ADDITIONS
BY

M. DE. LA GRANGE.

ADVERTISEMENT.

THE geometricians of the last century paid great atten-
tion to the Indeterminate Analysis, or what 1s commonly
called the Diophantine Algebra; but Bachet and Fermat
alone can properly be said to have added any thing to what
Diophantus himself has left us on that subject.

To the former, we particularly owe a complete method
of resolving, in integer numbers, all indeterminate problems
of the first degree* : the latter is the author of some methods
for the resolution of indeterminate equations, which exceed
the second degreet; of the singular method, by which we
demonstrate that it is impossible for the sum, or the dif-
ference of two biquadrates to be asquare} ; of the solution of
a great number of very difficult problems; and of several
admirable theorems respecting integer numbers, which he
left without demonstration, but of which the greater part has
since been demonstrated by M. Euler in the Petersburg
Commentaries ||

* See Chap. 8, in these Additions. I do not here men-
tion.his Commentary on Diophantus, because that work, pro-
perly speaking, though excellent in its way, contains no dis-
covery.

+ These are explained in the 8th, 9th, and 10th chapters of
the preceding Treatise. Pére Billi has collected them from dif-
ferent writings of M, Fermat, and has added them to the new
edition of Diophantus, published by M. Fermat, junior.

1 This method is explained in the 13th chapter of the pre-
ceding Treatise ; the principles of it are to be found in the IPe-
marks of M. Fermat, on the XX VIth Question of the VIth Book
of Diophantus. 3

|| The problems and theorems, to which we allude, are
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In the present century, this branch of analysis has been
almost entirely neglected ; and, except M. Euler, I know no
person who has applied to it: but the beautiful and nu-
merous discoveries, which that great mathematician has
made in it, sufficiently compensate for the. indifference
which mathematical authors appear to have hitherto enter-
tained for such researches. "The Commentaries of Peters-
burg are full of the labors of M. Euler on this subject,
and the preceding Work is a new service, which he has ren-
dered to the admirers of the Diophantine Algebra. Before
the publication of it, there was no work in which this science
was treated methodically, and which enumerated and ex-
plained the principal rules hitherto known for the solution
of indeterminate problems. 'T'he preceding Treatise unites
both these advantages: but in order to make it still more
complete, I have thought it necessary to make several Ad-
ditions to it, of which I shall now give a short account.

The theory of Continued Fractions is one of the most
useful in arithmetie, as it serves to resolve problems with
facility, which, without its aid, would be almost unmanage-
able; but it is of still greater utility in the solution of inde-
terminate problems, when integer numbers only are sought.
This consideration has induced me to explain the theory of
them, at sufficient length to make it understood. As it is
not to be found in the chief works on arithmetic and algebra,
it must be little known to mathematicians; and I shall be
happy, if T can contribute to render it more familiar to them.
At theend of this theory, which occupies the first Chapter,
follow several curious and entirely new problems, depending
on the truth of the same theory, but which T have thought
proper to treat in a distinct manner, in order that their
solution may become more interesting. Among these will
particularly be remarked a very simple and easy method of
reducing the roots of equations of the second degree to Con-
tinued Fractions, and a rigid demonstration, that those frac-
tions must necessarily be always pertodical.

The other Additions chiefly relate to the resolution of in-

scattered through the Remarks of M. Fermat on the Questions
of Diophantus; and through his Letters printed in the Opera
Muathematica, &c. and in the second volume of the works of
Wallis.

There are also to be found, in the Memoirs of the Academy
of Berlin, for the year 1770, & seq. the demonstrations of some
of this author’s theorems, which had not been demonstrated
before.
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determinate cquations of the first and second degree; for
these I give new and general methods, both for the case in
which the numbers are only required to be rational, and for
that in which the numbers sought are required to be integer ;
and I consider some other important matters relating to the
same subject.

The last Chapter contains researches on the functions ¥
which have this property, that the product of two or more
similar functions is always a similar function. I give a general
method for finding such functions, and shew their use in the
resolution of different indeterminate problems, to which the
usual methods could not be applied.

Such are the principal objects of these Additions, which
might have been made much more extensive, had it not been
for exceeding proper bounds ; I hope, however, that the sub-
jects here treated will merit the attention of mathematicians,
and revive a tase for this branch of algebra, which appears to
me very worthy of exercising their skill.

CHAPTER L

ON

CONTINUED FRACTIONS.

1. As the subject of Continued Fractions is not found in
the common books of arithmetic and algebra, and for this
reason is but little known to mathematicians, it will be pro-
per to begin these Additions by a short explanation of their
theory, which we shall have frequent opportunities to apply
in what follows.

In general, we call every expression of this form, a con-
tinwed fraction,

+ - (7
-4 == & (
Eb —;-+, e

* A term used in algebra for any expression containing a
certain letter, denoting an unknown quantity, however mixed
and compounded with other known quantities or numbers.

2
7y 5 say + o/ (L avc al

4

2-—
Thus, ez + yz; 2x—a 4/(a x

functions of .
Hu
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in which the quantities «, 8, y,8, &c. and b, ¢, d, &c. are
integer numbers positive or negative ; but at present we shall
consider those Continued Fractions only, whose numerators
b, ¢, d, &c. are unity; that is to say, fractions of this form,
1
@ ar == l 1
g+ v +§ +, &e.

2, B, v, &c. being any integer numbers positive or negative ;
for these are, properly speaking, the only numbers, which are
of great utility n analysis, the others being scarcely any
thing more than objects of curiosity.

2. Lord Brouncker, I believe, was the first who thought
of Continued Fractions; we know that the continued frac-
tion, which he devised to express the ratio of the circum-
scribed square to the area of the circle was this;

1+% .,
z 2s
s +, &e.
but we are ignorant of the means which led him toit. We
only find in the Arithmetica infinitorum some researches on
this subject, in which Wallis demonstrates, in an indirect,
though ingenious manner, the identity of Brouncker’s ex-

Ix3x5x5%x, &e.
2x4x 4x6x06, &e.’

also gives the general method of reducing all sorts of con-
tinued fractions to vulgar fractions; but it does not appear
that either of those great mathematicians knew the principal
properties and singular advantages of continued fractions;
and we shall afterwards see, that the discovery of them is
chiefly due to Huygens.

3. Continued fractions naturally present themselves, when-
ever it is required to express fractional, or imaginary quan-
tities in numbers. In fact, suppose we have to assign the
value of any given quantity a, which is not expressible by
an integer number ; the simplest way 1s, to begin by seeking
the integer number, which will be nearest to the value of a,
and which will differ from it only by a fraction less than
unity. Let this number be «, and we shall have @ — « equal

pression to his, which is, He there

. 3 1 .
to a fraction less than unity; so that P will, on the

contrary, be a number greater than unity: therefore let

1

—= b5 and, as 0 must be a number greater than unity,
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we may also seek for the integer number, which shall be
nearest the value of 45 and this number being called 8, we
shall again have & — §8 equal to a fraction less than unity ;

1 :
and, consequently,'m will be equal to a quantity greater

than unity, which we may represent by ¢; so that, to assign
the value of ¢, we have only to seek, in the same manner,
for the integer number nearest to ¢, which being represented
by v, we shall have ¢ — ¥ equal to a quantity ﬁ)ess than

- unity ; and, consequently, E__l_—'ywill be equal to a quantity,

d, greater than unity, and so on. From which it is evident,
that we may gradually exhaust the value of a, and that in
the simplest and readiest manner; since we only employ
integer numbers, each of which approximates, as nearly as
possible, to the value sought.

. 1
Now, since —— = &, we have @ — &« = —, and
a—a b

ey 4 . 1
o =a-}+ s likewise, since —b—_——ﬁzc, we have 0=p-} =

and, since = d, we have, in the same manner,

1 . N
¢ =y + -, &e.; so that by successively substituting these

values, we shall have
[ 1
= “—i—z’
= — 1

@ =a+ =

B + =

1

=at+—o 1 4

L ﬁ+?+‘(?,

. 1
and, in general, =g+ —

1
ﬁ +7+—§‘+, &e.

It is proper to remark here, that the numbers «, 8, v, &c.
which represent, as we have shewn, the approximate integer
values of the quantities a, b, ¢, &c. may be taken cach in
two different ways; since we may with equal propriety
take, for the approximate integer value of a given quantity,
cither of the two integer numbers between which that quan-

uu2
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tity lies. There is, however, an essential difference between
these two methods of taking the approximate values, with
respect to the continued fraction which results from it: for
if we always take the approximate values less than the true
ones, the denominators B, y, 9, &c. will be all positive;
whereas they will be all negative, if we take all the ap-
proximate values greater than the true ones; and they
will be partly positive and partly negative, if the approximate
values are taken sometimes too smali, and sometimes too
great.

In fact, if o be less than a, @ — « will be a positive quan-
tity ; wherefore b will be positive, and 8 will be so likewise:
on the contrary, a — o will be negative, if « be greater than
a; then b will be negative, and B will be so likewise. In
the same manner, 1f 8 be less than 0, b — § will always be
a positive quantity ; therefore ¢ will be positive also, and,
consequently, also o ; but if 8 be greater than 6, b — g will
be a negative quantity; so that ¢, and consequently also 1,
will be negative, and so on.

Farther, when negative quantities are considered, I un-
derstand by less quantities those which, taken positively,
would be greater. We shall have occasion, however, some-
times to compare quantities simply in respect of their ab-
solute magnitude; but I shall then take care to premise,
that we must pay no attention to the signs.

It must be remarked, also, that if, among the quantities
b, ¢, d, &c. one is found cqual to an integer number, then
the continued fraction will be terminated ; because we shall
be able to preserve that quantity in it: for example, if ¢
be an integer number, the continued fraction, which gives
the value of a, will be '

4 |
a=a+—_ 1
Ft
It is evident, indeed, that we must take o = ¢, which
. 1
gives d = ¥ 7 =1 = o ; and, consequently, d = co;
so that we shall have
1
a=a 4 F __1_ I
Y too

the following terms vanishing in comparison with the infinite



CHAP. L ADDITIONS. 469

. 1
quantity ». Now, gz = 0, wherefore we shall only have

a—u+1 1
= .
c

This case will happen whenever the quantity « is com-
mensurable ; that is to say, expressed by a rational fraction ;
but when a is an irrational, or transcendental quantity, then
the continued fraction will necessarily go on to infinity.

4. Suppose the quantity @ to be a vulgar fraction,

A . g . 9 S o
R and © being given integer numbers; it is evident,

. 2 A .
that the integer number, a, approaching nearest to 57 will

be the quotient of the division of A by B; so that supposing
the division performed in the usual manner, and calling
@ the quotient, and ¢ the remainder, we shall have

A
B

—_ =

c B .
- whence b = - Also, in order to have

. . 2B
the approximate integer value 8 of the fraction > we have

only to divide » by c, and take B for the quotient of this
division ; then calling the remainder b, we shall have

D c .
b - B = - and ¢ = > We shall therefore continue

to divide ¢ by b, and the quotient will be the value of
the number y, and so on; whence results the following
very simple rule for reducing vulgar fractions to continued
fractions. .

Rure. First, divide the numerator of the given fraction
by its denominator, and call the quotient «; then divide the
denominator by the remainder, and call the quotient B;
then divide the first remainder by the second remainder,
and let the quotient be y. Continue thus, always dividing
the last divisor by the last remainder, till you arrive at a
division that is performed without any remainder, which must
necessarily happen when the remainders are all integer
numbers that continually diminish; you will then have the
continued fraction

s



470 ADDITIONS. CHAP. 1.

1
Rawhosz. ) oy
7+T,&C-

which will be equal to the given fraction.

5. Let it be proposed, for example, to reduce 222 to a
continued fraction,

First, we divide 1103 by 887, which gives the quotient 1,
and the remainder 216; 887 divided by 216, gives the
quotient 4, and the remainder 23 ; 216 divided by 23, gives
the quotient 9, and the remainder 9 ; also dividing 23 by 9,
we obtain the quotient 2, and the remainder 5; then 9 by
5, gives the quotient 1, and the remainder 4; 5 by 4, gives
the quotient 1, and the remainder 1 ; lastly, dividing 4 by 1,
we obtain the quotient 4, and no remainder; so that the
operation is finished : and, eollecting all the quotients in
order, we have this series 1, 4, 9, 2, 1, 1, 4, whence we
form the continued fraction

1103 — I
?‘3‘7—1+x+x
9 1

z 1
3¢ 1

T_,__:T.

6. As, in the above division, we took for the quotient the
integer number which was equal to, or less than, the fraction
proposed, it follows that we shall only obtain from that
method continued fractions, of which all the denominators
will be positive numbers.

But we may also assume for the quotient the integer-
number, which is immediately greater than the value of the
fraction, when that fraction is not reducible to an integer,
and, for this purpose, we have only to increase the value of
the quotient found by unity in the usual manner; then the
remainder will be negative, and the next quotient will ne-
cessarily be negative. So that we may, at pleasure, make the
terms of the continned fraction positive, or negative.

In the preceding example, mstead of taking 1 for the
quotient of 1108 divided by 887, we may take 2; in which
case we have the negative remainder —671, by which we
must now divide 887; we therefore divide 887 by —671,
and obtain either the quotient —1, and the remainder 216,
or the quotient — 2, and the remainder —455. Let us take
the greater quotient —1: then divide the remainder —671
by 216; whence we obtain cither the quotient —3, and the
remainder —23, or the quotient —#4, and the remainder
193. Continuing the division by adopting the greater
quotient — 8, we have to divide the remainder 216 by the
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remainder — 23, which gives either the quotient —9, and
the remainder 9, or the quotient —10, and the remainder
—14, and so on. :
In this way, we obtain
1103 1

= 9 Jb e _}_
887 -1.+_3+:1_§+’ e
in which we see that all the denominators are negative,

7. We may also make cach negative denominator po-
sitive by changing the sign of the numerator; but we must
then also change the sign of the succceding numerator ; for
it is evident that

;o+1 4 } {# L

Then we may also, if we choose, remove all the signs — in
the continued fraction, and reduce 1t to another, in which all
the terms shall be positive; for we have, in general,

_1_ = 1 L 1
{’L+—v+,&c.}_ o= +T+y~:—i+,&c.}

as we may easily be convinced of by reducing those two
quantitics to vulgar fractions *.

We may also, by similar means, introduce negative terms
instead of positive ; for we have

1 S, gy
5"+y+,&c. = i —1+-;:—1+,&c.

whence we see, that, by such transformations, we may always
simplify a continued fraction, and reduce it to fewer terms:
which will tal;e place, when'ever there are denominators equal
to unity, positive, or negative.

In general, it is evident, that, in order to have the con-
tinued fraction approximating as nearly as possible to the

A i
# Thus, the mixed number, 1 4 ﬁ=v—y-I; therefore

. =L
14 v

y—1

and, consequently,
\ 1
ot

i+

y—1 1
v-l} Sk =1+~
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value of the given quantity, we must always take a, 8, v,
&ec. the integer numbers which are nearest the quantities
a, b, c, &c. whether they be less, or greater than those quan-
tities. Now, it is easy to perceive that if, for example, we
do not take for @ the mteger number which is nearest to a,
either above or below it, the following number 8 will neces-
sarily be equal to unity; in fact, the difference between a
and o will then be greater than %, consequently, we shall

have b = a—La less than 2; therefore 8 must be equal to
unity.

So that whenever we find the denominators in a con-
tinued fraction equal to unity, this will be a proof that we
have not taken the preceding denominators as near as we
might have done; and, consequently, that the fraction
may be simplified by increasing, or diminishing those de-
nominators by unity, which may be done by the preceding
formulze, without the necessity of going through the whole
calculation.

8. The method in Art. 4 may also serve for reducing
every irrational, or transcendental quantity to a continued
fraction, provided it be expressed before in decimals ; but as
the value in decimals can only be approximate, by aug-
menting the last figure by unity, we procure two limits,
between which the true value of the given quantity must
lie; and, in order that we may not pass those limits, we
must perform the same calculation with both the fractions
in question, and then admit into the continued fraction
those quotients only which shall equally result from both
operations.

Let it be proposed, for example, to express by a con-
tinued fraction the ratio of the circumference of the circle to
the diameter. :

This ratio expressed in decimals is, by the calculation of
Vieta, as 3,1415926535 is to 1; so that we have to reduce

3, 1415926535
10000000000
method above explained. Now, if we take only the fraction
3, 14159
100000

the fraction to a continued fraction by the

, we find the quotients 3, 7, 15, 1, &c. and if we

. 8,14160 : :
take the greater fraction ~Jooooo Ve find the quotients 3,

7, 16, &c. so that the third quotient remains doubtful ;
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whence we sce, that, in order to extend the continued frac-
tion only beyond three terms, we must adopt a value of the
circumference, which has more than six figures.

If we take the value given by Ludolph to thirty-five
decimal places, which is 3,14159, 26535, 89793, 23846,
26433, 83279, 50288 ; and if we work on with this fraction,
as it 1s, and also with its last figure 8 increased by unity, we
shall find the following series of quotients, 3, 7, 15, 1, 292,
1,1,1,2,1,8,1,14,2,1,1,2,2,2,2,1,84,2,1, 1, 15,
3,13, 1, 4,2, 6, 6, 1; so that we shall have
Circumference

Diameter

.

L
"1+, &e.
And as there are here denominators equal to unity, we may

simplify the fraction, by intreducing negative terms, ac-
cording to the formula of Art. 7, and shall find

Circumference
Diameter A L 5 I
29% __3__%+’ &,
Circumference 1
igvi‘ai;tcr = 7 + "1“ 1 1
' 16+ 2044 —, 1
—9 iy YL
- +, &c.

9. We have elsewherc shewn how the theory of continued
fractions may be applied to the numerical resolution of
equations, for which other methods are imperfect and in-
sufficient *.  The whole difficulty consists in finding in any
equation the nearest integer value, either above, or below
the root sought ; and for this I first gave some general rules,
by which we may not only perceive how many real roots,
positive or negative, equal or unequal, the proposed equation
contains, but also easily find the limits of each of those roots,
and even the limits of the real quantities which compose the
imaginary roots. Supposing, therefore, that 2 is the un-
known quantity of the equation proposed, we seek first for
the integer number which is nearest to the root sought, and
calling that number «, we have only, asin Art. 3, to make

* See the Memoirs of the Academy of Berlin, for the years
1767 and 1768; and Le Gendre’s lissai sur la Theorie des
Nombres, page 138, first cdition.
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1 X
r=a+ —g; z, ¥, %, &c. representing here what was de-

noted in that article by @, b, ¢, &c. and substituting this
value instead of 2, we shall have, after removing the frac-
tions, an equation of the same degree in 7, which must have
at least one positive, or negative root greater than unity.
After seeking therefore for the approximate integer value
of the root, and calling that value 8, we shall then make

y=p+— which will give an equation in 2, having like-

wise a root greater than unity, whose approximate integer
value we must next seek, and so on. In this manner, the
root required will be found expressed by the continued

fraction

)
a —
B
Y 4, &

which will be terminated, if the root is commensurable;
but will necessarily go on ad infinitum, if it be incom-
mensurable.

In the Memoirs just referred to, there will be found all
the principles and details necessary to render this method
and 1ts application easy, and even different means of abridg-
ing many of the operations which it requires. I believe
that I have scarcely left any thing farther to be said on this
important subject. With regard to the roots of equations
of the second degree, we shall afterwards give (Art. 33 et
seq.) a particular and very simple method of changing them
mto continued fractions.

10. After having thus explained the genesis of continued
fractions, we shall proceed to shew their application, and
their principal properties. i

It is evident, that the more terms we take in a continued
fraction, the nearer we approximate to the true value of the
quantity which we have expressed by that fraction ; so that
if we successively stop at each term of the fraction, we
shall have a series of quantities converging towards the given
quantity. -

Thus, having reduced the value of « to the continued

fraction,

we shall have the quantities,
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+ 1} {a+ o }
ayd % s Ve A
{ 4 'B+'y,&c.

or, by reduction,
. aB+1 afytaty
o e TR
which approach nearer and nearer to the value of a.
In order to judge better of the law, and of the con-

vergence of these quantities, it must be remarked, that, by
the formula of Art. 8, we have

5 (S5(e,

1 1 1
a=a+7,b=6+7,c:y+7,&c.

Whence we immediately perceive, that a« is the first ap-
proximate value of a; that then, if we take the exact value

+1 ! h . .
——, and, in this, substitute for & its ap-

b

proximate value 8, we shall have this more approximate

... ab
of @, which is

aB+1 .
value —+-; that we shall, in the same manner, have a

B8
third more approximate value of @, by substituting for  its
Be4-1 . | aB-+1)c+a
exact value , which gives ¢ = ( Boil ° and then

taking for ¢ the approximate value y; by these means
the new approximate value of a will be

(@B+1)y+a
By--1
Continuing the same reasoning, we may approximate nearer,
by substituting, in the above expression of a, instead of c,

! d+1 . —
its exact value, u, which will give

d
@B+ +a)d+ap+]
- By+1)d+8
and then taking for d its approximate value 4, we shall have,
for the fourth approximation, the quantity

((@B+1)y4a)d +aB+1

@y+1)0+8 :

Hence it is easy to perceive, that, if by means of the
numbers «, B, v, 8, &c. we form the following expressions,

, and so on.

* See note, p. 471.



476 ADDITIONS. CHAP. I.

N = =1

B =B+ 1 B =8

C= 9B+ A = yn' + A

D=24d¢c + B ' = oc + ¥

E=2: + ¢ E = e + ¢
&e. &e.

we shall have this series of fractions converging towards the

) A
uantity ¢, — — — — — —, &e.
q N sl o e T~ 12

If the quantity e be rational, and represented by any
fraction Pk it is evident that this fraction will always be the

last in the preceding series; since then the continued frac-
tion will be terminated, and the last fraction of the above
series must always be equal to the whole continued fraction.

But if the quantity @ be irrational, or transcendental, then
the continued fraction necessarily going on ad infinitum, we
may also continue ad infinitum the series of converging
fractions.

11, Let us now examine the nature of these fractions,
1st, It is evident that the numbers a, B, ¢, &c. must con-
tinually increase, as well as the numbers 4/, 8/, ¢!, &c. for
1st, if the numbers «, B, y, &e. are all positive, the numbers
A, B, ¢, &e. Al B, ¢!, &e. will also be positive, and we shall
evidently have 874, c78, p7¢, & and ' =, or 74,
d 738, o7, &e.

2dly, If the numbers «, 8, ¥, &e. are all, or partly ne-
gative, then amongst the numbers 4, B, ¢, &e. and, 4/, v/, ¢,
there will be some positive, and some negative; but in that
case we must consider that we have, by the preceding

formulee,
B 1. c A D B
— = == _—= — —-:a — A b
A B+a’ B 4 3 B’ ¢ +c’&c

whence we immediately see, that, if the numbers «, 8, v, &c.
are different from umty, whatever their signs be, we shall

: ; . B
neeessarily have, neglecting the signs, — 7 1; and there-

A c
fore =% 1; conscquently, —B—71, and so on: therefore

B 7 A, C7 3B, &e.

There is no exception to this but when some of the num-
bers a, 3, 7, &c. are equal to unity. Suppose, for example,
that the number ¥ is the first which is equal to +1; we
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shall then have B 7 A, but’c £ 8, if it happens that the frac-

Bl A . g Pxig]
tion — has a different sign from  ; which is evident from

0 C A A A
the equation 5 . b = because, in that case, y + =

will be a number less than unity. . Now, I say, in this case, we
must have b 7 B; for since y= =1, we shall have (Art. 10),

c=il+%,andc—%:i1; but as ¢ and d are

quantities greater than unity (Art. 8), it is evident, that
this equation cannot subsist, unless ¢ and d have the same
signs ; therefore, since y and ¢ are the approximate integer
values of ¢ and d, these numbers ¢ and ¢ must also have the

. . C A

same sign. Farther, the fraction —= y 4 — must have
B B

the same sign as 7, because y is an integer number, and

A . " C 5
- 2 fraction less than unity ; therefore e and ¢, will be

o/ . CCR
quantities of the same sign; consequently, = will be a po-

sitive quantity. Now, we have —12— = &4 —2; and hence,
. LY
multiplying by —%—, we shall have —% = ?C +1; so that

o . . . o R W D .
) being a positive quantity, it is evident that =~ will be

greater than unity ; and therefore o 7 B.

Hence we see, that, if in the scries A, B, ¢, &c. there be
one term less than the preceding, the following will ne-
cessarily be greater ; so that putting aside those less terms,
the series will always go on increasing.

Besides, if we choose, we may always avoid this incon-
venience, either by taking the numbers «, B, 7, &c. positive,
or by taking them different from unity, which may always
be done.

The same reasonings apply to the series a', ¥/, ¢, &c. in
which we have likewise

B’ @ wow 4
POl e

whence we may form conclusions similar to the preceding.
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12. If we now multiply cross-ways the terms of the con-

—IL', —c—,-, &e. we shall
TG,
find BA' — AB' = 1, ¢! — BC = AB — BA/,
pc' — cp' = c — cB, &e.
whence we conclude, in general, that

Al — A =1

’ ' ; . A
secutive fractions, in the series —,
A

¢ — = —1
! —cp =1
ED — b= — 1, &ec.

This property is very remarkable, and leads to several
important consequences.

3 - A BRILC
First, we see that the fractions —, —, —;, &c. must be
8’ B’ ¢

already in their Jowest terms; for if, for example, ¢ and ¢
had any common divisor, the integer numbers cs' — BC
would also be divisible by that same divisor, which cannot
be, since cB' — B¢/ = — 1.

Next, if we put the preceding equations into this form,

B a1

B AT AW

c B _ 1
PR

b ¢ 1

DI C’ CIDI

E D 1

£ D p'E’ =

it is easy to perceive, that the differences between the ad-
B

B’

diminishing, so that this is necessarily converging.

Now, I say, that the difference between two consecutive
fractions is as small as it is possible for it to be; so that
there can be no other fraction whatever between those two
fractions, unless it have a denominator greater than the de-
nominators of them. .

2 . A c F
joining fractions of the series " — are continually

. c D
Let us take, for example, the two fractions —,and —, the
e D

difference of which is I and let us suppose, if possible,
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. & m
that there is another fraction, y 2 whose value falls between
the values of those two fractions, and whose denominator n
. . m .
is less than ¢, or less than D'. Now, since —-is between

!
c D . m. .C ., . mc—nc

—>and —, the difference of —, and —, which is ———or
c D n G, nc

ne — mc! 1 . D
— > must be less than ——, the difference between —
ne ¢ D

c o, i
and R but it is evident that the former cannot be less than

1 " . .
i and therefore if # 2 D/, it will necessarily be greater than

) m D
el Also, as the difference between o and — cannot be less

!

S : 1 .
than —, it will necessarily be greater than el if » 2 ¢,

np'
whereas it must be less.
13. Let us now see how each fraction of the series

A B y .
o &c. will approximate towards the value of the

quantity . For this purpose, it may be observed that the
formulee of Article 10 give

a_Ab+1 o cd+-z
oAb ~ dd+v
Be 4@ __ bet-c

= Blet-a' oy ple4-c

and so on.

Hence, if we would know how nearly the fraction —57, for
example, approaches to the given quantity, we seck for the
difference between % and «; taking for a the quantity

(%;—j_—l;—,, we shall have
e _"cd+8 ¢ mc/—cH | 1
dTdd+y d— d(cd + 8) T d(dd + By
because B¢/ — cp' = 1, (Art. 12). Now, as we suppose ¢ the
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approximate value of d, so that the difference between d
and ¢ is less than unity (Art. 8), it is evident that the value
of d will lie between the two numbers & and & + 1, (the
upper sign being for the case, in which the approximate
value ¢ is less than the true one d, and the lower sign for the
case, in which ¢ is greater than d), and, consequently, that
the value of c'd 4- ', will also be contained between these
two, ¢'d + ¥, and c/(¢ + 1) 4 &, that is to say, between o/

4 c . :
and »' 4 ¢'; therefore the difference « — ¥ will be contained

1

.. 1
between these two limits —, -—————; whence we ma
cdp'? @ =)’ y

— .
judge of the degree of approximation of the fraction rE

14. In general, we shall have,

A 1
=TT
B 1
“=yT B'(#'c+ a")
d (e 1
¢ Sl + c'(c!d+38')
a=B ————— and so on.

» p(vle+c)

Now, if we suppose that the approximate values, a, 8, v,
&c. are always taken less than the real values, these numbers
will all be positive, as well as the quantities b, ¢, d, &c.(Art.3.)
and, conscquently, the numbers 4, B/, ¢!, &e. will be likewise
all positive; whence it follows, that the differences between

%, %, &e. will be

alternately positive and negative ; that is to say, those frac-

tions will be alternately less and greater than the quantity a.
Farther, as & 78, ¢ 7 v, d 7 &, &c. by hypothesis, we

have b 7 8!, (8'c + A') 7 (B'y + 4'), and also 7 c'¥,

(cd + 3) 7 (!0 + B), and therefore 7 »/, &c. and as

beB+1D,cs(y+1),d2(+ 1), wehavedz (3 +1),

. . A
the quantity @, and the fractions G

* For since ¢ 7 v, therefore s'c 7 8'y; and, consequently,
(8'c + &') 7 (8'y + A"} which is 7 ¢!, because nly + A' =/,
page 476. And it is exactly the same with the other quan-
tities. B.
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(Be 44 2 (B(y + 1)+ &) 2 (¢ + '), also
(dd+18) 2 ([@+1)+38) 2 ® + ) &. so that the

. . ) AL B ¢
errors in taking the fraetions —;, —, —, &c. for the value
AR

1

e y 1 1
of a, would be respectlv_cly less than = ) H,&’c.but

1 It 1
Al(B'+4-a") B(d4-8) (o)

how small those crrors are, and how they go on diminishing
from one fraetion to another.

