying it by (m- — c)",

we shall have to resolve the equality,

a{m^ - cY + /3(w' — c) x {fm" - %m + ^' -{- cf)-\-

y{fm^-2.rmJ-bJrcfr= D;
in which, the unknown quantity, m, rises to tlie fourth

degree.

Now, we have not yet any general rule for resolving

such equalities ; and all we can do is to find successively

different solutions, when we already know one. (See

Chap. IX.)
63. If we had the triple equality,

ax + bi/^

ex + d7/y= D,
hx + ki/

)

we must make ax -^ bi^ = i\ ex -\- dy — iC^, and
hx -\- ky z= s\
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and, expunging x ax\\ 1/ from tl.ese three equations, we

should have

{ak — bh)u- — {ck — dh)t'^ = {ad - c6)s=;

so that, making — = z, the difficulty would be reduced to

resolving the simple equality,

ak— bJi „ ck - dh

ad— cb'^ ad—cb '

which is evidently a case of our general method.

Having found the value of z, we shall have u = tz, and

the two first equations will give

d—bz- az--c
X = —5 r^^, y = —5 7C •

ad— CO ^ ad—cb

But if the given triple equality contained only one variable

quantity, we should then again have an equality with the

unknown quantity rising to the fourth degree.

In fact, it is evident that this case may be deduced from

the preceding, by making ,^ = 1 ; so that we must have

az'^-c
, , , az''-c

j^Zd)^ - ^
'
^"^' ^o"«^q"^"t^y'

ad^i^b = °-

Now, calhngy one of the values of z, which can satisfy

the above equality, and, in order to abridge, making

=r e, we shall have, in general, (Art. 57.)
ad~cb

_fm"-2gm+e/
z — -z •

m"*— e

Then, substituting this value of z in the last equality, and

multiplyino- the whole of it by the square of m'^— e, we shall

ajfin'-^-g'^+ ef^'-'Cn'-'^^ = o, where the un-
' ad—cb

known quantity, m, evidently rises to the fourth power.
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CHAP. VII.

A direct andgeneral method^forfinding all the values ofy
expressed in Integer Numbers, by which we may render

Quantities of tlie form \''(Ay2 + b), rational; a and ^

being given Integer Numbers; and also for Jinding all

the possible Solutions, iii Integer Numbeis, of indeter-

minate Quadratic Equations of two unknown Quantities.

[appendix to chap. VI.]

64. Though by the method of Art. 5, general formulae

may be found, containing all the rational values of y, by
which AT/' + B may be made equal to a square ; yet those

formulae are of no use, Avlien the values of y are required to

be expressed in integer numbers : for which reason, we must

here give a particular method for resolving the question in

the case of integer numbers.

Let then Az/^ + b = a;^ ; and as a and b are supposed to

be integer numbers, and ?/ must also be integer, it is evident

that X ought likewise to be integer ; so that we shall have to

resolve, in integers, the equation x^ — aj/- = b. Now, I

begin by remarking, that if b is not divisible by a square

number, y must necessarily be prime to b ; for suppose, if

possible, that y and b have a common divisor a, so that

y = ay', and b = ecu' ; we shall then have x" — Aa-f = as',

whence it follows that x- must be divisible by a ; and as a is

neither a square, nor divisible by any square (hj/p.), be-

cause a is a factor of b, x must be divisible by a. Making

then X = ax', we shall have a,"X' =- a^Aj/" + ccb' ; or, di-

viding by a, au?'^ = ahv" + b' ; whence it is evident, that b'

must still be divisible by a, which is contrary to the hypo-

thesis.

It is only, therefore, when b contains square factors, tliat

J/ can have a common measure with b ; and it is eas}^ to

see, from the preceding demonstration, that this common
measure ofy and b can only be the root of one of the square

factors of b, and that the number x must have the same

conmion measure ; so that the whole equation will be divisible

by the square of this common divisor of x, y, and b.
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Hence I conclude, 1st. That if b is not divisible by any
square, y and b will be prime to each other.

2dly. That if b is divisible by a single square a*, y may
be either prime to b, or divisible by a, which makes two
cases to be separately examined. In the first case, we shall

resolve the equation x" — A.y'^ — b, supposing y and b

prime to one another ; in the second, we shall have to resolve

the equation, x"^ — A?/^ = b', b' being = „ , supposing also

1/ and b' prime to each other ; but it will then be ne-

cessary to multiply by a the values found for ?/ and x,

in order to have values corresponding to the equation

proposed.

odly. If B is divisible by two different squares, a^ and |S^,

we shall have three cases to consider. In the first, we shall

resolve the equation x" — Ay' = b, considering y and b as

prime to each other. In the second, we shall likewise resolve

the equation, x^ — Ay" = b', b' being = -^, on the supposi-
a

tion of z/ and b being prime to each other, and we shall

then multiply the values of x and y by a. In the third,

we shall resolve the equation x^ — Ay'^ = b", b'' being

B= — , on the supposition of y and b" being prime to each
p

other, and we shall then multiply the values of x and y
by/3.

4thly, &c. Thus, we shall have as many different equa-

tions to resolve, as there may be different square divisors

of B ; but those equations will be all of the same form,

x"^ — Ay'^ — B, and y also will always be prime to b.

65. Let us therefore consider, generally, the equation

x" — Ay2 = B ; where y is prime to b ; and, as x and j/ must
be integers, x" — Ay" must be divisible by j).

By the method, therefore, of Chap. IV. 48, we shall make
x=-ny— ^z^ and shall have the equation,

(w- — a)//'^ — %iY,yz \- B-s- = B, from which we perceive,

that the term, (w^ — A)y"-, must be divisible by b, since all

the others are so of themselves ; wherefore, as y is prime to

B, (Jiyp.) n^ — A must be divisible by b; so that making

::= c, and dividing by B, we shall have,

cy- — ^nyz -\- bz- =1. Now, this equation is simpler than

the one proposed, because the second side is equal to unity.
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We shall seek, therefore, the values of n, which may ren-

der 71^ — \ divisible by b ; for this it will be sufficient,

(Art. 47), to try for n all the integer numbers, positive or

negative, not 7-^ ; and if among these we find no one

satisfactory, we shall at once conclude that it is impossible

for w^ — A to be divisible by b, and therefore that the given

equation is not resolvible in integer numbers.
But if, in this manner, we find one, or more satisfactory

numbers, we must take them, one after another, for ??, which

will give as many different equations, to be separately con-

sidered, each of which will furnish one, or more solutions, of

the given question.

With regard to such values of n as would exceed that of

-^y, we may neglect them, because they would give no equa-

tions different from those, which will result from the values

of 71 that are not 7 -^, as we have already shewn (Art. 5S.)

Lastly, as the condition from which we must determine n
is, that li^ — A may be divisible by b, it is evident, that each

value of w may be negative, as well as positive; so that it

will be sufficient to try, successively, for n, all the natural

numbers, that are not greater than -^, and then to take the

satisfactory values of n, both in plus and in minus.

We have elsewhere given rules for facilitating the investi-

gation of the values of n, that may have the property re-

quired, and even for finding those values a priori in a great

number of cases. See the Memoirs of Berlin for the year

1767, pages 194, and 274.

Resolution of the Equation cy^ — 2nyz + bz- — 1, in

Integer Numbers.

This equation may be resolved by two different methods.

First Method.

66. As the quantities c, ii, b are supposed to be integer

numbers, as well as the indeterminate quantities ij and z, it

is evident, that the quantity cy^— 2nyz + bs^ must always be

equal to integer numbers ; consequently, unity will be its

least possible value, unless it may become 0, which can t)nly

happen, when this quantity may be resolved into two rational
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factors. As this case is attended with no difficulty, we shall

at once neglect it, and the question will be reduced to find-

ing such values of y and s, as will make the quantity in

question the least possible. If the minimum is equal to

unity, we shall have the resolution of the proposed equation ;

otherwise, we shall be assured, that it admits of no solution

in integer numbers. So that the present problem falls under
the third problem of Chap. II., and admits of a similar so-

lution. Now, as we have here (2«j- — 4bc — 4a (Art. 65),

we must make two distinct cases, according as a shall be
positive, or negative.

Fi7'st case, "dolien n"^ — bc = a ^ 0.

67. According to the method of Art. 32, we must reduce

the fraction — , taken positively, to a continued fraction;

this may be done by the rule of Art. 4 ; then, by the formulae

of Art. 10, we shall form the series of fractions converging

towards — , and shall have only to try, successively, the nume-

rators of those fractions for the number y, and the correspond-
ing denominators for the number z : if the given formula is re-

solvible in hitegers, we shall in this way find the satisfactory

values of y and z ; and, conversely, we may be certain,

that it admits not of any solution in integer numbers, if no
satisfactory values are found among the numbers that we
have tried.

Second case, when n- — bc n a 7 0.

68. We shall here employ the method of Art. 33 et seq, so

that, because e = 4a, we shall at once consider the quantity

(Art. 39), a — —^
, in Avhicli we must determine the

signs both of the value of n, which we have seen may be
either positive or negative, and of ^/A, so that it may become
j)ositive ; we shall then make the following calculation :

tr — — n, P" =: c, ^a Z

q' = - ^p'^ + (i", p' = ^^-, .a' Z

-o" + ^^A

pO

-q' + N^A
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-q!'± a/A
pW

-o"' + s/A

'
"o

III

p" ' ' p"

&c, &c. &c.

and we shall only continue these series until two correspond-

ing terms of the first and the second series appear again

togetlier ; then, if among the terms of the second series,

p", p', p", &:c. there be found one positive, and equal to unity,

this term will give a solution of the proposed equation ; and
the values of j/ and z will be the corresponding terms of the

two series p'-, p', p", &c. and q^\ q', q\ calculated according

to the formuljE of Art. 25 ; otherwise, we may immediately
conclude, that the given equation is not resolvible in integer

numbers. See the example of Axi. 40.

Third case, "Johen a is a square.

69. In this case, the quantity ^/ a will become rational,

and the quantity ci/^ — 2m/z + bz^ will be resolvible into

two rational factors. Indeed, this quantity is no other than

(cy — nzf — a2^ . „^-^ , wmch, supposmg a r= a-, may be thrown

.
, ,1 .

r-
(c?/ ± {n + a)z) {cy ± {n - a)z)

into this torm, .

c

Now, as n- — «^ = AC ~ {n -\- a) x {n — a), the product

of ?i + a by n — a must be divisible by c; and, conse-

quently, one of these two numbers n + a, and ii — a, must
be divisible by one of the factors of c, and the other by the

other factor. Let us, therefore, suppose c — bc, n + a =J^b,

and n — a — gc,fand b being whole numbers, and the pre-

ceding quantity will become the product of these two linear

factors, C7/ + J^, and bi/ + gz ; therefore, since these two

factors are both integers, it is evident that their product

could not be = 1, as the given equation requires, unless

each of them were separately == + 1 ; we shall therefore

make cj/ +Jz = + 1, and bj/ + gz = ± 1, and by these

means we shall determine the numbers j/ and z. If we find

these numbers integer, we shall have the solution of the equa-

tion proposed ; otherwise, it will be irresolvible, at least in

whole numbers.
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Second Method.

