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the second, it is 8; and, according to the third, it is 10. The
following statement shews, that all thesc will answer the
conditions of the question :

Number of merchants - - - - 7| 8. 10
Each contributes 40z - - - - ‘380: 3200 400
In all they contribute 402* - - - 1960| 2560; 4000
The original stock was - - - - §240, 8210] 8240
The whole stock 1s 4022 - 8240 - 10200! 10800/ 12240

much per cent as there are 714 864 1224

With this capital they gain as}

partners - - - - - - -
Each takes fromit - - - - - 70 80| 100
So that they all together take 1022 490/ 640/ 1000
Therefore there remains - - - 224)  224) 224

CHAP. XII.
Of the Rule of Cardan, or of Scipio Ferrco.

784. When we have removed fractions from an equation
of the third degree, according to the manner which has been
explained, and none of the divisors of the last term are
found to be a root of the equation, it is a certain proof, not
only that the equation has no root in integer numbers, but
also that a fractional root camnot exist; which may be
proved as follows.

Let there be given the equation «* — aa® 4 br — ¢ =0,
in which, a, b, ¢, express integer numbers. If we suppose,
for example, = 3, we shall have 37 — 2¢ 4 3) — ¢ = 0.
Now, the first term only has 8 for the denominator; the
others being either integer numbers, or numbers divided
only by 4 or by 2, and therefore cannot make 0 with the
first term. 'The same thing happens with every other
fraction.
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735. As in those fractions the roots of the equation are
neither integer numbers, nor fractions, they are irrational,
and, as it often happens, imaginary. The manner, there-
fore, of expressing them, and of determining the radical
signs which affect them, forms a very important point, and
deserves to be carefully explained.  This method, called Car-
dan’s Rule, is ascribed to Cardan, or more properly to Scipio
Ferreo, both of whom lived some centuries since .

736. In order to understand this rule, we must first at-
tentively consider the nature of a cube, whose root is a
binomial. C

Let @ 4 O be that root; then the cube of it will be
a@® 4 3a%) + 3ab® -+ 03, and we see that 1t 1s composed of
the cubes of the two terms of the binomial, and beside that,
of the two middle terms, 3«*b <4 8ab?, which have the com-
mon factor 3ab, multiplying the other factor, @ + &5 that is
to say, the two terms contain thrice the product of the two
terms of the binomial, multiplied by the sum of those terms,

737. Let us now suppose 2 = a + b; taking the cube of
cach side, we have 2* = &% + 0% + 8ab (¢« + b): and, since
@ -- b = x, we shall have the equation, 2> = ¢® + 0* + 3aba,
or #* = Sabxr + a® + b3, onc of the roots of which we know
tobe x = « + 5. Whenever, therefore, such an equation
occurs, we may assign one of its roots.

For example, let ¢ = 2 and b = 3; we shall then have
the equation 2% = 18z + 35, which we know with certainty
to have x = 5 for one of its roots.

788. Farther, let us now suppose ¢ = p, and b* = ¢; we
shall then have @ = {/p and b = /g, consequently, ab = ¥/pq;
therefore, whenever we meet with an equation, of the form
2* = 8xV/pg + p + ¢, we know that one of the roots is
¥p + Y. .

Now, we can determine p and g, in such a manner, that
both 84/ pg and p + ¢ may be quantities equal to deter-
minate numbers ; so that we can always resolve an equation
of the third degree, of the kind which we speak of.

759. Let, in general, the equation #* = fr + g be pro-
posed. Here, it will be nccessary to compare f with 33/pg,
and g with p 4 ¢; that is, we must determine p and g in

* This rule when first discovered by Scipio Ferreo was only
for particular forms of eubics, but it was afterwards generalised
by Tartalea and Cardan. See Montucla’s Hist. Math. ; also Dr.
Hutton’s Dictionary, article Algebra; and Protessor Bonny-
castle’s Introduction to his Treatise on Algebra, Vol. 1. p.
XIll—XV,
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such a manner, that 32/pq wmay become equal to f, and
=z for we then know that one of the roots of our
equation will be z = {/p + Vq.