&c. which shews

greater tha

. . -y
But farther, since the fractions —, —, —, &c. are al-
ARG

ternately less and greater than the quantity g, it is evident,
that the value of that quantity will always be found between
any two consecutive fractions. Now, we have already seen
(Art. 12), that it is impossible to find, between two such
fraetions, any other fraction whatever, which has a denomi-
nator less than one of the denominators of those two frac-
tions; whence we may conclude, that each of the fractions
in question, express the quantity ¢ more exactly than any.
other fraction can, whose denominator is less than that of the

4 . . R
succecding fraetion ; that is to say, the fraction o for ex-
ample, will express the value of @ more exactly than any
other fraction —,n which 7 would be less than »'.

15. If the approximate values «, 8, ¥, &ec. are all, or
partly, greater than the real values, then some of those num-
bers will necessarily be negative (Art. 8), which will also
render negative some terms of the series a, 5, ¢, &e. 4, &/, ¢,
&c. consequently, the differences between the fractions

A B C h .
S e &ec. and the quantity a, will no longer be al-

ternately positive and negative, as in the case of the pre-
ceding articles: so that those fractions will no longer have
the advantage of giving the limits in plus and minus of the
quantity @; an advantage which appears to me of very great
importance, and which must therefore in practice make us
always prefer those continued fractions, in which the de-
nominators are all positive. Hence, in what follows, we
shall only attempt an investigation of fractions of this kind.
11
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G

T
. . . -
&c. in which the fractions ave alternately less and greater -

than the quantity @, and which it is evident, we may divide
into these two series:

. b R
16. Let us, therefore, consider the series e

, &c.

|= m|w

2

|w ¢>_I;>
o aje

7 =7 F,,&zc.

=]
=]

of which the first will be composed of fractions all less than
a, and which go on increasing towards the quantity @; the
second will be composed of fractions all greater than a, but
which go on diminishing towards that same quantity. Let
us therefore examine each of those two series scparately ; in
the first we have (Art. 10, and 12),

C A ¥
F gl S 4l
E c £
— —— =, &
S s R st 2
and in the second we have,
il g g .
B o s'p
D ¥ 4

Now, if the numbers y, 8, ¢, &c. were all equal to unity, we
might prove, as in Art. 12, that between any two consecutive
fractions of either of the preceding scries, there could never be
found any other fraction, whose denominator would be less
than the denominators of those two fractions; but it will not
be the same, when the numbers v, ¢, ¢, &c. are greater than
unity ; for, in that case, we may insert between the fractions
in question as many intermediate fractions as there are units
in the numbers y — 1, & — 1, ¢ — 1, &c. and for this pur-
pose we shall only have to substitute, successively, in the
values of ¢ and ¢/, (Art. 10), the numbers 1, 2, 3,. .... v, in-
stead of y; and, in the values of » and p!, the numbers
1,2,8,.....9 instead of ¢, and so on.

17. Suppose, for example, that y=4, we have c=4s +a
and ¢ = 48" + 4/, and we may insert between the fractions
% and —27, three intermediate fractions, which will be
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B+A 24A SBB+a
B4+ 4" 2 44 384"
Now, it s e\ident that the denominators of these fractions

form an increasing arlthmetlcal series from A’ to ¢'; and we
shall sec that the fractions themselves also increase con-

3 c Y . !
tinually from ? to— 5 so that it would now be impossible

to insert in the series

A B+A 28B+a 33+aA 4BtA @

AP B'A” QB4 A7 Sp'+ 4”7 48 44" c?
any fraction, whose value would fall between the values of
two consecutive fractions, and whose denominator also would
be found between the denominators of the same fractions.
For, if we take the differences of the above fractions, since
32’ — A3 =1, we have,

B4 A A 7l
B4a A T A +a)
28+ A B+ A 1
QA WA (3’4" x_(%’—l—zx’)
354 A 2B4-a Wl |
88 +4A 2t = (28'+a') x (38'+4")
® 3B +4A 1 )
d = 3B’+A’= (BB'+ A"’

whence we immediately perceive, that the fractions
AT IBEA
A Bya

are all positive ; then, as those differences are equal to unity, if

divided by the product of the two denominators, we may
prove, by a reasoning analogous to that which we cmp]oycd

———» &c. continually increase; since their differences

(Art. 12), that it is impossible for any fractlon, , to fall be-

tween two consccutive fractions of the preceduw series, if
the denominator n fall b&tween the denominators of these
fractions ; or, in general, if it be less than the greater of the
two denominators.

Farther, as the fractions of which we speak are all greater

s e
than the real value of @, and the fraction o s less than it, it
is evident that each of those fractions will approximate to-

wards the value ‘of the quantity a, so that the difference
112



484 ADDITIONS. CHAP. L.
will be less than that of the same fraction and the fraction

B
—; now, we find
BI

A B 1
Al I
B+A B 1
F+a ¢ (F+a)E
2B+ A B 1 =
o +a W (28’ + A"y
35 +4A B 1
. Se+a " ¥ (B¥+a)n
@ B 1
d B~ "

Therefore, since these differences are also equal to unity
divided by the product of the denominators, we may apply
to them the reasoning of Article 12, to prove that no fraction,

m ]
o can fall between any one of the fractions

A B4+A 2B4a . R .
— T 5o——p &c. and the fraction —, if the denomi-
A7 BHAT 2B +A B

nator 7 be less than that of the same fraction ; whence it
follows, that each of those fractions approximates towards
the quantity « nearer than any other fraction less than g, and
having a less denominator; that is to say, expressed in
simpler terms.

18. In the preceding Article, we have only considered the

X ) . A (¢ .
intermediate fractions between " andF ; but the same will

) g . g c
be found true of the intermediate fractions between P and
E Vi G .
—pbetween — and —, &e. if ¢, 7, &c. are numbers greater
E E ¢
than unity.
We may also apply what we have just said with respect to

D F
D’, w2

&e.

so that if the numbers ¢, ¢, are greater than unity, we may

. AANE . B
the first series —, —, &c. to the other series —,
AGHC B

: : B D ap F .
msert between the fractions &3 and —, = and —,&ec. dif-
v’ D F
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ferent intermediate fractions, all greater than a, but which
will continually diminish, and will be such as to express the
quantity @ more exactly than could be done by any other
fraction greater than a, and expressed in simpler terms.

* Farther, if 8 is also a number greater than unity, we may

. . ; B .
likewise place before the fractions 3 the fractions

a4-1 241 8at1 Bat1
1 W8 TR s 2]
these fractions will have the same properties as the other -

termediate fractions.
In this manner, we have these two complete series of

fractions converging towards the quantity a.

, Xc. as far as

s
, that is —, and
B

Fractions increasing and less than a.

A B4+aA 2844 3B4a YB+A
A’ BEA’ WAA’ BEFA’ O yE4a’
¢ bp+c 2+4c¢ 3p+c éip+c

—= C.

cd? p+4c¢’ W+’ 3 + ep! ¢’
F+E 2F+E 3F+4xn &

T F+e St SFtE

Fractioms decreasing and greater than a.

ATl £a+1l 8atl o fatl
1 b 2 b 9 b C. 6 b
B c+3B 2c+B dc+m
¥ I 0w ¥ ior
p E+4p 2E+4+D 8r4D &
D’ ¥4+’ 2+ 0" 3£ +0"’ ¢
If the quantity a be irrational, or transcendental, the two
preceding series will go on to 'infinity, since the series of

. A B ¢ Ar- I
fractions O &ec. which in future we shall call

principal fractions, to distinguish them from the infermediate
fractions, goes on of itself to infinity. (Art. 10.) '
But if the quantity a be rational, and equal to any fraction,

v ) . . N -
—» we have seen in that article, that the series m question
. tic

. will terminate, and that the last fraction of that series will be
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5 Vo . 3
the fraction = itself; therefore, this fraction must also ter-

minate one of the above two series, but the other series will
go on to infinity. ;
In fact, suppose that ¢ is the last denominator of the

continued fraction ; then -II:—, will be the last of the principal
fractions, and the series of fractions greater than a will be
terminated by this same fraction -;)Iz,— Now, the other series
of fractions less than a, will naturally stop at the fraction
—:j—,, which precedes %—; but to continue it, we have only

to consider that the denominator &, which must follow the
last denominator &, will be = o (Art. 3); so that the

B . D . . -
fraction —, which would follow — in the series of principal
E D

. ®b+tc D ,
fractions, would be T *; now, by the law of in-
i

termediate fractions, it i1s evident that, since ¢ = w, we
might insert between the fractions ’ and -0 infinite

number of intermediate fractions, which would be

p4c 2-tc 3otc

/¢’ 2p/4-c"’ SD’—l—c”&c'

. L @ .
So that in this case, after the fraction F,m,thc first series of

fractions, we may also place the intermediate fractions we
speak of, and continue them to infinity.

19. Problem. A fraction expressed by a great number
of figures being given, to find alFthe fractions, 1n less terms,
which approach so near the truth, that it is impossible to
approach nearer without employing greater ones.

* Because an infinite quantity cannot be increased by ad-
dition; and therefore «op 4 ¢ = w0, and wn + ¢’ = op’;
consequently,

@D 4+ ¢ &b D
*p' +¢  wp  p!
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This problem will be ecasily resolved by the theory which
we have explained.

‘We shall begin by reducing the fraction proposed to a
continued fraction after the method of Art. 4, observing to
take all the approximate values less than the real ones, in
order that the numbers B, ¥, 9, &c. may be all positive ;
then, by the assistance of the. numbers found, a, 8, 7, &c.
we form, according to the formule of Art. 10, the fractions

A B ¢ ' ) A
— = —7> &c. the last of which will necessarily be the
AP

same as the fraction proposed ; because in that casc the con-
tinued fraction terminates. Those fractions will alternately
be less and greater than the given fraction, and will be suc-
cessively expressed in greater terms ; and farther, they will be
such, that each of those fractions will be nearer the given
fraction than any other fraction can be, which 1s expressed
in terms less simple. So that by these means we shall
have all the fractions, that will satisfy the conditions of
the problem, expressed in lower terms than_the fraction
proposed. :

If we wish to consider separately the fractions which are
less, and those which are greater, than the given fraction, we
may insert between the above fractions as many intermediate
fractions as we can, and form from them two series of con-
verging fractions, the one all less, and the other all greater
than the fraction proposed (Art. 16, 17, and 18); each of
which series will have separately the same properties, as the

s NN E A B C
series of principal fractions —, . -, —, Xec. for the frac-
A’ B’ ¢

tions in each series will be successively expressed in greater
terms, and each of them will approximate nearer to the
value of the fraction proposed than could be done by any
other fraction whether less, or greater, than the given frac-
tion, but expressed in simpler terms.

It may also happen, that one of the intermediate fractions
of one series does not approximate towards the given fraction
so nearly, as one of the fractions of the other series, although
expressed in terms less simple than the former; for this
reason, it is not proper to employ inéermediate fractions, ex-
cept when we wish to have the fractions sought either all
less, or all greater, than the given fraction.

20. Example 1. According to M. de la Caille, the solar
year is 865% 5" 48'. 49', and, consequently, longer by 5"
48'. 49" than the common year of 3657 If this difference
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were exactly 6 hours, it would make one day at the end of
four common years: but if we wish to know, exactly, at the
end of how many years this difference will produce a certain
number of days, we must seck the ratio between 24", and
5. 48 49", which we find to be £8£22; so thatat the end
of 86400 common years, we must mtercalate 20929 days, in
order to reduce them to tropical years.

Now, as the ratio of 86400 to 20929 is expressed in very
high terms, let it be required to find ratios, in lower terms,
as near this as possible.

For this purpose, we must reduce the fraction £3£32 to a
continued fraction, by the rule given in Art. 4, which is
the same as that by whieh the greatest common divisor of
two given numbers is found, This will give us

20929)86400(4 =
83716

2684)20929(7 = B
18788

2141)2684(1 =
2141

543)2141(3 = 9
1629

512)543(1 = «
512

31)512(16 = ¢
496

16)31(1 = 7
16
15)16(1 =
15

D155 =
15

0.
Now, as we know all the quotients «, 8, ¥, &c. we casily

- 1 i
form from them the serics w0 &e. in the following
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manner :
4 7, 1, 3 1, 16, 1, I, 5
4 29 33 128 161 2704 2865 5560 86400
TS 7> FI TV TG » E55) BIF TIF00 209299

the last fraction being the same as the one proposed.

In order to facilitate the formation of these fractions, we
first write, as is here done, the series of quotients 4, 7, 1, &c.
and place under these coefficients the fractions %, 22, 13, &c.
which result from them.

The first fraction will have for its numerator the number
which is above it, and for its denominator unity.

The second will have for its numerator the product of
the number which is above it by the numerator of the first,
plus unity, and for its denominator the number itself which
15 above it.

The third will have for its numerator the product of
the number which is above it by the numerator of the
second, plus that of the first; and, in the same manner,
for its denominator, the product of the number which is
above it by the denominator of the second, plus that of the
first.

And, in general, each fraction will have for its numerator
the product of the number which is above it by the nu-
merator of the preceding fraction, plus that of the second
preceding one; and for its denominator the product of the
same number by the denominator of the preceding fraction,
plus that of the second preceding one.

So that 20 =7 x 441, T=7; 33 =1 x 29 + 4,
8=1x7+1; 128=3 x83+29, 81=8 x 8 + 1,
and so on; which agrees with the formula of Art. 10.

Now, we see from the fractions %, %°, 33, &c. that the
simplest intercalation is that of one day in four common
years, which is the foundation of the Julian Calendar; but
that we should approximate with more exactness by inter-
calating only 7 days in the space of 29 common years, or
eight in the space of 33 years, and so on.

It appears farther, that as the fractions #, %2, 33, &c. are

alternately less and greater than the fraction 25£99  or
24r

548 49" the intercalation of one day in four years would

be too much, that of seven days in twenty-nuine ycars too
little, that of eight days in thirty-three years too mueh, and
so on; but each of these intercalations will be the most
exact that it is possible to make in the same space of time.
Now, if we arrange in two separate serics the fractions
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that are less, and those that are greater than the given
fraction, we may also insert different secondary fractions
to complete the series; and, for this purpose, we shall follow
the same process as before, but taking successively, instead
of cach number of the upper series, all the integer numbers
less than that number, when there are any.

So that, considering first the increasing fractions,

l? I, H
4 33 161 2865 864

i T '3-9—,‘?{3——’ 30525°?
we see that, since unity is above the second, the third, and
the fourth, we cannot place any intermediate fraction, either
between the first and the second, or between the sccond and
the third, or between the third and the fourth; but as the
last fraction stands below the number 15, we may place,
between that fraction and the preceding, fourteen znfer-
mediate fractions, the numerators * of which will form the
arithmetical progression 2865 + 5569, 2865 + 2 x 5569,
2865 + 3 x 5569, &c. their denominators will als6 form
the arithmetical progression 694 + 1349, 694 4 2 x 1349,
694 + 3 x 1349, &e.

So that the complete series of increasing fractions will be

4 33 161 2865 8434 14003 19572 25141
3

TY F?) TO) 6942 20432 33922 F741 I 6090
30710 36279 41848 47417 52986 58555
W7 T 788 2 101372 TI14862 128352 T57184°
64124 69693 752612 80831 86400

T5533% 168822 Tg2312 T9580) 20v29"°

And, as the last fraction is the same as the given fraction, it
is evident that this series cannot be carried farther. Hence,
if we choose to admit those intercalations only in which the
error is too much, the simplest and most exact will be those
of one day in four years, or of eight days in thirty-three
years, or of thirty-nine in a hundred and sixty-one years,
and so on.
Let us now consider the decreasing fractions,
FAVER. 16, 1.
6

29 128 2704 5569
7N TP G S5 T 3R 90

And first, on account of the number 7, which is above the
first fraction, we may place six others before it, the nume-
rators of which will form the arithmetical progression,

441, 2x 441, 3 x 441, &e.
and the denominators of which will form the progression

* Because 2252 is the principal fraction between 2%72, and

€9
28429 as is found in the foregoing series. See page 485. B.
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1, 2, 3, &c. *; also, on account of the number 3, we may
place two intermediate fractions between the first and the
second ; and between the second and the third we may
place fifteen, on accountof the number 16 which is above the
third ; but between this and the last we cannot insert any,
because the number above it is unity.

Farther, we must remark, that, as the preceding series is
not terminated by the given fraction, we may continue it as
far as we please, as we have shewn, Art. 18. So that we
shall have this series of decreasing fractions,

S 9 13 17 21 25 29 2 95 128
T2 ZY 30 FY TS 6P TH) TSI TIY T

289 450 611 772 933 1094 1255 1416
C% 109 T4F82 T8g72 226Y 2659 3TOFY 333
1577 1738 1899 2060 2221 2382 254
TE2?) FT2T P T602 3992 S5I8I [5779 6162
2704 5569 91969 178369 264769 351169
655> T3%9° 222787 F3207% 641369 85065 2
437569

5555 &e.

which are all less than the fraction proposed, and approach
nearer to it than any other fractions expressed in simpler
terms.

Hence we may conclude, that if we only attend to the
intercalations, in which the error is too small, the simplest
and most exact are those of one day in five years, or of two
days in nine years, or of three days in thirteen years, &,

In the Gregorian calendar, only ninety-seven days are in-
tercalated in four hundred years; but it is evident, from
the preceding series, that it would be much more exact, to
intercalate a hundred and nine days in four hundred and
fifty years.

But it must be observed, that in the Gregorian reforma-
tion, the determination of the year given by Copernicus was
made use of, which is 3657 5" 49'.20": and substituting
this, instead of the fraction £8£22, we shall have £5£22, or

200299

rather $42; whence we may find, by the preceding method,

the quotients 4, 8, 5, 3, and from them the principal
fractions,

QRS 5 3.

4 33 169 540

XY F) F1 9 T3
which, except the first two, are quite different from the
fractions found before. However, we do not perceive
among them the fraction %2° adopted in the Gregorian
calendar; and this fraction cannot even be found among
the éntermediate fractions, which may be inserted in

* See page 485.



492 ADDITIONS. CHAP. 1.

the two series ¥, 122, and 33, $£°; for it is evident, that it
could fall only between those last fractions, between which,
on account of the number 8, which is above the fraction 322
there may be inserted two intermediate fractions, which will
be 292, and 37! ; whence it appears, that it would have
been more exact, if in the Gregorian reformation they had
only intercalated ninety days in the space of three hundred
and seventy-one years.

If we reduce the fraction 42°, so as to have for its nu-
merator the number 86400, 1t will become £8422, which
estimates the tropical year at 8659, 5. 49/, 12",

In this case, the Gregorian intercalation would be quite
exact; but as observations make the year to be shorter
by more than 207, it is evident that, at the end of a certain

eriod of time, we must introduce a new intercalation.

If we keep to the determination of M. de la Caille, as
the denominator 97 of the fraction 2°° lies between the de-
nominators of the fifth and sixth principal fractions already
found, it follows, from what we have demonstrated (Art. 14),
that the fraction &' will be nearer the truth than the frac-
tion 4%°; but as astronomers are still divided with regard
to the real length of the year, we shall refrain from giving a
decisive opinion on this subject; our only object in the
above detail is to facilitate the means of understanding con-
tinued fractions and their application: with this view, we
shall also add the following example.

21. Example 2. We have already given, in Art. 8, the
continued fraction, which expresses the ratio of the circum-
ference of the circle to the diameter, as it results from the
fraction of Ludolph; so that we have only to calculate,
according to the manner taught in the preceding example,
the series of fractions, converging towards that ratio, which

will be

SRSy w202 1, 1,
3 22 333 355 103993 104348 208341
19 79 TO6Y) TI3) 331029 T327T5% 663179

]’ 2’ 1’ 3, ]9
312689 333719 11346408 4272943 5419351
995729 Z6€5381) T64913 > 13601202 172503732

14, 2, 1, 1,
80143857 165707065 245850922 411557987
2355105822 5274615972 732567799 1310029769

% 2, %
1068966896 2549491779 6167950454
3502627371 11528438 2 T 3319807

2, 1 84,

14885392687 21053343143 1783366216531
373T167682 ) G701387259 2 $67663007408 2
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28 i,
3587785776203 5371151992734
112027632073 T709690779483?

P, TN
890589377680937 1397552185267 89
2517184615582 +3385367702853 )

3, 13,
428224593349304 5706674932067741
1363081215701 179 TET16391CT8 114373

15 4,
6134899525417045 30246273033735921
T95279916068 44913 9627687726852338 2

2 p
66627445592888887 430010946501069243
Z12Z08174623389167? ¥36876735%67187340”

6, 1,
26466931251393041345 3076704071730373588
T42368587%26513207 2 97934+45322893700547 °

These fractions will therefore be alternately less and
greater than the real ratio of the circumference to the
diameter ; that is to say, the first 3 will be less, the second
2> greater, and so on; and each of them will approach
nearer the truth than can be done by any other fraction ex-
pressed in simpler terms; or, in general, having a deno-
minator less than that of the succeeding fraction: so that we
may be assured that the fraction 3 approaches nearer the
truth than any other fraction whose denominator is less than
7; also the fraction %? approaches uearer the truth than
any other fraction whose denominator is less than 106; and
so of others.

With regard to the error of each fraction, it will always
be less than unity divided by the product of the deno-
minator of that fraction, by the denominator of the following
fraction. Thus, the error of the fraction 3 will he less than

4, that of the fraction %* »wili be less than 7><1T06’ and so
on. But, at the same time, the error of each fraction will
be greater than unity divided by the product of the de-
nominator of that fraction, into the sum of this denominator,
and of the denominator of the succeeding fraction; so
that the crror of the fraction 3 will be greater than

b
T 8

. 'l
that of the fraction %? greater than TR and so on

(Art. 14).

If we now wish to separate the fractions that are less than
the ratio of the circumference to the diameter, from those
which are greater, by inserting the proper intermediate
fractions, we may form two series of fractions, the one in-
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creasing, and the other decreasing, towards the true ratio in
question ; in this manner we shall have

Fractions less than the ratio of the circumference to the
' diameter.

3 25 47 69 91 113 135 157 076

TS T Ts§5) 229 292 T6? F3 P ITOS 57

20y 223 245 267 289 311 333 688
¥ TYI? Tg2 TSSO Dz T9 Y TCG? Z19?
1043 1398 1753 2108 2463 &C

332 JF35% 35582 G712 8F 2 ¥

Fractions greater than the ratio of the circumference io the

diameter.
4 7 10 13 16 19 22 355 104348
T2 2T IO FY T0 62 T2 TI3d» T32AS
312689 1146408 5419351 85563208 165707065
0995329 TI63913 2 17250332 272356152 527461979
411557987 1480524883 Qo
T31002976) 712657067 > L

Each fraction of the first series approaches nearer the
truth than any other fraction whatever, expressed in simpler
terms, and the error of which consists in being too small;
and each fraction of the second series likewise approaches
nearer the truth than any other fraction, which is expressed
in simpler terms, and the error of which consists in its being
too large. !

These series would become very long, if we were to con-
tinue them as far as we have done that of the principal
fractions before given. The limits of this work do not
permit us to insert them at full length; but they may be
found, if wanted, in Chap. XI. of Wallis’s Algebra. (Oper.
Mathemat.).

SCHOLIUM,

22. The first solution of this problem was given by Wallis
in a small treatise, which he added to the posthumous works
of Horrox, and it is to be found in his Algebra as quoted
above; but the method of this author is indirect, and very
laborious. That which we have given belongs to Huygens,
and 1s to be considered as one of the principal discoveries of
that great mathematician. The construction of his pla-
netary automaton appears to have led him to it: for, 1t is
evident, that, in order to represent the motions and periods
of the planets exactly, we sﬂould employ wheels, in which
the teeth are precisely in the same ratios, with respect to
number, as the periods in question ; but as teeth cannot be
multiplicd beyond a certain limit, depending on the size of
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the wheel, and, besides, as the periods of the planets are in-
commensurable, or, at least, cannot be represented, with any
exactness, but by very large numbers, we must content our-
selves with an approximation ; and the difficulty is reduced
to finding ratios expressed in smaller numbers, which ap-
proach the truth as nearly as possible, and nearer than
any other ratios can, that are mot expressed in greater
numbers.

Huygens resolves this question by means of continued
fractions as we have done; and explains the manner of
forming those fractions by continual divisions, and then
demonstrates the principal properties of the converging
fractions, which result from them, without forgetting even
the intermediate fractions, See, in his Opera Posthuma, the
Treatise entitled Descriptio Automati Planctarii.

Other celebrated mathematicians have since considered
continued fractions in a more general manner: We find
particularly in the Commentaries of Petersburgh (Vol. IX.
and XI. of the old, and Vol. IX. and XI. of the new),
Memoirs by M. Euler, full of the most profound and ingenious
researches on this subject; but the theory of these fractions,
considered in an arthmetical view, which is the most
curious, has not yet, I think, been cultivated so much as it
deserves; which was my inducement for composing this
small Treatise, in order to render it more familiar to mathe-
maticians. See, also, the Memoirs of Berlin for the years
1767, and 1768.

I have only to observe farther, that this theory has a
most extenstve application through the whole of arithmetic ;
and there are few problems in that science, at least amon
those for which the common rules are insufficient, which do
not, directly or indirectly, depend on it.

John Bernoulli has made a happy and useful application
of it in a new species of calculation, which he devised for
facilitating the construction of Tables of proportional parts.
See Vol. 1. of his Recueil pour les Astronomes.

CHAP. II.

Solution ¢f some curions and newo Arithmetical Problems.

~ Although the problems, which we are now to consider, are
immediately connected with the preceding, and depend on
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the same principles, it will be proper to treat of them in a
direct manner, without supposing any thing of what has been
before demonstrated : by which” means we shall have the
satisfaction of seeing how necessarily these subjects lead
to the theory of Continued Fractions. Besides, this theory
will be rendered much more evident, and receive from it a
greater degree of perfection.

23. Problem1. A positive quantity a, whether rational or
not, being given, to find two integer positive numbers, p and
¢, prime to each other; such, that p — ag (abstracting from
the sign), may be less than it would be, it we assigned to p
and ¢ any less values whatever.

In order to resolve this problem directly, we shall begin
by supposing that we have already found values of p and g,
which have the requisite conditions ; wherefore, assuming for
7 and s, any integer positive numbers less than p and g, the
value of p — ag must be less than that of » — as, abstract-
ing from the signs of these two quantities; that is to say,
taking them both positive : now, if the numbers » and s be
such, that ps — g» = + 1, (the upper sign applying when
p — aq 1s a positive number, and the under, when p — ag
1s a negative number) we may conclude, in general,
that the value of the expression y — @z will always be
greater (abstracting from the sign) than that of p — ag, as
long as we give to z and y only integer values, less than
those of p and ¢, we may hence draw the following con-
clusion.

First, it is evident, that we may suppose, in general,
y = pt + ru, and z = g¢ + ru, ¢ and « belng two unknown
quantities. Now, by the resolution of these equations, we

have ¢t = it 7~, = 9P ~; and therefore, since
ps—qr gr— ps
ps—gr=x1, t=+ (sy — 72), and u =+ (g — pz);
whence it is evident, that # and « will always be integer num-
bers, since p, ¢, 7, 8, 9, and z are supposed to be integers.
Therefore, since zand » are integer numbers, and p, ¢, 7, s
integer positive numbers, it is evident, in order that the values
of y and ~ may be less than those of p and ¢, that the num-
bers ¢ and #« must necessarily have different signs.
Now, I say, that the value of 7 — as will also have a dif-
ferent sign from that of p — ag; for, making p — ag = »,

T - - e Enapiiiite .
and 7 as_n,“ebhallha\eq—a+q, s_a-l-s,

: L L
but the equation, ps— gr = + 1, gives e or ok
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P R 1
wherefore - — — = + —
$

ful sign to be taken conformably to that of the quantity

; and, since we suppose the doubt-

. P R .. T
p — ag, or r, the quantity St must be positive, if r be
positive ; and negative, if » be negative: now,as s £ ¢, and

=y . R P ,

R 7 ¢ (hyp.), it 1s evident that }7(}, (abstracting from
. e L el

the sign) ; therefore, the quantity —g-—; will always bave

its sign different from that of 5 that is to say, from that

of &, since s is positive; and, consequently, ¥ and & will ne-
cessarily have different signs.

This being laid down, we shall have, by substituting the
above values of y and z,

Yy—oazs=(p— ag)t + (r — as)u = »t + Ru.

Now ¢ and % having different signs, as well as » and =, it is
evident, that »¢ and Rz will be quantities of like signs;
therefore, since ¢ and » are integer numbers, it is clear that
the value of y — @z will always be greater than »; that is
to say, than the value of p — ag, abstracting from the signs.