70. Let the tbrmiiui Cij"—''Znyz-\-)AZ' undergo such trans-

formations as those we have already made (Art. 54), and we
shall invariably be brought by the transformations, to an

equation, such as L^— 2ai^^ f nv{(% the numbers l, m,n, being

whole numbers, depending upon ihe given numbers c, b, w,

so that we have m^ — ln :=: w^— cb =: a ; and fartlier, that

2m may not be greater (abstracting from the signs) than the

number L, nor the number n, the numbers and "^ will like-

\vioe be integer, but depending on the indeterminate numbers

y and z.

For example, let c be less than b, and let us put the

formula in question into this form,

making c — b', and z =r ?/' ; if 2n he not greater than b', it

is evident that this formula will already of itself have the

requisite conditions ; but if 9,n be greater than b', then we
must suppose y = mif + 7/" ; and, by substitution, we
shall have the transformed formula,

i u I

B3/2— 2n';y'y' -|- b"?/%

where
^

')l- — A
n' = 71— ??«e', and b'' = vi~b'— 2mn + b = ;—

.

b'

Now, as tlie number m is indetei'minate, we may, by sup-

posing it an integer, take it such, that the number n — wb'
may not be greater than ^b', abstracting from the sign ; then

2?i' will not surpass b'. So that, if 2w' does not even exceed

b", the preceding transformed formula will already be in the

case wliich we have seen ; but if 2w' is greater than b", we
shall then continue to suppose ?/' = m'y'' + j/'", which will

give this new transformation,

/;/ II II III

where
i,

w" = w' — mn'K and b"' = m"B" — 2m7i + b' = r.—

.

b"

We shall now determine the whole number m', so that

b"
n' — m'B' may not be greater than — , by which means 2n,"

will not exceed b"; so that we shall have the required trans-

formation, ii' 2n" does not even exceed b''; but if 2«" exceed

b'", we shall again suppose r/" — m''y"' + ?/"', &c. &c.
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Now, it Is evident, that these operations cannot go on to

infinity ; for since 2w is greater than b', and 2?i' is not, 7i'

will evidently be less than n ; in the same manner, 2;i' is

greater than b", and 2ii" is not, wherefore ii" will be less than

n', and so on ; so that the numbers n, n', n", &c. will form a

decreasing series of integers, which of course cannot go on
to infinity. We shall therefore arrive at a formula, in which

the coefficient of the middle term will not be greater than

those of the two extreme terms, and which will likewise have

the other properties already mentioned; as is evident from
the nature of the ti'ansformations employed.

In order to facilitate the transformation of the formula,

cy- — 9>nyz + b;:;^

into this,

let us denote by d the greater of the two extreme coefficients

c and B, and the other coefficient by d' ; and, vice versa^ let

us denote by 5 the variable quantity, whose square shall be
found multiplied by d', and the other variable quantity by 6'

;

so that the given formula may take this form,

D'9"- - 2nm + d62,

where d is less than d ; then we have only to make the fol-

lowing calculation

.

'* . ... '^" — A ,m =—i,n' =. n — wd' d' = -.— , 9 — mS' -\ 9',

d' d'
si-

ll

m' = -—
-„ n!' = ?i' - m'j)", o"'= -—;;—, 5' = ;«'9' + 9

d" d"

III

III

n" 71" — A
m" = -i:,,n"' = 7i"-m"D">, d'^= ^, f= m"S'" + 9*%

d'" d"

&c. &c. &c.

where it must be observed, that the sign =, which is put

after the letters vi, m', m", &c. does not express a perfect

equality, but only an equality as approximate as possible,

so long as we understand only integer numbers by m, m',

m", &c. The sign = being only employed for want of a

better.

These operations must be continued, until in the series

n, ii', n", &c. we find a term, as Uc, which (abstracting from

the sign) does not exceed the half of the corresponding term,
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m of the series d', d", d''', &c. any more than the half of the

following term De+l. Then we may make d? = l, np = n,

DP + i = M, and Bp = if, 9p+i = ^, or dp = m, dp+i = l,

and Qp = ^, 9?+^ =\^. We must always suppose, as we
proceed, that we have taken, for m, the less of the two num-
bers Dp, De+ 1.

71. The equation, cj/- — 2ni/z-{-DZ' rr 1, will therefore be
reduced to this,

Lr - 2N^t^ -f MV^= = 1,

where n- — lm =: a, and where 2n is neither 7 l, nor 7m,
(abstracting from the signs). Now, m being the less of the

two coefficients l and m, let us multiply the whole of the

equation by the coefficient m ; and making

it is evident, that it will be changed into

d2 - A^' = M,

in which we must make a distinction between the two cases

of A positive, and a negative.

1st. Let A be negative, and =.— a {a being a positive

number), the equation will then be

y* + a^" =. M.

Now, as N" — LM = A, we shall have a = lm — n- ; whence
we immediately perceive, that the numbers l and M must
have the same signs ; otherwise, 2n can neither be 7 L, nor

7 M ; wherefore n'' will not be 7 -r-; therefore, a :=, or
4

7 ^LM ; and since m is supposed to be less than l, or at least

not greater than l, we shall have, a fortiori, a =:, or

7 Im^
; whence m =, or Z. v'' ^ ; and m Z t \'^ «•

Hence, we see that the equation, y- -f «P == m, could not

exist on the supposition of v and ^ being whole numbers,

unless we made ^ ~ 0, and 'f- =r m, which requires m to be a

square number.
Let us, therefore, suppose m — fx-", and we shall have

= 0, = + jx, wherefore, from the equation, u zz. M^ - n^,

we shall have /^'^f/ r: + ^u,, and, consequently, ^J/
= + -- ; so

that i> cannot be a whole number, as it ought, by the

hypothesis, unless ju, be equal to unity, or = + 1, and, con-

sequently, M n 1.

Hence, therefore, we may infer, that the given equation is
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not resolvlble iii integers, unless m be found equal to unity,

and positive. If this condiUon takes place, then we make

^ — 0, ^1/ = + 1, and go back from these values to those of

y and s.

This method is founded on the same principles as that of

Art. 67; but it has the advantage of not requiring any

trial.

2dly. Let a be now a positive number, and we shall have

A= M-— LM. And as n- cannot be greater than -j-, it is evi-

dent that the equation cannot subsist, unless — lm be a

positive number ; that is to say, unless l and m have con-

trary signs. Thus, a will necessarily be L— lm, or at

farthest = — lm, if n = ; so that we shall have - LM =,
or Z. a; and, consequently, M^ =, or Z a, or M =, or

Z v-" A.

The case of m = ,/ a cannot take place, except when a
is a square ; consequently, this case may be" easily resolved

by the method already given, (Art. 69).

There remains, now, only the case in which A is not a

square, and in which we shall necessarily have M L V a

(abstracting from the sign of m) ; then the equation,

v^ — A^' — M, will come under the case of the theorem. Art.

38, and may therefore be resolved by the method there ex-

plained.

Hence, we have only to make the following calculation

:

a° = 0,
po = 1, [^ ^ \/A

,

-q'- a^A
q' — a, p' =r Q* — A, ^' Z

a" = yJv' + Q', r" = —--, fx.
. -^ -^

p'

-q"+ a/A

P"

-q'"- ^/A

p//l

&c. &c. &c.

continuing it until two corresponding terms of the first and

second series appear again together ; or until in the series

p', p", p''', &c. there be found a term equal to unity, and

positive ; that is to say, =: P^ : for Uien all the succeeding

terms will return in the same order in each of the three series

(Art. 37). If in the series i>', p", p'", &c. there be found a

term equal to m, we shall have. the resolution of the given
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equation ; for we shall only have to take, for v and 0, the cor-

responding terms of the series p', p", p", &c. q\ q", q'\ &.c.

calculated according to the formula; of Art. 25 ; and we may

even find an infinite number of satisfactory values for o and ^,

by continuing the same series to infinity.

Now, as soon as we know two values of v and ^, we shall

have, from the equation, y = Mxf' — n^, that of vl/, which will

also be a whole number; then we may go back from these

values of and 4/, that is to say, of Og+ •, and 5.2, to those of

9 and 5', or ofy and z (Art. 70).

But if in the series p', p", p'", &c. there is no term = m,

we are sure that the equation proposed admits of no solution

in whole numbers.

It is proper to observe, that, as the series p*', p', p", &c. as

well as the two others, Q°, a', q", &c. and /a, jj.', [jJ', &c. de-

pend only on the number a ; the calculation, once made for

a o-iven value of a, will serve for all the equations in which

A, or u' — CB, shall have the same value; and hence the

foregoing method is preferable to that of Art. 68, which

requires a new calculation for each equation.

Lastly, so long as a does not exceed 100, we may make

use of the Table given. Art. 41, which contains for each

radical V a, the values of the terms of the two series p",

._ p'^ p"^ _ p'"^ &c. and |U., ju,', jx", &c. continued, until one

of the terms p', p', p'", &c. becomes — 1 ; after which, all

the succeeding terms of both series return in the same order.

So that, by means of this Table, we may judge, immediately,

whether the equation, o^ _ a^^ ^ m, be resolvible, or not.

Of the manner of finding- all the possible solutions of the

equation^ cy^— 2nyz + bz^ = 1, when we hiow only one

of them.

72. Though, by the methods just given, we may suc-

cessively find all tlie solutions of this equation, when it is

resolvible in integer numbers; yet this maybe done, in a

manner still more simple, as follows

:

Call p and q the values found for «/ and z ; so that we have

Qp- - %ipq + B^'' = 1,

and take two other whole numbers, /• and 5, such, that

ps ^ qr =^\:, which is always possible, because p and q are

necessarily prime to each other ; then suppose

y = pt + ru, and z = qt -\- su,

t and u being two new indeterminate numbers ; substituting

these expressions in the equation,

Cj/' - %iyz + Bz^ = 1,



560 ADDITIONS. CHAP. Vil.

and, in order to abridge, making

p = cp'- — 2iipq + Bq^,

Q. =. cpr — n{ps + qr) + Bqs,

R = cr- ~.9,nrs -\- b*%

we shall have the equation transformed into this,

P^'' + 9>Qtu + ViU' = 1.

Now we have, by hypothesis, p = 1 ; farther, if we
call

f and cr, two values of r and s that satisfy the equation,

ps — qr zzl, we shall have, in general, (Art. 42),

r = f
-- mp, 6- r= (T -f- mq,

m being any whole number ; therefore, putting these values
into the expression of q, it will become

d z= cp§ — n{ pa- -j- q^) -\- Tiqtr -f 7nv ;

so that, as p = 1, we may make (i = 0, by taking

m —— cp§ -{- n{p<r -j- q§)— Bqa-.

We now observe, that the value of q.°— pii is reduced
(after the above substitutions and reductions), to this;

(ji^ — cb) X
(
ps — qrY ; so that as ps - qr — 1, we shall

have Q* - PR — 11^ — CB zi: A ; therefore, making p — 1,
and a = 0, we shall have - r — a, that is, r n - a ; so
that the equation before transformed will become V'— ku'^— 'S..

Now, as
J/, 2, p, q^ r, and s are whole numbers, by the

hypothesis, it is easy to perceive, that t and v. will also be
whole numbers ; for, deducing their values from the equa-
tions, y —pt + ru, and z = qi -{- su, we have

sii—rz
, qu — pz

t = —
, and u = ^—i-

:

ps—qr qr—ps
that is to say, (because ps ~ qr — 1), t = sy — rs, and
u-pz—qy.
We shall therefore only have to resolve, in whole numbers,

the equation i!^ — au"- — 1, and each value of t and u will

give new values of 3/ and 2;.