740. We have therefore to resolve these two equations,

8Vp1 =5
VU
The fist gl gl SO
he first gives I/pg = ‘g orpy =5m =L yENan
4p7 =3 f The second equation, being squared, gives
p° - ~p1 ¢ = g*; if we subtract from it dpg = 2 3

we have ¢*—2pg + ¢* = o° — %%, and taking the
square root “of both sides, we lnve

. 1= /)
Now, since p g =g, we hm e, by adding p + ¢ to one
side of the cquhtlon, und 1ts equal, g, to the other, 2p =

g+ (g — &%) and, by subtracting p — g from p 4 ¢,
we have 2¢ = g V(g — &) c0n~eqhentlv
T 4 A/ (27 — 55 —_—a 4_ £3)
po XLy 6= )

741. In a cubic cquation, therefore, of the form 2* =
J* 4 &, whatever be the numbers fand g, we have always
for one of the roots

. f0’+ A/@,2__, ,(b = 4/,, S fs)
=y i)y | ylem By,
that is, an irrational quantity, containing not only the sign
of the square root, but also the sign of the cube root ; and
this is the formula which is called ke Rule of Curdan.
74Q. Let us apply it to some examples, 1n order that its
use may be better understood.
Leta® =06x 9. First, “e shall have /= G, andg=9;
so'thiat o> =gl 3= 210, f 82; then
g% — -Tf 49, and 4/(°~ - % ) ="1T. Therefore, one
of the roots of the given cquallon 1s

o=@ + vE D =V s v =us Y=

IR =13,

748. Let there be proposed the equation 2* = 8z 4 2.
Here, we shall have /=8 and g =2; and consequently,
gt =4, 3 = 27, and & f* = 4; which gives
V(g — 147f3) = (I whencc it follows, that one of the

S

1'00LS AISERE=
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T44. Tt often happens, however, that, theugh such an
equation has a rational root, that root cannot be found by
the rule which we are now considering.

Let there be given the equation 2 = 62 + 40, in which
x = 4 is one of theroots. \Vehavehere /= 6and g = 40;
farther, g* = 1600, and % f° = 82; so that
& — 22 =1568, and v(g* — 4 %) =4/1568 = . ...
(& 449 . 2) = 28 /2 consequently one of the roots
will be

404-98./2 | 40-98 .2
2 = Y(— =) e o

z =Y(20--14 v/2) 4 3/(20—14 /2) 5
which quantity is really = 4, although, upon iuspection, we
should not suppose 1t.  In fact, the cube of 2 4- /2 being
20 + 14 /2, we have, reciprocally, the cube reot of 20 +
14 /2 equal to 2 + 4/2; in the same manner, /(20 —
14 Q) = 2 — /25 wherefore our root o = 2 + /2 -
D Om= A

745. To this rule it might be objected, that 1t does not
extend to all equations of the third degree, because the
square of 2 does not vecur in it; that is to say, the second
term of the equation is wanting. But we may remark, that
every complete equation may be transformed mto another,
in which the second term is wanting, which will therefore
enable us to apply the rule. .

To prove this, let us take the complete equation 2° —
62* + 11z — 6 = 0: where, if we take the third of the
coefficient G of the second term, and make z — 2 = g, we
shall have

r=y+2 2=y 4+ 4y + 4, and
2% = 0 -+ Gy + 19y 1 8
Consequently, 2* = y*+Gy* - 12y - 8
— 62t = —0y® — 2y — 24
O

— 0 = — B
or, 23 — 6ar + 1o — 6 = g — y.
We have, therefore, the equation 3° — y = 0, the resolu-

* We have no general rules for extracting the cube root of
these binomials, as we have for the square rcot ; those that have
been given by various authors, all lead to 2 mixt equation of the
third degree similar to the one proposed. However, when the
extraction of the cube root is possible, the sum-of the two
radicals which represent the root of the equation, always be-
comes rational; so that we may find it immediately by the
method explained, Art. 722, I.'T.
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tion of which it is evident, since we immediately perceive
that it is the product of the faetors
Yy -N=y@y+1xy—-1)=0
If we now make each of these factors = 0, we have
1 y =0, ofy=—1, 3,(.'/=1’
— 2 e = 1B Lz=3,
that is to say, the three roots which we have already found.

746. Let there now be given the general cquation of the
third degree, @* 4 @2+ br 4+ ¢ = 0, of which it is re-
quired to destroy the sceond term.

For this purpose, we must add to « the third of the co-
cfficient of the second term, preserving the same sign, and
then write for this sum a new letter, as for example y, so
that we shall have « + a =y, and » =y — La; whence
results the following calculation :

=y =50, 2t =yt~ Lay + 5%
and 2° = ¥° — ay + La’y — L@

Consequently,
2 =g~ ay® + 307y — L@
e — ay* — 3ay + radd
by = by — lab

2= ¢
or,y* — (3¢ — by 4 Ha¥ — 3ab+-c =0,
an equation in which the second term is wanting.

747. We are enabled, by means of this transtformation, to
find the roots of all equations of the third degree, as the fol-
lowing example will shew.

Let it be proposed to resolve the equation

2% — Ga® 4132 — 12 = 0.