But it remains to know whether, when the numbers p and
q are given, we can always find numbers 7 and s less than
those, and such that ps — ¢r = + 1, the doubtful signs being
arbitrary ; now, this follows evidently from the theory of
continued fractions; but it may be demonstrated directly,
and independently of that theory. TFor the difficulty is re-
duced to proving, that there necessarily exists an integer and
positive number less than p, which being assumed for r,
will make g» = 1 divisible by p. Now, suppose we suc-
cessively substitute for # the natural numbers 1, 2, 8, &c. as
far as p, and that we divide the numbers ¢ + 1, 2¢ + 1,
3¢ + 1, &e. pg + 1 by p, we shall then have p remainders
less than p, which will necessarily be all different from one
another ; since, for example, if mqg + 1, and ng = 1 (mand
n being distinct integer numbers not exceeding p), when di-
vided by p, give the same remainder, it is evident that their
difference (m — n)¢, must be divisible by p; now, this is im-
Fossiblc, because ¢ is prime to p, and m — n is a number
ess than p. ’

Therefore, since all the remainders in question are integer,
positive numbers less than p, and different from each other,

K K
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and are p In number, it is evident that 0 must be among
those remainders, and, consequently, that there 1s one of the
numbers ¢ + 1, 2¢ + 1, 3¢ + 1, &c. pg + 1, which is di-
visible by p. Now, 1t is evident that this cannot be thelast ; so
that there is certainly a value of 7 less than p, which will
make ¢ + 1 divisible by p; and it 1s evident, at the same
time, that the quotient will be less than ¢; thercfore there
will always be an integer and positive value of 7 less than p,
and another similar value of s, and less than ¢, which will

satisfy the equation s = 72 o ps—qr=+ 1.

24. The question is therefore now reduced to this; to find
four positive whole numbers, p, ¢, 7, s, the last two of which
may be less than the first two ; thatis,» £ p,and s £ ¢, and
such, that ps—gr == 1; farther, that the quantities p — ag,
and » — as, may have different signs, and, at the same time,
that » — s may be a quantity greater than p—agq, abstract-
ing from the signs. :

In order to simplify, let us denote 7 by p/, and s by ¢, so
that we have pg' — ¢gp' =+ 1; andasq 7 g (hyp.), let 1z be
the quotient that would be produced by the division of ¢ by
¢', and let the remainder be ¢", which will consequently be
£ ¢'5 also, let u/ be the quotient of the division of ¢' by ¢/,
and ¢" the remainder, which will be 2 ¢"; in like manner,
let ¢ be the quotient of the division of ¢" by ¢", and ¢" the
remainder £ ¢", and so on, till there 1s no remainder; in
this way, we shall have

g =pg +9
¢ =uq -+ 7’
gf o {Jﬂq.w_k gw
" = ¢V + g7, Ke.

where the numbers p, @/, 1, &e. will all be integer and
positive, and the numhers p, ¢, ¢', ¢", &e. will also be in-
teger and positive, and will form a series decreasing to
nothing.

In like manner, let us suppose

p =wp +p
I — () )'II
Pu = f‘l'llz;m -'_*-_'])iv

P = i + 3, &e.

And as the numbers p and p' are considered here as given,
as well as the numbers ., u/, &', &c. we may determine from
these equations the numbers p', p", p%, &e. which will
cevidently be all integer.
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Now, as we must have pg' — ¢p' =+ 1, we shall also
have, by substituting the plLL(dll)O \a111L> of pand ¢, and
Lﬂacmn what is destroyed g — (jp =+ 1. Agai, sub-
btltutll)ﬂ‘ in this equation the values of p' and ¢/, there will re-
sult p g’" ¢"p" =+ 1, and so on; so that we shall have,
generally, ,

rgd —qp =
gl ==
g — o'l =+ 1

pmqi\'_ g'ﬂpiv:'_F 1’ &e.

So that, if ¢", for example, were = 0, we should have
—q¢'p" = + 1; also,¢" =1, and p" =F 1: but if ¢" were
=0, we should have — g'”[)“ =F 1; thereforeg" = 1, and
PV =+41; so that, in general, if 92 =0, we shall haw
@' =1; and then p2 = + 1, if pis even, and pe=F 1,
if p 1s odd.

Now, as we do not previously know whether the upper, or
the under sign is to take place, we must successively sup-
posz pe =1, “and = —1: but I say that one of these cases
mey at all times be reduced to the other; and, for this pur-
pose, 1t is evidently sufficient to prove, that we can always
make the ¢ of the term g2, which must be nothing, either
even, or odd, at pleasure.

For e\{ample, let us suppose that ¢ = 0, we sllall then
have ¢" = 1, aud q' 7 1, that 1s ¢" = 2, or 7 2, because
the numbels 7, 75 ¢'5 &e. naturally form a dccxeasmrr series ;
therefore, smce q” = y,”q"’ + ¢ ; we shall have ¢' = p', so
that = or 72 thus, it we choose, we may diminish g/ by
unity,without that number being reduced to nothing, and then
g%, which s 0, will become 1, and g*=0; for puttmg =1,
mstead of pf, we shall have = (y.”— g + ¢ but

"=, ¢" = 1; wherefore, ¢ = 1; then having
" = pgv + q" that 1s, 1 = p 4 ¢¥, we shall nccessarily
have /" = 1, and ¢* = 0.

Hence we may conclude, in general, that if g2 =0, we
shall have gg—' =1, and ps = + 1, the doubtful sign bemo
arbitrary.

Now, if we substitute the values of P and 9 glven by the
preceding formule, in p — ag, those of p' and ¢/, in p' — ag/,
and so of others, we shall have

S IS +7) —aq
- i i
Pl —aq =p(p'—ag" )+ pl' — aq"
J — aq' = p(p" —ag") + p* — ag
plll =3 (lqﬂl_ {Jlfr(plv_agl\) L p e (lg s &C.
whence we find

iv

K K2
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_ad' —p' p—ag
— mt !
ey e
. ag"—p"  p'—aq
P—ag " P — aq'
_ag"—p*  p'—ag'
wh = P —aq" aF P —ag"
e Ao (ol et
z)w i aq“ pr s aq\
Now, as by hypothesis the quantitiesp — ag, and p'—ag’,
are of different signs ; and farther, as p' — ag' (abstracting
from the signs) must be greater than p — ag, it follows

"

1

that z,—:gg, will be a negative quantity, and less than unity.

Therefore, in order that & may be an integer, positive num-
U 't

ag —p
P —aq
sitive quantity greater than unity; and it is obvious, at the
same time, that u can only be the integer number, that is

aq' —p'" | .
p,g ngl ; that is to say, contained be-

ber, as it must, it is evident, that must be a po-

immediately less than

(lq" _ p!l a gll = pVI

tween the limits 7= ag’ and ¥ —af

— 1; for since

2 ag

L ag"—p"
V—aq

p—ap

7 0, and £ 1, we shall have p £ and
ag'—p'

T V=ag T
ag’ —p'

Also, since we have seen, that ———— must be a positive
P—a

1,

' '
. o— —ag .
quantity greater than unity, it follows that p,,—————-g,, will be

p'—aq
a negative quantity less than unity, (I say less than unity,
abstracting from the sign). Wherefore, in order that &’ may
. . ag"—p" -
be an integer, positive number, T——p,, must be a positive
P —a9

quantity greater than unity, and consequently the number w

can only be the integer number, which will be immediately

"
below the quantity H.

In the same manner, and from the consideration, that w*
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must be an integer, positive number, we may prove, that the

iv iv

.a . : A
quantity —Z——,—” will necessarily be positive, and greater
L= (7]

than unity, and that @/ can only be the integer number im-

mediately below the same quantity ; and so on.

It follows, 1st, that the quantities p — aq, p' — ag,
P" — aq', &ec. will successively have different signs; that 1s,
alternately positive and negative, and will form a series con-
tinually increasing. 2dly, that if we denote by the sign 2
the integer number which is immediately less than the value
of the quantity placed after that sign, we shall have, for the
determination of the numbers p, w/, u/, &c.

ag'—p"
pl o ag'
ag"—p"
p" _aq”
a qiv A piv
P ag"

Now, we have already seen, that the series ¢, ¢, ¢', &c.
must terminate in 05 and that then the preceding term will
be 1, and the term corresponding to O in the other series
Ps P p"s &ec. will be = + 1 at pleasure.

For example, let us suppose that ¢" = 0, we shall then
have ¢" =1, and p"¥ = 1; therefore

w L

w L

p‘H /.

P — ag" = p" — a, and
plv iy (lqw — 1 g
therefore p" — @ must be a negative quantity, and less than
1, abstracting from the sign; that is, @ — p" must be 7 0,
and £ 1; so that p" must be the integer number im-
mediately below @ ; we shall therefore know the values of
these four terms,
piv =1 qiv
ML i
by means of which, going back through the former formulea,
we may find all the preceding terms. We shall first have
the value of ", then we shall have p" and ¢, by the formule,
P'=plp" + p, and
q:l = wnqm L
from which we shall get ¢/, and then p'and ¢'; and so of the
rest.
In general, let g2 =0, then we shall have ¢:—', and
¢ = 1; and shall prove, as before, that p>—? can only be the
P P p ¥

0
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integer number immediately below «; so that we shall have
these four terms,

= @ =

ptsa g = 1 ¢
we shall then have

age—pm e 1
pe——agi—' " a — pe—*°
pe—? = pe—2pe—" + p2, it = pe—2—t 4 @2
GIE— = R
= = G

pe— = pe—pr—2 4 p1—t, qe—3 = pe—%g—* + g,
and so on.

In this manner, therefore, we may go back to the first
terms, p and ¢; but it must be observed, that all the suc-
ceeding terms, 2/, ¢'s p, ¢", &c. possess the same properties,
and serve equally to resolve the problem proposed. For it
is evident, in the preeeding formule, that the numbers
ps 75 p'y &e. and ¢, ¢, ", &e. are all integer and positive,
and form two series continually decreasing; the first of
which is terminated by unity, and the second by 0.

Farther, we have seen that these numbers are such, that
pg —qp =+ 1, pl¢ — ¢p" =TF 1, &e. and that the quan-
tities p — agq, p' — aq, p" — aq', &c. are alternately positive
and negative, and at the same time form a series continually
increasing.  Whenee it follows, that the same conditions
which exist among the four numbers p, ¢, 7, s, or p, ¢, 7/, ¢,
and on which, as we have seen, the solution of the problem
depends, equally exist among the numbers p', ¢, p', ¢’, and
among these, p, ¢", p, 4", and so on.

Therefore, beginning with the last terms p: and ¢2, and
going back always by the formulas we have just fou:d, we
shall successively have all the values of p and ¢ that czn re-
solve the question proposed.

Q5. As the values of the terms pt, pi—', &c. ¢, g:—1, &e.
are independent of the exponent, ¢, we may abstract from it,
and denote the terms of these two increasing series thus,

[Jo, p'9 P”, ])ms Piv; &ec. (109 7', q": gw) Qi", &e.
so that we shall have the following results.

pe— L

w3 L

P =1 7 =0
P = g
Po=rp 1 =%

7)1.11 — p,”’ P+
111\' — [J-h])”’ +pll
&e.

iv

g

)
q
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Then

w L a
pt—aq® 4 1
ag —p' T a—p
ag' — p'
p'—aq'
P — dq"
agd"—p"
ag — p
piv — aqiv’ &C.

Where the sign £ denotes the integer number imme-
diately less than the value of the quantity placed after that
sign. :

Thus, we shall successively find all the values of p and ¢
that can satisfy the problem; these values being only the
correspondent terms of the two series p°, 2/, p", p", &c. and
QOS (]V, q’l’ qr’”, &C.

26. Corollary 1. If we make

° — ap®
b= i ] ]!
aq'—y
_ aqf — Z)I
= —aq"
" ad
d =L i qun
ag"—p
we shall have, as it 1s easy to perceive,
W D P
1
T a—p

WL

P‘” VA

i

4

F‘iv L

&e.

1

d = ;_—p,i” &C.

and g £ ¢, W L b, ' £ e, p" £ d, &c. therefore the num-
bers w, @, ¢, &ec. will be no other than those which we have
denoted by a, B, v, &c. in Art. 8; that is to say, these
numbers will be the terms of the continued fraction, which
represents the value of @ ; so that we shall have here

1
a = =
M+pc'—{—,]:’,’ -+, &e.
w

Consequently, the numbers 2/, p, p", &e. will be the nu-
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merators, and ¢/, ¢’, ¢", &c. the denominators of the fractions
converging to @, tractions which we have already denoted by
A B C

3 &c. (Art. 10).

So that the whole is reduced to converting the value of @
into a continued fraction, having all its terms positive ;
which may be done by the methods already explained, pro-
vided we are always careful to take the approximated values
too small; then we shall only have to form the series of
principal fractions converging towards @, and the terms of
each of these fractions will give the values of p and g,

which will .1'esolve the problem proposed; so that l)can

only be one of these fractions.
Q7. Corollary 2. Hence results a new property of the

fractions we speak of; calling "Z‘ one of the principal frac-

tions converging towards a, (provided they are deduced
from a continued fraction, all the terms of which are positive),
the quantity p — ag will always have a less value (abstract-
ing from the sign), than it would have, were we to substitute
in the room of p and ¢ any other smaller numbers.

28. Problem 2. 'The quantity

Ap™ + Bp"Tlg 4 cpigt +, & + vg©,
being proposed, in which 4, 8, ¢, &c. are given integers,
positive or negative, and p and ¢ unknown numbers, which
must be integer and positive; it is required to determine
what values we must give to p and ¢, in order that the
quantity proposed may become the least possible.

Let @, 8,7y, &c. be the real roots, and p + v o/ — 1,
7+ ¢ /=1, &c the imaginary roots of the equation
Ax™ 4+ =t o2 4+, &e. + v =0,

then we shall have, by the theory of equations,

Apm + Bpm—lg + CPm—QQ‘J +’ &e. + qu’ =

A(p—ag) x (p =By X (p—7g) ... X
(p— (v v=1)g) x(p—(e—rv— 1) x
-G+ v-Dgx(p~E@—-pov—-1))....=

Mp —agx (p = fg) X (P—7vg).... x

((p — #)*1+7°¢*) x ((p —ng)*+-¢*g°) *. ..

* Because (p— (kv +v v/ —1)g) x (p—( — v4/ 1))

=p® —ug+ ' + v = (p — 1g)* + v’¢% and the same
with the others. B.
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Therefore the question is reduced to making the product

of the quantities p — ag, p — Bg, p — vq, &e. and
(P = p@»+7¢, (p — 7)* - ¢°¢%, &e.
the least possible, when p and ¢ are integer, positive numbers.

Now, suppose we have found the values of p and ¢ which
answer to the minimum ; and if we substitute other smaller
vumbers for p and ¢, the product in question must acquire
a greater value. It will therefore be necessary for each of
the factors to inerease n value. Now, 1t 1s evident, that if
@, for example, were negative, the faetor p — ag would
always diminish, when p and ¢ decreased; the same thing
would happen to the factor (p — pg)* 4 v'¢* if w were
negative, and so of the others; whence it follows, that
among the simple real factors none but those where the roots
are positive, ean inerease in value; and among the double
imaginary factors, those only, in which the real part of the
imaginary root is positive, can inerease. Farther, it must
be remarked, with regard to these last, that in order that
(7 — #g9)* + »*¢® may 1nerease, whilst p and ¢ diminish, the
part (p — pg)® must necessarlly Inercase, because the other
term »*¢> necesserily diminishes; so that the inerease of this
factor will depend on the quantity p — pg; and so of the
others.

Therefore, the values of p and ¢, which answer to the
minimum, must be sueh, that the quantity »p — «g may in-
crease, by gtving less values to p and g, and taking for @ one
of the real positive roots of the equation,

AxM Bnm—l + e _'__’ &C. + vV = 0,

or one of the real positive parts of the imaginary roots of the
same equation, if there be any.

Let 7 and s be two integer, positive numbers less than p
and ¢; then » — as must be 7 (p — ag), abstracting from
the sign of the two quantities. Let us therefore suppose, as
in Art. 28, that these numbers are such, that ps — gr=+1,
the upper sign taking place, when p — g is positive; and
the under, when p — ag is negative ; so that the two quan-
tities p — ag, and r — @s, become of different signs, and we
shall exactly have the case to which we reduced the pre-
ceding problem, Art. 24, and of which we have already
given the solution.

Hence, by Art. 26, the values of p and ¢ will necessarily
be found among the terms of the principal fractions con-
verging towards ¢ ; that is, towards any one of the quantities,
which we have said may be taken for @. So that we must
reduce all these quantities to continued fractions; which
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may easily be done by the methods elsewhere taught, and then
deduce the converging fractions required: after which, wemust
successively make p equal to all the numerators of these
fractions, and ¢ equal to the corresponding denominators,
and of these suppositions, that which shall give the least
value of the proposed function will necessarily answer like-
wise to the minimum required.

R9. Scholium 1. We have supposed that the numbers p

and ¢ must both be positive; it is evident that if we were to-

take them both negative, no change would result i the
absolute value of the formula proposed; it would only
change its sign in the case of the exponent m being odd ; and
it would remain quite the same, in the case of the exponent
m being even : so that it is of no consequence what signs we
give the numbers p and ¢, when we suppose them both of
the same kind.

But it will not be the same, if we give different signs to p
and ¢; for then the alternate terms of the equation proposed
will change their signs, which will also change the signs of
the roots a, B, ¢, &c. o + 7 o/~ 1, # + 0 /— 1, &ec. s0
that those of the quantities a, 5, v, &c. p, 7, &e. which
were negative, and consequently useless in the first case, will
become positive in this, and must be employed instead of the
other.

Hence, I conclude, generally, that when we investigate the
minimum of the proposed formula, without any other re-
striction, than that of p and ¢ being whole numbers, we
must successively take for « all the real roots a, g, v, &ec.
and all the real parts ¢, =, &ec. of the imaginary roots of the
equation Ax™ 4 Bx"! - cx"=2 4, &e. + v =0; abstract-
ing from the signs of these quantities; but then we must
give the same signs, or different signs, to p and g, according
as the quantity we have taken for @, had onginally the
positive, or the negative sign.

30. Scholium 2. When among the real roots «, 3, v, &c.
there are some commensurable, then it is cvident that the

quantity proposed will become nothing, by making% equal

to one of these roots; so that in this case, properly speaking,
there will be no minimum. Inall the other cases, it will be
impossible for the quantity in question to become 0, whilst
p and g are whole numbers. Now, as the coefficients a,
B, ¢, &c. are also whole numbers, by hypothesis, this quan-
tity will always be cqual to a whole number; and, con-
scquently, it can never be less than unity.

P —
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If we had, therefore, to resolve the equation
Apm + Bpm-—lq + Cpm—-ggﬁ +, &C. + qu — ; 1’
in whole numbers, we must seek for the values of p and ¢ by
the method of the preceding problem, except in the case
where the equation
A 4 pe™t 4 cxm=? 4, &c. + v =0,
had roots, or any divisors commensurable; for then, it is
evident, that the quantity
A])m + B])m—jq o Cpm—gq'.) AL . &C-

might be decomposed mto two or more similar quantitics of
less degrees; so that it would be necessary for each of these
partial formulz to be separately cqual to unity, which would
give at least two equations that would serve to determine p
and ¢. 3

We have elsewhere given a solution of this last problem
(Memoires pour UAcademie de Berlin pour U Année 1768) ;
but the one we are going to explain is much more simple and
direct, although both depend on the same theory of con-
tinued fractions *,

81. Problem 3. Required the values of p and g, which
will vender the quantity ap* 4+ Bpg - cg® the least possible,
supposing that whole numbers only are admitted for p and g.

This problem evidently is only a particular case of the
preceding ; but it may be proper to consider it separately,
because 1t is capable of a very simple and elegant solution;
and, besides, we shall have occasion afterwards to make use
of it, in resolving quadratic equations for two unknown
quantities in whole numbers.

According to the general method, we must begin, there-
fore, by secking the roots of the equation ax* 4 8x ++ ¢ = 0,
—3B+ +/(B°—4AC)

24 ’

1st, If B* — 4ac be a square number, the two roots will
be commensurable, and there will properly be no minimum,
because the quantity ap® + Bpg + cg* will become 0.

2d, If B2 — 4ac be not a square, then the two roots will
be irrational, or imaginary, according as 2 — 4ac will be
7, or £ 0, which makes two cases that must be considered
separately ; we. shall begin with the latter, which 1t is most
casy to resolve.

which we know to be,

First case, when 8> — 4ac £ 0.
32. The two roots being in this case imaginary, we shall

* See also Le Gendre’s Essai sur la Theorie des Nombres,
page 169.
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—B .
have o for the whole real part of these roots,which must con-

~

sequently be taken fora. So that we shall only have to reduce

—3B
. . J .
the fraction T abstracting from the sign it may have, to a

continued fraction, by the method of Art. 4, and then deduce
from it the series of converging fractions (Art. 10), which
will necessarily terminate. This being done, we shall suc-
cessively try for p the numerators of these fractions, and the
corresponding denominators for ¢, taking care to give p and

g the same, or different signs, according as i, 1s a positive,

or negative number. In this manner, we shall find the
values of p and ¢, that may render the formula proposed a
MAnIMUN.

Ezample. Let there be proposed, for example, the quantity
49p* — 238pqg + 2904
Here, we shall have a =49, »=—238, ¢ =290;
wherefore 82 — 4ac = — 196, and 2—: =%3% =17, Work-
ing with this fraction according to the method of Art. 4, we
shall find the quotients 2, 2, 8; by means of which, we shall
form these fractions (see Art. 0),
Q2 3
1 2, S, 17
, ©Y) 1Y 2y T
So that the numbers to try with will be 1, 2, 5, 17, for p,
and 0, 1, 2, 7, for g. Now, denoting the quantity proposed
by p, we shall have

P q 2

1 0 49

9 1 10

5 2 5
17 7 495

whence we perceive, that the least value of p is 5, which

results from these suppositions p = 5, and ¢ = ?; so that
we may conclude, in general, that the given formula can

never become less than 5, while p and g are whole numbers ;
so that the minimum will take place, when p = 5, and
G = %, .
Second case, when 8* — 4ac 7 0.

33. As, in the present case, the equation ax® 4-px --c =0,

s ——
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has two real irrational roots, they must both be reduced to con-
tinued fractions. This operation may be {)erformed with the
greatest ease by a method which we have clsewhere explained,
and which it may be proper to repeat here, since it is na-
turally deduced from the formulae of Art. 25, and likewise
contans all the principles necessary for the complete and ge-
neral solution of the problem proposed.

Let us, therefore, denote the root which is to be thrown
into a continued fraction by @, which we shall suppose to be
always positive ; at the same time, let & be the other root,

and we shall evidently have ¢ + 4 = — -%—, and @b = —E;

4/ (B*—4ac)

whence a — 0 =

; or, for the sake: of abridg-

. A/ E
ment, making 8% — 4ac = E, ¢« — b = T where .the ra-

dical 4/ £ may be positive, or negative: it will be positive,
when the root « is the greater of the two, and negative, when
that root is the less; thereforc
—B-~ /E b —B=— J/E

22 T 2a
Now, if we preserve the denominations of Art. 25, we shall
only have to substitute for « the preceding value, and the

difhiculty will only consist in determining the integer, ap-
proximate values, w!, W, W, &e.

Tofacilitate these determinations, I multiply the numerator
and the denominator of the fractions,

pP—ag® ag'=p' p'—aq
ag!__PI’ p"—a(_]"’ ag’"—p’”’
A(bg — p), ap’ — 6g"), albg" — p"), &e.

and as we have

a =_

&c. respectively by

AP —aq’) x (p° = 0g") =
alag — p) x (g = ) = ap* = ala + b)pg + aabg =
AP+ g + oy
A(p! — agl) x () —bg") = Ap* — Ala + bYp'q" + Aaby® =

A}l;‘ + p'q" + cﬁ}e, &e.
AP —aq’) x (¢ — p) =—pa — 3B — 1 VE,

2
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Alaq — py x (p" ~ bg") =
— ap'p" + aap'y' + abp'q" — aabgq’ =
— app' = cq" —1n(pl" -+ gp") + L v E(p'd ~ V),
A(p! = aq) x (bg" — Py =
— ap"p" - aaplp! + abplg? — Aaby'g" =
— ap'"p" — cq'g" — 1x(p'g" + ¢'p") + £ v E(pg"— g"p"),
and so on. Now, in order to abridge, let us make
PP=a

P = AZ')2 --zp'qg + C(}‘l
2l = A;ﬂ + mplg" 4 cgi’
pli= A;)]9 -+ Bplg" - cl(lll‘z, &e.

P =dn

o =i+ in

o = app" 4+ 38(p'9" - q'p") + gy’

Q" = aplp" - 1n( p'g" 4 ¢'p") + cqlg", &e.
Because
Plg — g'p =1, plg" — q"p" = — 1, gl — gp" =1, &e.
we shall have the following values,

—Q'+ 2 AE

7

® L —_Po
'y —d—ivE
w o
i 1
= QLR
" z
w L o
Mm_ 1 jo
—Q"— L AE
s P’T’—Z—*" &e.

Now, if in the expression of @ we put, for p and ¢,
their values, w/p' 4 1, and g, it will become p'¥' 4 @' ; also,
if we substitute in the expression of ", for p" and ¢", their
values w'p’ 4 p', and p'q" 4+ ¢/, it will be changed into
! 4 Q", and so on ; so that we shail have

il = 1 120 AR
o =@ ¥+ d
Q"=+ o
Qv = {/,"’P'" A ’N, &C.
Likewise, if we substitute the values of p’, and ¢, in the

™ . :
expression of #’, it will become p.¥' + 29 + a; .and if we
substitute the values of p", and ", in the expression of ",
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- . i
it will become p?' + 2u'Q" -~ ¥, and so on; so that we
shall have
Yo =p 4 Q@+
i
Pl = 4 2 @ 0
i \
Pl = ‘uf"'P" + QV‘” QN I v
o N 0
piv= [L"P’”‘-{— QAU'”Q + l’“, &C.

By means of this formulza, thercfore, we may continue the
several series of numbers, @, W, Py Q% @, @, and ¥°, ¥, o,
&e. to any length, which, as we see, mutually depend on
each other, without its being necessary, at the same time, to
calculate the numbers p°, p', p', &e. and ¢°, ¢/, ¢, &e.

We may also find the values of P, »', »", &c. by more
simple formula than the preceding, observing that we have

1 ] '
Q2 — v = (WA + IB)® — A(w®A + uB 4 ) = IB* — Ac,

u j I
Q* —‘l"P" — ([L’P’ e Qr)z — PI(MZPI Jb QM'QI + A) = Q% — AP’,
and so on; that is to say,

I
Q? — P%' = Ig

2 1ol — 17,
Q@ —r'pl =1k

@ = el = iy, Saw
‘Whence we get
.12
— 1 [
P = 0w
PO
u;
QU —1E
e — 5
P
m,o
Q*—1E
"_ L o
Bl = — , &e.

The numbers ¢, p!, !, &e. having thus been found, we
have (Art. 26), the continued fraction,

1
o == R

w +l,7+’ &e.
{4

and, in order to find the minimum of the formula
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Ap* + Bpg 4 cq?, we shall only have to calculate the num-
bers p°, p!, p', p", &e.and ¢°, ¢, ¢, ¢", &e. (Art. 25), and
then to try them instead of p and ¢; but this operation may
likewise be dispensed with, 1f we consider, that the quantities
%, P, P, &e. are nothing but the values of the formula in
question, when we successively make p = p°, p/, p', &e. and
7 =9%¢q,q", &. We have, therefore, only to consider
which 1s the least term of the series ¥9, P, ', &ec. which we
calculate at the same time with the series, w, @/, 1, &c. and
that will be the minimwum required; we shall then find the
corresponding values of p and ¢ by means of the formule
above quoted.

34. Now I say, that continuing the series, »°, P, ¢!, &ec.
we must necessarily arrive at two consecutive terms with dit-
ferent signs; and that then the succeeding terms, also, will
all have different signs two by two. Tor, by the preceding
Article, we have

PP = A(p” — a9) x (p° — 09°),

P = a(p - ag) x (p — bg), &e.
And, from what we demonstrated in Problem 2, it follows,
that the quantities p°—aq°, p'—aq, p" —aq", &e. must
have alternate signs, and go on diminishing ; therefore, 1st,
if b 1s a negative quantity, the quantities ° — 0¢°, p' — b¢/,
&e. will all be positive; consequently, the numbers °, ', »",
will all have alternate signs; 2dly, if b is a positive quantity,
as the quantities p' — aq/, p" — a¢', &c. and much more the

d "
quantities {—2,——~ a, (;7—- a, form a series, decreasing to in-

finity, we shall necessarily arrive at one of these last quan-
1

;5 3 4 g e .

tities, as % — @, which will be £ (¢ — ), abstracting from

. v v 1
the sign, and then all the following, Z—i‘;—-—a, Ji— —a, will
9 9"

be so likewise ; so that all the quantities
P piv . "

a—0b -+ 5 —a, a— b+ — —a, &c. will necessarily have
i ql\

the same sign as the quantity ¢ — b ; consequently, the
" a‘

- )
quantities Eﬁ—l), —ZTV, — b, &c. and these p"— 89",

P — bg", &e. to infinity, will all have the same sign; there-

fore, all the numbers »", ', will have alternate signs.
Suppose now, in general, that we have arrived at terms,

with alternate signs, in the series », ¢, »", &ec. and that
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pa 1s the first of those terms, so that all the terms py, P+ 1,
pr+2, &e. to infinity, are alternately positive and negative;;
I say that none of those terms can be greater than . If, for
example, p", P, P, &c. have all alternate signs, itis evident
that the products, two by two, "%, e, &e. will neces-
sarily be negative; but (by the preceding Article), we have
Q2 — PPV = E, o2 — p'p" = 1, Xc. wherefore the positive
numbers, — P"pi¥, — pivp, will all be less than E, or at least
not greater than E; so that, as the numbers ?', v/, v, &e.
must be integers, the numbers #”, 2, &ec. and, in general,
the numbers pr, pr+1, &c. abstracting from their signs, can
never exceed the number i.