For, substituting the value of the number wz, already
found, in the general values of r and s, we shall have

r ^ ^{\ - cp') - Bpqa- + np{pa- + qs),
5 = cr(l — Bq"-) — cpqp -|- nq{ p<r + qo) ;

or, because c/)- — Znpq + Bq^ =\,

r = [Bq — np) x {q^ — po-) =— Bq -{- up,

s = {cp —nq) X {po" — q{') — C-f — nq.

Therefore, putting these values of r and s in the fore-

going expressions ofy and z, we shall have, in general,
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y = pt -(Bg — np)if,

z = qi-\- {cp — nq)u.

73. The whole therefore is reduced to resolving the

equation t^ - am" n 1.

Now, 1st, if A be a negative number, it is evident, that

this equation cannot subsist, in whole numbers, except by
making a =: 0, and ^ =: 1 , which would give y i^ p^ and
z zz q. Whence we may conclude that, in the case of a

being a negative number, the proposed equation,

cy"— Swj/x -\- B3^ = 1,

can never admit but of one solution in whole numbers.
The case would be the same, if a were a positive square

number ; for making a = a% we should have

[t -\- an) X {t — an) — 1 ; wherefore, t + «" — + Ij ^nd
^ — ^M = + 1 ; wherefore, 9.au =0, w =; 0, and conse-

quently ^ = + 1,

2dly. But if a be a positive number, not square, then the

equation, t" — Aii- — 1, is always capable of an infinite

number of solutions, in whole numbers, (Art. 37), which
may be found by the formulae already given (Art. 71) ; but
it will be sufficient to find the least values of t and u\ and,

for this purpose, as soon as we have arrived, in the series

p', p'', p", &c. at a term equal to unity, we shall have only to

calculate, by the formulae of Art. 25, the corresponding terms

of the two series //, jf', p'", &c. and g', q'', q\ &c. for these

will be the values required of t and ?/. Whence it is evident,

that the same calculation made for resolving the equation
0- — A^- — ]M, will serve also for the equation

t- — All- — 1.

Provided that x does not exceed 100, we have the least

values of t and u calculated in the Table, at the end of

Chap. VII. of the preceding Treatise, and in which the

numbers a, ???, n, are the same as those that are here called

A, t and u.

74. Let us denote by t\ ti', the least values of t, 7i, in the

equation t- — Au" — 1 ; and in the same manner as these

values may serve to find new values of?/ and z, in the equa-
tion, cy" — 9.nyz + bz- = 1, so they will likewise serve for

finding new values of ^ and u in the equation f — Ati^ — 1,

which is only a particular case of the former. For this pur-

pose, we shall only have to suppose c == 1, and n = 0, which
gives — B — A, and then take f, u, instead of?/, ~, and t\ ?/',

instead of J9, q. Making these substitutions, therefore, in

the general expressions of ?/ and z (Art. 72), and fartbcri

putting T, V, instead of/, u, we shall have, generally,
'

o o
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t = Ttf + A\n',

u = 111! + v^',

and, for the determination of t and v, we shall have the

equation t^ - av'' = 1, which is similar to the one proposed.

Thus, we may suppose t r: ^', and v = w', which will give

t = t^ -\- Au\ u = hi + txi.

Calling ^', m" the second values of t and m, we shall have

f =t- -\- AU", u" = 2fu'.

Now, it is evident, that we may take these new values f,

u", instead of the first ^, u' ; so that we shall have

^ rr T^' + avm",

ti =r tm" + \t",

where we may again suppose t =: ^, v z= ?*', which will give

t = ft" + Au'u", u = hi" + u't".

Thus, we shall have new values of t and w, which will be

t"> = h" + Au'u" = i{t- + Sau'^),

u'" = fu" +i^f = u'{3i- + AU^),

and so on.

75. The foregoing method only enables us to find the

values t", f, &c. u", u'", 8cc. successively ; let us now con-

sider how this investigation may be generalised. We have first,

t = if + AYu'f u = Tu' + vf

;

whence this combination,

t ±u V A = {if ± u' V a) X (t ±y x/ a);

then supposing t = ^, and v = m', we shall have

t" ± u" V A={t' ± 7l' */ a)\

Let us now substitute these values of f and u", instead of

those of t' and u', and we shall have

t ±u V A — {t' ±ic' V ^y X {t ±\ a/ a),

where, again making t = (!, and v = u', and calling t'", u'",

the resulting values of t and u, there will arise

f> ± «'" x/ A ?= (t' ± WV a)^

In the same manner, we shall find

r + M'^ V A = (<' ± wV a)*,

and so on.

Hence, in order to simplify, if we now call t and v the

first and the least values of t, u, which we before called f, u',
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we shall have, in general,

t±u ,/ A = (t ± V V a)"',

m being any positive whole number ; whence, on account of

the ambiguity of the signs, we derive

_ (t+ V \/a)"'+(t—Vy/A)'"
i -

2

(t + V a/ a)'" ~ (t - V ^/a)"'
U = 7Z

•

Though these expressions appear under an irrational form,

it is easy to see that they will become rational, if we involve

the powers of t + v ^^ A ; for it is well known that

m(m—l) ^ ^
(T + V / a)"' - T-" X '^^T'"-'V y/ A H ^—^ T'"--V-A

mlm-l)x(m— 9) , , „

' 2x3
Wherefore,

m(m— 1) _ ,

t — T'" 4- --^—^AT"'--v^

m{m-\)x{m—9) x (^»-3
)^,^„._4^,4 , ^^

2x3x4
mini —\)x{in— 2) ,,,

„ „

U = mT'"-'v + -, ^ AT"'-'V>
2x3

m{m—l)x{m^2)x(m-S)x (^-4)
^,^,„_5^,5 , ^^"^ 2x3x4x5 '

*

Where we may take for m any positive whole numbers

whatever.

It is evident that, by successively making 77i ==1,2, 3, 4,

&c. we shall have values of t and ti, that will go on increasing.

I shall now shew that, in this manner, we may obtain all

the possible values of t and u, provided t and v are the

least of them. For this purpose, it is sufficient to prove,

that between the values of t and u, which answer to m, any

number whatever, and those which would answer to the

number, /« + 1, it is impossible to find any intermediate

values, that will satisfy the equation t- — am^ = 1.

For example, let us make the values f, id", which result

from the supposition of m — 3, and the values t'\ u'\ which

result from the supposition of in - 4, and let us suppose it

possible that there are other intermediate values, 9 and u,

which would likewise satisfy the equation f- — am^ — 1.

oo2
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Ill III iv iv

Since we have t^— AU^ = 1, t^ — Au'^ = 1, and 6*— ao =1,

/// //;
iv iv

we shall have Q"- — t- = a{v^ — ir), and f — Q- = a{u^— o^)

;

whence we see that, if 6 7 i" and Z t"^ we shall also have

V 7 m'", and / i<}"'. Farther, we shall also have these other

values of t and ii\ namely, t = H" — aom'% u — Om*'' — t;^%

which will satisfy the same equation, V- — a?** = 1 ; for, by
substitution, we shall have

(9r — Auw'^)" — A(ur- ^u'^f = (9"-— Ao-) X {e—Al'')=l,

iv iv

an identical equation, because 6'^ — au^ = 1, and P — aw-= 1

{hj/p,). Now, these two last equations give

1 , . . 1

9 - u ^/A = 7- — , and ^»' — zi'V^ = ,^+ ^^^/A'
^ r+ l^'%/A

hence, substituting instead of 9, in the expression,

u = Su'" - vr,

the quantity u ^/a + -—;

; and, instead of &', the quan-

tity y}" \/A + ; , we shall have

u =
6+ov/A ^'^ + m'v^a'

In the same manner, if we consider the quantity ^'"m'^ — li^H^

III III

it may likewise, on account of t^— au'^ = 1, be put into the

u''' tc'"

form, ^7q_^m ^^ + ^iqr^T^-

Now, it is easy to perceive, that the preceding quantity

must be less than this, because 9 7^", and 7 ?/'"; therefore,

we shall have a value of ?<, which will be less than the quan-
tity ^'V^ — u"'f''' ; but this quantity is equal to v ; for

(t + v /a)3-|-^t — V x/a)'
t'" =

2 '

(t +Vv/a)-^-|-(t - V v/a)*_
^

(t + vv/a)3-(t-v^aV

,. ^ (T+V^A^-V^^^
^^^^^^^
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(t - V ^/A)3 X (t + V s^a)* - (t—V ^/aY X (t4- V x^aY
2 /A

Farther, {r - v^aY x (t + v^/A)^ = (t^ - av^)^ = 1,

since x'^ — av^ = !> by hypothesis ; whence

(t — V v/a)' x (t + V a/a)* = t + v^/a, and

(t — Vv'a)'* X (t + y^/AY = T — v-v/a;

so that the value of f'u'^' — u"'f''' will be reduced to

2v v/a = V.
2v/A

It would follow from this, that we should have a value of

w^v, which is contrary to the hypothesis; since v is sup-

posed to be the least possible value of zi. There cannor,

therefore, be any intermediate values of t and ti between

these, t'", t'""', and m'", ^i'*. And, as this reasoning may be

applied, in general, to all the values of t and u, which would

result from the above formulae, by making m equal to any

whole number, we may infer, that those formulae actually

contain all the possible values of t and ic.

It is unnecessary to observe, that the values of t and u
may be taken either positive, or negative ; for this is evident

from the equation itself, f^ — aw- — 1.

Of the manner offinding all tlie possible Solutions, in whole

numbers, of iiideterminate Quadratic Equations of tzvo

unknozon quantities.

76. The methods, which we have just explained, are suf-

ficient for the complete solution of equations of the form

A^/^ + B = x"^ ; but we may have to resolve equations of a

more complicated form : for which reason, it is proper to

shew how such solutions are to be obtained.

Let there be proposed the equation

ar^ _|_ hrs -f cs"^ -f dr + es \-f — o,

where a, 6, c, fZ, e, f, are given whole numbers, and r

and s are two unknown numbers, that must likewise be

integer.

I shall first have, by the common solution,

2flr -1- 65 + (Z = V{{bs + df - A^aics"^ -\- es -\- d) ),

whence we see, that the difficulty is reduced to making

(hs + dY — 4a(c6'- + cs -\- d) a square.

In order to simplify, let us suppose
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b" — 4ac = A,

bcl — 9,ae = g;

and A,s-2 + ^gs + ?i must be a square ; representing this

square by «/-, in order that we may have the equation,

and taking the value of y, we shall have

As-'rg = V(A^'-rg'' - A/i);

so that we shall only have to make a square of the formula,
A?)(^ -\- g^ — Ah.

If, therefore, we also make g- — a/i = b, we shall have to

render rational the radical quantity, a '(aj/^ -|~ b) ; which we
may do by the known methods.

Let V{hy°- -)- b) = X, so that the equation to be resolved

may be mj" + b — .r^ ; we shall then have as -\- g "=. + x.