Here it 1s first necessary to destroy the second term; for
which purpose, let us make # — 2 =y, and then we shall
havex =y + 2, 2* = y* - 4y + 4, and 2° = 3° 4 Gy* |-
12y -+ 8; therefore,

2=y + 62+ 12y + 8

— 62 = — 6y° — Uy — 2
182z = 13y 4 26
- 12 = — 12

which gives > + 9y — 2=0; orz® =— y + 2
And if we compare this equation with the formula, (Art.
741) 28 = fx +¢, we have f'= — 1, and g = Q; where-
fore, g*= 4, and A f%= — .4 ; also, g*— % f3=
" ) 421
4 +‘257‘ = ”i'”f":and’\/(g'— '247f°) = V5= 9 5

consequently,
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4,721 4 4,/21 4
0= (2—‘1)- 9) A (("’_;_9>, or

VA 2v2l

Y=V +257) + V(L= = or
2421
v—v®+——ﬂ+¢®—fLﬂ
9 V21 @ 1

= 4/(’7+6/ )_”/(7 (M/ ) or

y = 5@+ 6 v21) (+ +V/( 27 — 6 »21);

and it remains to substitute this value in v = y + 2.

748. In the solution of this example, we have been
brought to a quantity doubly irrational; but we must not
1mmed1‘1tely conclude that the root is jrrational : because the
binomials 27 + 6 421 might happen to be real cubes; and
this is the case here; for the cube of

3+;/ e ﬂﬁ'—?ﬁl- = 2746 /21, it follows that
the cube root of 27 + 6 +/21 is 3—"'—2‘/ 2L thia thefgnie
rootof 27 — 6 /211is ;é/;l. Hence the value which we
found for 7 becomes

PR as Lo Pt LIRS

Now, since ¥ = 1, we have 2 = 3 for one of the roots of the
equation pnoposed and the other two will be found by
dividing the equation by « — 3.

2 —8)a® =62 + 132 — 12(2* — 8z + 4

23 — Gx°
— 32 + 13«
- 32+ Yz
4r — 12
4y — 12
0.

Also making the quotient 2* — 3z + 4 = 0, wc have
22 = 8r — 4; and
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Ve
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which are the other two roots, but they are imaginary.

749. It was, however, by chance, as we have remarked,
that we were able, in the preceding example, to extract the
cube root of the binomials that we obtained, which is the
case only when the equation has a rational root; con-
sequently, the rules of the preceding chapter are more easily
employed for finding that root. But when there is no
rational root, 1t is, on the other hand, impossible to express
the root which we obtain in any other way, than according
to the rule of Cardan; so that 1t is then impossible to apply
reductions. TFor example, in the equation @® = Gz + 4, we
have =6 and g = 4; so that 2 =V/(2 +2v ~ 1) +
V(@ — 2 v — 1), which cannot be otherwise expressed*. -

a

1!

* In this example, we have ;% /3 less than g2, which is the
well-known 2rreducitle case; a case which is so much the more
remarkable, as the three roots are then always real. We cannot
here make use of Cardan’s formula, except by applying the
methaods of approximation, such as transforming itinto an infinite
series. Inthe work spoken ofin the Note, Art. 40, Lambert has
given particular Tables, by which we may easily find the nu-
merical values of the roots of cubic equations, in the irreducible,
as well as the other cases. Tor this purpose we may also em-
ploy the ordinary Tables of sines. See the Spherical Astro-
nomy of Mauduit, printed at Paris in 1765.

In the present work of EULER, we are not tolook for all that
might have been said on the direct and approximate resolutions
of equations. e had too many curious and important objects,
to dwell long upon this; but by consulting I Histoire des Ma-
thematiques, I’ Algebre de M. Clairaut, le Cours de Mathematiques
de M. Bezout, and the ldtter volumes of the Academical Me-
moirs of Paris and Berlin, the reader will obtain all that is known
at present concerning the resolution of equations. F. T.

Tor a clear and explicit investigation of this method, the
reader is also referred to Bonnyecastle’s Trigonometry ; from
which the following formula for the solution of the different
cases of cubic equations are extracted.

1. & + pz — g=0.
3

Put (i) = tan. z, and {/(tan. (45° — 1 z2)) = tan, u;
p

wha

Thenz =24/ ]—;- % cot.2u. Or, putting

Log. 7 + 10 — % log. —g—

= = log. tan., z, and
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QUESTIONS FOR PRACTICE.

1. Given g* + 30y = 117, to determine y. Ans.y = 3.
2. Given z* — 36y = 91, to find the value of y.
Ans. y = 1.

3 (log. tan. (45° — 1 z) + 20) = log. tan. v,
Then log. = = ;]og.% + log. cot. 2% — 10.

