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LEONARD EULER, SUPREME GEOMETER
BY C. TRUESDELL

On 23 August 1774, within a month of his appointment as Ministre
de la Marine and the day before he was made Comptrolleur Général
of France, TURGOT wrote as follows to Louis XVI:

The famous Leonard Euler, one of the greatest mathe-
maticians of Europe, has written two works which could be
very useful to the schools of the Navy and the Artillery. One is a
Treatise on the Construction and Manceeuver of Vessels; the other is a
commentary on the principles of artillery of Robins . .. I propose
that Your Majesty order these to be printed; . . ..

It is to be noted that an edition made thus without the consent
of the author injures somewhat the kind of ownership he has of
his work. But it is easy to recompense him in a manner very
flattering for him and glorious to Your Majesty. The means
would be that Your Majesty would vouchsafe to authorize me to
write on Your Majesty’s part to the lord Euler and to cause him to
receive a gratification equivalent to what he could gain from the
edition of his book, which would be about 5,000 francs. This sum
will be paid from the secret accounts of the Navy.

“The famous Leonard Euler”, then sixty-nine years old and blind,
was the principal light of CATHERINE II's Academy of Sciences in
Petersburg. His name had figured before in the correspondence
between TURGOT, the economist and politician, and CONDORCET, the
prolific if rather superficial mathematician and littérateur soon to
become Perpetual Secretary of the Paris- Academy of Sciences, and
later first an architect and then a victim of the Revolution. Just twenty
years afterward CONDORCET was to die because his hands had been
found to be uncalloused and his pocket to contain a volume of
HoRrACE, but in 1774 equality, while already advocated and projected
by TurGOT, had not progressed so far. In a France threatened by
bankruptcy a minister of state could still‘,ﬁ”ﬁd time to write in letters to
a friend his opinions and doubts and’ conjectures about everything
from literature to manufacture, and by the way the solution of alge-
braic equations. It was such a minister who asked whether “this
EULER, who lets nothing slip by unnoticed, might have treated in his
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mechanics or elsewhere” the most advantageous height for wagon
wheels'.

In a time when intelligence was the highest virtue, when even men
and women then thought to be lazy and stupid (and today proved by
their words and deeds to have been lazy and stupid) were portrayed
with little wrinkles of alertness around their sparkling, comprehend-
ing eyes, the name of LEONARD EULER, the greatest mathematician of
the century in which mathematics was almost unexceptionally regar-
ded as the summit of knowledge, was better known than those of the
literary and musical geniuses, for example SwIFT and BAcH. In the
firmament of letters only VOLTAIRE outshone EULER. True, in all the
world there were but seven or eight men who could enter into dis-
course with him, VOLTAIRE certainly not being one of them, and most
of what he wrote could be understood in detail by only two or three
hundred, VOLTAIRE not being one of these either, but pinnacles
could then still be admired from below. In the volume for 1754 of The
Gentleman’s Magazine, a British periodical of general interest the con-
tents of which ranged from heraldry to midwifery, we find an article
entitled “Of the general and fundamental principles of all mechanics,
wherein all other principles relative to the motion of solids or fluids
should be established, by M. Euler, extracted from the last Berlin
Memoirs.” The anonymous extractor concludes that EULER’s prin-
ciple “comprises in itself all the principles which can contribute to the
knowledge of the motion of all bodies, of what nature soever they be.”
This principle we call today the principle of linear momentum. There
are in fact two further general principles of motion, the principle of
rotational momentum and the principle of energy. The former of these
EuULER himself evolved and enounced twenty-five years later; it was
the culmination of his researches on special cases of rotation that had
extended over half of the eighteenth century. The latter principle was
left for physicists of the next century to discover.

An entire volume is required to contain the list of EULER’s publica-
tions. Approximately one third of the entire corpus of research on