Now, we alread};^ have 2«r + 65 -f fZ = + j/ ; so that, when
we have found the values of x and ?/, we shall have those of
r and s, by the two equations,

—x—g ^y~d—bs
A 2a

Now, as ?• and s must be whole numbers, it is evident,

1st, that X and ?/ must be whole numbers likewise; 2dly,

that + X — g" must be divisible by A, and +2/ — d — bs

by 2a. Thus, after having found all the possible values of

X and y, in whole numbers, it will still remain to find those

among tliem that will render r and s whole numbers. If A
is a negative number, or a positive square number, we have
seen that the number of possible solutions in whole num-
bers is always limited ; so that in these cases, we shall only

have to try, successively, for x and y, the values found; and
if we meet with none that give whole numbers for r and *,

we conclude that the proposed equation admits of no solution

of this kind.

There is no difficulty, therefore, but in the case ofA being

a positive number, not a square; in which we have seen,

that the number of possible solutions in whole numbers may
be infinite. In this case, as v,e '-h.o'jlcl have an infinite

number of values to try, we could never judge of the sol-

vibility of the proposed "equation, without having a lule, by
which the trial may be reduced within certain limits. This
we shall now investigate.

77. Since we have (Art. 65), x — nt^ - bs, and (Art. 72),

7/ = pf - [nq - np)u, and z = qt + (cp — 7iq)i(, it is easy

to perceive, that the general expressions of r and s will take

this form,
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_ at + ^u-^y _ a!t-\-0u-\-yi
r - -^ , s - Y '

a, ^, Yi ^, «', /3', y, '', being known whole numbers, and /,

u, being given by the formulae of Art. 75, in which the ex-

ponent m may be any positive whole number ; thus, the

question is reduced to finding what value we must give

to r«, in order that the values of r and s may be whole
numbers.

78. I observe, first, that it is always possible to find a
value of u divisible by any given number, a ; for, sup-

posing u =: Acu, the equation, P — am* =z 1, will become
t"^ — a A'^w'^ = 1, which is always resolvible in whole num-
bers; and we shall find the least values of t and w, by
making the same calculation as before, only taking aa%
instead of a. Now, as these values also satisfy the equation

t^ — AM* = 1, they will necessarily be contained in the

formulae of Art. 75. Thus, we shall necessarily have a

value of m, which will make the expression of u divisible

by A.
Let us denote this value of m by

fj.,
and I say that, if we

make m = 2a, in the general expressions of t and u of the

Article just quoted, the value of m will be divisible by a ;

and that of t being divided by a will give 1 for a re-

mainder.

For, if we express by t' and v' the values of f and «,

in which in = jU-, and by t'' and v'' those in which m — 2j!>t.,

we shall have (Art. 75),

I t' + v'v/A = (t + v-v/a)-", and

,t" + v" v/A = (t + vy a)2/«; therefore,

(t'±v'v/a)*=(t"±v'Va),

that is to say, comparing the rational part of the first side

with the rational part of the second, and the irrational with

the irrational,

t" =: t* -t- Av*, and v" = 2t'v' ;

hence, since v' is divisible by A , v" will be so likewise ; and

t'' will leave the same remainder that x* would leave ; butII I
1 T

we have t* — av* = 1 (Jtyp.), therefore t* — 1 must be di-

visible by A, and even by a", since v" is so already ; where-

fore, T*, and, consequently, t" likewise, being divided by a,
will leave the remainder 1

.
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Now, I say that the values of t and ?f, which answer to

any exponent whatever, m, being divided by a , will leave

the same remainders as the values of t and u. which would
answer to the exponent m -\- 2iu. For, denoting these last

by 9 and v, we shall have,

t ±u x/a = (t + v^/ a)"S and

6 + o-v/A = (t + Va/a)'» + 2,«; wherefore,

^ ± vV^ = {t ± uVa) X (t + vVa)2m,

but we have just before found

t" + vVa = (T + vv'a)2/';

whence we shall have

9 ± 'Va =^ {t ± u^k) X (t" ± vVa);
then, by multiplying and comparing the rational parts, and
the irrational parts, respectively, we derive

9 =1 It" -f AMv", y = tv" + ut'.

Now, v" is divisible by a, and t" leaves the remainder 1;

therefore B will leave the same remainder as t, and v the

same remainder as n.

In general, therefore, the remainders of the values of t

and n, corresponding to the exponents m + 2jw,, m + 4ju,,

m + 6/>t,, &c. will be the same as those of the values, which

correspond to any exponent whatever, m.

Hence, therefore, we may conclude, that, if we wish to

have the remainders arising from the division of the terms

i', f, t'", &c. and u', ti", u'", &c. which correspond to m = 1,

2, S, &c. by the number a, it will be sufficient to find these

remainders as far as the terms ^2/^ and i<2u inclusive; for,

after these terms, the same remainders will retuin in the

same order ; and so on to infinity.

With regard to the terms P/^ and u'^/', at which we may
stop, one of them u'^/^ will be exactly divisible by a , and the

other P/-^ Avill leave unity for a remainder ; so that we shall

only have to continue the divisions until we arrive at the re-

mainders 1 and ; we may then be sure that the succeeding

terms will always give a repetition of the same remainders

as those we have already found.

We might also find the exponent, 2ju,, a priori; for we
should only have to perform the calculation pointed out.

Art. 71, in the first place, for the number a, and then for

the number A a"; and if tt be the rank of the term of the

series p', p'', p'", &c. which, in the first case, will be = 1,

and
f
the rank of the term that will be — 1, in the second

case, we shall Only have to seek the smalletit multiple of ^r
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and
f,

which being divided by *, will give the required

value of
P-.

Thus, for example, if we have A = 6, and a = 3, we
shall find for the radical ^6, in the Table of Art. 41,
p'^ = 1, p' = — 2, p' = 1 ; therefore, ^ = 2. Then we shall

find, in the same Table, for -the radical ^(6 x 9) = a/54,
po = 1, P' = - 5, p" = 9, p'" - - 2, p'^' :- 9, pv = - 5,

p^' = 1 ; and hence f
= 6. Now, the least multiple of 2

and 6 is 6, which being divided by 2 gives the remainder 3

;

so that we shall here have jx = 3, and 2/x = 6.

Therefore, in order to have, in this case, all the remainders

of the division of the terms t', t", t", &c. and w', u", u'",

8lc. by 3, it will be sufficient to find those of the six leading

terms of each series ; for the succeeding terms will always

give a repetition of the same remainders : that is to say,

the seventh terms will give the same remainders as the

first, the eighth terms, the same as the second ; and so on to

infinity.

Lastly, the terms tf- and ?/-« may sometimes happen to

have the same properties as the terms t'^/^ and u'^y- ; that is

to say, uf^ may be divisible by a, and tf- may leave unity

for a remainder. In such cases, we may stop at these very

terms; for the remainders of the succeeding terms, tf^+^,

t« + ''^, &c. zi-" + i, uf^ + '^, &c. will be the same as those of the

terms t', t", &c. u', u'', &c. and so of the others.

In general, we shall denote by M the least value of the

exponent m, that will render t — 1, and u, divisible by a.

79. Let us now suppose that we have any expression

whatever, composed of t and u, and given whole nvmibers,

so that it may always represent whole numbers ; and that it

is required to find the values, which must be given to the ex-

ponent m, in order that this expression may become divisible

by any given number whatever, a : we shall only have to

make, successively, m = I, 2, 3, &c. as far as m; and if

none of these suppositions render the given expression di-

visible by A, we may conclude, with certainty, that it can

never become so, whatever values we give to m.

But if in this manner we find one, or more values of m,

Avhich render the given expression divisible by a, then calling

each of these values N, all the values of m that can possibly

do the same, will be K, N -r m, n -f- 2m, n + Bm, &c.

and, in general, n -f Am ; A being any whole number
whatever.

In the same manner, if we had another expression com-

posed likewise of t, u, and given whole numbers, and, at the

same time, divisible by any other given number whatever,
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a', we should in like manner seek the corresponding values

of M and N, which we shall here express by m' and n', and
all the values of the exponent m, that will satisfy the con-

dition proposed, will be contained in the formula n' + A'm';

a' being any whole number whatever. So that we shall

only have to seek the values, which we must give to the

whole numbers A and A', in order that we may have

N + Am — n' + A'm, or mA — mA' rr n' — n,

an equation resolvible by the method of Art. 42.

It is easy to apply what we have just now said to the

case of Art. 77, where the given expressions have the form,

at + Bu -\- y, o!t + /3'm + 7', and the divisors are • and J'.

We must only recollect to take the numbers t and u, suc-

cessively, positive and negative, in order to have all the cases

that are possible.

80. Scholium If the equation proposed for resolution, in

whole numbers, were of the form

ar'^ -|- 9,brs -\- cs" —f,
we might immediately apply to it the method of Art. Qto ;

for, 1st, it is evident that r and s could have no common di-

visor, unless the numberywere at the same time divisible

by the square of that divisor ; so that we may always reduce

the question to the case, in which r and s shall be prime to

each other. 2dly, It is evident, also, that s andycould have

no common divisor, unless that divisor were one also of the

number cr, supposing r prime to ,9; so that we may also

reduce the question to the case, in which s andy shall be

prime to each other. (See Art. 64).

Now, s being supposed prime toy and to r, we may
make r = ns —fi'-, and, in order that the equation may be

resolvible in whole numbers, there must be a value of n,

f
positive or negative, not greater than -^, which may render

the quantity an" + '^hn -\- c divisible by f. This value

beino- substituted for n, the whole equation will become

divisible byy and will be found reduced to the case of Art.

66, et scq.

It is easy to perceive, that the same method may serve for

reducing every equation of the form,

a^m _L ij.mg _j_ cz-'-'-'i-i -{-, &c. -f lis'''' =y;

a b c, &c. being given whole numbers, and r and s being

two indeterminate numbers, which must likewise be in-

tegers, in another similar equation, but in which the whole

known term is unity, and then we may apply to it the

general method of Art. 2. See the Scholium of Art. 30.
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81. Example 'I . Let it be proposed to render rational

the quantity, v/(30 + GSs - ls% by taking only whole

numbers for s.

We shall here have to resolve this equation,

30 + &2s — 7s"- = If,

which being multiplied by 7, may be put into this form,

7 X 30 + (31)= — (7* - 31)= = 7j/%

or, making 7^ — 31 = a:, and transposing,

x"~ = 1171 - ly\ or x'' + 7^/^ = 1171.

This equation now comes under the case of Art. 64 ; so that

we shall have a =~ 7, and b = 1171, from which we in-

stantly perceive, that ?/ and b must be prime to each other,

since this last number contains no square factor.

According to the method of Art. 65, we shall make
X = ny — 1171s; and, in order that the equation may be

resolvible, we must find for n a positive, or negative integer,

not 7 -^ ; that is, not 7 580, such that v?- — a, or n" -f- 7,

may be divisible by b, or by 1171.

I find n=.± 321, which gives n" ^-7 = 1171 X 88; so

that I substitute, in the preceding equation, ±321//— 11712,

instead of .r; by which means, the whole is now divisible by
1171, and when the division is performed, it becomes

88/ T ^^'^yz + 11712= = 1.