Hence it follows, also, that the terms @', @¥, &e. and, in
general, @2 +1, Q*+2, &c. can never be greater than /E.

Whence it is easy to conclude, that the two series p?,
prrl, pat 2, &coand @ + 1, @2 +2, &c. though carried to -
finity, can never be composed but of a certain number of
different terms, those terms being, for the first, only the na-
tural numbers as far as &, taken positively, or negatively ;
and for the second, the natural numbers as far as 1 E, with
the intermediate fractions I, 2, 3, &c. likewise taken posi-
tively, ov negatively ; for it is evident, from the formule of
the preceding Article, that the numbers @, @', @", &c. will
always be integer, when B is even; but that they will each
contain the fraction £, when B 1s odd.

‘I'herefore, continuing the two series ¥y P/, p7, &e. and
@, @', @", &e. it will necessarily happen, that two correspond-
ing terms, as £7 and @+, will return after a certain iterval
of terms, the number of which may always be supposed
cven; tor, as the same terms pr and Q=, must return to-
gether an infinite number of times, because the number of
different terms in both series is limited, and consequently
also the number of their different combinations, it is evident,
that if these two terms always returned, afier the interval of
an odd number of terins, we should only have to consider
their returns alternatelv, and then the intervals would all be
composed of an even number of terms.

Denoting, therefore, the number of intermediate terms by
2, we shall have p=+% = p=, and @"+2 = @7, and then all
the terms pr, pr+l, p7+2, &e. @7, @r+l, @7+2, and w7,
pr+l, wr+2, &c. will also return at the end of each inter ral
of 2, terms. For it is evident, from the formule given in
the preceding Article, for the determination of the numbers,
wly wy " e @, @ @, &e. and P, ', 2", &c. that, since we
shall have pr+2 = pr, and q=+2; = q7, we shall also have

L L
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prt+2 = pr, then @v+2+1 = @7+1, and pr+2%+1 = pr+1;
whence, also, pm+2+1 = p7+2 and so on.

So that, if [T is any number equal, or greater than =, and
m- denotes any integer positive number, we shall have, in
general,

PlL+2mg = pll| QM +2mp — QI p,ﬂv(-?«mg = @I

therefore, by knowing the = + 2¢ leading terms of each of
the three series, we shall likewise know all the succeeding,
which will be only the 2 last terms repeated, in the same
order, to infinity.

From all this it follows, that, in order to find the least
value of P = Ap® + Bpg + cg?, it 1s sufficient to continue
the serles »°, p, P’y &c. and @° @, @', &c. until two cor-
responding terms, as 7 and Q7 appear again together, after
an even number of intermediate terms, so that we may have
pr+2 = pr, and Q7+2 = @7; then the least term of the
series »°, Py P', &c. pr+2¢ will be the minimum required.

35. Corollary 1. If the least term of the series ¥', P, P
Ke. p7+22 1s not found before the term pr, then that term
will be repeated an infinite number of times in the same
series infinitely prolonged ; so that we shall then bave an
infinite number of values of p and ¢ answering to the mini-
mum, and all discoverable by the formulae of Art. 25, by
continuing the series of the numbers u/, !, ', &e. beyond
the term wp22+7 by the repetition of the same terms p7+1,
p7+2; as we have already said.

In this case we may hkewise have general formula repre-
senting all the values of p and ¢ in question; but an ex-
planation of the method for arriving at this, would carry me
too far; for the present, I shall only refer to the JMen.oires
de Berlin already quoted, ann. 1768, page 123, &c. where
will be found a general and new theory of periodical con-
tinued fractions.

86. Corollary 2. We have demonstrated (Art. 34), that,
by continuing the series ¥, »/, P, &c. we ought to fiud con-
sccutive terms with different signs.  Let us suppose, there-
fore, for example, that p’and " are the first two terms, with
this property.  We shall necessarily have the two quantities
' = by'yand pv — fg', with the same signs, because the
quantities p/' — aqg’, and pV — ag"”, have from their nature.
different xigns.  Now, by putting in the quantities p¥ — bgY,
pt— 6g*, &e. the values of pY, p», &e g7, ¢, &c. (Art.
25), we shall have y

P = bg* = w(p¥ — bg") + p" — bg"
p‘i = [)gvi - [A\'(pv a bq‘) +Pi\' - bgiv’ Ke.
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Whence, because '¥, w¥, &ec. are positive numbers, it is
evident that all the quantities p¥ — bg¥, p"' — g, &e. to in-
finity, will have the same signs as the quantities p" — bg",
and p* — b¢'"; consequently, all the terms 2", r¥, »¥, &c.
to infinity, will alternately have the signs plus and minus.

From the preceding equations, we shall now have

pv_ bg\: !)’” — bq/il
piv.__bqi\" l)i\l'_bqiv'
. pw_ l”[f_‘ ])w_bqw
[ = v — oV - v—hgv
p—uqgt pi—oq
. Vil __ fgvii Ve Ho¥
= ,pvi bq vi"Pvi z gvi’ &e
p —og" p—oq
])!II — bqlll pi\'_bqiv
piv__ bqiva pv_bqv )
Wherefore, since the numbers %, 12¥, @', &c. must be all
pv__ bqv
- piv __bqiv
be positive, and 7 1; so also must the quantities
pvi . bq\'i Pvii__bqvii
Pv _B ]),]'; 2 pvi_bgvi’
piv N bqiv ])v — L.q\
Pv___bqv ? p\i____[)q\'i’
so that the numbers p¥, @i, &c. can only be the integer
numbers, which are immediately less than the values of
Zjvi ., bq\i Px'ii . bq\'ii
p— by’ pri—bgt’
also be equal to the integer number, which is immediately
pv — [)q\

Miv =

where the quantities, &c.are all positive.

positive integers, by hypothesis, the quantity must

&c. wherefore the quantities

&c. will be positive, and less than unity ;

&c. As to the number pb, it will

less than the value of p‘_'i:bq—"" whenever we have
P —bg"
piv_ bqlv L l

Thus, we shall have
v hav I/ Ul
p—bg . Y by Pl

w L Piv_bgiv’l 7 —bg™
VL vi
A4 Z",—-—[)—Z‘,—.
17,_—1;)9 ,
vi JalE T o
[TALIYA g &e.

LRIR;
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the sign ¢ placed after the numbers ", pv, pY, &e. de-
noting as before, the integer numbers which are immediately
under the quantities which follow that same sign.

Now, by reductions similar to those of Art. 83, it is easy

Pv__ l)q\ pvi_bg\'i
pw _bqw ’ pv_ bqv )

to transform the quantities &ec. into

Q+iVE Q—LVE

Piv ’ P

these, , &c.  Farther, the condition of

i __ pal —pl mo__
u 21 may be reduced to this, .IT Au ;
pl\' _bqn 1 })w - agn

aq" —p

iv iv
—a

1

which, because 7 1, will certainly take place, when

—pl

— = or £ 1; wherefore we shall have
P

Qv+"i \/E X _PI’I
/l ——

w'Y vt =or 1.
. ai=iyr

4 - ’
Lo l/E

[TALYA P‘:-— g B

Combining now these formulee with those of Art. 33,
which contain the law of the series 7/, ¢/, p", &c. and @/, @,
Q", &c. we shall easily see, that, if two corresponding terms
of these two series be supposed to be given, the rank of
which is higher than 3, we may go back to the preceding
terms, as far as p"¥ and @Y, and even to the terms »"” and Q™

—pl
if the condition of? = or £ 1 takes place; so that all

these terms will be absolutely determined by those which we
have supposed to be given.

For example, knowing p¥, and @', we shall immediately
know r¥ from the equation Q2 — PPV = 1E; then, having
Q"' and »¥, we shall find the value of .¥; by means of which,
we shall next find the value of @' from the equation
@i = pur’ + @+ Now, the equation ¢2 — p*p' = Lg, will

Ui

give P; and if we previously know, that must be = or

I,iv

21, we shall find pi¥; after which, we shall have @ from
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the equation @' = x™r"™ - @, and then »" from this,
§: = piipiy STENE

Whence it is easy to draw this general conclusion, that if
rx and pr+ 1 are the first terms of the series ¢/, ¢/, p", &c.
which-are successively found with different signs, the term
pr+1 and the following, will all return, after a certain number

. . o . - .
of intermediate terms, and that it will be the same with the

5 +r
term p*, if we have =—— = or 2z 1.

ph+1
Tor let us imagine, as in Art. 34, that we have found
p7+2 = rr, and @7+% = q=, and suppose that 7is 7 A,
that is to say, # = A 4 »; wherefore we may go back, on
the one hand, from the term p~ to the term pr+1, or pp, and
on the other, from the term r7+% to the term pr+2+1, or
pr+2; and, as the terms from which we set out are equal
on both sides, all the terms derived from them will likewise
be respectively equal ; so that we shall have pr+2e+1=pr+1,

e RIS
or even prte = 12, if =—— = or £ 1.
pr+

We may, therefore, judge beforchand of the beginning of
the periods in the serles p°, ¢, »', ", &c, and consequently
in the other series also, @°, @, a', @, &e. px, /, !, W', Ke.,
but as to the length of the periods, that depends on the
nature of the number E, and entirely on the value of that
number, as { could demonstrate, were I not afraid of being
led into too long a detail.

87. Corollary 3. What we have demonstrated in the
preceding corollary, may serve to prove the following theo-
rem: Euvery equation of the form p* — xq* = 1, (in which
K 48 a positive integer mumber, but not @ square, and p
and q two indeterminate numbers) is resolvible in intcger
numbers.

For, by comparing the formula p* — Kg* with the general
formula, Ap* + Bpg + cg¢®, we havea = 1,8 = 0,¢c =~k
wherefore £ = 8% — 4ac = 4x, and L~/ E = +/K (Art. 33).
Wherefore, »° =1, @ = 0; likewise « 2 /K, @ = ., and
P = u? — k; whence we see first, that ¥ is negative, and
consequently has a different sign from »°; secondly, that

— r'is = or 71, because x and p are integer numbers;
o

P
so that we shall have — = or £ 1; whence we shall

find, from the preceding Article,

A=0,and 2 =1r° =1;
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so that by continuing the series »', »/, », &c. the term,
»* =1, will necessarily return after a certain interval of
terms; consequently, we may always find an infinite num-
ber of values for p and ¢, which will render the formula
p* — Kg* equal to unity.

88. Corollary 4. We may likewise demonstrate this
theorem: If the cquation »* — xq* == u be resolvible in
integer numbers, by supposing X a positive number, not
square, and 1 a positive number, less than «/x, the numbers

p and q must be such, that L, may be one of the principal
Jfractions corverging to the value of \/x.

Let us suppose that the upper sign must take place, so
that p* — k¢? = u; wherefore, we shall have

o s and -2 /

- K=—r —— VR =— —

p q P+91/K, q A W P

Now, let us seek two integer positive numbers, 7 and s, less
than p and ¢, and such, that ps — gr = 1, which is always
possible, as we have demonstrated (Art. 23), and we shall

have 2 — —;— = —18—; subtracting this equation from the pre-
ceding, we shall have
r 34 i
s —4/K = —————— — —; so that we have
g+ E)
H
P—qVK=——)
o+ vx)
1 s
SEPANS P EY
Q(;‘ + /%)

Now, as% 7 V¥, and B £ /%, it 1s evident, that

c ; 1
will be £ %; whence p — g/x willbe < 5-;
i i
_.+ VK
q
wherefore, ——)—“—l-——-—— will much more be 2 %, since s £ ¢;
‘I(L + 1K)

so that + — s /k will be a negative quantity, which taken
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.. ; 1 s
positively, will be 7 5-, because that 1 — ———— 7

04

2 P
g(= + K)
l(q

)~

So that we shall have the two guantities, p — ¢ v/x, and
r — s vk ; orrather, making ¢« = vx,p — agq, and r — as:
which will be subject to the same conditions as we have
supposed in Art. 24, and from which we shall draw
similar conclusions: therefore, &e. (Art. 26), if we had

P — k¢®* = — 1, then it would be necessary to seek the
numbers # and s such, that ps — g» = — 1, and we should
have these two equations,
H
SIS
g( vx4+=)
q
1
SVK — 7 = -;(-—S}-I-—— — l).
g(vx+L)
As H £ K, and s £ g, it i3 evident, that =
9( «/x+—7;-)

will be £1; so that the quant'ity $4/ 1 — 7 will be negative.
Now, I say that this quantity, taken positively, will be
greater than ¢/ X — p; to prove which, 1t must be demon-

1
strated, that — (1 — s 7 )7 1 .
give+Ly  gvxt £
q q
s
u(l+4+ —)
or rather, that 17 ————; that is to say,
vV K+ 7

vVE + % 7H + ?; but wz vx(kyp.); it is therefore

S/ K

suﬁicienttoprove,that—g—— 7 , or that p 7 s4/ k 5 which 1s
evident, because the quantity s,/ kK — 7 being negative,
we must have 75K, and much more p7s./K, since
p7r. : 4

Thus, the two quantities, p — ¢ vk, and r — s/ K, will
have different signs, and the second will be greater than the
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first (abstracting frow the signs), as tn the preceding case ;
therefore, &ec.

So that when we have to resolve, In integer numbers, au
cquation, of the form, p? — x¢g* = + 11, where H £ VK, we
have only to follow the same process as in Art. 83, making
A=1Rr=0,and ¢c = — x; and, if in the series »° P/,
¥, r", Ke. p#+ 2, we find a term = +- 11, we shall have the
solution required ; if not, we may be certain that the given
cquation admits of no solution in integer numbers.

39. Scholium. We have considered (Art. 33) only one
root'of the equation A«* + 3« + ¢ = 0, which we have sup-
posed positive ; if this equation have both its roots positive,
we must take them suceessively for @, and perform the same
cperation with both; but if one of the two roots, or botl,
were negative, then we should first change them into positive,
by only changing the sign of B, and should proceed as be-
fore: but then we should take the values of p and ¢ with
contrary signs; thatis to say, the one positive, and the other
negative (Art. 29).

In generzl, thercfore, we shall give the ambiguous sign
+ to the value of B, as well as to v thatis to say, we
shall make ' = F iz, and let us put + before ,/E, and
we must take these signs, so that the root

w=x B3 VE
A

may be positive, which may always be doue in two different
ways: the upper sign of » will mdicate a positive root; in
which case, we must take both p and ¢ with the same signs;
on the contrary, the lower sign of B will indicate a negative
root; in which case, the values of p and ¢ must be taken
with contrary signs.

40. Fxample. Required what integer numbers must be
taken for p and g, in order that the quantity,

9p2 — 118pg + 378¢*

may become the least possible. A

Cowparing this quantity with the general formula of
Problem 8, we shall have A =9, 38 = — 118, ¢ = 878;
wherefore, 82 — 4ac = 816; whence we see that this case
belongs to that of Art. 83. We shall therefore make
1 = 816, and L¥ & = /79, where we at once observe, that
/7978, and £9; so thatin the formule of which we shall
only have to find the approximate integer value, we may
immediately take, insteadl of v/79, the number 8, or 9, accord-
ing as that radical shall be added, or subtracted, from the
other numbers of the sanme formula.
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We shall now give the ambiguous sign + to B, as well as
to vk, and shall then take these signs such, that

+59+ /79
o = 9
may be a positive quantity (Art. 39); whence we see, that
we must always take the upper sign for the number 59 ; and,
that for the radical /79, we may either take the upper, or
the under. So that we shall always make @® = — 11, and
+/E may be taken, successively, p us and minus.

First, therefore, if £ e = /79 with the positive sign, we
shall make (Art. 83), the following calculation :

o ) ) P 2 @ e e
< ) = S = E °
] i I li il I 1l i
il IR | 4 |
° Jt
oo X o X 33 x -3 &
o = X L x — X -3
e | s | CE -
Te 4 ® 4+ 8
-3
o2 oy Lo
2 9
! I |
B ® »
= A S - T S
Il Il Il Il Il Il Il Il
= ) o S g =
D & o " = = o v
of I L 1T T 2T 1! o
-3 Sl -3 -3 1 | & -3
o v o lo i le (o
Il Il Il I I If Il
| &9 l \.Ul | ‘S I
&Y & & ot
E, S = =, s = g =
= & < ) =
N N N N N N N N
l S ] ® ! % | o
= + -3 AL -3 + S
S S R R R T~ S R N o
21213 Bz B3 I3
s Iv |l [ |3 ls |3 (3

I I Il I ] i I !

o T Y &t S S SR

\» - 5 > - . -

Here T stop, because I perceive that @' = ¢/, and
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r¥i = 3, and that the difference between the two indices,
1 and 7, is even; whence it follows, that all the succeeding
terms will likewise be the same as the preceding; so that we
shallShaveNoiiE=NANNOUEI=——N=SGE q x3— /ARy R A
v¥it =10, &c. so that, if we choose, we may continue the
above series to infinity, only by repeating the same terms.
Secondly, let us take the radical v79 with a negative

sign, and the calculation will be as follows:

o ) ) ) ) & e & & @
B el S BRI B e
il I il il i 1l I ] Il ]
e
!l © 0 3 | T I &R |
s & X 5 4 w X o x X &
[ - & X S N
f X X — X fu
S L 89 I -t | S]] I bt I l
g+ » + L + T 1 - 08
[ S o M l
! [ I L Bl
G = o St E
w =, g - L < = T -
= Z: = = < < = = =
It Il Il Il Il Il il ] I it
e © . = e S j [ e O
RN Tl‘s’ull =
| <! I o | @& | et o
Sl | Ya TR | aP s |-1 |
N} N=j N=] o N} e} S -~}
Ne)
Il 1l Il 1l I Il Il Il I
Ot ] o ] — | (& l
K S = S et
o = & s
S N B s el e
w s = &, < = = =
NONON N N N N N NN
-3 I M | lq | 3 |~ l»—-a o
o W (o) i A
OV ST T = T el el )
ot © =1 ot . & ©
=T Y A P SRS 2 SRS IR S
22 1@ 12 1213 |2 128 |3 |2
© |8 o & |o |8 |® |« |
I Il Il I I Il Il Il (|
i 2 . = SR CD & §

We may stop here, since we have found o™ = ", and
v = p the difference of the indices 9 and 3 being even;
for, by continuing the series, we should only find the same
terms that we have found already.
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Now, if we consider the values of the terms p°, ¥, o,
&c. found in the two cases, we shall perceive that the least
of these terms is equal to —3; in the first case, it is the
term ¢", to which the values p” and 4" answer; and, in the
second case, it is the term »"Y, to which the values piV and ¢
answer.

Whence it follows, that the least value, which the given
quantity can receive, is —3; and, in order to have the values
of p and ¢, which answer to it, we shall take, in the first
case, the numbers w, @/, ¢, namely, 7, 1, and 1, and shall
form with them the principal converging fractions 7, %, 15 ;
: - i
the third fraction will, therefore, be ?7, so that we shall have

M = 15, and ¢" = 2; that is to say, the values required
willbe p = 15, and ¢ = 2. In the sccond case, we shall
take the numbers w, &/, !, 2/, namely, 5, 1, 1, 8, which will
give these fractions, §, $, %*, %*; so that we shail have
P = 89, and ¢¥ = 7; thercfore, p = 29, and ¢ = 7.

The values which we have just found for p and ¢, in the
case of the minimum, are also the least possible; but if we
choose, we may likewise successively find others greater : for
it is evident, that the same term, —3, will always return at
the end of every interval of six terms; so that, in the first
case, we shall have P/ = — 8, px = — 3, p¥" = — 3,
&c. and, 1n the second, PV= — §, »* = =8, P = — 3, Ke.

Therefore, in the first case, the satisfactory values of p
and ¢ will be these; p", ¢", p', ¢, p*, ¢, &ec.; and, in
the second case, p", ¢, p* ¢, p*, ¢, &e. Now, the
values of p, p/, ¢, &e. are-in thefirst case 7, 1,1, 5,3, 2,1
1,1,5,8,2,1; 1, 1,5, 3, &c. to infinity, because 'l = !,
and ' = w, &c. so that we shall only have to form, by
the methad of Art. 20, the fractions,

»L oL 5, 8, g L |

‘ ) )
7 8 15 264 611 BR75 1486 2361 13291 &c
i » 5% BT I TIG) T97 % IT13?2 T762) %

) 1) 2

And we may take for p the numerators of the third,
ninth, &c. and for ¢ the corresponding denominators: we
shall therefore have p = 15, ¢ = 2, or p = 2361, ¢ = 313,
&e.

In the second case, the values of pw/, p', p, &c. will
be &5 1, 1,48, .5, Ix 18l w2 . 8,6, iI,°1; 1,°2, Sc. be-
cause p™, w', p* = piv, &c. We shall, therefore, form these
fractions,

51, 1, 3, 5 2, 3,

o

1
3 b
S 6 11 39 206 245 451 696 1843 6225 Lo
T2 Iy T 7Ty TP OEEO ORI ) OTZTI) 33T Tragd B
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And the fourth fraction, the tenth, &ec. will give the

values of p and ¢35 which will therefore be
P =239, 9 =", orp=0225 ¢ = 1118, &c.

In this manner, therefore, we may regularly find all the
values of p and ¢, that will make the given formula = — 8,
the least value it can receive. We might even have a ge-
neral value, which would comprehend all these values of p
and g. Any person who has the curiosity may find it by a
method which we have elsewhere explained, and which has
been already noticed (Art. 85).

We have _just found, that the minimum of the quantity
proposed is —3, and consequently negative; now, it might
be proposed to find the least positive value, that the same
quantity can receive: we should then only have to examine
the series ¥°, P!, ¢, ", &c. in the two cases, and we should
see that the least positive term is 5 in both cases; and as in
the first case it is ™, and in the second »", which is 5, the
values of p and ¢, that will give the least positive value of
the quantity proposed, will be p™, ¢, or p¥, ¢*, or &c. in the
first case, and p, ¢", or p*i, ¢, &ec. in the second; so that
we shall have, from the above fractions, p = 83, ¢ = 11; or
p = 13291, ¢ = 1762, &c. or p =11, ¢ = 2; p = 1848,

= 331, &c.

We must not forget to observe, that the numbers g, g/,
©", &c. found in the above two cases, are no other than the
terms of the continued fractions, which represent the two
roots of the equation 9x* — 118z 4- 378 = 0.

So that these roots will be,

Lgd | 4

S+
|

St &

)3
[ ] 1
T s
expressions which we might continue to infinity merely by
repeating the same numbers.

Thus, we perceive how we are to set about reducing to
continued fractions the roots of every equation of the second
degree.

41. Scholium. In volume XI. of the New Commen-
taries of Petersburg, M. EvrER has given a method similar
to the preceding; but deduced from principles somewhat
different, for reducing to a continued fraction the root of any
integer number, not a square, and has added a Table, in
which the continued fractions are calculated for all the
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natural numbers, that arc not squares, as far as 100.
"This Table being useful on various occasions, and par-
ticularly for the solution of indeterminate numbers of the
second degree, as we shall afterwards find (Chap. 7), we
shall here present it to our readers. It will be observed,
that there are two series of integers answering to each
radical number; the upper is that of the numbers »°, — 7/,
', —", &c. and the under that of the numbers, g, ¢/, @',
W &e.

e
V21192292 gc
T212121 &
V3112121 2&c,
T 11 I&c
vV olay4ydge
T212121 &
V6l9942424csc
S |[15231323 &
V7la 1114117 4sec
T41 4141 e,
V8lo 141 4%
= 111 &
‘/10|3666&c.
21212 1&c
VILIS 3 6563 6&c
1313131
V121356962 6&c
,13‘14334113341&0
VIB 3111161111 6&c
115251525 1 &
‘/1‘1‘312161216&&
1601 6 1 6 1 &c.
VA5 |2 156 1 6 1 6 &,
11111 &
V"|48888&c.
21212121 &
V1Bl 448484848 &c
1352531352531 &o.
‘/1914213128213128 c.
Qoll~ll4l4l4l&c.
V7 li28282828 &
1543451543451 &c
‘/21|4112118112118&c.
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1271143411712 1127 &c.
vl LaaR % B F15 11 &
01| I3 059103 15215310095 0613 1 &
9 1231 15 18 15 1132 118 &
1145124 1 14 &c.
v g 13 118 1 &c.
115415 115 &o.
vV9ig 13 118 1 &
o7 |[T168 11899811316 116 &e.
9 15 11111 15 118 1:&e.
117 217 1 17 '&c,
v98lg 18 118 1 e
T1s 118 1 &c
V9919 118 118 &e

Thus, for example, we shall have

= +'f+ +, &e.

/3—1+‘+ &e.

and so of others.
And, if we form the converging fractions,
0 ] 1 "
Ll N i
02 ! "> i > *
7 9 9 9
according to each of these continued fractions, we shall have

1 [
) -2 =1,p ~ 2 = 1,
i i

p? - 2¢° =1, &c.
and likewise,

(P =8 =1, pt =8¢ = — 2,
Pt~ 8¢ = 1, &e.



530 ADDITIONS. ARGV

CHAP. III.

Of the Resolution, in Integer Numbers, of Equations of the
JSirst Degree, containing two unknown Quantities.

[APPENDIX TO cHAP. L]

42. When we have to resolve an equation of this form,
ax — by = c,

in which a, b, ¢, are given integer numbers, positive, or
negative, and in which the two unknown quantities, + and y,
must also be integers, it is sufficient to know one solution,
in order to deduce with case all the other solutions that are
possible.

For, suppose we know that these values, 2 = a, and
y = B, satisfy the conditions of the equation proposed, « and
B being any integer numbers, we shall then have ae— 08 =c;

and, consequently, >
ar — by = az — bB, or alx — a) — U(y — B) = 0;
Xr—a .
whence we find q——ﬁ = Let us reduce the fraction

B o e :
— to its least terms, and supposing, in consequence of this
@

d . v ) 1
reduction, that it becomes e where &' and ¢ will be prime

to one another, 1t 1s evident that the equation,

rx—a U ’
y—p— d”

could not subsist, on the supposition of @ — a, aud y — B,
being integers, unless we have x—a = ml!, and y—8 = md/,
m being any integer number; so that we shall have, in
general, * = a + ml, and y = B + ma'; m being an in-
determinate integer.

Now, as we may take m either positive, or negative, it is
easy to perceive, that we may always determine the number
o 1n such a manner, that the value of # may not be greater

b/ d’ g
than 57 OF that of y not greater than —-, (abstracting from

the signs of these quantities); whence it follows, that if the
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given equation ax — by = ¢, 1s resolvible in integer num-
bers, and we successively substitute for o all the integer

numbers, positive as well as negative, contained between
)

i Z 3
these two limits —-, and 5 e shall necessarily find one
2

/ e

that will satisfy this equation: and we shall likewise find
a satisfactory value of y among the positive, or negative
] )
0 R a —a
whole numbers, contained between the limits R AR
Q

By these means we may find the first solution of the
equation proposed ; after which, we shall have all the others
by the preceding formulze.

43. But, without employing the method of trial, which
we have now proposed, and which would sometimes be very
laborious, we may make use of the very simple and direct
method explained 1 Chap. L. of the preceding T'reatise, or of
the following method.

Zirst, if the numbers ¢ and b are not prime to cach other,
the equation cannot subsist in integer numbers, unless the
given number, ¢, be divisible by the greatest common
measure of @ and b. Supposing, therefore, the division
performed, and cxpressing the quotients by ', ¥, ¢, we
shall have to resolve the equation,

do — ly = ¢,
where & and ' are prime to each other.

Secondly, if we can find values of p and ¢ that satisfy the
equation, ap — 0'¢ = % 1, we may resolve the preceding
equation ; for it is evident that, by multiplying these values
by ¢, we shall have values that will satisfy the equation,

doe —0y = ¢';
that 1s to say, we shall have
x = + pc,and y = + qc

Now, the equation a'p — g = 4 1 1s always resolvible

1n integers, as we have demonstrated, Art. 23; and, in order

tofind the least values of p and ¢ that can satisfy it, we shall
'

— , Into a continued frac-

a

tion by the method of Art. 4, and then deduce from it a

series of principal fractions, converging to the same fraction,

only have to cenvert the fraction

v )

T by the formule of Art. 10; the last of these fractions
U

will be the same fraction i3 and if we represent the last

M M2
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but one by ﬁ, we shall have, by the law of these fractions,

(Art. 12) d'p — b'g =+ 1; the upper sign being for the
case, in which the rank of the fraction is even, and the under
for that in which it is odd.