! This remark is enlightening. The book to which TURGOT refers is EULER’s
famous Mechanica, published in 1738. One of the most abstract works of the century, it
never comes near anything concerning a wheel, let alone a wagon. Respect unsupport-
ed by even vague familiarity with the contents of this book is not limited to statesmen
but is shown even by modern general histories of séience or mathematics, which regu-
larly and in positive terms provide it with a purely imaginary description as the
“analytical translation” of NEWTON’s Principia. In fact, it is a treatise on the motion of
a single point whose acceleration is induced by a rule of one of several simple kinds.
Were it not for the headings, only an initiate would be able to recognize the contents
as being mechanics.
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mathematics and mathematical physics and engineering mechanics
published in the last three quarters of the eighteenth century is by
him. From 1729 onward he filled about half of the pages of the
publications of the Petersburg Academy, not only until his death in
1783 but on and on over fifty years afterward. (Surely a record for
slow publication was won by the memoir presented by him to that
academy in 1777 and published by it in 1830.) From 1746 to 1771
EULER filled approximately half of the scientific pages of the proceed-
ings of the Berlin Academy also. He wrote for other periodicals as
well, but in addition he gave some of his papers to booksellers for
issue in volumes consisting wholly of his work. By 1910 the number of
his publications had reached 866, and five volumes of his manuscript
remains, a mere beginning, have been printed in the last ten years.
There is almost no duplication of material from one paper to another
in any one decade, and even most of his expository books, some
twenty-five volumes ranging from algebra and analysis and geometry
through mechanics and optics to philosophy and music, include mat-
ter he had not published elsewhere. The modern edition of EULER’s
collected works was begun in 1911 and is not yet quite complete;
although mainly limited to republication of works which were pub-
lished at least once before 1910, it will require seventy-four large
quarto parts, each containing 300 to 600 pages. EULER left behind
him also 3000 pages of clearly and consecutively written mathe-
matical notebooks and early draughts of several books®. A whole
volume is filled by the catalogue of the manuscripts preserved in
Russia. EULER corresponded with savants and administrators all over
Europe; the topics of his letters range more widely than his papers,
going into geography, chemistry, machines and processes, explora-
tion, physiology, and economics. About 3000 letters from or to EULER
are presently known; the catalogue of these, too, occupies a large
volume; nearly one-third of them have been printed, usually in volumes
consisting of particular correspondences. The first such volume, pub-
lished in 1843, was of great importance for its impetus to developments

% There are also four classes of manuscripts of memoirs and books:

1. Manuscripts from which, perhaps with some correction, the works were set in
type in EULER’s lifetime.

2. Manuscripts intended for publication and published in the regular volumes of
the Petersburg Academy after EULER’s death.

3. Manuscripts which EULER withheld from publication but which were published
in the collections entitled Commentationes arithmeticae collectae (St. Petersburg, 1849) and
Obpera postuma, 2 vols. (St. Petersburg, 1862).

4. Manuscripts of works not published before 1966. Many of these remain unpub-
lished.
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in the theory of numbers in the nineteenth century, more than fifty
years after all the principals in the correspondence had died. This
kind of permanence, difficult for literary men and historians and
physicists to comprehend, is typical of sound mathematics.

In modern usage EULER’s name is attached as a designation to
dozens of theorems scattered over every part of mathematical science
cultivated in his time. Even more astonishing than this broad though
vague and incomplete tradition is the influence EULER’s own writings
continue to exert upon current research. The Science Citation Index
for 1975 through 1979 lists roughly 200 citations of some 100 of
EuLER’s publications; most of the works in which these citations occur
are contributions to modern science, not historical studies.

It was EULER who first in the western world wrote mathematics
openly, so as to make it easy to read. He taught his era that the
infinitesimal calculus was something any intelligent person could
learn, with application, and use. He was justly famous for his clear
style and for his honesty to the reader about such difhiculties as there
were. While most of his writings are dense with calculations, four of
his books are elementary. One of these is a textbook for the Russian
schools; one is the naval manual which TURGOT caused to be reprin-
ted in France; one is a treatise on algebra which begins with counting
and ends with subtle problems in the theory of numbers; and the
fourth, called Letters to a Princess of Germany on Different Subjects in
Natural Philosophy, is a survey of general physics and metaphysics.
This last is the most widely circulated book on physics written before
the recent explosion of science and schooling. It was translated into
eight languages; the English text was published ten times, each time
revised so as to bring the contents somewhat up to date; six of the
editions were American, the last one in 1872, a date only a little
further from the present day than from 1768, when the original first
appeared.