In order to resolve this equation, I shall employ the

second method, explained in Art. 70, because it is in fact

simpler and more convenient than the first. Now, as the

coefficient o'^ y^ is less than that of 2;=, we shall here have

D = 1171, d' = 88, and n — + 321 ; wherefore retaining,

for the sake of simplifying, the letter j/, instead of 6, and
putting y, instead of z, I shall make the following cal-

culation, first supposing n — 321

;

m = W = 4s n' = 321 - 4 x 88 =- 31,

3124.7
d" = -^ = n,^:=4y'-\-y",

-31

"IT
4+7

m' = -jj- - — 3, «'' z^ - 31 -h 3 X 11

y--%"+y",
11

- = 2, n'"^ 2—2x1=0,
. = 7, y" = y + y^.
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d'" D*^
Since n'" = 0, and consequently Z — , and Z -^, we shall

here stop, and make d"'=m= 1, d'"— l = 7, n"'=^0= -s, and

y — ?5 ^"^ == ^> because d'" is Z d'".

I now observe, that A being =—7, and consequently
negative, in order that the equation may be resolvible, we
must have m = 1, as we have just now found; so that we
ma}^ conclude, that the resolution is possible. We shall

therefore suppose — ?/'" = 0, ^ — ?/" = ±1 ; and we shall

have, from the foregoing formulae,

y = ± l.y =+ 3 = ^,,y=+ 12 ± 1 =3: n,
the doubtful signs being arbitrary. Therefore,

X = 321^ — 1171^ = + 18 ; and, consequently,

x+Sl S1=F18

Now, as the value of s is required to be a whole number, we
can only take s =: 7.

It is remarkable, that the other value of s, namely y,
although fractional, gives nevertheless a whole number for

the value of the radical, v'(30 4- 6^s — 76''), and the same
number, 11, which the value s = 7 gives; so that these two
values of 5 will be the roots of the equation,

30 -\- 62s - Is^ = 121.

We have supposed n zz 321. Now, we may likewise

make n z= — 321 ; but it is easy to foresee, that the whole
change that would result from it, in the preceding formulee,

would be a change of the sign of the values of w, m', ?«", and of

w', ?i", by which means the vakies of //', and of?/, will

also have different signs ; v/e should not therefore have
any new result, since these values already have the doubtful

sign ±.
It will be the same in all other cases ; so that we need not

take the value of ??, successively, positive and negative.

The value 8 = 1, which we have just found, results from
the value of w = + 321 : and we may find other values of s,

if we have found other values of n having the requisite con-

dition ; but, as the divisor b = 1171, is a prime number,
there can be no other values of n, with the same property,

as we have elsewhere demonstrated *, whence we must con-

clude, that the number 7 is the only one that satisfies the

question.

* Memoirs of Berlin, for tlic year 1767, p^ige 191'.
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The preceding problem may be resolved more easily by

mere trial; for when we have arrived at the equation,

X' = 1171 — 7y'^, we shall only have to try, for ?/, all the

whole numbers, whose squares multiplied by 7 do not exceed

1171 ; that is to say, all the numbers Z v ''-/'/ 13.

It is the same with all the equations, in which a is a ne-

gative number; for when we are brought to the equation,

x^ = B -r AT/-, where making A == — a, and o:^ = b — ai/-,,

it is evident, that the satisfactory values of ?/, if there are

any, can only be found among the numbers, Z ^z —
. So

that I have not given particular methods for the case of a

negative, only because these methods are intimately con-

nected with those concerning the case of a positive, and

because all these methods, being so nearly alike, reciprocally

illustrate and confirm each other.

82. Example 2. Let us now give some examples for

the case of a positive, and let it be proposed to find all the

whole numbers, which we may take for y, in order that the

radical quantity, \^{^^y'' + 101), may become rational.

Here, we shall have (Art. Gi), a = 13, b = 101; and

the equation to be resolved in integers will be,

x'^ — 13j/^ = 101, in which, because 101 is not divisible by

any square, j/ must be prime to 101.

We shall therefore make (Art. 65), x = ny — lOlz, and

n" — 13 must be divisible by 101, taking n A '|^' Z 51.

I find n = 35, which gives n~ = 1225, and

w2 - 13 -= 1212 = 101 X 12;

so that we may take ?i = + 35, and substituting

i 35^/ — 101~, instead of x^ we shall have an equation

wholly divisible by 101, which, after the division, will be

123/= + 703/;^ + lOls^- = 1.

In order to resolve this equation, let us also employ the

method of Article 70; let us make d' = 12, d — 101,

71 = ± 35 ; but, instead of the letter 3, we shall preserve the

letter 3/, and shall only change z into //', as in the preceding

example.

1st. If w = 35, we shall make the following calculation :

m = \L = 3, w' = 35 - 3 X 12 = - 1,

1—13
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m' = ^ = 1, n' = -1 + 1=0,

D'"=-^ = 13, .^ =/+/'•

d" d'"

As n" — 0, and, consequently, ^-^, and Z -^ , we shall

stop here, and shall have the transformed equation,

/// II II 'II II I'l

ny"- - ^ii!'ify'" + D?/- = 1, or l^y" - y"- = \\

III

which being reduced to the form, y" — 1%" = 1, will admit

of the method of Art. 71 ; and, as a = 13 is Z 100, we may

make use of the Table, Art. 41.

Thus, we shall only have to see, whether, in the upper

series of numbers belonging to -/13, there be found the

number 1 in an even place ; for, in order that the preceding

equation may be resolvible, we must find in the series p"", p',

p", &c. a term =: - 1 ; but we have p'' = 1, — p' == 4,

p" =:: 3, &c. wherefore, &c. Now, in the series 1, 4, 3, 3,

4, 1, &c. we find 1 in the sixth place ; so that p'' = — l ;

and hence we shall have a solution of the given equation,

by taking y" = p\ and ij" = q\ the numbers ;9% q\ being

calculated 'according to the formulae of Article 25, giving to

M,, //.', uJ', &c. the values 3, 1, 1, 1, 1, 6, &c. which form

the lower series of numbers belonging to ^^^.S in the same

Table.

We shall therefore have

p^ = 1 jr= p'"+p" =11 q' = 1

p' = Q p^ =f^- + p'"= 18 f = q" + 9' = 2
pi' = p' + p'>=4< q<' = q" = q'" + q" = 3

/'= p" +2^=7 5'' = 1 r =?"' + ?'"= 5.

So thaty = 18, and «/" = 5 ; therefore,

y' =f 4- y'" = 23, and 3/ = 3j/' -{- y" = 74.

We have supposed n = S5; but we may also take

71-- 35.

Let therefore n =— 35, we shall make

^:.-.-|^=-3, n'=-35 + 3x 12

-1

12d" = -TTT =-1' y --- 'V+y.
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m' = A = - ^> »*" = 1-1=0,

D"' = —j- =1^, y'= -y"+f.

Thus, we have the same values of d", d''', and w", as before

;

so that the transformed equation in y, and y, will likewise

be the same.

We shall, therefore, have also ?/'" = 18, and y" = 5;
wherefore, i/'= —y"-\-i/'"= 13, and //=—Sy'-\-y"= —34.

So that we have found two values of j/, with the cor-

responding values of 3/', or z; and these values result from
the supposition of n=+ 35. Now, as we cannot find any
other value of n, with the requisite conditions, it ibllows that

the preceding values will be the only prwntive values that

we can have ; but we may then find from them an infinite

number of derivative values by the method of Art. 72.

Taking, therefore, these values of y and z for p and q,

we shall have, in general, by the same Article,

tj = 74^ - (101 X 23 - 35 X 74)?* = 74^ + 267m
^3f + ( 12 X 74— 35 X 23)m = 23^ -f 83u ; or

)ti = - 34^ - 123w
13^+ 47m;

and we shall only have farther to deduce the values of t

and M from the equation, t- — 13m* = 1. Now, all these

values may be found already calculated in the Table at the

end of Chap. VII. of the preceding Treatise: we shall

therefore immediately have t = 649, and u = 180 ; so that

taking these values for x and v, in the formulae of Art. 75,

we shall have, in general,

_ (649+180^/13)'"-{-(649-180\/13)"'
t _

^

_ (649+18 ./

1

3)'"-(649

-

1 80 ^/13)'»

where we may give to m whatever value we choose, provided

we take only positive whole numbers.

Now, as the values of t and it may be taken both positive

and negative, the values of y, which satisfy the question,

will all be contained in these two formula?,

^ = ± 74^ ± 267m,

andy - ±34^± 123m,

the doubtful signa being arbitrary.

'z = 23i5 + ( 12 X 74— 35 X 23)m =

«/ ^ - 34^ - ( 101 X 13 - 35 X 34)z

z= 13^ + (-12 X 34 + 35 X 13)?,

and we shall onlv have farther to dedu
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If we make m = 0, we shall have t = \, and w = 0;
wherefore, i/ =+ 74, or =+ 34 ; and this last value is the

least that will resolve the problem.

I have already resolved this problem in the IMcmoirs of

Berlin, for the year 1768, page 243 ; hut as I have there

employed a method somewhat different from the foregoing,

and fundamentally the same as ihejirst method of Art. QQ,

it was thought proper to repeat it here, in order that the

comparison of the results, which are the same by both

methods, might serve, if necessary, as a confirmation of

them.
83. Example 3. Let it be proposed to find whole num-

bers, which being taken for y, may render rational the

quantity, ^/(79^/- + 101).

Here we shall have to resolve, in integers, the equation,

X- - 79r == 101,

in which y will be prime to 101, since this number does not

contain any square factor.

If we therefore suppose x — ny — lOlz, n'— 79 must be

divisible by 101, taking n Z. '|' Z 51 ; we find n — 33,

which gives »^ — 13 — 1010 = 101 x 10; thus, we may
take n =+ 33, and these ^\'ill be the only values that have

the condition required.

Substituting, therefore, + 33^ — lOls instead of a-, and
then dividing the whole equation by 101, we shall have

it transformed into 10{/- +Q>QtjZ + lOlz^ = 1. Let us,

therefore, make d' rz 10, d = 101, m = ± 33, and first

taking w positive, we shall work as in the preceding example ;

thus, we shall have m =z \l = Q, «' = 33 - 3 x 10 =r 3,

„ 9-79 „ n , n^ =-iQ- =-7,^-3y +y'.

d' d" . .

Now, as n' — 3 is already Z — , and z. — , it is not ne-

cessary to proceed any farther : so that tlie equation will be

transformed to this,

- 7> - eyy -Mo> = 1,
_

which being multiplied by — 7, may be put into this form,

(7y + 3/r - 79y = _ 7.

Since, therefore, 7 is ^ x/ 79, if this equation be resolvible,

the number 7 must be found among the terms of the upper

series of numbers answering to \/ 79 in the Table (Art. 41),

and also hold an even place there, since it has the sign —

.
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But the series in question contains only the numbers 1, 15,

2, always repeated ; therefore, we may immediately conclude,

that the last equation is not resolvible ; and, consequently,

the equation proposed is not, at least when we take ?t = 33.