These values of p and ¢ being thus known, we shall first
have z = + pc, and y = + ¢¢, and then taking these values
for a and g8, we shall have, in general, (Art. 42),

z =+ pc +ml, y =+ qc 4 md,
expressions which necessarily include all the solutions of the
given equation that are possible in integer numbers.

That we may leave no obstacle to the practice of this
method, we shall observe, that although the numbers ¢ and
b may be positive, or negative, we may notwithstanding
take them always positive, provided we give contrary signs
to x, when @ 1s negative, and to y, when & is negative.

44. Ezample. 'To give an example of the preceding me-
thod, we shall take that of Art. 14, Chap. I. of the pre-
ceding Treatise, where it is required to resolve the equation,
39p = 56¢ + 11. Changing p into z, and g into 7, we shall
have 892 — 56y = 11.

So that we shall make ¢« = 89, b = 56, and ¢ = 11 ; and
as 56 and 89 are already prime to each other, we shall have
a =89,0 =506,¢ =11. We must therefore reduce the

5]
fraction — = 3¢, to a continued fraction; and, for this
a

purpose, as we have already done (Axt. 20), we shall make
the following calculation ;

39)56(1
39

17)39(2
34

5)17(3
15
9)5(2
4
122
Q

0.
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Then, with the quotients 1, 2, 3, &c. we may form the
fractions,
C

1’ Q’ 3, 2, ")"

1 3 10 23 56

10 2 75 T63 39
and the last fraction but one, 22, will be that which we have

" ) ;

expressed in general by Lg ; so that we shall have p = 23,
g = 16; and, as this fraction is the fourth, and consequently,
of an even rank, we must take the upper sign; so that we
shall have, in general,

x =23 x 11 -~ 56m, and
y =16 x 11 - 89m;

m being any integer whatever, positive, or negative.

45. Scholium. We owe the first solution of this problem
to M. Bachet de Meziriac, who gave it in the secend cdition
of his Mathematical Recreations, entitled Problemes plaisans
et delectables, &e.  'The first edition of this work appeared
in 1612; but the solution in question is there only an-
nounced, and is only found complete in thie edition of 1624.
The method of M. Bachet is very direct and ingenious, and
cannot be rendered more elegant, or more general.

I seize with pleasure the present opportunity of doing
justice to this learned author, having observed that the ma-
thematicians, who have since resolved the same preblem, have
never taken any notice of his labors.

The method of M. Bachet may be explained in a few
words. After having shewn how the solution of equations
of the form ax — by = ¢, (« and b being prime to each
other), may be reduced to that of ax — by = + 1, he ap-
plies to the resolution of this last equation; and, for this
purpose, prescribes the same operation with regard to the
numbers @ and 8, as if we wished to find their greatest com-
mon divisor, (and this is what we have just done); then
calling ¢, d, ¢, f; &c. the remainders arising from the dif-
ferent divisions, and supposing, for example, that 7 is the
last remainder, which will necessarily be equal to unity (be-
cause « and b are prime to one another, by hypothests), he
makes, when the number of remainders is even, as in the
present case,

4 ed+1 deF1 vb 41
ERES &= ; =y, - — =8
BuF1

7 = G
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and these last numbers g, and «, will be the least values of
z and y.

If the number of the remainders were odd, g for nstance
being the last remainder = 1, then we must make

£
,fil——:l,ze}lzs, (lc-_f-l—_: .

It is easy to see that this method is fundamentally the
same as that of Chap. I.; but it is less convenient, because
it requires divisions. Those who are curious in such specu-
lations, will see with pleasure, in the work of M. Bachet, the
artifices which he has employed to arrive at the foregoing
Rule, and to deduce from it a complete solution of equations
of the form, ax — by = c.

CHAPY. VL.

General method for resolving, in Integer Numbers, Iqua-
tions with fwo unknown Quantitics, of whick one docs not
exceed the first Degree.

[APPENDIX TO CHAP. IIL
46. Let the general equation,
a+4by ey +da® + exy + g2ty +fet +hat+katy+, &e.
=0 be proposed, in which the coefficients @, b, ¢, &c. are
given integer numbers, and & and y two indeterminate num-
bers, which must also be integers.
Deducing the value of y from this equation, we shall have
a+ by +-dx* +fot +hat+, &
Yy = — ;
y c+ex+gat+hedd, &e
so that the question will be reduced to finding an integer
number, which, when taken for x, makes the numerator of
this fraction divisible by its denominator.
Let us suppose
p=a-+ br+ da? + fo¥ 4 hat +, &c.
g =c+ cx+ gr* 4+ kat 4, &e

and taking 2 out of both these equations by the ordinary rules

of Algebra, we shall have a final equation of this form,

A -+ 8p 4 cq + vp° + Epg + ¥¢ + ep® +, &e. =0,

where the coefficients A, B, ¢, &c. will be rational and integer
funetions of the numbers @, b, ¢, &c.
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Now, since y = — %, we shall also have p = —gqy; so

that by substituting this value of p, we shall get

A — 1yq + ¢¢ + py°¢* — xyqg* + r¢® 4+, &e. =0,
where all the terms are multiplied by ¢, except the first, a ;
thercfore the number A must be divisible by the number ¢, *
otherwise it would be impossible for the numbers ¢ and y to
be both integers.

We shall therefore seck all the divisors of the known in-
teger number A, and shall successively take each of these
divisors for ¢; from each of which suppositions we shall have
a determinate equation in @, the integer and rational roots of
which, if it have any, will be found by the known methods ;
then substituting these roots for z, we shall see whether the

. )
values of p and g, which result, are such, that —% may be an

integer number. By these means, we shall certainly find all
the integer values of a, which may likewise give integer
values of 7 in the equation proposed.

Hence we see, that the number of integer solutions of such
equations must always be limited; but there is one case
which must be excepted, and which does not fall under the
preceding method.

47. 'This case is when there are no coeflicients ¢, g, &, &c.
So that we have simply,

a--bx +-dx* + fathat 4, &e.

Y =y -

c

In order to find all the values of @, that will render the
quantity @ + bx + da*+ fo® + ha* 4, &c. divisible by the
quantity ¢, we must proceed as follows. Suppose we have
already found an integer, n, which satisfies this condition ;
it is evident that every number of the form »n + pe will
likewise satisfy it, » being any integer number ; farther, if 7 is

@ . .

iy (abstracting from the signs of » and ¢), we may always

determine the number p, and the sign which precedes it so,
c -~

that the number 2 + pe, may become £ — 5 and it 1s easy

to perceive that this could only be done in one way, the
values of » and ¢ being given ; wherefore, if we express by

o o @ . e
' that value of 7 + pe, which 1s £ —-, and which satisfies
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the condition in question, we shall have, in general,
n = n' F we, w being any number whatever.

Whence I conclude, that if we substitute successively, in
the formula, @ + bz + dx* + fa* 4, &c. instead of @, all the

. 5 . c .
mtegers positive, or negative, that do not exceed -, and if we
- ~

denote by 7/, 2", ", &c. such of those numbers as will render
the quantity, ¢ + bx + da* +, &c. divisible by ¢, all the
other numbers that do the same, will necessarily be included
in the formula »' + ple, # + ple, 2 4+ ple, Ke. !, p!'y w,
&c. being any intcger numbers.

Variousremarks might here be made to facilitate the finding
of the numbers 2/, 2", ", &c. butit is the more unnecessary
to enlarge upon this subject, as I have already had occasion
to treat of it, in a Memoir published among those of the
Academy of Berlin for the year 1768, and entitled Nowvelle
Methode powur resoudre les Problemes indeterminés.

48. 1 shall, however, say a word on the method of de-
termining two numbers, 2 and y, so that the fraction

a‘ym +bym—1w + dynlogx2+£y)n~3x3+ B &C.
c

may become an integer number, as this investigation will be
very useful to us in the sequel.

Supposing that y and x must be prime to each other, and
farther, that y must be prime to ¢, we may always make
x =mny — cz; n and z being indeterminate numbers; for,
considering x, ¥, and ¢, as given numbers, we shall have an
equation always resolvible in whole numbers by the method
of Chap. IIl., because y and ¢ have no common measure, by
the hypothesis. Now, if we substitute this expression of
in the quantity, ay™ + by™ '@ + dy™*2? +, &c. it will be-
come,

(a + dn + dw*+ fin +, &c.)y”‘

— (b +2dn +-3finc4-, &e.) cy™1z

+ (d +3fn +, &ec.) crym2®

—, &e.
and it is evident, that this quantity could not be divisible by
¢, unless the first term, (@ -+ bn 4 dn* 4 fn® 4, &e.) 4 wore
so, since all the other terms are multiplied by ¢.  There-
fore, as ¢ and y are supposed to be prime to each other, the
quantity @ + bn + dn* + fi® +, &c. must itself be divisible
by ¢; so that we shall only have to scek, by the method of
the preceding Article, all the values of 2 that can satisfy this
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condition, and then we shall have, in general, v = ny — az,
z being any integer number whatever.

It is proper to observe, that although we have supposed
the numbers x and y to be prime to cach other, as well as
the numbers y and ¢, our solution is still no less general ;
for if a and g had a common measure «, we should only have
to substitute za’ and ay/, instcad of & and 7, and should
then consider 2’ and 3/ as prime to cach other; likewise if
%' and ¢ were a common measure 8, we might put 8y, in-
stead of 7/, and consider y" and ¢ as prime to each other.

CHAP. V.

A divect and general method for finding the wvalues of x,
that will render Rational Quantities of the form
«/(a -+ bx + cx?*), and for resolving, in Rational Num-
bers, the indeterminate Equations of the second Degree,
which have two wnknown Quantities, when they admit of
Solutions of this kind.

[APPENDIX 7TO CHAP. 1V.]

49. T suppose first that the known numbers «, b, ¢, are
mtegers ; for if' they were fractions, we should only have to
reduce them to a common square denominator, and then it is
cvident, that we might always abstract from their denomina-
tor ; but with respect to the number a, we shall suppose
that 1t may be integer, or fractional, and shall see, in what
follows, how the question is to be resolved, when we admit
only integer numbers.

Let then +/ (¢ + bx + cx?) = y, and we shall have
Qx4+ b = / (dey* + b* — 4ac); so that the difficulty will
be reduced to rendering raticnal the quantity, -

V(dey + 0 — dac).

50. Let us suppose, therefore, in general, that we have to
make rational the quantity ./(ay* + B); that is to say, to
make ay* + B equal to a square, A and B being given integer
numbers positive or negative, and 7 an indeterminate num-
ber, which must be rational.

It 1s evident that if one of the numbers a, or s, were 1,
or any other square, the problem would be resolvible by
the known methods of Diophantus, which are dctailed in
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Chap. IV.; we shall therefore abstract from those cases, or
rather we shall endeavour to reduce all the rest to them.

Farther, if the numbers Ao and B were divisible by any
square numbers, we might likewise abstract from those
divisors ; thatis to say, suppress them, only by taking for o
and B the quoticnts, which we should have, after dividing the
given values by the greatest squares possible; in fact, sup-
posing A = a4/, and B = g%/, we shall have to make the
number, a'z’® + B'8% a square; therefore, dividing by ¢,
and making s y'; we shall have to determine the un-

8

]

known quantity #'; so that A_‘;" + » may be a square,
Whence it follows that, when we have found a value of 3
that will make ay® +  become a square (rejecting in the
given values of A and B the square factors o* and g% which
they might contain), we shall only have to multiply the

i B . .
value found for 7 by —,in order to have that which answers

to the quantity proposed.

51. Let us, therefore, consider the fermula ay* 4- B, in
which A and » are given integers, not divisible by any square ;
and, as we suppose that y may be a fraction, let us make

y= %, pand ¢ being integers prime to each other, in order

that the fraction may be reduced to its least terms; we shall

o ’
7

5 A .
therefore have the quantity —(j; -1, which must be a square;

wherefore, ap* -} 3g® must be a square also; so that we
shall have to resolve the equation, Ap® + pg* = %, sup-
posing p, ¢, and z, to be integer numbers.

Now, I say that ¢ must be prime to a, and p prime to ;
for if ¢ and 4 had a common divisor, it is evident that the
term Bg° would be divisible by the square of’ that divisor;
and the term ap? would only be divisible by the first power
of the same divisor, because p and ¢ are prime to cach other,
and A is supposed not to contain any square factor; where-
fore the number ap* + 5g? would only beonce divisible by
the common divisor of ¢ and A ; consequently, it would be ini-
possible for that number to be a square. In the same man-
ner, it may be proved, that p and & can have no common

divisor.
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Resolution of the LEquation Ap* + Bq* = z* in intcger
Numbers.
) : 8o . .
52. Supposing A greater than 3, the equation will be
written thus,
Ap® = 2 —1¢®,
and as the numbers p, ¢, and -z must be integer,. 2* — Bg*
must be divisible by a.
Now, since a and ¢ are prime to each other (Art. 51), we
shall, according to the method of Art. 48, make
z2 = ng — Aq,
n and ¢' being two indeterminate integers ; which will change
]
the formula, z° — 8¢% into (n° — B)g>— 2nagq'+ A%¢% n
which #* — 8 must be divisible by a, taking for #» an integer

A
number, not 7 -
%

‘We shall try therefore for » all the integer numbers that

do not exceed 7;, and if we find none that makes n* — 5
divisible by 4, we conclude immediately, that the equation
Ap* = 2* — Bg® is not resolvible in whole numbers, and
therefore that the quantity Ay® -+ B can never become a
square.

But if we find one or more satisfactory values of 7, we
must substitute them, one after the other, for 2, and proceed
in the calculation, as shall now be shewn.

I shall only remark farther, that it would be useless to

. A .
give n values greater than —-, for calling o/, 2", 2", &e. the

~

A 0 o . e e
values of » less than 5 which will render 22~ divisible by
4, all the other values of n that will have the same effect will
be contained in these formulwe, 2/ + w/a, 0 + w'a, 2" + u'a,
&c. (Chap. IV. 47). Now, substituting these values for n,

I
in the formula, (2°— 8)g* — 2nagq’ + A%¢% that is to say,
(ng — a¢)* — Bg?, it is evident that we shall have the same
results, as if we only put #/, 2/, 2", &c. instead of #, and
added to ¢ the quantities I p'g, +¢'q, Fp"q, &c. so that,
as ¢ 1s an indeterminate number, these substitutions would
not give formule different from what we should have, by the
simple substitution of the values 2/, 2", »", &c.

53. Since, therefore, 72 — B must be divisible by 4, let A/
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be the quotient of this division, so that aa’ = 2¢ — 5, and
the equation,

Ap® = 2 — Bg* = (n* — B)¢® — Qagq + A%
being divided by a, will become i

P = Ag* = 2ugq + gy
where A' will necessarily be less than a, because
Al = n—A—B, and ® £ a, and 2 not 7 —g—.

First,if A’ be a square number, it is evident this equation
will be resolvible by the known methods; and the simplest
solution will be obtained, by making ¢' =0, ¢ =1, and
p= vAa. :

Secondly, if A! be not a square, we must ascertain whether
it be less than », or at least whether it be divisible by any
square number, so that the quotient may be less than s,
abstracting from the signs; then we must multiply the
whole equation by ', and, because aa' — n* = — 3, we

] i

shall have a'p* = (a'g — 2¢)* ~ 1¢%; so that ng* + a'p*

must be a square; hence, dividing by p?, and making
!

7 ', and A’ = c, we shall have to make a square of the
P K/ ’ 1

!
formula By®> 4 ¢, which evidently resembles that of Art. 52.
Thus, if ¢ contains a square factor *, we may suppress it,
by multiplying the value which we shall find for 3 by v, in
order to have its true value; and we shall have a formula
similar to that of Art. 51, but with this difference, that the
coeflicients, 3 and c, of our last will be less than the co-
efficients, a and B, of the other.

54. But if A’ be not less than B, nor becomes so when di-
vided by the greatest square, which measures it, then we
must make ¢ = »¢' + ¢"; and, substituting this value in the
cquation, it will become

0 i
2 = Alg*— 2q'q' - A,
where ' = n — va,

:
W—B
and A" = A"’ — v+ A =

—.
A
We must determine the whole number v, which is always

3 A 5 .
possible, so, that #' may not be 7 —-, abstracting from the
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signs, and then it is evident, that A" will become / A', be-
i
y _ M—B . Al
cause A" = ——, and 3 =, or £ A, and n =, or £ 5

We shall therefore apply the same reasoning here that we
did in the preceding Article; and if A" is a square, we shall
have the resolution of the equation: but if A"1s not a square,
and £ B, or becomes so, when divided by a square, we must
multiply the equation by ', and shall thus have, by making

D i o . .
L” =y, and A" = ¢, the formula 3y* 4 ¢, which must be a
g

square, and 1n which the coefficients, B and ¢, (after having

suppressed in ¢ the square divisors, if there are any), will be

less than those of the formula Ay* + B of Art. 51. But if

these cases do not take place, we shall, as before, make

¢ = v¢" -+ ¢", and the equation will be changed into this,
Y Par i

PP = Aaqgr— Wlg'g" 4 ags,

where 2" = n! — n/A")

u

n'—B
A"

5
and A" = A" —20)y + A =

We shall therefore take for »' such an integer number, that
1
A . .
#' may not be 7 5 abstracting from the signs; and, as B
~ .~

[l
n*— 3B
Al
that A" will be £ A"; so that we may go over the same
reasoning as before, and shall draw from it similar con-

clusions.

Now, as the numbers a, ', A", A", &c. form a decreasing
series of integer numbers, it is evident, that, by continuing
this series, we shall necessarily arrive at a term less than the
given number B; and then calling this term ¢, we shall have,

1s not 7 A" (hyp.), it follows, from the equation, A" =

b

]
as we have already seen, the formula By* + ¢ to make equal
to a square. So that by the operations we have now ex-
plained, we may always be certain of reducing the formula,

. ; l .
Ay* - B, to one more simple, such as By* 4 ¢; at least, if
the problem is resolvible.
55. Now, in the same manner as we have reduced the
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|
formula, Ay* + B, to By* -+ ¢, we might reduce this last to

c‘z} + p, where p will be less than ¢, and so on; and as the
numbers 4, B, ¢, v, &c. form a decreasing series of integers,
it is evident that this series eannot go on to infinity, and
therefore the operation must always terminate.  If the ques-
tion admits of no solution in rational numbers, we shall
arrive at an impossible condition; but, if the question is re-
solvible, we shall always be brought to an equation like that
of Art. 53, in which one of the coeflicients, as A/, will be a
square; so that the known methods will be applicable to it:
this equation being resolved, we may, by inverting the
operation, successively resolve all the preceding equations,
up to the first ap* - 3¢° = =7,

We will illustrate this method by some examples.

56. Example 1. Let it be proposed to find a rational
value of x, such, that the formula, 74 152 + 182°, may
become a square *.

Here, we shall have ¢ = %, b = 15, ¢ = 18; and there-
fore 4c = 4 x 13, and 4" — 4ac = — 189; so that calling
the root of the square in question y, we shall have the
formula 4 x 13y* — 139, which must be a square. We
shall also have A = 4 x 138, and 3 =— 139, where it will
at onee be observed, that a is divisible by the square 4; so
that we must reject this square divisor, and simply suppose
A =18; but we must then divide the value found for » by
2, as 1s shewn, Art. 50.

Making, therefore, y = qu, we shall have the equation,
13p® -- 139¢° = z°; or, because 139 is 7 18, let us make
) = %, in order to have —139p* 4 18¢° = =2, an equation

which we may write thus, —139p* = 2° — 13¢%

We shall now make (Art. 52) z = ng — 139¢/, and must
take for » an integer number not 7 *3°, that is to say,
270 such, that »* — 18 may be divisible by 139. As-
suming now n = 41, we have #* — 13 = 1668 = 189 x 12;
so that by making the substitution, and then dividing by
—189, we shall have the equation, 7

pP= —12¢° + 2 X 41g9 — 139¢°.
Now, as —12 is not a squarc, this equation has not the

* See Chap. IV. Art, 57, of the preceding Treatise.
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requisite eonditions; since 12 is already less than 13, we
shall multiply the whole equation by —12, and it will be-

I I

come —12p¢ = (— 12¢4-41¢)*—13¢*; sothat 18¢® — 12p*
: L

must be a square; or, making % =y, 13y* — 12 must be

so too. Where, it is evident, we should only have to make

é = 1; butas we have got this value merely by chance, let
us proceed in the calculation according to our method, until
we arrive at a formula, to which the ordinary methods may
be applied. As 12 is divisible by 4, we may rejeet this
square divisor, remembering, however, that we must mul-
tiply the value of 3 by 2; we have therefore to make a

I S0 r
square of the formula 18y* — 3; or making y= o (sup-
posing 7 and s to be integers prime to each other; so that

s ® . g
the fraction 5 already reduced to its least terms, as well

as the fraction —g—), the formula 137*— 3s? must be a square.

1
Let the root be =, which gives 187°=2°+3s%; and, making
2! = ms — 134/, m being an integer not 7 %3, thatis, 27,
and such, that »* 4+ 3 may be divisible by 13. Assuming
m = G, which gives m® 43 = 89 = 13 x 3, we have, by
substituting the value of 2/, and dividing the whole equation

I
by 18, ¢ = 352 — 2 x Oss' -+ 18s%.  As the coefficient 3 of
s%is neither a square, nor less than that of s% in the pre-
ceding equation, let us make (Art. 54), s = ps' + ¢, and
substituting, we shall have the transformed equation,

I i

r* = 852 — 26 — 3p)s"s + (Bu® — 2 x Gp 4 18)s*;
and here we must determine p so, that 6 — 3y may not be
73, and it is elear that we must make p, = 2, which gives

uoo
6 — 3¢ = 0; and the equation will become ¢ = 3s* + 2,
which is evidently redueed to the form required, as the co-
cfficient of the square of one of the two indeterminate
quantities of the second side is also a square. In order to
have the most simple solution, we shall make s" = 0, ¢ =1,



544 ADDITIONS. CHAP. V.

z

) g r
and » = 1; therefore, s = p = 2, hence 3/ = 5= 1 but

we know that we must multiply the value of &/ by 2; so that
we shall have &' = 1; wherefore, tracing back the steps, we

g

obtain —2—7- =1; whence ¢ = p; and the equation

—12p=(—12¢ + 41¢)*— 13¢" will give
(—12g +41p)? =p‘-’;,
that is, —12¢ 4- 41p = p; so that 127 = 40p ; therefore,

= —]%— = 43 = %°; but as we must divide the value of y

by 2, we shall have 7 = $; which will be the root of the
given formula, 7 4 152 + 132*; so that making

7 4 15x + 132* = %?, we shall find, by resolving the
equation, that 26x 4- 15 = + Z; whenece, *+ = — 12, or

_\Vzmigllt have also taken —12¢ + 41p = — p, and

should have had y = % = % ; and, dividing by 2, y=21;
then maf{ing 7 + 152 4 182" = (21)%, we shall find
26x 4+ 15 = + 2; whence, v =— 2%, or = — 3.

If we wished to have other values of «, we should only

have to seek other solutions of the equation 7% = S.;’ + 6‘,2,
which is resolvible in general by the methods that are known ;
but when we know a single value of #, we may immediately
deduce from it all the other satisfactory values, by the
method explained in Chap. IV. of the preceding Treatisc.
57. Scholium. Suppose, in general, that the quantity

@ = bx + ca* becomes equal to a square g%, when = £ so
that we have @ + of + ¢f* = g*; thena = g* — 0f — of*;
substituting this-value in the given formula, it will become
22+ b(x —f) + e(a® — f*). Now, let us take
g + m(x — f) for the root of this quantity, (m being an in-
determinate number), and we shall have the equation,

&+ Nx —f)+ c(a®—f7) =

g° + mg(x — f) + m(x - f)
that is, expunging 2> on both sides, and then dividing
by x — f; we have

b4 c(x 4~ f) = 2ng + m(x - f);

_ fm’-’——&m +bo+c¢f

whence we find ¥ = 5=, And 1t is evident,
m*—
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on account of the indeterminate number s, that this ex-
pression of x must comprehend all the values that can be
given to @, in order to make the formula proposed a square ;
for whatever be the square number, to which this formula
may he equal, it is evident, that the root of this number may
always be represented by g 4 m(x —f), giving to m a
suitable value. So that when we have found, by the method
above explained, a single satisfactory value of a, we have
only to take it for £ and the root of the square which results

for g; and, by the preceding formula, we shall have all the

other possible values of .
In the preceding example, we found y = 3, and = —3;
so that, making g = 3, and f°= — %, we shall have
g ¢

19—-10m — 2m*
r = ———
3(n2—13) °’
which is a general expression for the rational values of =,
by which the quantity 7 + 15x 4 132* may be made a
square.
58. Example 2. Letit also be proposed to find a rational
value of 7, so that 23y* — 5 may be a square.
As 23 and 5 are not divisible by any square number,
we shall have no reduction to make. So that making

G = g, the formula 23p? — 5¢° must become a square, z?;

so that we shall have the equation 23p*® = =* + 5¢*

We shall therefore make z = ng — R3¢, and we must
take for » an integer number, not 7 %3, such, that n? -- 5
may be divisible by 23. I find n = 8, which gives
w* + 5 = 23 x 8, and this valuc of #n is the only one that
has the requisite conditions. Substituting, therefore, 8¢ —23¢/,
in the room of z, and dividing the whole equation by 23, we

shall have p* = 3¢*> — 2 x 8¢¢' + 93(]“, in which we see
that the coeflicient 8 is already less than the value of s,
which is 5, abstracting from the sign.  Art. 52.

Thus, we shall multiply the whole equation by 3, and

]
shall have 8p®* = (8¢ — 8¢')* + 5¢*; so that making
Glaelt ; .
= = 7, the formula —51° 4 3 must be a square, the co-
efficients 5 and 8 admitting of no reduction.

1 T o
Therefore, let y = T(;- and s being supposed prime to

NN
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each other, whereas ¢/ and p cannot be), and we shall have
to make a square of the quantity —5r* 4 3s%; so that

calling the root #, we shall have —5r* + 85* = 2%, and

thence —5r? = zl~ — 3s% )

We shall, therefore, take 2' = ms + 5;’, and m must be
an integer number not 73, and such, that m* — 3 may be
divisible by 5. Now, this is impossible; for we can only
take m =1, or m = 2, which gives m* — 8 =— 2, or =1.
From this, therefore, we may conclude that the problem is
not resolvible; that is to say, it is impossible for the formula
23y* — 5 ever to become a square, whatever number we
substitute for 7 *.

59. Corollary. If we had a quadratic equation, with
two unknown quantities, such as
@+ bx + ¢y + dz* + exy + fy* = 0, and it were pro-
posed to find rational values of 2 and y that would satisf}
the conditions of this equation, we might do this, when it 1s
possible, by the method already explained.

Taking the value of  in @, we have

2y +-ex + ¢ = /((c — ex)® — 4f (a4 bx 4 dx?));
or, making a = ¢ — 4duaf; B = 2 — 4f, v = * — 4df,
Uy + ex + ¢ = /(2 + Ba + ya?); the question will be
reduced to finding the values of x, that will render rational
the radical quantity +/(a 4 Bz - y2?).

60. Scholium. 1 have already considered this subject,
rather differently, in the Memoirs of the Academy of Sciences
at Berlin, for the year 1767, and, I believe, first gave a direct
method, without the necessity of trial, for solving indeter-
minate problems of the second degree. The reader, who
wishes to investigate this subject fully, may consult those
Memoirs; where he will, in particular, find new and im-
portant remarks on the investigation of such integer num-
bers as, when taken for 7, will render n* — 5 divisible by
A, A and B being given numbers.

# The impossibility of the formula 23y°*—5=z= is readily de-
monstrated : for > must be of one of the forms 4#, or 42 + 1.
In the first case, 23y2—5 is of the form 23 x4z —35,whichis the
same as 4n — 1, and this is an impossible form for square num-
bers. In the second case, 28y*—5 is of the form 23 x (4n+41)—5,
which is the same as 4n—18, or 4n—2, and this again is au im-
possible form for square numbers. Therefore, the formula
28y* — 5 = z* is always impossible. B.
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In the Memoirs for 1770, and the following years, in-
vestigations will be found on the form of divisors of the
numbers represented by 5% — Bg*; so that by the mere
form of the number a, we shall often be able to judge
of the impossibility of the equation ap* = z* — »g?, where
Ay* 4+ B = O, (Art. 52).

CHAP. VI.

Of Double and Triple Equalities.

61. We shall here say a few words on the subject of double
and triple equalities, which are much used in the analysis
of Diophantus, and for the solution of which, that great
mathematician, and his commentators, have thought it ne-
cessary to give particular rules.

When we have a formula, containing one or more un-
known quantities, to make equal to a perfect power, such as
a square, or a cube, &c. this is called, in the Diophantine
analysis, a simple equality ; and when we have two formulze,
containing the same unknown quantity, or quantities, to
make equal each to a perfect power, this is called a double
equality, and so on.