2. 2" +pr + ¢ =0.

e

3
Put %(7) =tan. z, and {/(tan. (45° — 4z) ) = tan. u,

v

n .
Then x = — 2 4/—{; x cot. 2u.  Or, putting
Log. Z 2 log. - = log. t:

.0g. N + 10 — % log. £~ = log. tan. z, and

3
+ (log. tan, (45° — 1z) + 20) = log. tan. «,
4
Then log. # =10 — +log. ‘—f — log. cot. 2 u.
3. 2% —pr — g =0.
" . : 2 P\
This form has 2 cases, according as 7(7) is less,or greater
9

than 1.
B, P2
In the Ist case, put — ( —3—) ¥ = cos. 2.
q9
And ¥/(tan. 45° — Lz) ) = tan. u;

Thenz =2 4/% x cosec. 2w, Or, putting

10 + Zlog. % —log. L = log. cos. 2, and

g =
5 (log. tan, (45° — 3z) + 20) = log. tan. u;

. 4
Then log. x =10 4- log. —‘)]i — log.sin. 2 «,
o

. :
In the 2d case, put %(7) T =cos.z, and « will have the
3 following values:

x ="-F% \/z

X COSe —
!

2= —24yL « cos (600 - )
3 3

) Sy
o = W, v/7T % cos. (60° + —,;-') Ol



270 ELEMENTS , SECT. IV.

3. Given * + 24y = 250, to find the value of .
Ans. y = 5:05.
4. Giveny® — 3y* —2y* — 8 = 0, to find y. Ans.y =

L + log. cos. P 10,

Log. » = } log. = g. 3

4 &

Log. z = % log. ?77 + log. cos. (60° — —g—) — 10,

4

Log. = 1 log. _Sl

Taking the value of «, answering to log. , positively in the first
equation, and negatively in the two latter.
4. 2% —pr 4+ g=0

This form, like the former, has also two cases, according

+ log. cos. (60° + ——;—) — 10,

as —( Ly 7 is less, or greater than 1.

2 2
In the 1st case, put —9—(-737—) “ —cos.a
And ? (tan. (45° — 1z) ) = tan, , as before;
Then r = — 2 &/ —g— cosec. 2 u. Or, putting

P q
I 9
}{log. (tan.45° — £z) + ‘.ZO} = log. tan. u;

10 + 3 log. log. = log. cos. z, and

Then, — log. * = 10 + log 4‘7]) — log. sin. 2

3
In the 2d case, put %(—]3)—) 7 = cos. , and » will have the 3
following values :
= G ) L il
— ~/ X COS 3

~
~

&= +Q¢3— X COS. (60"—-—3—)

= +Q,\/%-xcos.(60°+(;;). O

4, Z
Log.a =1 log.?p + log. cos — 10,
L p
og. * = + log. e + log. cos. (60 — -———)—- 10,
4

Log. = = 3 log. _q/’. log. cos. (60° + 7)-— L
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5. Given 78 + 8y* + 9y = 13, to determine .

Ans. y = 1.
6. Given 2 — Or = — 9, to find the value of z.
Ans. x = — 8.
7. Given 2° — 62* + 100 = 8§, to find w. Ans. 2 = 4.
8. Given p* — 33 p = *15° tofind p. dns. p = 8L
9. Given 2* — Fr = Z2 to find a. Ay ARy T
10. Given @* — 9la = — 330, to find a.  Ans. ¢ = 5.
11. Given y° — 19y = 80, what is the value of y?
Ans. y = 5.

Taking the value of v, answering to log. », negatively in the
first equation, and positively in the two latter.

As an example of this mode of solution, in what is usually
called the Irreducible Case of Cubic Equations, Let a® — 8z =1,
to find its 3 roots.

7 3\* 3 ¥ ‘
Here 9 (1—)) =L O)5i=.0=e.0P= 2, e

2 =2yL x cos. 2 = 2 cos. 20° = 1.8793852
ped

&

r= —2 V{JL x cos. (60° — %) = —2c0s.40° = — 1,5320888
P £ o
a= -2 \/—.;5— X co0s.(60° + 3) = — 2c05.80°= —0.3472964.
Also, let 2> — 3@ = — 1, to find its three roots.

7P
Here, as before, —)—(—)—)‘ = .5 =c0s8.60° = z, hence
2
2= =242 xcos. L= —2c0s.20° = — 1.8793852
3 3
2 == 2 L x cos. (60° —2) = 2c0s.40° = 15320888

r==2 4/% X c0s. (60° + ——) = € cos. 80° = 0.5472964.
Where the roots are the negatives of those of the first case.
Yor the mode of investigating these kinds of formule, see,
in addition to the references already given, Cagnoli, Traité de
Trigon. and Article Irreducible Case, in the Supplement to Dr.
Hutton's Mathematical Dictionary. J