It only remains, therefore, to try the other value of

n zz— SS, which will give

;«=-^ =- 3, w' = - 33 + 3 X 10 = - 3,

0-97
D"=^ = -7,7/=-3y+y';

so that we shall have the equation transformed into

-77/'-l-6y/-flO> = l,

which may be reduced to the form,

(7?/ - QfY - 79/ - - 7,

which is similar to tlie preceding. Whence I conclude, that

the given equation absolutely admits of no solution in whole

numbers.
84. Scholmm. M. Euler, in an excellent Memoir printed

in Vol. IX. of the New Commentaries of Petersburg, finds

by induction this rule for determining the resolvibiUty of

every equation of the form x- — Aj/^ = B, when b is a prime

number : it is, that the equation must be possible, whenever

B shall have the form 4<An + r", or 4a?z + r- — a; but the

foregoing example shews this rule to be defective; for 101

is a prime number, of the form 4aw + ^'' ~ ^> making

A = 79, n =— 4*, and r = 38 ; yet the equation,

x'^ — Idij^ = 101, admits of no solution in whole numbers.

If the foregoing rule were true, it v/ou!d follow, that, if

the eqviation x"^ — Atj- ir b were possii)le, when B has any
value whatever, b, it would be so likewise, when we have

taken b = 4aw + b, provided b were a prime number. We
might limit this last rule, by requiring b to be also a prime

number ; but even with this limitation the preceding ex-

ample would shew it to be false; for we have 101 = 4<An-\~b,

by taking a n 79, // =— 2, and b — 733 ; now, 733 is a

prime number, of the form x- — 79^'? making x = 38, and

7/ = 3 ; yet 101 is not of the same iorm, x" — 79//-.

p p
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CHAP. VIII.

Remarks on Equations of tlie form p- = Aq--{- 1, and on

the common method of resolving them in Whole Numbers.

85. The method of Chap. VII. of the preceding Treatise,

for resolving equations of this kind, is the same that Waliis

gives in his Algebra (Chap. 98), and ascribes to Lord
Brouncker. We find it, also, in the Algebra of Ozanam,
who gives the honor of it to M. de Fermat. Whoever was
the inventor of this method, it is at least certain, that M. de
Fermat was the author of the problem which is the subject

of it. He had proposed it as a challenge to all the English

mathematicians, as we learn from the Commcj'cinm Epistoli-

cum of W^allis ; which led Lord Brouncker to the invention

of the method in question. But it does not appear that this

author was fully apprised of the importance of the problem
which he resolved. We find nothing on the subject, even

in the writings of Fermat, which we possess, nor in any of

the works of the last century, vvhich treat of the Indeterminate

Analysis. It is natural to sup})ose that Fermat, who was
particularly engaged in the theory of integer numbers, con-

cerning which he has left us some very excellent theorems,

had been led to the problem in question by his researches on
the general resolution of equations of the form,

to which all quadratic equations of two unknown quantities

are reduced. However, we are indebted to Euler alone for

the remark, that this problem is necessary for finding all the

possible solutions of such equations *.

The method which I have pursued for demonstrating this

proposition, is somewhat different from that ofM. Euler ; but

it is, if I am not mistaken, more direct and more general. For,

on the one hand, the method of M. Euler naturally leads to

fractional expressions, where it is required to avoid them

;

and, on the other, it does not appear very evidently, that the

suppositions, which are made in order to remove the fractions,

are the only ones that could have taken place. Indeed, we
have elsewhere shewn, that the finding of one solution of the

• • • 11
equation x"=zAy'^ + v,, is not always sufficient to enable us to

* See Chap. VI. of the preceding Treatise, Vol. VI. of the

Ancient Commentaries of Petersburg, and Vol. IX. of the New.
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deduce others from it, by means of the equation p''= Aq'^ + l;

and that, frequently, at least when b is not a prime number,

there may be values of J and ?/, which cannot be contained

in the o;eneral expressions of M. Euler *.

With regard to the manner of resolving equations of the

form jj- = Aq"^ -}- 1, 1 think that of Chap. VII., however in-

genious it may be, is still far from being perfect. For, in

the first ]3lace, it does not shew that every equation of this

kind is always resolvible in whole numbers, when « is a

positive number not a square. Secondly, it is not demon-
strated, that it must always lead to the solution sought for.

Wallis, indeed, has professed to prove the former of these

propositions; but his demonstration, if I may presume to

say so, is a mere petitio principii. (See Chap. 99). Mine, I

believe, is the first rigid demonstration that has appeared ;

it is in the Melanges de Turin, Vol. IV. ; but it is very

long, and very indirect : that of Art. 37, is founded on the

true principles of the subject, and leaves, I think, nothing to

wish for. It enables us, also, to appreciate that of Chap. VI I.

,

and to perceive the inconveniences into which it might lead,

if followed without precaution. This is what we shall now
discuss.

86. From what we have demonstrated, Chap. II., it fol-

lows, that the values of p and q, which satisfy the equation

p^ — Aq" =z 1, can only be the terms of some one of the

principal fractions derived from the continued fraction, which

would express the value of \/A ; so that supposing this con-

tinued fraction to be represented thus,

we must have.

i^=.+
'^'"^^" + ,&c.

1

jxe being any term whatever of the infinite series (aJ, [jJ', &c.

the rank of which, f, can only be determined a posteriori.

We must observe that, in this continued fraction, the num-
bers [M, /x', [jJ', &c. must all be positive, although we have

* See Art. 45 ofmy Memoir on Indeterminate Prohlemg, in

the Memoirs of Berlin. 1767.

P P 9
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seen (Art. S) that, in general, in continued fractions, we may
render the denominators positive or negative, according as

we take the approximate vahies less, or greater, than the real

ones ; but the method of Problem I. (Art. 2S, et seq.\ ab-

solutely requires the approximate values jot,
f^',

ju.", &c. to be
all taken less than the real ones.

87. Now, smce the fraction -^ is equal to a continued

fraction, whose terms are |U-,
f^',

|u.", &c. it is evident, from
Art. 4, that ju, will be the quotient ofp divided by q, that //.'

will be that of q divided by the remainder, /x", that of this

remainder divided by the second remainder, and so on ; so

that calling r, 5, t, &c. the remainders in question, we shall

have, from the nature of division, p = ^j^q -\- r, q = [jJr -{- *,

r = [jiJ's -\- t, &c. where the last remainder must be =. 0,

and the one before the last = I, because p and q are num-
bers prime to each other. Thus, jw- will be the approximate

p q T
integer value of~

,
/x' that of -^, ju," that of—, &c. these

values being all taken less than the real ones, except the

last ju,-, which will be exactly equal to the corresponding

fraction ; because the following remainder is supposed to be
nothing.

Now, as the numbers ft, ja', p.", Sec f^', are the same for

the contmued fraction, which expresses the value of -^,and

for that which expresses the value of ^ a, we may take, as

far as the term m^, -- == v' a, that is to say, ;;- — Aq- n 0.

Thus, we shall first seek the approximate, deficient value of

P'^—
; that is to say, of ^ a, and that will be the value of /x

;

then we shall substitute in p^ — Aq^' z= 0, instead of p, its

value \j.q -\- r, which will give

(f^' — a)^- + 2/^gr -f- r' - 0,

and we shall again seek the approximate, deficient value of

— ; that is, of the positive root of the equation,

(/..^-a) X (|-)"--|-2,a-|--f 1-0,

and we shall have the value of ju-'.

Still continuing to substitute i^'r + .5, instead of y, in the
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transformed equation (y-" — A)if -\- 'Z'jqr -j- r" — ; we shall

liave an equation, whose root will be — ; then taking the

approximate, deficient value of this root, we shall have the

value of |U,''. Here again we shall substitute ;«,"? + s, instead

of r, &c.

Let us now suppose, for example, that t is the last re-

mainder, which must be nothing, then s will be the last but
one, which must be = 1 ; wherefore, if the formula ^^ ' — Ag--,

when transformed into terms of* and t, is fs'^ -r Qst + ii^'-,

by making ^ := 0, and s = 1, it nuist become = 1, in order

that the given equation, p"^— Aq" = 1, may take place ; and
therefore p must be = 1. Thus, we shall only have to con-

tinue the above operations and transformations, imtil we
arrive at a transformed formula, in which the coefficient of

the first term is equal to unity; then, in that formula, we
shall make the first of the two indeterminates, as ?, equal to

1, and the second, as s, equal to 0; and, by going back, we
shall have the corresponding values of^ and q.

We might likewise work with the equation /;- — A^'^ z=. 1

itself, only taking care to abstract from the term 1, which is

known, and consequently from the other known terms, like-

wise, that may result from this, in the determination of the

p Q f
approximate values [j^, yJ, y^', &c. of — , — , —, &c. In

this case, we shall try at each new transformation, whether

the indeterminate equation can subsist, by making one of the

two indeterminates zz 1, and the other zz ; when we have

arrived at such a transformation, the operation will be

finished ; and we shall have only to go back through the

several steps, in order to have the required values of jj

and q.

Here, therefoi'e, we are brought to the method of Chap.

VII. To examine this method in itself, and independently

of the principles from which we have just deduced it, it must

appear indifferent whether we take the approximate values

of //-, jM.', ju/", &;c. less, or greater than the real values ; since,

in whatever way we take these values, those of r, s, t, he.

must go on decreasing to 0. (Art. 6.)

Wallis also expressly says, that we may employ the limits

for |W,, ju,', a.", &c. either in plus, or in minus, at pleasure; and

he even proposes this, as the proper means often of abridging

the calculation. This is likewise remarked by Euler, Art.

102, et seq. of the chapter just now quoted. Ilowever, the

ollowing example will shew, that by setting about it in this
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way, we may run the risk of never arriving at the sokition of

the equation proposed.

Let us take the example of Art. 101 of that chapter, in

which it is required to resolve an equation of this form,

p^ zr 6q" -\- 1, or j^^ — 6q' = 1. We have p n \/{6q'^ + 1) ;

and, neglecting the constant term I, p zz q ^ 6; wherefore

— =: y 6 7 % ^ 3. Let us take the limit in inimis, and

make jw, rr 2, and then p =z 2q + r; substituting this value,

therefore, we shall have — ^q^ + 4:qr -\- ?-* := 1 ; whence,

q = ^ ; or, rejecting the constant term — 2,

2r +7V6 , q 2-Hv/6 ^ „ -^

Q = ; whence,— = —77— 7 ^, Z. 6. Let us

again take the limit in minus, and make q— 2)'-^s ; the last

equation will then become r^ — 4r5 — 2s" zr 1 ; where we
at once perceive, that we may suppose * zz 0, and r r: 1

;

so that we shall have q = 2, and p = 5.

Let us now resume the former transformation,

— 2q"' + iqr -{- r^ = 1,

where we found— 7 2, and Z 3 ; and, instead of taking

the limit in minus, let us take it in phis, that is to say, let us

suppose q = 3r + s ; or, since s must then be a negative

quantity, q = Sr — s, we shall then have the following

transformation, — 5r" + Srs — 2s- = 1, which will give

4s-\-Vi6s^-5)
, , 1 . 1

r =
^

; wherefore, neglectmg the constant

term 5, r = , and — =—r— 7 1, and z 2.
5 s 5

Let us again take the limit in plus, and make r = 2s — t,

we shall now have — 6,9- + I2si — 5f^ = 1 ; therefore

s = ^ ; so that, rejecting the terra — o,

6t-i-t^6 s ^ ^/6 ^

s = ^ , and— = 1 H 7. 7 I, ^ 2.

Let us continue taking the limits in plus, and make
s =2t — ic, we shall next have — 5t^ + I2tu — 6u~ = 1

;

wherefore,

6u-\-V{6u^—5) , t G+ V6 ,

t = —
; and —=—-— 7 1, Z 2.