Hitherto, we have scen how to resolve simple equalities,
in which the unknown quautity does not exceed the second
degree, and the power proposed is the square.

Let us now see how double and triple equalities of the
same kind are to be managed.

62. Let us first propose this double equality,

3 ¢+ bxr=0;
© dL il =a) g
where the unknown quantity is found only in the first

degree.

Making ¢ 4 bx = t*, and ¢ + dr = u*, and expunging
x from both equations, we have ad — be = dt* — bu*;
therefore,

dt" = b + ad — be, and (dt)* = dbw® + (ad — be)d;
so that the difficulty will be reduced to finding a rational
value of %, such, that dbu® 4 ad’® — bed may become a
square. This siple equality will be resolved by the method

AN
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already explained, and knowing w, we shall likewise have
u*—c
d
If the double equality were
57 45 (0 =
cx® + dx = O,

xr =

we should only have to make x = %;, and then multiplying

both formula by the square 2, we should get these two

equalities, a + ba‘: = DO,andc + d.rl: = O, which are similar
to the preceding,

Thus, we may resolve, in general, all the double equa-
lities, in which the unknown quantity does not exceed th'e
first degree, and those in which the unknown quantity 1s
found 1 all the terms, provided it does not exceed the
second degree; but it is not the same when we have equali-
ties of this form,

a+bx + cx®= D,

a + Bx + ya* = 0.
If we resolve the first of these equalities by our method, and
call f'the value of @, which makes a 4 br - cz* = g% we
shall have, in general (Art. 57.), :

. —__ﬂni—-ng-l—b-{-cf;

mi—c

wherefore, substituting this expression of & in the other
formula; @ 4Bz + 2%, and then multiplying it by (m* — ¢)?,
we shall have to resolve the equality,

a(m® — ¢)* 4 B(m* — ¢). x (fin® — 2m 4~ b 4- ¢f)-}-
y(fm* — Qm4-b+¢f )2 = O
in which, the unknown quantity, m, rises to the fourth
degree.

Now, we have not yet any general rule for resolving
such cqualities ; and a]yl we can do 1s to find successively
different solutions, when we already know one. (Sce
Chap. IX.)

63. If we had the triple equality

ax + by
cx +dy -=n0,
ha + ky

we must make ax 4 by = £, cx + dy = u*, and
hx + A'y = S(“’,

b
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and, expunging x and y from these three equations, we
should have
(ak — bhyur — (ck — dh)t* = (ad — cb)s®;

.U d
so that, making - =% the difficulty would be reduced to

resolving the simple equality,
ak—0h , ck—dh o
ad—cb”  ad~cb™ 7’

which is evidently a case of our general method.

Having found the value of =z, we shall have » = ¢z, and

the two first equations will give
d—b* - - az’—c ,
T= dd=cb Y T ad=cb"
But if the given triple equality contained only one variable
quantity, we should then again have an equality with the
unknown quantity rising to the fourth degree.

In fact, it is evident that this case may be deduced from
the preceding, by making y = 1; so that we must have
azt—c¢ az*—ec
——>= 1 and, consequently, -———
ad—ch 3 AnC, consequenty s

Now, calling £ one of the values of =, which can satisfy
the above equality, and, in order to abridge, making
ak—0bh .

;(%j—(}—l) = ¢, we shall have, in general, (Art. 57.)
Jme— 2om +ef
mi—e 1
Then, substituting this value of z in the last equality, and
multiplying the whole of it by the square of m*—e, we shall
a( fm*—2gm+cf 2 —c(m*— ¢)*
have,
ad—cbh

known quantity, 7, evidently rises to the fourth power.

=_[O)o

T =

= D, where the un-
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CHAP. VII.

A direct and general method jfor finding all the values of'y
expressed in Integer Numbers, by which we may render
Quantities of the form +/(ay® + B), rational; A and B
being given Integer Numbers; and also for finding all
the possible Solutions, in Integer Numbers, of indeter-
minate Quadratic Equations of {wo unknown Quantities.

[APPENDIX TO CHAP. VI.]

64. Though by the method of Art. 5, general formula
may be found, containing all the rational values of y, by
which Ay* 4+ » may be made eqnal to a square; yet those
formulze are of no use, when the values of g are required to
be expressed in integer numbers : for which reason, we must
here give a particular method for resolving the question in
the case of integer numbers.

Let then ay? + 3 = a2; and as A and B are supposed to
be integer numbers, and y must also be integer, it 1s evident
that x ought likewise to be integer ; so that we shall have to
resolve, n integers, the equation 22 — ay® = . Now, I
begin by remarking, that if 3 is not divisible by a square
number, » must necessarily be prime to 83 for suppose, if
possible, that » and » have a common divisor «, so that

I
y = ay!, and 3 = as'; we shall then have 2® = Aa%° = aF,
whence 1t follows that #® must be divisible by «; and as « is
neither a square, nor divisible by any square (Zyp.), Le-
cause « is a factor of B, x must be divisible by «. Making

I I
then @ = «a', we shall have a%2° = a%ay® + a2'; or, di-

viding by «, aiﬂ‘ = ocA,'zlj‘l -+ p'; whence it is evident, that B’
must still be divisible by «, which is contrary to the hypo-
thesis.

It s only, therefore, when B contains square factors, that
2 can have a common measure with B; and it is easy to
see, from the preceding demonstration, that this common
measure of ¥ and B can only be the root of one of the square
factors of B, and that the number # must have the same
common measure ; so that the whole equation will be divisible
by the square of this common divisor of &, y, and 5.
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Hence I conclude, 1st. That if 8 is not divisible by any
square, % and B will be prime to each other.

2dly. That if B is divisible by a single square a? ¥ may
be either prime to 3, or divisible by , which makes two
cases to be separately examined. In the first case, we shall
resolve the equation 2% — Ay®> = B, supposing y and B
prime to one another ; in the second, we shall have to resolve

B
. 2 2 /ol 1 —_— 1
the equation, #* — Ay® = 8/, 8’ being = Le? Supposing also

y and B’ prime to each other; but it will then be ne-
cessary to multiply by « the values found for y and «,
in order to have values corresponding to the equation
proposed.

3dly. If B 1s divisible by two different squares, a2 and 2,
we shall have three cases to consider. In the first, we shall
resolve the equation @? — Ay* = B, considering y and B as
prime to each other. In the second, we shall likewise resolve

. a B .
the equation, £ — ay* = ®/, 8’ being = —, on the supposi-
(22

tion of  and B being prime to each other, and we shall
then multiply the values of & and y by «. In the third,
we shall resolve the equation 2* — ay* = 3", 3" being

B
2 i . e P
= g on the supposition of » and 3" being prime to each

other, and we shall then multiply the values of x and y
by 8.
y4sthly, &c.  Thus, we shall have as many different equa-
tions to resolve, as there may be different square divisors
of B; but those equations will be all of the same form,
a? — ay? = B, and y also will always be prime to B.

65. Let us therefore consider, generally, the equation
2% — Ay? = B; where y is prime to B; and, as « and y must
be integers, @* — Ay? must be divisible by n.

By the method, therefore, of Chap. IV. 48, we shall make
x=ny —3z, and shall have the equation,

(n* — A)y® — 2uBys + B%* = B, from which we perceive,
that the term, (7 — A)y?, must be divisible by s, since all
the others are so of themselves; wherefore, as % s prime to
B, (hyp.) n* — A must be divisible by B; so that making .

n*— A

= ¢, and dividing by B, we shall have,

¢y® — 2nyz 4822 =1. Now, this equation is simpler than
the one proposed, because the sccond side is equal to unity.
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We shall seck, therefore, the values of 7, which may ren-
der n* — a divisible by ; for this it will be sufficient,
(Art. 47), to try for n all the integer numbers, positive or

g B i
negative, not 7 ; and if among these we find no one
2

satisfactory, we shall at once conclude that it is impossible
for n? — A to be divisible by 3, and therefore that the given
equation is not resolvible in integer numbers.

But if, in this manner, we find one, or more satisfactory
numbers, we must take them, one after another, for 2, which
will give as many different equations, to be separately con-
sidered, cach of which will furnish one, or more solutions, of
the given question.

With regard to such values of » as would exceed that of

B . 1 ol

gs We may neglect them, because they would give no equa-

tions different from those, which will result from the values
B

of n that are not 7 -, as we have already shewn (Art. 52.)

Lastly, as the condition from which we must determine »
15, that »* -- A may be divisible by 3, it 1s evident, that each
value of 7 may be negative, as well as positive; so that it
will be sufficient to try, suecessively, for n, all the natural

numbers, that are not greater than —:;-, and then to take the
2
satisfactory values of n, both in plus and in minus.

We have elsewhere given rules for facilitating the investi-
gation of the values of n, that may have the property re-
quired, and even for finding those values & priori in a great
number of cases. See the Memoirs of Berlin for the year

1767, pages 194, and 274.

Resolution of the Equation cy* — 2nyz + Bzt =1, in
Integer Numbers.

This equation may be resolved by two different methods.
First Method.

66. As the quantities ¢, 1, B are supposed to be integer
numbers, as well as the indeterminate quantities y and z, it
is evident, that the quautity cy*— 2nyz + 2> must always be
cqual to integer numbers; consequently, unity will be its
least possible value, unless it may become 0, which can only
happen, when this quantity may be resolved into two rational

1]
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factors. As this case is attended with no difficulty, we shall
at once neglect it, and the question will be reduced to find-
ing such values of 3 and =z, as will make the quantity in
question the least possible. If the minimum is equal to
unity, we shall have the resolution of the proposed equation ;
otherwise, we shall be assured, that it admits of no solution
n integer numbers. So that the present problem falls under
the third problem of Chap. II., and admits of a similar so-
lution. Now, as we have here (21)2 — 4Bc = 4a (Art. 65),
we must make two distinct cases, according as a shall be
positive, cor negative.

First case, when n* — 3c = A 2, 0.
bl

G7. According to the method of Art. 32, we must reduce
W ”: 4 .
the fraction o taken positively, to a continued fraction ;

this may be done by the rule of Art. 4 ; then, by the formule
of Art. 10, we shall form the series of fractions converging

n .
towards o and shall have only to try, successively, the nume-

rators of those fractions for the number y, and the correspond-
ing denominators for the number 2 : if the given formula is re-
solvible in iutegers, we shall in this way find the satisfactory
values of y and z; and, conversely, we may be certain,
that 1t admits not of any solution in integer numbers, if no
satisfactory values are found among the numbers that we
have tried.

Second casc, when n* — Bc = a 7 0.

68. We shall here employ the method of Art. 38 ef scq. so
that, because £ = 4a, weshall at once consider the quantity

/
(Art. 89), @ = "E2

, in which we must determine the

sigs both of the value of n, which we have seen may be
cither positive or negative, and of /4, so that it may become
positive ; we shall then make the following calculation :

0 0 — Q%+ a/A

Q= — 1, P =c, 74 —-";J——.
I~ [ hare

; Y o )= A s —eE A

= it ol — Z e

o=t ted, Y= w -
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Q?—a —"+ v/
) i r Ul I B
Q=P +qQ, - P = 2 —_—
I > Ak f it
" e
. Q*—A — 0"+ /A
m— it ] =t 1 — =k
Q"= "P' + @7, B = o w2 - s
&e. &e. &e.

and we shall only continue these series until two correspond-
ing terms of the first and the second series appear again
together ; then, if among the terms of the second series,
?°, P, #', &e. there be found one positive, and equal to unity,
this term will give a solution of the proposed equation; and
the values of % and = will be the corresponding terms of the
two series p° p', p', &e. and ¢°, ¢/, ¢", calculated according
to the formulae of Art. 25; otherwise, we may immediately
conclude, that the given equation is not resolvible in integer
numbers. See the example of Art. 40.

Third case, when A is a square.

G9. In this case, the quantity / a will become rational,
and the quantity cy* — 2nyz + Bz? will be resolvible into
two rational factors. Indeed, this quantity is no other than

(cy — n2)* — Az
@

2
-, which, supposing A = a®, may be thrown

(e + (n + @2) (g + (n = a)2)

into this form, 2

Now, as n* — @ = ac = (n + a) x (n — a), the product
ofn + @ by » —a must be divisible by ¢; and, conse-
quently, one of these two numbersn + a, and 7 — a, must
be divisible by one of the factors of ¢, and the other by the
other factor. Let us, therefore, suppose ¢ = be, n+a=fb,
and n — a = ge, fand b being whole numbers, and the pre-
ceding quantity will become the product of these two linear
factors, ¢y & fz, and by 4 gz; therefore, since these two
factors are both integers, it is evident that their product
could not be = 1, as the given equation requires, unless
each of them were separately =4 1; we shall therefore
make cy + 2 =+ 1, and by + gz =+ 1, and by these
means we shall determine the numbers y and z.  If we find
these numbenrs integer, we shall have the solution of the equa-
tion proposed ; otherwise, it will be irresolvible, at least in
whole numbers.
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Sceond Method.

70. Let the formula ¢y® — 2nyz + 82" undergo such trans-
formations as those we have already made (Art. 54), and we
shall invariably be brought by the transformations, to an
equation, such as Lg*— 2y + x¢?, the numbers 1., 3, N, being
whole numbers, depending upon the given numbers ¢, B, 7,
so that we have M*> — LN = #2 —¢3 = A; and farther, that
2m may not be greater (abstracting from the signs) than the
number L, nor the number w, the numbers £ aud ¥ will like-
wise be integer, but depending on the indeterminate numbers
yand z.

" For example, let ¢ be less than B, and let us put the
formula in question into this form,

By? — Qny_y" + B_zlc,
making ¢ = #,and 5 = 3/; if 2r be nat greater than 8/, it
is evident that this formula will already of itself have the
requisite conditions; but if 2n be greater than ', then we
must suppose y = my + y'; and, by substitution, we
shall have the transformed formula,

1 i
py? —2ly'y + By,
where ;
g
7t —a
n' = n—mrv/, and 3" = m%B' — 2mn + B = ———

B
Now, as the number m is indeterminate, we may, by sup-
posing it an integer, take it such, that the number 7 — m»’
may not be greater than Lz/, abstracting from the sign ; then
2r' will not surpass 8. So that, if 21’ does not even exceed
", the preceding transformed formula will already be in the
case which we have seen; but iff 22/ is greater than 3", we
shall then eontinue to suppose ' = mly" + 4", which will
give this new transformation,

i , ) IHO
By® — W'y'y" + By,

where 0
. nt — A
W' =o' — w's", and 3" = m8" — 2mn + B = —5—.
B

We shall now determine the whole number !, so that
4
n' — /' may not be greater than -, by which means 2n"

will not exeeed 8" so that we shall have the required trans.
formation, if 27" does not even exceed 8"; but if 2»" exceed
8", we shall again suppose y" = w’" + v, &e. &e.
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Now, it is evident, that these operations cannot go on to
infinity ; for since 2n is greater than »/, and 22/ 1s not, 2/
will evidently be less than 2; in the same manner, 2/ is
greater than 8"y and 2n' is not, wherefore 2 will be less than
2/, and so on; so that the numbers 2, %/, 2, &c. will form a
decreasing series of integers, which of course cannot go on
toinfinity. 'We shall therefore arrive at a formula, in which
the coefficient of the middle term will not be greater than
those of the two extreme terms,and which will likewise have
the other properties already mentioned ; as is evident from
the nature of the transformations employed.

In order to facilitate the transformation of the formula,

cy® — 2myz + Ba?
into this,

LE* — QuEy + N2,
let us dencte by p the greater of the two extreme eoefficients
¢ and B, and the other coefficient by »'; and, vice versd, let
us denote by § the variable quantity, whose square shall be
found multiplied by v/, and the other variable quantity by ¢';
so that the given formula may take this form,

D62 — 2nb6' 4 Dée,

i ,
where p is less than p; then we have only to make the fol-
lowing calculation.

n nt— A
o Ui | I — — ol gl
m = W =n—mp,p =——, 8 =mf + §
D” K D' ) ‘ 2

/ ”2

n — A
[ sl o) Il i — 1 — p! "
w = —g, ' =u —mp,pl=——g , & =m0 + 8",

lll7
q n—A . .
_mlIDm’ DV = ___;___’ 6":"1”6”’ + 6",

U/
&e. &e. &e.

where it must be observed, that the sign =, which is put
after the letters m, m!, m!, &c. does not express a perfeet
equality, but only an equality as approximate as possible,
so long as we understand only integer numbers by m, /,
m', &e. 'The sign = being only employed for want of a
better. ;

These operations must be continued, until in the ‘series
n, !, ", &e. we find a term, as 7, which (abstracting from
the sign) does not exceed the half of the corresponding term,

"
7

m =—, W =n"
D
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; of the series v/, D" ”, &c. any more than the half of the
following term ve+1. Then we may make p¢ = 1, > = N,
pr+l =M, and b=, e+l =%, or pp=m, DP+tl =1,
and 8 =¢, be+1 =4¢. We must always suppose, as we
proceed, that we have taken, for a, the less of the two num-
bers p;, pe+ 1,
71. The equation, cy® — 2nyz+p2* = 1, will therefore be
reduced to this,
LE — 28B4 mdt =1,

where N2 — LM = A, and where 2 is neither 7 1, nor 7m,
(abstracting from the signs). Now, M being the less of the
two coefficients v and a1, let us multiply the whole of the
equation by the coefficient »1; and making

v = My — NE,
it 1s evident, that it will be changed into

v2 — AL = M,
in which we must make a distinction between the two cases
of A positive, and a negative.

1st. Let Ao be negative, and =— a (a¢ being a positive

number), the equation will then be

v? 4 af® =M.
Now, as N* — LM = A, we shall have @ = LM — N?; whence

. . . 2 .

we immediately perceive, that the nnmbers 1. and M must
have the same signs ; otherwise, 2 can neither be 7 ., nor

] LM
7 M ; wherefore N* will not be 7 ——; therefore, @ =, or

7 3L ; and since M is supposed to be less than L, or at least
not greater than 1, we shall have, 4 fortiori, a =, or

da "
g and M £ £ Va.

Hence, we see that the equation, v? + «£* = a1, could not
exist on the supposition of v and £ being whole numbers,
unless we made ¢ = 0, and v* = u, which requires » to be a
square number.

Let us, therefore, suppose m = p*, and we shall have
£ = 0, v = + p, wherefore, from the equation, v = — NE,

7 3x*; whence m =, or £

1
we shall have w’¥ = + u, and, consequently, ¢ = + 5—/'; S0

that ¢ cannot be a whole number, as it ought, by the
hypothesis, unless w be equal to unity, or =+ 1, and, con-
sequently, s = 1.

Hence, therefore, we may infer, that the given equation is
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not resol\fib]e in integers, unless M be found equal to unity,
and positive. If this condition takes place, then we make
t =0,y =+=11,and go back from these values to these of

and .

This method is founded on the same principles as that of
Art. 67; but it has the advantage of not requiring any
trial.

2dly. Let a be now a positive number, and we shall have

LT
A=N?—LM. Andas N? cannotbe greater than 7 it 1s evi-

dent that the equation cannot subsist, unless — Ly be a
positive number ; that is to say, unless L and m have con-
trary signs. Thus, o will necessarily be /— Ly, or at
farthest = — 11, if ¥ = 0; so that we shall have ~ Lm =,
or £ a; and, consequently, M® =, or £ A, or M =, or
£ A/ A

The case of M = ./ A cannot take place, except when 4
is a square; consequently, this case may be easily resolved
by the method already given, (Art. 69).

There remains, now, only the case in which A is not a

square, and in which we shall necessarily have M £ v/ &
(abstracting from the sign of a); then the equation,
v* — A§® = M, will come under the case of the theorem, Art.
38, and may therefore be resolved by the method there ex-
plained. .

Hence, we have only to make the following calculation :

Q" =0, Pl =1, @ L VA
] 1 e 2 1 —a'— /A
Q = w, 1 =@ = A w L 5
i, ;
QU —A —Q'+ VA
0 — el ! - 117 N
Q' =P + Q, e o A4 v
n
9 i
Q°—A —Q"— /A
] " " — 7 =
Q"= w'r' +a, == pt L PR
&e. &e. &e.

continuing it until two corresponding terms of the first and
second series appear again together; or until in the series
P, P!, P, &c. there be found a term equal to unity, and
positive; that is to say, = #°: for then all the succeeding
terms will return in the same order in each of the three series
(Art. 87). If in the series ¥, P!, ?", &e. there be found a
term equal to », we shall have the resolution of the given
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equation ; for we shall only have to take, for v and £, the cor-
responding terms of the series p/, I, Gl G G e
calculated according to the formulw of Art. 25; and we may
cven find an infinite number of satisfactory values forvand £,
by continuing the same series to infinity.

Now, as soon as we know two values of v and g, we shall
have, from the equation, v = M — X, that of {, which will
also be a whole number; then we may go back from these
values of ¢ and , that is to say, of fe+1, and 9, to those of
9 and 9, or of y and z (Art. 70).

But if in the series P/, », ", &c. there is no term = i,
we are sure that the equation proposed admits of no solution
in whole numbers.

It is proper to observe, that, as the series »°, ¥, ', &c. as
well as the two others, @°, @, @, &c. and , @/, p, &c. de-
pend only on the number A; the calculation, once made for
a given value of 4, will serve for all the equations in which
A, or #* — cB, shall have the same value; and hence the
foregoing method is preferable to that of Art. 68, which
requires a new calculation for each equation.

Lastly, so long as a does not exceed 100, we may make
use of the Table given, Art. 41, which contains for each
radical ./ a, the values of the terms of the two series »°,
— ¢, ¢, —»" &c. and p, ¢, p', &c. continued, until one
of the terms p', »’, P, &c. becomes = 1; after which, all
the succeeding terms of both series return in the same order.
So that, by means of this Table, we may judge, immediately,
whether the equation, v?2 — a£* = M, be resolvible, or not.

Of the manner of finding all the possible solutions of the
equation, cy*— 2uyz + 87* = 1, when we know only one
of them.

72. Though, by the methods just given, we may suc-
cessively find all the solutions of ‘this equation, when it is
resolvible in integer numbers; yet this may be done, in a
manner still more simple, as follows:

Call p and ¢ the values found for g and z; so that we have

op® — Q;n])g +3g°=1,

and take two other whole numbers, 7 and s, such, that

ps — gr = 1; which is always possible, because p and ¢ are

necessarily prime to each other; then suppose
y = pt + ru, and z = g¢ 4+ su,
¢ and % being two new indeterminate numbers ; substituting
these expressions in the equation,
cyf — 2myz + Bt =1,
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and, 1n order to abridge, making

P = cp? — 2pqg + BGY,
‘Q=cpr —n(ps + qr) + Bgs,
R = 7® —.2nrs + BS®
we shall have the equation transformed into this, -
Pt* + 2tu + ru® = 1.

Now we have, by hypothesis, p = 1; farther, if we
call o and ¢, two values of » and s that satisfy the equation,
ps — gr = 1, we shall have, in general, (Art. 42),

r=g¢--mp,s = o+ mgq,
m being any whole number ; therefore, putting these values
mto the expression of @, it will become

Q = ¢pg — n( po 4 q¢) - Bgo -} mr;
so that, as » = 1, we may make @ = 0, by taking
m = — cpg + n(pe - o) — Bgo.

We now observe, that the value of @2— pu is reduced
(after the above substitutions and reductions), to this;

(r* — cB) x (ps-— gr)*; sothat as ps — gr = 1, we shall
have @* — PR = n* — cB = a ; therefore, making p =1,
and @ = 0, we shall have — rR = A, that is, R = — A3 =0
that the equation before transformed will become 2 — au>=1.
Now, as y, z, p, ¢, r, and s are whole numbers, by the
hypothesis, it is easy to perceive, that ¢ and » will also be
whole numbers ; for, deducing their values from the equa-
tions, y = pt + ru, and = = ¢t + su, we have

t=Y 72, and o = YL IM;

pS—qr gr—ps

that is to say, (because ps — gr = 1), ¢ = sy —rs, and
u=pz — qy.

We shail therefore only have to resolve, in whole numbers,
the equation # — aw* = 1, and each value of ¢ and « will
give new values of y and =.

For, substituting the value of the number m, already
found, in the general values of » and s, we shall have

r =1 = cp*) — Bpgo + np(po + ¢o),
s = o(l — Bg*) — cpgo + ng(pe + q¢) 3
or, because cp® — 2upg + Bg* =1,
7 = (Bg —np) x (g¢ — pr) =—Bq + up,
= (ep —nq) x (pr— ) = cr = ng.
Therefore, putting these values of » and s in the fore-
going expressions of 7 and z, we shall have, in general,

%
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y = pt — (Bg — np)u,
2 = qi 4 (cp — nq)u.

73. The whole therefore is reduced to resolving the
equation #* — auw' =

Now, 1st, if 4 be a negative number, it is evident, that
this equation cannot subsist, in whole numbers, except by
making « = 0, and ¢ = 1, which would give y = p, and |
z=¢. Whence we may conclude that, m the case of a
being a negative number, the proposed equation,

cy® — 2nyz 4 B2 =1,
can never admit but of one solution in whole numbers.

The case would be the same, if A were a positive square
number; for making a = @* we should have
(¢ + au) X (¢t — au) = 1; wherefore, {4 aw =+ 1, and
t — aw =+ 1; wherefore, 2au = 0, v = 0, and conse-
quently ¢ = + 1.

2dly. But if A be a positive number, not square, then the
equation, #° — Aw® = 1, is always capable of an infinite
number of solutions, in whole numbers, (Art. 87), which
may be found by the formulee already given (Art. 71); but
it will be sufficient to find the least values of ¢ and u; and,
for this purpose, as soon as we have arrived, in the series
¥, p, p", &ec. at a term equal to unity, we shall have only to
calculate, by the formule of Art. 25, the corresponding terms
of the two series p/, p', p", &ec. and ¢/, ¢", ¢", &e. for these
will be the values required of ¢ and #.  Whence it is evident,
that the same calculation made for resolving the equation
v — af* = M, will serve also for the equation

2 — an® = 1.

Provided that o does not exceed 100, we have the least
values of ¢ and « calculated i the Table, at the end of
Chap. VII. of the preceding Treatise, and in which the
numbers @, m, n, are the same as those thuat are here called
A, ¢ and w.

4. Let us denote by 7, #/, the least values of ¢, u, in the
eqnation #* — Au®*=1; and in the same manner as these
values may serve to find new values of y and 2, in the equa-
tion, ¢y® — Qnyz + Bz? = 1, so they will likewise serve for
finding new values of ¢ and #« in the equation #* — an* = 1,
which 1s only a particular case of the former. For this pur-
pose, we shall only have to suppose ¢ = 1, and n = 0, which
gives — B = A, and then take ¢, u, instead of ¥, 2, and ¢, o/,
mstead of p, g. Making these substitutions, therefore,-n
the general expressions of y-and z (Art. 72), and farther,
putting T, v, instead of #, «, we shall have, generally,

00
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t=r1f + avi,
u = 1 + v,
and, for the determination of T and v, we shall have the

equation T* — Av® = 1, which is similar to the one proFosed.
Thus, we may suppose T = #, and v = «/, which will give

] ]
t =+ aut, u =8l .
Calling ¢, 2" the second values of # and u, we shall have

i |
=1t + aw?, o = 2.
Now, it is evident, that we may take these new values #',
", instead of the first #, «/ ; so that we shall have
¢t =1t + ava,
w = Tu + vt',
where we may again suppose T = #, v = «/, which will give
t =8 + avd", w = " + Y.
Thus, we shall have new values of ¢ and «, which will be

0 4 1
=" + A = t(¢* + Bau?),

Wl =t + W' = ul(géc i Azlﬂ),
and so on.

75. The foregoing method only enables us to find the
values ¢, #", &c. o, w", &e. successively; let us now con-
sider how this investigation may be generalised. We have first,

t =18 + Avdd, u = TU + V3
whence this combination,
ttuv/a=({ £ ~/a) X (T £V A);
then supposing T = ¢, and v = #/, we shall have
Mt VA= (4 d VA
Let us now substitute these values of # and ¢, instead of
those of ¢ and #/, and we shall have
ttu/a=( +u A} x(T+VA),
where, again making T = ¢, and v = %/, and calling #", ",
the resulting values of ¢ and w, there will arise
tIH i ’NW x/A = (t’ i_ ’ul \/ A)a.
In the same manner, we shall find
tivi uiv VA= (tl ._.t w ~/ A)‘,
and so on.

Hence, in order to simplify, if 'we now call T and v the

first and the least values of ¢, «, which we before called #, #/,
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we shall have, in general,
PRy BV AT
m being any positive whole number; whence, on account of
the ambiguity of the signs, we derive
, vV +(T—Vy/A)"
D
(v /A" —(T—v /A)"
L. D ’

Though these expressions appear under an irrational form,
it is easy to see that they will become rational, if we mvolve
the powers of T + v 4/ 43 for it is well known that

m(m —1
(T i v 3/ A)m — 1 )."T”'—IV \/ A + ( 2 )Tm—QvQA
m(m—1)x (m—2 L
il “'o)x 3( Janrvsn /4 4, e
Wherefore,

_]_)

mym
t = n = __( = ATm—:’ZVZ
~

— ) - :
+m(m 1) x (m—2) x (m i’ﬁAsz_w{ L &,

2x3 x4
= —2
uw = mr"" v + @Sﬂ_z)lz(x%__,_) AT—IyS
m(m—1) x (m—2) x (m—3)x (m—4
() ¢ (1= (18X ) s 1,

Where we may take for m any positive whole numbers
whatever.