5 w 5
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Let us, therefore, in tlie same manner, make ^ — 2w — ar,

and we shall have — 2u^ + 8?/^- — B.r" = 1 ; wherefore, &c.
Continuing thus to take the limits always in plus, we shall

never come to a transformed equation, in which the coefficient

of the first term is equal to unity, which is necessary to our
finding a solution of the equation proposed.

The same thing must happen, whenever we take the first

limit in minus, and all the succeeding in jdus ; the reason of
this might be given a priori ; hut as the reader can easily

deduce it from the principles of our theory, I shall not dwell
on it. It is sufficient for the present to have shewn the

necessity of investigating these problems more fully, and
more rigorously, than has hitherto been done.

CHAP. IX.

Of the manner offinding Algebraic Functions of all De-
grees, rohich, xohen muUiplied together, may always produce
Similar Functions.

[appendix to chap. XI. AND XII.]

88. I believe I had, at the same time with M. Euler, the

idea ofemploying the irrational, and even imaginary factors of

formulae of the second degree, in finding the conditions,

which render those formulae equal to squares, or to aJiy

powers. On this subject, I read a Memoir to the academy
in 1768, which has not been printed; but of which I have
given a summary at the end of my reseai'ches on Indeter-

minate Problems, which are to be found in the volume for

the year 1767, printed in 1769, before even the German
translation of M. Euler's Algebra.

In the place now quoted, I have shewn how the same
method may be extended to formulae of higher dimensions

than the second ; and I have by these means given the solu-

tion of some equations, which it would perhaps have been
extremely difficult to resolve in any other way. It is here

intended to generalise this method still more, as it seems to

deserve the attention of mathematicians, from its novelty

and singularity.

89. Let a and /3 be the two roots of the quadratic equation,

5" — as -\-h zz 0,

and let us consider the product of these two factors,
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{x + ay) X (.r + /3?/),

which must be a real product; being equal to

a:" + (a -[- p)xj/ -f a|3?/*.

Now, Ave have a -{- (3 = o., and a/3 =: 6, from the nature of

the equation, s" — as -^ b = ; therefore we shall have this

formula of the second degree,

x'' -\- axj/ -f- bj/-,

which is composed of the two factors,

X -f- ctjj, and X -\- /3j/.

Now, it is evident, that if we have a similar formula,

X- -\- ax'?j' + by",

and wish to multiply them, the one by the other, we have

only to multiply together the two factors x + aij, x' -\~ a.y\

and also the other two factors x -}- &y, x^ -\- /3y', and then

the two products, the one by the other- Now, the product of

X + oy by x^ -\- a.y' is, xf" + a[xy' -{- yx') -}- a^y' ; but
since a is one of the roots of the equation, s" — as -\- b = 0,

we shall have a~ — aa. -{- 6 = 0; whence, a^ =r act— b; and,

substituting this value of a-, in the preceding formula, it will

become, xx' — byy' -j- a{xy' + yx' + ayy') ; so that, in order

to simplify, making

X = xx' — byy'

Y -xy' -\- yx' + ayy',

the product of the two factors x -\- ay, x' + ay, will be
X + aY ; and, consequently, of the same form as each of

them. In the same manner, we shall find, that the product

of the two other factors, x^^y, and x' -\-^y', will be x -f /Sy ;

so that the whole product will be (x + av) x (x + /3y);

that is, x^ + «JCY + b\-, which is the product of the two
similar formulae,

/ /

x" + axy + by-, and x"^ + ax'y' + by".

If we wished to have the product of these three similar

formulae,

/ / / / // // // //

x^ + axy + by^, x^ + axy + iy-, x" + axy -f- &/%

we should only have to find that of the formula, x''^ + «xy + ^y",

by the last, x"' + axy -\- by- ; and it is evident, from the

foregoing formulae, that by making

x' — xy" — bYy"y

y' — ny" -f yu:" + axy'.
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the product sought would be

/ / / /

X'^ + «XY + bY-.

In the same manner, we might find the product of four, or

of a still greater number of formula) siniilar to this,

x- + axy +-6.y%

and these products likewise will always have the same form.

90. If we make x zz x, and ?/
—

j/, we shall have

xzz X- — bij^, Y := 2x1/ + 01/"
;

and, consequently,

{x- ^- axi/ + bifY = X- -j- ffxY + bY".

Therefore, if we wish to find rational values of x and y,
such, that the formula x^+ «XY 4 Z>Y'may become a square,

we shall only have to give the preceding values to x and y,
and we shall have, for the root of the square, the formula,

X- + axy + by";

X and y being two indeterminate numbers.

If we farther make x^' =z x' zz x, and y'' =y =.y, we
shall have x' = x.r — byy, y' = xy + yx + oYy ; that is,

by substituting the preceding values of x and Y,

x' zz. x^ ~ 2bxy^ 4- aby^,

y' zz ^x'^y -f ^axy" + («2 _ b)y'^
;

wherefore,
, y y ,

{x^ -\- axy -^by-y = x- -f" axY -{- ^y^.

Thus, if we proposed to find rational values of x' and y',

/ / / / .

such, that the formula x'^ + axy -f- Ly" might become a

cube, we should only have to give to x and y the foregoing
values, by which means we should have a cube, whose root

would be x'^ -J- axy -;- by"^ ; x and y being both indeter-

minate.

In a similar manner, we may resolve questions, in which
it is required to produce fourth, fifth powers, &c. but we
may, once for all, find general formulae for any power what-
ever, m, without passing through the lower powers.

Let it be proposed, therefore, to find rational values of x
and Y, such, that the formula, x- -|- axY -f- bY", may become
a power, m; that is, let it be required to solve the equation,

x^ -|" axY -\- bx^ — z'".

As the quantity x^ -}- axY -j- bx^ is formed from the pro-
duct of the two factors, x -f '^y, and x + &y, in order that
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this quantity may become a power of the dimension vi, each

of its factors must hkevvise become a similar power.

Let us, therefore, first make

X -r ocY = (x + cci/)'",

and, expressing this power by Newton's theorem, we shall

have

mim— 1)

+ -^^ ~^ '-x'-ya^ +, &c.

Now, since a is one of the roots of the equation,

s^ — as -{ b = 0, we shall also have a^ — aa + Z» = ;

wherefore, a" = aa, — b, ot} ~ acx,^ — ba. = {a^ — b)ix, — ab,

a" = («2 - 6)a* - abac = (a^ — 2ab) a, — a'^b -^-b"" ; and so

on. Thus, we shall only have to substitute these values in

the preceding formula, and then we shall find it to be com-
pounded of two parts, the one wholly rational, which we
shall compare to x, and the other wholly multiplied by the

root a, which we shall compare to ay.

If, in order to simplify, we make

a' = 1 b' =
a" =a b" =b
a'" = aA" - bA< b'" = an" — 6b'

A*' = aA'"— 6a" b'^ = an'" — bvP

A^ = aA}''- bA'", B^' = aB'^— 6b'",

&c. &c. &c. we shall have,

a = A'a — b'

a} = a"a — b"

a^= a'"a - b'"

a^= A^'cc— b'% &c.

Wherefore, substituting these values, and comparing, we
shall have

, ,
m(m — 1 ) „ ^ „

X = a:™ — 7wa;"'~'^«/B' ^

—

x"'~-tj h"

, ,
mini— 1) , „ ,,

Y = ma:'"-^j/A' -j ~ x"'-"7/"a"

^ 2x3

Now, as the root a docs not enter into the expressions of
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X and Y, it is evident, that, having x + ocy = (x-\- o-yYt

we shall hkewise have, y. -\- ^\ — (.r + /S/y)'"; wherefore,

multiplying these two equations together, we shall have,

x2 4- axY -Y bY"- — (x- + axjj -\- bij'^)'";

and, consequently, z — x" -|- axij + jj/^. The problem,

therefore, is solved.

If a were = 0, the foregoing formulae would become
simpler; for we should have a' = 1, a" = 0, a'" = — b,

a'^ = 0, A^ = b-, A^' =: 0, A^" = — i^ &c. and, likewise,

b' = 0, b" = b, b'" = 0, b'^ = — b", B^' == 0, B^' = b\ &c.

Therefore, x = a"' ^—^—' x"'--y''b +
,,(,,-l)xO»-2)X(^^-g) , _ ^^^

2x3x4 ^ '

w(m— l)x(m— 2)
Y = mx"'-^ii -\ ^—5 a?"'-3j/'6 +

/4 x t?

^(^;^-l) X (m-2) x (m-3) x (^-4)

2ia3x4x5 -^ ^ ^ +, &c.

And these values will satisfy the equation,

X^ + bY'~ = (.^2 + 67/2)'".

91. Let us now proceed to the formulse of three di-

mensions ; in order to which, we shall denote by a, $, y,
the thi-ee roots of the cubic equation, s^ — as"-{- hs — c — 0,

and we shall then consider the product of these three

factors,

(a? + a?/ + oC'z) X {x + j3t/ -\- B^z) x (x + y7/ + y^s),

which must be rational, as we shall perceive. The multiplica-

tion being performed, we shall have the following product,

+ (a^,3 + aV+ /3 'a -1- /3V + r'a -f y'/3 )^2/^

+

(a2/32+uY + ^V")-^-' + a/3r^'+ (a'/3y +/3'ay+ y'aiS)^ 2

Now, from the nature of equations, we have

a + jS + y = a, a/3 -;- ay -;- /S/ = b, oc^y = c.

Farther, we shall find

a^ + /32 + y2=(a-f./3-hy)2_2(a/3 + ay + /3y)= a^-26,

a"i3-l-aV+ /3^a+ jSV+ y'a+ y^^ = (a+ /3 +y) X (a/3 +ay+ /3y)

— 3a(3y=a6-3c; and a^(5-+a,Y- + !iY= {a.^ + ay'\-(3yy^

-2(a + /3-|-y)aey=A^-2flc; also, a^/Sy+jS^ay+y"a/3=
(a+/3-fy)a/3y= ac, and a"l3''y+ocY0^-^Y<X'=

(a/3 + ay + |3y)a/3y= be.
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Therefore, making these substitutions, tlie product in ques-
tion will be

k% ax"'j/-^ (a2 _ ^b}^^z^- bxij"-+ (ab—3c)xj/z+ {b-—2ac)xz^

+ dy^ 4- acij-z+ bci/z"+ c'^z\

And this formula will have the property, that if we mul-
tiply together as many similar formulae as we choose, the

product will always be a similar formula.

Let us suppose that the product of the foregoing formula
by the following Avas required, namely,It in

x"^ + ax^ + (a- - 2i)^V + bxy- + [ab — 3c)x'y'z'

II I I II I

-J-(&"-
— 2ac)xz- 4- C7/^ + acj/V + bc?/z- + c^z^;

it is evident, that Ave have only to seek the product of these

six factors,

x-\-ay + e^z, .r + % + /S^,-, x -{ yy -\- y"-z,

x' + aj/' + a^z', ,r' + /3/y' + ^''z', a:' + yi/ + y^z';

if we first multiply x -\- cc^ -{- tx."z, by x' -[- «y + aV, we
shall have this partial product,

xx'+ a{xi/+ ^,'x') + a,'^{xz'+ zx +i/i/) + a-\?/2'+ zy') + o.hz' ;

now, a being one of the roots of the equation,

s^ — as"^ + bs — c = 0,

we shall have a^ — aa.'^ -{- ba, — c = ; consequently,

a^ = aar — ba -{- c ; whence,

a'^ = aa,^ — ba- -\- ca = {a" — b)a^ — {ab — c)a' -\- ac;

so that substituting these values, and, in order to abridge,

making

X = xx' — c{i/z' -\~ zy') -f aczz',

Y = xi/ -\-yx' — b{yz' -\- zy') — {ab — c)2;s',
,

z = a:-'+ zx'-\-yy' -\- a{yz'+ zj/') + {a" - b)zz,

the product in question will become of this form, x-j-ay-f-a^z ;

that is to say, of the same form as each of those from which

it has been produced. Now, as the root a does not enter

into the values of x, y, z, it is evident, that these quantities

will be the same, if we change a into (3, or y ; wiierefore,

since we already have

{x -\-a.y -\- aJ^z) X (x' -j- «?/'+ «•' ~ ) = x -|- aY -}- a,%

we shall likewise have, by changing a into B,

ix-\-B(y-\- /3^^2) X (x' + /3y + ,3-'2') z= x + ^v -f /S'^z

;

and, by changing a into y,

l^' + yj/ + y-^) X (^' -f rj/' + y-^') = x + yy -f y'^z

;
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therefore, by multiplying tliese three equations together, we
shall have, on the one side, the product of the two given

formula^ and on the other, the formula,

x^ + ax^r +(«'- - '2b)\^z + b\Y' + {ab — 8c)xyz i-

{b^ — 2ac)xz- + cy"' + «cy-z -f bcYz' -j- cH^,

which will therefore be equal to the product required ; and

is evidently of the same form as each of the two formuUe of

which it is composed.

If we had a third formula, such as

^3 _|_ a'r'f i- (a - 2b)x"-z" -f bx!/'^ -|- (ab - 3c):i''?/"-'

II II II II II II
^

II

-|- [b^ — ^ac)xz'~ + cy^ + aci/-rJ' + bc/jz' 4- c-r\

and if we wished to have the product of this formula and

the two preceding, it is evident, that we should only have

to make

x' — xx" — c(yz" -f zij") + aczz",

y' = xy + Y^" — b[Yz' + zj/" ) - (ab - c)zz",

z' = xs" + zx" + yy + a{Yz" + zy")+ (a^ _ b)zz\

and we should have, for the product required,

II III
x^ + axH^ + (a- — 26)x"z' + Z»xy- + {ab — 3c)x'y'z'

/ ; ; / / / /

_|.(J2 _ 2ac)xz- + cY^ + «cY^z' + 6cyz^ + c"z.

92. Let us now make x' — .r, y = y, z' = z, and we
shall have,

X = x" — ^cyz + «cs'-,

y =1 9,xii — ^byz — {ab — c)z~,

z = 2xz + y- + 2ayz+ (a'^ — 6)2^;

and these values will satisfy the equation,

x3 -I- ttX'Y + 6xY- H- cy"* + {a'^ — ^b)x-z

-\- {ab — 3e)xYZ + «cy-z + (6^ — 2ac)xz-

+ bcYz" + c^z^ = v'^, by taking

\ =:x^ + ax^y + bxy"- + cy^ +{a'-2b)x-z + (ab—Qc^xyz

+ acy^z + {b" — ^ac)xz" + bcyz- + c"z^ ;

wherefore, if we had, for example, to resolve an equation of

this form, x^ + «x"y + 6xy'^ + cy^ — v-, a, b, c being any
given quantities, we should only have to destroy z, by
making 2xz + y- + %ayz + (a- — 6-)s- = 0, whence we

, . y-+ 2«y3+ ('a--6")s2 , , . . ,.
derive .r z= — —c~ ' ^""> substitutmg this
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value of X in the foregoing expressions of x, y, and v, we
shall have very general values of these quantities, which will

satisfy the equation proposed.

This solution deserves particular attention, on account
of its generality, and the manner in which we have arrived

at it; which is, perhaps, the only way in which it can be
easily resolved.

We should likewise obtain the solution of the equation,

x^ -j- ox'^y' + {ci"~ - 2b)L"'z' -I- bxV' -f {ab - 3c)x'y'z'

II I I II I

4" (6'^ — 2tfc)xz- -J- CY^ + CCY-z' + bCYZ"^ + c-z^ = V^,

by making, in the foregoing formulse,

x" = x' = X, y" — 'ij — y^ 2'' = s' = ^,

and taking

V = ar^ + ax''-y + («- — ^b)x"-z -V hxif + (ab — ?>c)xyz

+ {if- — 2cjc)xz- -f c?/ H- acy-z + bcyz^- + c-2^.

And we might resolve, successively, the cases in which,
instead of the third power v"', we should liave v*, v^, &c.
Eut we are going to consider these questions in a general
manner, as we have done Art. 90.

93. Let it be proposed, therefore, to resolve an equation

of this form,

x"- + flx'^Y + {ce- - 2b)x"z + bxY^ 4- {ab - 3c) xvz +
{b'' — Qnc)\z'^ -f- CY^ + nc\'z -h /^cyz' + c-z^ = v'".

Since the quantity, which forms the first side of this equa-
tion, is nothing more than the product of these three

factors,

(x + av -i- a^z) X (x + /3y 4- /3-z) x (x + yv + y'^z),

it is evident that, in order to render this quantity equal to a
power of the dimension tw, we have only to make each of its

factors separately equal to such a power.

Let then x + av + a,-z = [x + ay -{- a^z)™.

We shall begin by expressing the ??;th power of .r+ a?/ + a':::

according to Newton's theorem, which will give

m{'m— 1) ,, „
or™ + mx"'-\y + ccz)a, -\ —^ x"'-%y + a,zYa"

Or rather, forming the different powers of ?/ + az, and then

arranging them, according to the dimensions of a,
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inim— 1) „ „^

X'" + mx"'--i/a + (w.r'"-',~H -^ a:'"--j/-)a2

+ (w(m — l)^"-22/s+ -^ ^/~ 'x'"-y)a'-{-, &c.
^i.* X o

But as in this formula we do not easily perceive the law

of the terms, we shall suppose, in general,

{x + ai/ + a%)"' = p + p'a + v"a,'^ + p"'a^ + p'^'a'* +, &.C.

and we shall find,

P =: x"',

7nyp

X

,^ _ {m — \)i/v'-\-2mz-?

^' ~ '^^ '

p'^ r: ^ -^ — , &c.

which may easily be demonstrated by the differential cal-

culus.

Now, since a is one of the roots of the equation,

s^ — as'^ + bs — c = 0, we shall have

a^ — aofi + ba. — e rr ; whence,

a' = aa,- — i>a + c ; wherefore,

a* n aa^ — hoi^-\- col = (a^ — 6)a^ — {ab — c)a. + ac,

oi> = (a- — Z>)a^ — {ab — c)a- + «ca = (a' — 2a6 + c)a*

— {a^b — 6- — ac)a + (a^ — 6)c; and so on.

So that if, in order to simplify, we make
a' = A'^ = aa'" - 6a" + ca'

a" = 1 A^' = oa'^ - ^>a"' + ca"

a"'=: a A" = flA^' - bx'" + ca"', &c.

b' = 1 (;' =r

b" = c" =
b"' = b d" = c

b""'= as'" — ^b" + cb' c'^' = ac'" — be" + cc'

b^ = «b'^- 6b'" + cb" c^ = ad" — bd" + cc"

b^'= flB^ — 6b'^ + cb"', 8lc. c^''= ac^ — 6c'^' + cc'", &c.

we shall have,

a = a'o." - B'a + c' a^ = A"'a'^ ~ B'"a + c'"

a"= A"a" — B"a + c" a* = a'^o.'^— b'V + c'^', &c.

Substituting these values, therefore, in the expression
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(.r + a.y + a-s)"', it will be found comjioscd of three parts,

one all rational, another all multiplied by a, and the third

all multiplied by a-; so that we shall only have to compare
the first to x, the second to ay, and the third to a^z, and,

by these means, we shall have

X = p + p'c' + p"c" + p"'c''" -f- p"'''c'^, &:c.

Y == — p'b' — p"b" — p'''b"' - p'^'b'^', &C.
Z = p'a' + p"a" + p'"a"' + V''K'\ &C.

These values, therefore, will satisfy the equation,

X + «Y + a-z rz (x + ay 4- a-z)"'

;

and as the root a does not enter into the expressions of x,

Y, and z, it is evident, that we may change a into /3, or

into 7 ; so that we shall have both

X + /3y + iS2z = (a: + /3j/ + ^"-zY, and

X + 7Y + y^z = (a- + yjj + y'^zY'

If we now multiply these three equations together, it is

evident, that the first member will be the same as that of

the given equation, and that the second will be equal to a

power Wi, the root of which being called v, we shall have

V = j?^ + ax'^y + (a- — 25)a,"z + hxy" + {ab — 3c)xyz

+ (^^ — 2ac)a;z- + cy^ -j- ucyH + hcyz" + &z^.

Thus, we shall have the values required of x, y, z, and
V, which will contain three indeterminates, o", y, z.

94. If we wished to find formulas of foui- dimensions,

having the same properties as those we have now examined,

it would be necessary to consider the product of four factors

of this form,

X -\- a.y •\- oC-% + olH

^ + % + ^"~z + m
X -{- yy + y-Z + yH
X + Sy + ^-2 + $%

supposing a, (3, y, S to be the roots of a biquadratic equation,

such as s* — as^ -j- bs- — cs -{- d ~ ; we shall thus have

a-f-/3 + y 4- $ = a,

aB + ay + a$ i- ^y + I3S + yS -- b,

a.(oy +aft$+ ay$-\-ByS = c,

a&yd = d,

by which means we may determine all the coefficients of the

different terms of the product in question, without knowing

the roots a, p, $^ y. IJut as this requires different re-
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ductions, which are not easily performedj we may set about

it, if it be judged more convenient, in the following manner.

Let us suppose, in general,

X + SI/ + s^z + sH = i;

and, as s is determined by the equation,

5* _ as^ + bs'^ — C5 + (i = 0,

let us take away s from these two equations by the common
rules, and the equation, which results, after expunging *,

being arranged according to the unknown quantity
f,

will

rise to the fourth degree ; so that it may be put into this

form, 2^ — af + p^*^ — Qf + u- ^ 0.

Now, the cause of this equation in f rising to the fourth

degree is, that s may have the four values a, (5, y, $

;

and also that § may likewise have these four corresponding

values,

X + ay + a2- + aH

^ + % + /3-~ + ^'t

^ -\- yy ^- y"^ + 7^^

X -^ty -\- ^H + in.,

which are nothing but those factors^ the product of which is

required. Wherefore, since the last term r must be the

product of all the four roots, or values of f, it follows, that

this quantity, R, will be the product required.

But we have now said enough on this subject, which we
might resume, perhaps, on some other occasion.

I shall here close these Additions, which the limits I pre-

scribed to myself will not permit me to carry any farther

;

perhaps they have already been found too long: but the

subjects I have considered being rather new and little known,

I thought it incumbent on me to enter into several details,

necessary for the full illustration of the methods which I

have explained, and of their different uses.

THE EN». .

Q Q
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