It is evident that, by successively making m = 1, 2, 3, 4,
&c. we shall have values of # and #, that will go on increasing.

I shall now shew that, in this manner, we may obtain all
the possible vaiues of ¢ and u, provided T anc{ v are the
least of them. Tor this purpose, it is sufficient to prove,
that between the values of # and u, which answer to m, any
number whatever, and those which would answer to the
number, m + 1, it is impossible to find any intermediate
values, that will satisfy the equation #* — au® = 1.

For example, let us make the values ¢", 1", which result
from the supposition of 7 = 8, and the values ¢, «'¥, which
vesult from the supposition of m = 4, and let us suppose it
possible that there are other intermediate values, § and v,

which would likewise satisfy the equation * — an* = 1.
002
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: wooow v
Since we have #2— aw* = 1, # —au® = 1, and *—av*=1,

i v iv
we shall have 6* — #* = A(s* — ;izl"), and # — §2 = A(ur—v?);
whence we see that, if 6 7" and £ ¢¥, we shall also have
v7u" and 2. Farther, we shall also have these other
values of ¢ and w3 namely, ¢ = 8% — ave®, u = §u — vt¥,
which will satisfy the same equation, #* — au* = 1; for, by
substitution, we shall have

(667 — Ave®)® — AQEY— G = (B — av®) X (F—ar))=1,

iv iv
an identical equation, because 02 — av* =1, and £ — au2=1
(hyp.). Now, these two last equations give

f —va/a= >and &Y — 2y A = -

1
6+v/a 4wV /A’
hence, substituting instead of 6, in the expression,
% = fuv — v,

; and, instead of ¢, the quan-

. 1
the quantity vv/a + 7o va
A

. . 1
tity @ A + FEEWPvI we shall have

iV v
T h4u/ A V4w A
In the same manner, if we consider the quantity £ — /£,

w

. = ) W .
it may likewise, on account of ¢2— au?=1, be put into the
WiV 2"

form, VI VN + B tur A

Now, it is easy to perceive, that the preceding quantity
must be less than this, because § 7¢", and v 7 " ; therefore,
we shall have a value of 2, which will be less than the quan-
tity "¢V — 2"t ; but this quantity is equal to v; for
(T+ v VAP (T—v /a)

M =

Q b
-_ (T+Vva/ Ay (T —va/a)t
= G s
. (T+vaAP—(T=vy/ a)
i 2./ L
4 (e 4

UV = (v — (1= v , whence,

3NN
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th' — vl =
(T—=v /AP X(T+V /A) ~(T—V /A X (T4 V 1/A)?
2 \/A ‘
Farther, (1 — vy/A) X (T + v&/A)? = (12 — av?p = 1,
since T2 — Av? = 1, by hypothesis ; whence
(T = vvAa)P x (T + va/a)* =1 + vy/a,and
(T — v/AP X (T 4+ VAP =T — VA3
so that the value of #"'v — 2"¢" will be reduced to
Av /A i
2.A

It would follow from this, that we should have a value of
u /v, which is contrary to the hypothesis; since v is sup-
posed to be the least possible value of . 'There canno,
therefore, be any intermediate values of ¢ and u between
these, #", #v, ami, ", . And, as this reasoning may be
applied, in general, to all the values of ¢ and u, which would
result from the above formule, by making m equal to any
whole number, we may infer, that those formulae actually
contain all the possible values of ¢ and .

It 1s unnecessary to observe, that the valucs of ¢ and «
may be taken either positive, or negative ; for this is evident
from the equation itself, 22 — ax? = 1.

= \,

Of the manner of finding all the possible Solutions, in whole
numbers, of indeterminate Quadratic Equations of" two
unknown quantitics.

76. The methods, which we have just explained, are suf-
ficient for the complete solution of equations of the form
Ay® + B = a%; but we may have to resolve equations of a
more complicated form: for which reason, it 1s proper to
shew how such solutions are to be obtained.

Let there be proposed the equation

ar® 4 brs + ¢t + dr +es +f=o,
where a, b, ¢, d, ¢, f; arc given whole numbers, and »
and s are two unknown numbers, that must likewise be
integer.

I shall first have, by the common solution,

Qr + bs + d =/ ((bs + d)? — 4a(es® + es +d) ),
whence we see, that the difficulty is reduced to making
(bs + d)® — 4a(es® + ¢s + d) a square.

In order to simplify, let us suppose
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b? — 4ac = a,

bd — Qae = g,

& — daf = bk,
and As® 4 2gs 4 & must be a square; representing this
square by 2% in order that we may have the equation,

As® 4 Qos 4-h = 32,
and taking the value of y, we shall have
As -8 = /(ay® + g% — AD);

so that we shall only have to make a square of the formula,
AY® + o° — ah.

If, therefore, we also make g* — A% = B, we shall have to
render rational the radical quantity, 1/(ay® - 8); which we
may do by the known methods.

Let 4/ (Ay® 4~ B) = , so that the equation to be resolved
may be ay® + B = 22; we shall then have as + g = + .
Now, we already have 2ar + bs + d = + y; so that, when
we have found the values of # and g, we shall have those of
r and s, by the two equations,

- *x-g  dy-—d-bs
2=Soye > T 2 ’

Now, as 7 and s must be whole numbers, 1t is evident,
1st, that 2 and y must be whole numbers likewise; 2dly,
that 4+ 2 — o must be divisible by 4, and + y — d — bs
by 2a. Thus, after having found all the possible values of
x and 7, in whole numbers, it will still remain to find those
among them that will render » and s whole numbers. If a
1s a negative number, or a positive square number, we have
seen that the number of possible solutions in whole num-
bers is always limited ; so that in these cases, we shall only
have to try, successively, for a and ¥, the values found ; and
if we meet with none that give whole numbers for » and s,
we conclude that the proposed equation admits of no solution
of this kind.

There is no difficulty, therefore, but in the case of 4 being
a positive number, not a square; in which we have seen,
that the number of possible solutions in whole numbers may
be infinite. In this case, as we should have an infinite
number of values to try, we could never judge of the sol-
vibility of the proposed 'equ;ltion, without having a rule, by
which the trial may be reduced within certain limits. This
we shall now investigate.

77. Since we have (Art. 65), x = ny — Bz, and (Art.72),
Y =pt — (89 — np)u, and = = gt + (cp — nq)u, it 1s easy
to perceive, that the general expressions of 7 and s will take
this form,
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at+Buty _ dt+Buty

e TS = F—

a, B, v, 0, oy B, ¥, ¥, being known whole numbers, and ¢,
u, being given by the formule of Art. 75, in which the ex-
ponent m may be any positive whole number; thus, the
question is reduced to finding what value we must give
to m, in order that the values of » and s may be whole
numbers.

78. I observe, first, that it 1s always possible to find a
value of #« divisible by any given number, 4 ; for, sup-
posing % = Aw, the equation, #* — auw® =1, will become
t* — A A%® = 1, which 1s always resolvible in whole numn-
bers; and we shall find the least values of ¢ and w, by
making the same calculation as before, only taking A a2,
instead of A. Now, as these values also satisfy the equation
2 — aw? = 1, they will necessarily he contained in the
formulee of Art.75. Thus, we shall necessarily have a
value of m, which will make the expression of « divisible
by a.

Let us denote this value of m by w, and I say that, if we
make m = 2u, in the general expressions of ¢ and  of the
Article just quoted, the value of % will be divisible by A ;
and that of ¢ being divided by a will give 1 for a re-
mainder.

For, if we express by ' and v/ the values of ¢ and 1w,
in which m = , and by 1”7 and v’ those in which m == 2p,
we shall have (Art. 75),

T + vi/a = (T + va/a)#, and

A" + vy/A = (v + v4/a)2e; therefore,

(z' v va)y= (1" v /a),
that is to say, comparing the rational part of the first side
with the rational part of the second, and the irrational with
the irrational,

i i
™ = 1% 4 Av?, and v = 21'V/;
hence, since v' is divisible by a, v" will be so likewise; and

)
1! will leave the same remainder that T2 would leave; but
i i i .
we have 1 — av® = 1 (hyp.), therefore T2 — 1 must be di-
' .
visible by a, and even by a2, since v2 is so already ; where-

I . . . .« .
fore, 1%, and, consequently, 1" likewise, being divided by 4,
will leave the remainder 1.
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Now, 1 say that the values of ¢ and u, which answer to
any exponent whatever, m, being divided by a, will leave
the same remainders as the values of ¢ and 2, which would

answer to the exponent m - 2u. For, denoting these last
by 6 and v, we shall have,

t 4+ uva = (r + vy A" and

§ 4+ v/Aa = (T + va/a)m+2e; wherefore,

6+ va/a = (¢ + ua/a) X (T £+ v/a)2,
but we have just before found

! 4 VA = (¢ & va/a)2;
whence we shall have

§ + vi/Aa = (¢ + u/A) X (" & vIva);
then, by multiplying and comparing the rational parts, and
the irrational parts, respectively, we derive

0 = ¢! + Awv', v = V! + w7,

Now, v"1s divisible by a, and 1" leaves the remainder 1;
therefore 9 will leave the same remainder as ¢, and v the
same remainder as .

In general, therefore, the remainders of the values of ¢
and u, corresponding to the exponents m + 2u, m + 4u,
m + Op, &ec. will be the same as those of the values, which
correspond to any exponent whatever, m.

Hence, therefore, we may conclude, that, if we wish to
have the remainders arising from the division of the terms
¢, ¢, 8", &e. and o, ', ", &e. which correspond to m =1,
2, 3, &c. by the number 4, it will be sufficient to find these
remainders as far as the terms #2# and %2« inclusive; for,
after these terms, the same remainders will return in the
same order; and so on to infinity.

With regard to the terms #2+ and w2z, at which we may
stop, one of them w2~ will be exactly divisible by a, and the
other #2# will leave unity for a remainder; so that we shall
only have to continue the divisions until we arrive at the re-
mainders 1 and 0; we may then be sure that the succeeding
terms will always give a repetition of the same remainders
as those we have already found.

We might also find the exponent, 2u, @ prioré; for we
should only have to perform the calculation peinted out,
Art. 71, in the first place, for the number 4, and then for
the number 4 a%; and if # be the rank of the term of the
series P, P, p", &c. which, in the first case, will be =1,
and ¢ the rank of the term that will be =1, in the second
case, we shall only have to scek the smallest nultiple of
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and ¢, which being divided by =, will give the required
value of w.

Thus, for example, if we have A =6, and A = 8, we
shall find for the radical /6, in the Table of Art. 41,

P’=1,72 =— 2, p" = 1; therefore, = 2. Then we shall
find, in the same Table, for-the radical /(6 x 9) = 454,
1)0:1, P":-"- . 5’ P" :_9’ PHI: _Q, I,iv___. 9’ PV = — 5,

p¥ = 1; and hence ¢ = 6. Now, the least multiple of 2
and 6 is 6, which being divided by 2 gives the remainder 8
so that we shall here have w = 8, and 2w = 6.

Therefore, in order to have, in this case, all the remainders
of the division of the terms #, ¢, #", &c. and o/, o, 4",
&e. by 3, it will be sufficient to find those of the six leading
terms of each servies; for the succeeding terms will always
give a repetition of the same remainders: that is to say,
the seventh terms will give the same remainders as the
first, the eighth terms, the same as the second ; and so on to
infinty.

Lastly, the terms ¢+ and 2+ may sometimes happen to
have the same properties as the terms #2¢ and u2+; that is
to say, w# may be divisible by a, and ¢+ may leave unity
for a remainder. In such cases, we may stop at these very
terms; for the remainders of the succeeding terms, fx+1,
te+2, &c. us+l, uet+2, &e. will be the same as those of the
terms #, ¢, &e. o, 2", &e. and so of the others.

In general, we shall denote by M the least value of the
exponent o, that will render £ — 1, and %, divisible by a.

79. Let us now suppose that we have any expression
whatever, composed of ¢ and #, and given whole numbers,
so that it may always represent whole numbers; and that 1t
is required to find the values; which must be given to the ex-
ponent a2, in order that this expression may become divisible
by any given number whatever, a : we shall only have to
make, successively, m = 1, 2, 8, &e. as far as a3 and if
none of these suppositions render the given expression di-
visible by a, we may conclude, with certainty, that it can
never become so, whatever values we give to m.

Butif in this manner we find one, or more values of m,
which render the given expression divisible by A, then calling
each of these values n, all the values of m that can possibly
do the same, will be ~, N~ + M, N + 2m, N + S, &ec.
and, in general, N + Am; 2 being any whole number
whatever.

In the same manner, if we had another expression com-
posed likewise of ¢, %, and given whole numbers, and, at the
same time, divisible by any other given number whatever,
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a'y we should in like manner seek the corresponding values
of M and N, which we shall here express by »' and W/, and
all the values of the exponent m, that will satisfy the con-
dition proposed, will be contained in the formula N' + A'M';
Al being any whole number whatever. So that we shall
only have to seek the values, which we must give to the
whole numbers A and A, in order that we may have

N+ aM = N + Mm, or MA — MmN =N — N,
an equation resolvible by the method of Art. 42.

It is easy to apply what we have just now said to the
case of Art. 77, where the given expressions have the form,
at + Bu + v, @'t + f'u + o', and the divisors are ¢ and §'.

We must only recollect to take the numbers ¢ and #, suc-
cessively, positive and negative, in order to haveall the cases
that are possible.

80. Scholium If the equation proposed for resolution, in
whole numbers, were of the form

ar? - 2brs - ¢s* = f,

we might immediately apply to it the method of Art. 65;
for, 1st, it is evident that 7 and s could have no common di-
visor, unless the number /" were at the same time divisible
by the square of that divisor; so that we may always reduce
the question to the case, in which » and s shall be prime to
each other. 2dly, It is evident, also, that s and_fcould have
no common divisor, unless that divisor were one also of the
number @, supposing » prime to s; so that we may also
reduce the question to the case, in which s and f'shall be
prime to each other. (See Art. 64).

Now, s being supposed prime to f; and to r, we may
make » = ns —_f%; and, in order that the equation may be
resolvible in whole numbers, there must be a value of n,

positive or negative, not greater than -, which may render
~

the quantity an® + 2bn 4 ¢ divisible by £ This value
being substituted for n, the whole equation will become
divisible by £, and will be found reduced to the case of Art.
66, et scq.

It is easy to perceive, that the same method may serve for
reducing every equation of the form,

ar™ - brvg 4 erm's* -, &c. - ks = f,

a, b, ¢, &c. being given whole numbers, and 7 and s béing
two indeterminate numbers, -which must likewise be in-
tegers, 1n another similar equation, but in which the whole
known term is unity, and then we may apply to it the
general method of Art. 2. See the Scholium of Art. 30,
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81. Example 1. Let it be proposed to render rational
the quantity, +/(30 + 62s — 7s%), by taking only whole
numbers for s.

We shall here have to resolve this equation,

30 + 62s — Ts* = 12,

which being multiplied by 7, may be put into this form,

7 x 80 4+ (31): — (s — 31)* = Ty?,
or, making 7s — 81 = «, and transposing,

x? = 1171 — 7%, or a® + Ty = 1171.

This equation now comes under the case of Art. 64; so that
we shall have A =-- 7, and 3 = 1171, from which we in-
stantly perceive, that ¥ and B must be prime to each other,
since this last number contains no square factor.

According to the methed of Art. 65, we shall make
r =ny — 117lz; and, in order that the equation may be
resolvible, we must find for » a positive, or negative integer,

B !
not 7 5 that is, not 7 580, such that »2 — a, or n* + 17,

may be divisible by B, or by 1171.

1 find 2 = 4 821, which givesu#® + 7 = 1171 x 88; so
that I substitute, in the preceding equation, +321y—1171z,
instead of #; by which means, the whole is now divisible by
1171, and when the division is performed, it becomes

88y* T 642y=2 + 117122 = 1.

In order to resolve this equation, I shall employ the
second method, explained in Art. 70, because it is in fact
simpler and more convenient than the first. Now, as the
coefficient of #* is less than that of 2%, we shall here have
p = 1171, o' = 88, and n = + 321; wherefore retaining,
for the sake of simplifying, the letter y, instead of §, and
putting ¥/, instead of z, I shall make the following cal-
culation, first supposing n = 321;

m = 33 =4, n =821 — 4 x 8§88 =— 31,

3147 ,

ol — — =11, y = 49 + 7',
—31

m = = =—3, n'=-8143 x 11 =2,
447

o = ~r = L, o =-39%"+9"

=2 =9 M=2—-2x1=0,

Div —_ _Z_ — '7, " ,1/” — lell 4 yiv.
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" iv
Since 2 = 0, and consequently £, and £ %—, we shall
here stop, and make p"=m=1, DV=1="%, 2=0=x, and
y" =&,y = ¥, because 0" is £ DV,

I now observe, that a being =—%, and consequently
negative, in order that the equation may be resolvible, we
must have m = 1, as we have just now found; so that we
may eonclude, that the resolution is possible. We shall
therefore suppose £ = 3" = 0,y = »¥ = +1; and we shall
have, from the foregoing formule,

yYy=x1,y=F8=2y=F12+1=7F 11,
the doubtful signs being arbitrary. Therefore,
x = 321y — 1171z = F 18; and, consequently,
oo TESl_SIFI8 .. . _
7 7 e
Now, as the value of s 1s required to be a whole number, we
can only take s = 7.

It 1s remarkable, that the other value of s, namely 13,
although fractional, gives nevertheless a whole number for
the value of the radical, /(80 + 62s — 7s?*), and the same
number, 11, which the value s = 7 gives; so that these two
values of s will be the roots of the equation,

30 4+ 62s — 7s* = 121,

We have supposed n = 321. Now, we may likewise
make n = — 821 ; but it is easy to foresee, that the whole
change that would result from it, in the preceding formule,
would be a change of the sign of the values of m, m/, /", and of
7', 2/, by which means the values of ¢/, and of 7, will
also have different signs; we should not therefore have
any new result, since these values already have the doubtful
sign =+,

It will be the same n all other eases; so that we need not
take the value of n, successively, positive and negative.

The value s = 7, which we have just found, results from
the value of » = + 321: and we may find other values of s,
if we have found other values of 2 having the requisite con-
dition ; but, as the divisor 3 = 1171, is a prime number,
there can be no other values of », with the same property,
as we have elsewhere demonstrated *, whenee we must con-
elude, that the number 7 1s the only one that satisfies the
question. : '

* Memoirs of Berlin, for the year 1767, page 19t.
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The preceding problem may be resolved more ecasily by
mere trial; for when we have arrived at the equation,
a* = 1171 — Ty?, we shall only have to try, for y, all the
whole numbers, whose squares multiplied by 7 do not exceed
1171 ; that is to say, all the numbers 2 *17* £13.

It is the same with all the equations, in which A is a ne-
gative number; for when we are brought to the equation,
a® = B + Ay®, where making A = — «, and 2* =3 — ay?,
it is cvident, that the satisfactory values of g, if there are

B
any, can only be found among the numbers, £ »/—.  So
a

that I have not given particular methods for the case of A
negative, only because these methods are intimately con-
nected with those concerning the case of A positive, and
because all these methods, being so nearly alike, reciprocally
illustrate and confirm each other.

82. Example 2. Let us now give some examples for
the case of A positive, and let it be proposed to find all the
whole numbers, which we may take for y, in order that the
radical quantity, +/(13y* + 101), may become rational.

Here, we shall have (Art. 64), a = 13, 8 = 101; and
the equation to be resolved in integers will be,

a* — 13y* = 101, in which, because 101 is not divisible by
any square, 7 must be prime to 101.

We shall therefore make (Art. 65), x = ny — 101z, and
n? — 13 must be divisible by 101, taking 2 2 *3* £ 51.

I find »n = 85, which gives n* = 1225, and

n® — 19 = 1212 = 101 x 12;

so that we may take » = + 85, and substituting

+ 35y — 101z, instead of x, we shall have an equation
wholly divisible by 101, which, after the division, will be
124% + T0yz + 101=* = 1.

In order to resolve this equation, let us also employ the
method of Article 70; let us make o' =12, p = 101,
n == 35; but, instead of the letter 4, we shall preserve the
letter , and shall only change = into ¥/, as in the preceding
example.

Ist. If n = 85, we shall make the following calculation :

m=3L=28, W=8—-8x12=~—1,

ol =

12 S 13 g = 3.y'+.yn7
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m’:_—lzl, W=-1+1=0,

-13

—~ =18 y=4+4"

it
_ o ol
As n' = 0, and, consequently, £—-, and £ 5o e shall

stop here, and shall have the transformed equation,
Wil i 0o
py? — 2y"y" + vy = 1, or 13y — y* =1;

]
which being reduced to the form, * —13y" =1, will admit
of the method of Art. 71; and, as A = 15 1s £ 100, we may
make use of the Table, Art. 41.

Thus, we shall only have to see, whether, in the upper
series of numbers belonging to ,/18, there be found the
number 1 in an even place; for, in order that the preceding
equation may be resolvible, we must find in the series v°, 1/,
o, &c. a term = — 1; but we have P° =1, — ' = 4,
P = 8, &e. wherefore, &c. Now, in the series 1, 4, 3, 3,
4,1, &c. we find 1in the sixth place; so that p¥= — 1
and hence we shall have a solution of the given equation,
by taking 3" = p*, and y' = ¢", the numbers p", ¢", being
caleulated according to the formulae of Article 25, giving to
fy gy uly &ec. the values 8, 1, 1, 1, 1, 6, &c. which form
the lower series of numbers belonging to 413 in the same

Table.

We shall therefore have

p° =1 pr=p"+p’'=11 ¢' =1

p=8 pr=phi4p=18 ¢"=q¢"4+q¢ =2

Pl = P+ p= 4 ¢@=0 '=q"+¢'=85

PU’:T)” +1}/ _ '7 , g! — 1 qv :qw + g'N: 5_
So that %" = 18, an 3! = 5; therefore,

Y =y +y" = 28, and y = 8y - o = T4
We have supposed 2 = 85; but we may also take
n =— 35.
Let therefore n = — 35, we shall make

—35
m:_léfz_s, W=—854+8x12=1,
—183 :
DH:}___ =—n" y:——sty!—{-y",
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= —=-=1, W=1-—1=0,

" — __ng 2 79} y=—g +y"
Thus, we have the same values of 0", 0", and 2", as before;
so that the transformed equation in ', and 2", will likewisc
be the same.

We shall, therefore, have also %" =18, and %' = 5;
wherefore, y'= —3/'-+9/' =13, and y=—38y/'}+4"= — 34,

So that we have found two values of y, with the cor-
responding values of g/, or z; and these values result from
the supposition of n=T 35. Now, as we cannot find any-
other value of n, with the requisite conditions, it follows that
the preceding values will be the only primitive values that
we can have; but we may then find from them an infinite
number of derivative values by the method of Art. 72.

Taking, therefore, these values of y and z for p and ¢,
we shall have, in general, by the same Article,

y = T4 — (101 x 28 — 35 x T4)u = T4t 4 267u

=23t 4+ (12 x T4 —35 x 23)u = 23¢t - 83u; or

=— 84 — (101 x 13 — 85 x 34)u =— 34¢ — 12%u
= 13+ (—12x84+85x 18)u= 18+ 47u;

and we shall only have farther to deduce the values of ¢
and % from the equation, £ — 184> = 1. Now, all these
values may be found already calculated in the Table at the
end of Chap. VII. of the preceding Treatise: we shall
therefore immediately have ¢ = 649, and « = 180 so that
taking these values for T and v, in the formula of Art. 75,
we shall have, in general,

L (649 + 180 /13)" 4 (649 — 1804/ 13)"
i o)

~

_ (6494180 /18" —(649—180 v13)"
= 2v13 ’
where we may give to m whatever value we choose, provided
we take only positive whole numbers.

Now, as the values of ¢ and % may be taken both positive
and negative, the values of 7, which satisfy the question,
will all be contained in these two formule,

y = & T4t + 267,
and y = - 34¢ 4 123w,

the doubtful signa being arbitrary.

b
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If we make m = 0, we shall have ¢t =1, and » = 0;
wherefore, y == 74, or =+ 34 ; and this last value is the
least that will resolve the problem.

I have already resolved this problem in the Memoirs of
Berlin, for the year 1768, page 243; but as I have there
employed a method somewhat different from the foregoing,
and fundamentally the same as the first method of Art. 66,
it was thought proper to repeat it here, in order that the
comparison of the results, which are the same by both
methods, might serve, if necessary, as a confirmation of
them.

83. Example 8. Let it be proposed to find whole num-
bers, which being taken for y, may render rational the
quantity, /(79y* 4+ 101).

Here we shall have to resolve, n integers, the equation,

22 — 79y° = 101,
in which g will be prime to 101, since this number does not
contain any square factor.

If we therefore suppose @ = ny — 101z, 2> — 79 must be
divisible by 101, taking 2 2 *2* £ 51; we find » = 33,
which gives 22 — 13 = 1010 = 101 x 10; thus, we may
take » =+ 83, and these will be the only values that have
the eondition required.

Substituting, therefore, + 33y — 101z instead of x, and
then dividing the whole equation by 101, we shall have
it transformed into 10y°* F 66yx + 101z*> = 1. Let us,
therefore, make »' =10, b = 101, n =433, and first
taking 7 positive, we shall work as in the preceding example;
thus, we shall have m =33 =8, #/ =383 — 3 x 10 = 3,

§="T0
o' —_—-1_0_ —__ 7’y — Syl +y"‘
L . o/ T ol
Now, as ' = 8 is already « o and <« T 1t 1s not ne-

cessary to proceed any farther: so that the equation will be
transformed to this,

— 7‘92 p— G'y{y!! i 10;2 = 1’
which being multiplied by — 7, may be put into this form,

i

(T + Sy — T =— 1.
Since, therefore, 7is £ /79, if this equation be resolvible,
the number 7 must be found among the terms of the upper
series of numbers answering to 4/ 791n the Table (Art. 41),
and also hold an even place there, sinee it has the sign —.
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But the series in question contains only the numbers 1, 15,
2, always repeated ; therefore, we may immediately conclude,
that the last equation is not resolvible; and, consequently,
the equation proposed is not, at least when we take 1 = 5%

It only remams, therefore, to try the other value of
n = — 33, which will give

—-33

m="li=—8n=-88+3x10==3,
2ty

so that we shall have the equation transformed into

Ty Gy 102 = 1
which may be reduced to the form,

1
(9 =8y = 199° =—1,
which is similar to the preceding. Whence I conclude, that
the given equation absolutely admits of no solution in whole
numbers.

84. Scholium. M. Euler, in an excellent Memoir printed
in Vol. IX. of the New Commentaries of Petersburg, finds
by induction this rule for determining the resolvibility of
every equation of the form & — ay*> = B, when B s a prime
number: it is, that the equation must be possible, whenever
B shall have the form 4an + 72, or 4an + 7° — a; but the
foregoing example shews this rule to be defective; for 101
is a prime number, of the form 4an 4 7' — a, making
A =19, n=—4, and r = 38; yet the equation,

&* — 79y* = 101, admits of no solution in whole numbers.

If the foregoing rule were true, it would follow, that, it
the equation a* — Ay® = B were possible, when B has any
value whatever, 0, it would be so likewise, when we have
taken B = 4an 4 b, provided B were a prime number.  We
might limit this last rule, by requiring & to be also a prime
number ; but even with this hmitation the preceding ex-
ample would shew it to be false; for we have 101=4an 40,
by taking A =79, n =—2, and b ="783; now, 733 is a
prime number, of the form @ — 79y, making & = 38, and
y=38; yet 101 is not of the same form, x* — 794°
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CHAP. VIIL

Remarks on Equations of the form p* = aq*+ 1, and on
the cominon method of resolving them in Whole Numbers.

85. The method of Chap. VIT. of the preceding Treatise,
for resolving equations of this kind, is the same that Wallis
gives 1n his Algebra (Chap. 98), and ascribes to Lord
Brouncker. We find it, also, in the Algebra of Ozanam,
who gives the honor of it to M. de Fermat. Whoever was
the inventor of this method, it is at least certain, that M. de
Fermat was the author of the problem which is the subject
of it. He had proposed it as a challenge to all the English
mathematicians, as we learn from the Commereium Epistoli-
cum of Walhs; which led Lord Brouncker to the invention
of the method in question. But it does not appear that this
author was fully apprised of the importance of the problem
which he resolved.  'We find nothing on the subject, even
in the writings of Fermat, which we possess, nor mn any of
the works of the last century, which treat of the Indeterminate
Analysis. It is natural to suppose that Fermat, who was
particularly engaged in the theory of integer numbers, con-
eerning which he has left us some very excellent theorems,
had been led to the problem in question by his researches on
the general resolution of equations of the form,

' = Ay" + 1,
to which all quadratic equations of two unknown quantities
are reduced. However, we are indebted to Euler alone for
the remark, that this problem is neeessary for finding all the
possible solutions of such equations *.

The method which I have pursued for demonstrating this
proposition, is somewhat different from that of M. Euler ; but
1t is, if I am not mistaken, more direct and more general. For,
on the one hand, the method of M. Euler naturally leads to
fractional expressions, where it is required to avoid them;
and, on the other, it does not appear very evidently, that the
suppositions, which are made in order to remove the fractions,
are the only ones that could have taken place. Indeed, we
have elsewhere shewn, that the finding of one solution of the
equation @?=Ay? + B, Is not always sufficient to enable us to

* See Chap. VL of the preceding Treatise, Vol. VL. of the
Ancient Commentaries of Petersburg, and Vol, 1X. of the New.
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deduce others from it, by means of the equation p*=ag*+1;
and that, frequently, at least when B is not a prime number,
there may be values of & and g, which cannot be contained
in the general expressions of M. Euler *.

With regard to the manner of resolving equations of the
form p® = ag? - 1, [ think that of Chap. VII., however in-
genious it may be, is still far from being perfect. For, in
the first place, it does not shéw that every equation of this
kind is abways resolvible in -whole numbers, when a is a
positive number not a square. Secondly, it 1s not demon-
strated, that 1t must always lead to the solution sought for.
Wallis, indced, has professed to prove the former of these
propositions; but his demonstration, if I may presume to
say so, s a mere petitio principii. (See Chap. 99). Mine, I
believe, is the first rigid demonstration that has appeared ;
it is in the Melanges de Turin, Vol. TV.; but it is very
long, and very indirect : that of Art. 37, is founded on the
true principles of the subject, and leaves, I think, nothing to
wish for. It enables us, also, to appreciate that of Chap. VIL,
and to perceive the inconveniences into which it might lead,
if followed without precaution. This is what we shall now
diseuss.

86. From what we have demonstrated, Chap. II., it fol-
lows, that the values of p and ¢, which satisfy the equation
p* — Ag® = 1, can only be the terms of some one of the
principel fractions derived from the continued fraction, which
would express the value of 1/a; so that supposing this con-
tinued fraction to be represented thus, -

1
pt—, 1
123 +y."+;,'”+:&c°

we must have,

p¢ being any term whatever of the infinite series @/, !, &c.

the rank of which, ¢, can only be determined a posteriori.
We must observe that, in this continued fraction, the num-

bers g, @, ¢, &e. must all be positive, although we have

* See Art. 45 ofmy Memoir on Indeterminate Problems, in
the Memoirs of Berlin. 1767.
pr 2
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seen (Art. 3) that, in general, in centinued fractions, we may
render the denominators positive or negative, according as
we take the approximate values less, or greater, than the real
ones; but the method of Problem I. (Art. 23, ¢f seq.), ab-
solutely requires the approximate values g, @/, &'y &e. to be
all taken less than the real ones.

) . D . .
87. Now, since the fraction £ 1s equal to a continued
) q q

fraction, whose terms are w, @, p/, &ec. it is evident, from
Art. 4, that ¢ will be the quotient of p divided by ¢, that
will be that of ¢ divided by the remainder, @', that of this
remainder divided by the second remainder, and so on; so
that calling 7, s, ¢, &ec. the remainders in question, we shall
have, from the nature of division, p = ugq + 7, ¢ = p'r+ts,
r = p's+¢, &e. where the last remamnder must be =0,
and the one before the last = 1, because p and ¢ are num-
bers prime to each other. Thus, ¢+ will be the approximate

integer value of L , ' that of Ti
values being all taken less than the real ones, except the
last ’, which will be exactly equal to the corresponding
fraction; because the following remainder is supposed to be
nothing.

Now, as the numbers p, p/, p!, &e. p, are the same for

i

-
, " that of . &ec. these

the continued fraction, which expresses the value of “—,and

for that which expresses the value of +/ A, we may take, as

P

far as the term 7%, £- =,/ a, that is to say, p* — A¢®2 = 0.

Thus, we shall first seck the approximate, deficient value of

—%; that 1s to say, of 4/ A, and that will be the value of  ;

then we shall substitute in p® — a¢” = 0, instead of Py 1ts
value pg -+ 7, which will give

(1 — a)g® + Rpgr +4-* = 0,
and we shall again seek the approximate, deficient value of

gr—; that is, of the positive root of the equation,

(= 2) x (L) + 2+ 1=0,

and we shau have the value of x!.
Still continuing to substitute w'r 4 s, instead of ¢, in the
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transformed equation (u° — A)g* - Qugr 4% = 05 we shall
] . r .
have an cquation, whose root will be e then taking the

approximate, deficient value of this root, we shall have the
valuc of w'.  Here again we shall substitute u» + s, instead
of r, &c. ‘

Let us now suppose, for example, that ¢ is the last re-
mainder, which must be nothing, then s will be the Jast but
one, which must be = 1; wherefore, if the formula p* — ag?,
when transformed into terms of s and ¢, 1s Ps* + Qst + re2,
by making ¢ = 0, and s = 1, it must become = 1, in order
that the given equation, p® — g% = 1, may take place; and
therefore » must be = 1. Thus, we shall only have to con-
tinue the above operations and transformations, until we
arrive at a transformed formula, in which the coefficient of
the first term is equal to unity; then, in that formula, we
shall make the first cf the two indeterminates, as r, equal to
1, and the second, as s, equal to 0; and, by going back, we
shall have the corresponding values of p and 4.

We might likewise work with the equation p* — ag® = 1
itself, only taking care to abstract from the term 1, which is
known, and conscquently from the other known terms, like-
wise, that may result from this, in the determination of the

approximate values w, &, p', &e. of %, -%, %, &c. In
this case, we shall try at each new transformation, whether
the indeterminate equation can subsist, by making one of the
two indeterminates = 1, and the other = 0; when we have
arrived at such a transformation, the operation will be
finished ; and we shall have only to go back through the
several steps, in order to have the required values of p
and ¢q. ;

Here, therefore, we are brought to the method of Chap.
VII. To examine this method in itself, and independently
of the principles from which we have just deduced it, it must
appear indifferent whether we take the approximate values
of p, W, ', &ec. less, or greater than the real values; since,
in whatever way we take these values, those of 7, s, ¢, &c.
must go on decreasing to 0. (Art. 6.)

Wallis also expressly says, that we may employ the limits
for w, u, u", &e. either in plus, or in minus, at pleasure; qnd )
he even proposes this, as the proper means often of abridging
the caleulation. This is likewise remarked by Euler, Art. -
102, ¢t seqg. of the chapter just now quoted. However, th.c

ollowing example will shew, that by setting about it in this
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way, we may run the risk of never arriving at the solution of
the cquation proposed.

Let us take the example of Art. 101 of that chapter, in
which it is required to resolve an cquation of this form,
P> =06¢*+ 1, or p* —Gg*=1. Wehave p= /((¢* +1);
and, neglecting the constant term 1, p = ¢ 4/ G; wherefore

% =6 72 £ 8. Let us take the limit in minus, and
make p = 2, and then p = 2 + r; substituting this value,
therefore, we shall have — 2¢* + 4¢r - r* = 1; whence,

U /(67—

or, rejecting the constant term — 2,

2 k4
U 47v06 2+4/06
0 = —?—t;—‘/- 5 whence,—z =] _%‘L 72 248 Let us

again take the limit in minus, and make ¢=2r4s; the last
equation will then become 72 — 47s — 25 = 1; where we
at once perceive, that we may suppose s = 0, and » = 1;
so that we shall have ¢ = 2, and p = 5.

Let us now resume the former transformation,

— 2% - Agr 4- 2 =1,
where we found-g— 7 2, and £ 3; and, instead of taking

the limit in minus, let us take it in plus, that is to say, let us
suppose ¢ = 8r + s; or, since s must then be a negative
quantity, ¢ = 8r — s, we shall then have the following
transformation, — 572 -+ 8rs — 2s* = 1, which will give

4s+ V(652 —5 .
r = ———,(,——); wherefore, mneglecting the constant
5

4s+54/0 r 4446
term 5, r = —5 ad o =—¢

Let us again take the limit in plus, and make » =25 — ¢,

we shall now have — Gs? 4+ 12s¢ — 5¢* = 1; therefore

6t44/(6£2—06)

§ = — g

6

6t+t4/6 s V6

§= = and—t- =1+ 5

Let us continue taking the limits in plus, and make

§ =2 — u, we shall next have — 5¢* + 12%u — 6w = 1;
wherefore,

e Gu+ +/(Guwr—5) t 6+ 6 .

= - d ';;: 5 7 1, a1

7 L,and 2z 2.

so that, rejecting the term — G,

7 1y 2%,
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Let us, therefore, in the same manuer, make ¢ = Qu — a,
and we shall have — 2u* + Sua — 502 = 1; wherefore, &ec.

Continuing thus to take the limits always in plus, we shall
never come to a transformed equation, in which the cocflicient
of the first term is equal to unity, which is necessary to our
finding a solution of the equation proposed.

The same thing must happen, whenever we take the first
limit in minus, and all the succeeding in plus; the reason of
this might be given @ priori; but as the reader can casily
deduce it from the principles of our theory, I shall not dwell
on it. It is sufficient for the present to have shewn the
necessity of investigating these problems more fully, and
more rigorcusly, than has hitherto been done.

. CHAP. IX.

Of the manner of finding Algebraic I'unctions of @l De-
%nzee.sl, wh}i‘ch, wtl'ten multzplied together, may always produce
imilar Funections,

[APPENDIX TO CHAP. XI. AND XIL]

88. I believe I had, at the same time with M. Ruler, the
idea of employing the irrational, and even imaginary factors of
formulee of the second degree, in finding the conditions,
which render those formulx equal to squarcs, or to any
powers. On this subject, I read a Memoir to the academy
m 1768, which has not been printed; but of which I have
given a summary at the end of my researches on Indeter-
minate Problems, which are to be found in the volume for
the year 1767, printed in 1769, before even the German
translation of M. Euler’s Algebra.

In the place now quoted, I have shewn how the same
method may be extended to formulee of higher dimensions
than the second ; and I have by these means given the solu-
tion of some equations, which it would perhaps have been
extremely difficult to resolve in any other way. It is here
intended to generalise this method still more, as it secems to
deserve the attention of mathematicians, from its novelty
and singularity.

89. Let o and 8 be the two roots of the quadratic equation,

. s —as+b=0,
and let us consider the product of these two factors,
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(@ + ay) x (@ + £y)s
which must be a real product; being equal to
@+ (z -+ Blay + aBy™
Now, we have o 4+ 8 = @, and «f = b, from the nature of

the equation, s° — as 4+ 0 = 0; therefore we shall have this
formula of the second degrec,

2+ axry - by,
which is composed of the two factors,
x 4+ ay, and x 4 By.

Now, it is evident, that if we have a similar formula,

a® + axly' + by Yy,

and wish to multiply them, the one by the other, we have
only to multiply together the two f“ctms 78 + @y, @ v - ay,
and also the other two factors - - By, &' -}- 8y, and then
the two pr oducts, the one by the (,ther Now, the product of
x + oy by & 4 ay s, @ + a(xy 4-y2') + agyy'; but
since « 1s one of the roots of the equation, 5~ —as+06=0,
we shall have a® — @a + 0 = 0; whence, «® = aa— b; and,
substituting this value of a2, in the preceding formula, it il
become, za — byy' + a(zy + ya' + ayy'); so that, in order
to simphfy, making

X = ax! — byy

Y =y - ya' + ayy
the product of the two factors 2 + ay, 2’ + ay, will be
X + av; and, consequently, of the same form as each of
them. In the same manner, we shall find, that the product
of the two other factors, x 4By, and -{—ﬁy, will be x 4 By
so that the whole product will be (x 4 av) x (x + 8Y);

that 1s, x* + axy 4+ by?, which is the product of the two
similar formulee,

] ]

2 + axy + by?, and 2® + a2'y' + Dy
If we wished to have the product of these three similar
formule,

ui

2% + axy + by?, :cQ +amJ +by x + axy —'—by"
we should only have to find that of the formula, x* + axy + by2,

i
by the last, " + axy + IJ ; and 1t is evxdent, from the
foregoing formul.L. that by making

x = xy" — ng”,
Y = xy" + v + axy,

—



v
w
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the product sought would be

X2 axY + by
In the same manner, we might find the product of four, or
of a still greater number of formula shmilar to this,

&t + axy +.6y%
and these products likewise will always have the same form.

90. If we make @ = By andyl = y, we shall have
x = 2% — by’ Yy = Rxy + ay°;
and, consequently,

(2% 4 aay + by?)? = x® + exy + by®.
Therefore, if we wish to find rational values of x and 7,
such, that the formula x?4 axy + &y*may become a square,
we shall only have to give the preceding values to x and v,
and we shall have, for the root of the square, the formula,

x® + axy + by
2 and y being two indeterminate numbers.

If we farther make o' = 2' =2, and 9" =4 =y, we
shall have x' = xo — dyy, Y = xy + yYr + avy; that is,
by substituting the preceding values of x and v,

x' = a® — 8bay* + aby?,

Y = 3x’y + 3aay® + (a? — b)y?;
wherefore, ; 1) q
(@* -+ azy +0y*)? = x* + axy 4 Oy
Thus, if we proposed to find rational values of x' and Y/,

] 1 "
such, that the formula x* -~ axy - 6v? might become a

I 1
cube, we should only have to give to x and ¥ the foregoing
values, by which means we should have a cube, whose root
would be 22 -4 axy -~ by*; « and y being both indeter-
minate.

In a similar manner, we may resolve questions, in which
it is required to produce fourth, fifth powers, &c. but we
may, once for all, find general formula for any power what-
ever, m, without passing through the lower powers.

Let it be proposed, therefore, to find rational values of x
and v, such, that the formula, x* 4 axy - dv?, may become
a power, m; that is, let it be required to solve the equation,

x* 4 axy -+ by* = z™.
As the quantity x2 4 axy + by? is formed from the pro-
duct of the two facters, x + ax, and x - By, in order that
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this quantity may become a power of the dimension m, cach
of its factors must likewise become a similar power.
Let us, therefore, first make
X +av = (x + ay)m,
and, expressing this power by Newton’s theorem, we shall
have T

xm_{_ ,”lxm—lfl a _|_ m(m_l)x7wz-91 202
Y 5 e

m(m—1) X (m—2)
2x9
Now, since « is one of the roots of the equation,
s*—as + b =0, we shall also have a* —aa + b = 0;
wherefore, a® = aa — b, &® = aa* — ba = (¢* — b)a — ab,
at = (a® — b)a® — aba = (& — 2ab)a — @26 +b*; and so
on. Thus, we shall only have to substitute these values in
the preceding formula, and then we shall find it to be com-
pounded of two parts, the one wholly rational, which we
shall compare to x, and the other wholly multiplied by the
root &, which we shall compare to av.
If, mn order to simplify, we make

AR T S

.‘\' =1 B’ =x()

A'=a Bl="10

WP = = il " = an" — bg'

AV = Al — hal BV — au" — D"

AY = ga'V— ba", B¥ = as®¥— b3",

&c. &c. &e. weshall have,
a = Ala — B
at = AII“ — p
ad= Allg — B
at= aa— BY, &c.
Wherefore, substituting these values, and comparing, we
shall have

771("712-— 1 )xm—Qy ZBII

x = g™ —ma™yp ~

m(m—1) x (m—2) 4

e m—3yopll K.

m(m—1
Y = mxn;—lyAV + ( 2 )xm—Q‘yﬂAn‘

+m$m - ;) : 3(m—ﬁ)

xm—33/3A"l +, &e.

Now, as the root @ does not enter into the expressions of
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x and v, it is evident, that, having x + ay = (v + ay)”,
we shall likewise have, x 4+ By = (¢ + By)™; wherefore,
multiplying these two equations together, we shall have,

X2 o axy + 0y = (2% + axy + by);
and, consequently, z = «® - axy 4- % 'The problem,
therefore, is solved.

If @ were = 0, the foregoing formule would become
simpler; for we should have A'=1, 4" =0, A" == J,
AV =0, A¥ =0, A% =0, A" = — % &e. and, likewise,
B = O, 3" = b, 8" =0, BV —— bg, = (0}, Yl = bg, &e.

Therefore, x = a™ — Zri(—n%——l--)a:’"_‘-’;y*l) +

m(m — m—2) X (m—3

(m—1) ><2(xn8 - ix( )Lv"““{?/‘b‘ —, e
m(m—1) x (m—2)
2x3

m(m—1) x (m—2) x (m—3) x (m—4)

Lx3x4x5 “

And these values will satisfy the equation,

x* + 0y® = (2% 4 by?H)™

91. Let us now proceed to the formule of three dj-
mensions ; in order to which, we shall denote by a, 8, 4,
the three roots of the cubic equation, $*—as®*+ bs — ¢ = 0,
and we shall then consider the product of these three
factors,

(@ 4oy + a%) x (@ + By + B%2) X (¢ + vy + %),
which must be rational, as we shall perceive. The multiplica-
tion being performed, we shall have the following product,

@’ (a+B +y)a’y + (@ +f + o)z + (aB+ay+By)ry

+(@*B+a% +flat+ By +y ety Byt

(@%B2+ ay® + By s +afyy’ +(a” By +Bay + v af)y’z

+(@ By + Y BBy )y +atBry
Now, from the nature of equations, we have

a+B+y=a,aB J-ay--By=0b,aBy =c.
Farther, we shall find
@+ B2ty =(a+B+y) —2af +ay +8y)=a*—2,
@*Bt+ary +Prat iy +ytaty B =(a+B+y) x (af +ay+Ly)
—8agy=ab—3¢c; and a*B>+a%y*+ By =(af +ay4PLy)*
— 2+ B+y)aBy=0*—2ac; also, a°By—+Bray—+yraf=
(a+B+y)apy=ac, and o*By +a’y*B 1 By a=
(ap +ay + By)afy=be.

Y = m _rm—]y + xm—:’:ysb __!__

m/—Sbeﬂ + . &,C.
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Therefore, making these substitutions, the product in ques-
tion will be

2% azty+ (a® —2W)iz4 bay+ (ab—8e)xyz+ (0°—Rac)zz?

+ ey + acy*z+ bey+ ¢

And this formula will have the property, that if we mul-
tiply together as many similar formule as we choose, the
product will always be a similar formula.

Let us suppose that the product of the foregoing formula
by the following was required, namely,

1 i i :
a3 + ax?y + (@ — RW)x* +bx‘zl/’~’ + (ab — Sc)a'ys!

I 0 / 0 i
+(0* — Rac)ez® + cy® + acy*s' + beyz® + ¢%3;
it is evident, that we have only to seek the product of these
six factors,
x4ay + e’z 24Py + L% a+yy + v
x'-{— rxy’+ anl, ,’r’-{— 5_5/+ ﬁrzzv, .1"+ 'Y.’/’ 4k ,ygzl;
if we first multiply @ + ay + a2, by &' + ay' 4 a2/, we
shall have this partial product,

aad' oy +ya') + o (@d + 22" +yy ) Fo¥(y + 2y') 4 ated;

now, « being one of the roots of the equation,
$—as*+bs—c =0,
we shall have a® — a«® 4 ba — ¢ = 0; consequently,
a3 = aa® — ba -+ ¢; whence,

a* = ad® — ba® 4 ca = (& — b)a* — (ab — c)a - ac;
so that substituting these values, and, in order to abridge,
making

x = ax' — e(y 4+ =) + aczd,

Y = ay' 4-ya — byz' - zy) — (ab — )z,

z = x2 ;22 gy 4 a(y2' -+ zy') + (a® — b)zz,
the product in question will become of this form, x-} av--a%z;
that is to say, of the same form as each of those from which
it has been produced. Now, as the root « does not enter
into the values of x, v, z, it is evident, that these quantities
will be the same, 1f we change « into B, or ; wherefore,
since we already have

@+ ay+a22) x @ +ay'+ o' %) = x + av + a7,
we shall likewise have, by changing « into 8,

(24 8y + £) X (@ + By + B=) = x +Bv + =
and, by changing « into v,

(@ + 7+ 7 x (& oy + 7)) = x 4 v 4 s
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therefore, by multiplying these three equations together, we
shall have, on the one side, the product of the two given
formule, and on the other, the formula,

X3 4+ ax?y 4(a? — 20)x*z + bxy* + {ab — Se)xvz +

(02 — Qac)xz® + oy® 4 acy’z +- bevs? 4- 7,
which will therefore be eqnal to the produect required ; and
is evidently of the same torm’as each of the two formulie of
which it is composed.

If we had a third formula, such as

i I i i
23 4 axy! + (@ — )" - bry® - (ab — Sc)ay's!
!

00 il I

+ (6* — Qac).;c‘:lzQ + ey’ + acjgz" 4 bc}}g’ ARG
and if we wished to have the product of this formula and
the two preceding, it is evident, that we.should only have
to make

¥ = xal — e(vz" + zy") + acz,

Y =xy + va' — bys' + 24" ) — (ab - )z,

2 =x2! + za" 4 vy A+ a3 + 2+ (a® — 0)z2,
and we should have, for the product required,

] ] ! [
X% + ax®y! + (a® — 20)x°2' 4 bxy? 4 (ab — Bo)x'v'7

+(0% — Qac)}\'é‘l + ev? + acxz! + bexze aF 2.
92. Let us now make 2/ =, ¥ =y, 3 =z, and we
shall have,
x = % — 2¢cyz + acz?,
Y = 2uy — 20yz — (ab — c)z%
z =2z + 3 + 2ayz+ (@ — b)z*;
and these values will satisfy the equation,
X8 4 ax®y 4 bxv? + ev® + (a® — 20)x°z
+ (ab — 8c¢)xvz + acy®z + (0* — Rac)xz®
+ beyz® + 2z = v2, by taking
v =28 + ax?y + bay® + ¢y +(a*—20)x*z + (ab— Sc)xys
+acy’z + (0° — Qac)xz® + beyx® + %%
wherefore, if we had, for example, to resolve an equation of
this form, x* + ax®y + bxy? 4 ¢v® = v%, @, b, ¢ being any
given quantities, we should only have to destroy z, by
making 22z + y* + 2ayz + (@® — 0*)2* = 0, whence we
Y2 +2ayz+(a®— b°)2°

Q~
pes

dernive x = — ; and, substituting this
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value of x in the foregoing expressions of x, v, and v, we
shall have very general values of these quantities, which will
satisfy the equation proposed.

This solution deserves particular attention, on account
of its generality, and the mamner in which we have arrived
at it; which is, perhaps, the only way in which it can be
easily resolved.

We should likewise obtain the solution of the equation,

y I I i
X3 - ax?y! 4 (a® — 20)x%2 - bx12 - (ab — Be)x'y's

‘i 0, T I
+ (8* — Ruac)xz® - cx® - acy®d 4 beyz? + ¢%23 = v3,
by making, in the foregoing formules,

M=o =a

and taking
v = a® 4 ey + (@ — 2)az + bxy® + (ab — Se)ays
+ (8 = 2ue)a® + ¢’ + acy®z 4 beys? + ¢,
And we might resolve, successively, the cases in which,
mstead of the third power v3, we should have v4, v3, &e.
. - ? . . > >
But we are gomng to consider these questions 1n a gencral
manuer, as we have dene Art. 90.
93. Let it be proposed, thercfore, to resolve an equation
of this form,
x* 4= ax?y + (¢ — 26)x%z + bxy® + (@b — 8¢) xvz +
2 2
— nuc)xz* r : hey z° S = i
(I* — Que)xz® 4 ev® + aeY’z + beyz® + %2° m

= ol = M — o
=y =y ==z

-

Since the quantity, which forms the first side of this equa-
tion, is nothing more than the product of these threc
factors,

(x + av + o®z) x (x + By + £%2) X (X + yY + o*2),
it is evident that, in order to render this quantity equal to a
power of the dimension m, we have only to make each of its
factors separately equal to such a power.

Letthen x + ay + 2% = (v + ay + %)™
We shall begin by expressing the mth power of x+ay+a%
according to Newton’s theorem, which will give

m(m—1)
e 1= . " em—g 242
™ + mam~y + az)a + " (y + az)a
m(m—1) x (m—2)
2x3
Or rather, forming the different powers of y + az, and then
arranging them, according to the dimensions of a,

"y 4 az)’ed +, &e.
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m(m
a™ + max" " ya + (marTlz 4 -————( ) EadlS) a2

n 1 —2
+ (m(m — "y + g~ (,): %)

But as’in this formula we do not easily perccive the law
: 3!
of the terms, we shall suppose, 1n general,
(@ + ay + a%)" = P + r'a 4+ P'a? + P"a® + pVet 4, Ke.
and we shall find,

— a2+, &e.

P = a",
myP

r = -

" (m—l)JP’-i- maP
Wl = e

w _ (m=2)yP"+(2m—1)z¢!
pll = = ,

v _ (m=38)yP" + (2m—2)zp"
Y = i (St

which may easily be demonstrated by the differential cal-
culus.

Now, since « is one of the roots of the equation,

§* — as® + bs — ¢ = 0, we shall have

& — aa? + ba — ¢ = O; whence,

a' = aa® — ba 4 ¢; whercfore,

at = aa? — bat+ co = (¢* — b)a® — (¢b — ¢)a + ac,

@ = (a® — b)a® — (ab — c)a’® + aca = (&* — 2b + ¢)a®
—(a*b — 0* — ac)a + (¢* — b)e; and so on.

So that if, in order to simplify, we make

A= AV = qa — HA" - ca!
Wl = ]l A" = aa” — A" + ca”
A= a = A" = aaY — baV 4 ea, &e.
& =1 c=X0)
B! = =10
= M= ¢
V= as" — 3" + cp' oV = ac — b + ec!
BY — aBiv__ me + en' c¥ = aciv — b b C’C"

B = as" — bBY 4 B, &e. V= acY — bcv + ec!, Ke.
we shall have,

o= Ala® — Ba + a3 = Alla® — plly 1+ M

at= A"a? — e 4- " ot = AVa2— BVe 4 cV, &e.

Substituting these values, therefore, in the expression
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(¥ + ay + a%z)7, it will be found composed of three parts,
one all rational, another all multiplicd by «, and the third
all multiplied by a®; so that we shall only have to compare
the first to x, the second to av, and the third to «z, and,
by these means, we shall have

X =P+ P + ple! + P 4 e, &e.

Y = — p'8 — ¢'B" — p"3" — piui, &e.

z = P'A 4 plal o pYAlM 4 pi¥AlY, &e.

These values, therefore, will satisfy the equation,
X +ay + a®z = (x + ay + a?2)";

and as the root e does not enter into the expressions of x,
v, and z, it is evident, that we may change « into 8, or
mto y; so that we shall have both

x + By + B% = (v + By + £%)”, and

X +yY + 7% = (x + yy + y=)"

If we now multiply these three equations together, it 1s
evident, that the first member will be the same as that of
the given equation, and that the second will be equal to a
power az, the root of which being called v, we shall have

v =2+ wa®y + (a® — W)x%= 4+ bay? + (ab — Be)ayz

+ (08 — 2ac)w=? + cy® 4+ acy®s + bey=? + 2P

Thus, we shall have the values required of x, v, z, and
v, which will contain three indeterminates, x, 7, z.

94. If-we wished to find formule of fouwr dimensions,
having the same properties as those we have now examined,
it would be necessary to consider the product of four factors
of this form,

x+ay+a‘3z+a.3t

x + By 4 B2z + B

x4 vy + ¢z + o3

x + 0y + 2z + 9%,
supposing a, 8, v, ¢ to be the roots of a biquadratic equation,
such as s* — as® - b5 — ¢s -+ d = 0; we shall thus have

a4+ B + vy + d=a,
aB + ay + ad + Py + BS + yd = b,
afy +af3s + ayd+pyd = ¢,
“878 = d’
by which means we may determine all the cocfficients of the

different terms of the product in guestior, without knowing
the roots «, B, 8, v. But as this requires different re-
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ductions, which are not easily Pcrformed, we may set about
it, if it be judged more convenient, in the following manner.

Let us suppose, in general,

a+ sy + 5%+ s =¢;
and, as s is determined by the equation,
st —as’ + bs> —cs +d =0,

let us take away s from these two cquations by the common
rules, and the equation, which results, after expunging s,
being arranged according to the unknown quantity ¢, will
rise to the fourth degree; so that it may be put into this
form, ¢* — N¢® + r¢® — @ + 2 = 0.

Now, the cause of this equation in ¢ rising to the fourth
degree is, that s may have the four values a, B, v, 0;
and also that ¢ may likewisé have these four corresponding
values,

x + ay + a2 + o’

x4 By + %= + Bt

x4 yy + v+ %

x 3-8y 4 82z 4 0%,
which are nothing but those factors, the product of which is
required. Wherefore, since the last term r must be the
product of all the four roots, or values of ¢, 1t follows, that
this quantity, ®, will be the product required.

But we have now said enough on this subject, which we
might resume, perhaps, on some other occasion.

I shall here close these Additions, which the limits I pre-
scribed to myself will not permit me to carry any farther;
perhaps they have already been found too long: but the
subjects I have considered being rather new and little known,
1 thought it incumbent on me to enter into several details,
necessary for the full illustration of the methods which I
have explained, and of their different uses.

THE ENB. ,