While EULER is known today primarily as a mathematician, he was
also the greatest physicist of his era, a rank which was obscured for
200 years but has been re-established by the recent studies of Mr.
Davip SPEISER. EULER was the first person to derive an equation of
state for a gas from a kinetic-molecular theory. In geometrical optics
he invented the achromatic lens. His design for it required glasses of
high, distinct, and reproducible quality; attempts to construct lenses
according to his prescriptions have been adduced as impulses to the
rise of the optical industry in Germany, which was supreme in pre-
cision for at least a century. He desigried and caused to be built and
tried an apparatus for measuring the refractive index of a liquid; it
worked, and it remained in use for a century and a half. EULER’s
hydrodynamics was the first field theory. Perhaps his most important
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progress in physics other than mechanics is his having taken the
observed fact that beams of light pass through each other without
interference as justifying use of his linear field theory of acoustic
waves to describe waves of light in a luminiferous aether, which he
visualized as a subtle fluid.

To study the work of EULER is to survey all the scientific life, and
much of the intellectual life generally, of the central half of the
eighteenth century. Here I will not even list all the fields of science to
which EULER made major additions. The most I attempt is to give some
idea what kind of man he was.

LEONARD EULER was born in Basel in 1707, the eldest son of a poor
pastor who soon moved to a nearby village. The parsonage there had
two rooms: the pastor’s study and another room, in which the parents
and their six children lived. EULER in the brief autobiography he
dictated to his eldest son when he was sixty wrote that in his tender
age he had been instructed by his father;

as he had been one of the disciples of the world-famous James
Bernoulli, he strove at once to put me in possession of the first
principles of mathematics, and to this end he made use of Chris-
topher Rudolf’s Algebra with the notes of Michael Stiefel, which I
studied and worked over with all diligence for several years.

This book, then some 160 years old, only a gifted boy could have
used. Soon EULER was turned over to his grandmother in Basel,

so as partly by attendance at the gymnasium and partly by private
lessons to get a foundation in the humanities [i.e. Greek and Latin
languages and literatures] and at the same time to advance in
mathematics.

Documents of the day picture the gymnasium in a lamentable state,
with fist-fights in the classroom and occasional attacks of parents upon
teachers. Mathematics was not taught; EULER was given private
lessons by a young university student of theology who was also a
tolerable candidate in mathematics.

At the age of thirteen EULER registered in the faculty of arts of the
University of Basel. There were approximately 100 students and
nineteen professors. Instruction was miserable, and the faculty,
underpaid, was mediocre with one exception. The Professor of
Mathematics was JoHN BERNOULLL, thé younger brother of the great
JAMEs, by that time deceased. JoHN BERNOULLI, a mighty mathe-
matician and ferocious warrior of the pen, was universally feared
and admired as a geometer second only to the aged and long silent
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NEwTON. BERNOULLI had returned, reluctantly, to the backwater
of Basel despite brilliant offers of chairs in the great universities of
Holland; he had had to return because of pressure from his
patrician father-in-law. Single-handed, he had made Basel the mathe-
matical center of Europe. Three of the four principal French
mathematicians of the first half of the century had sought and re-
ceived instruction from him; his sons and nephews became
mathematicians, some of them outstanding ones. He hated the
“English buffoons”, as he called them, and like Horatius at the bridge
he had defeated every British champion who dared challenge him.

BerNouULLI discharged his routine lecturing on elementary mathe-
matics at the University with increasing distaste and decreasing atten-
tion. Those few, very few, students whom he regarded as promising
he instructed privately and sometimes gratis. EULER recalled,

I soon found an opportunity to gain introduction to the famous
professor John Bernoulli, whose good pleasure it was to advance
me further in the mathematical sciences. True, because of his
business he flatly refused me private lessons, but he gave me
much wiser advice, namely to get some more difficult mathemati-
cal books and work through them with all industry, and wherever
I should find some check or difficulties, he gave me free access to
him every Saturday afternoon and was so kind as to elucidate all
difficulties, which happened with such greatly desired advantage
that whenever he had obviated one check for me, because of that
ten others disappeared right away, which is certainly the way to
make a happy advance in the mathematical sciences.

When he was fifteen, EULER delivered a Latin speech on temper-
ance and received his prima laurea, first university degree. In the same
year he was appointed public opponent of claimants for chairs of logic
and of the history of law. In the following year he received his
master’s degree in philosophy, and to the session of 8 June 1724, at
which the announcement was made, he gave a public lecture on the
philosophies of DESCARTES and NEWTON. Meanwhile, he remem-
bered, for the sake of his family

I had to register in the faculty of theology, and I was to apply
myself besides and especially to the Greek and Hebrew languages,
but not much progress was made, for I turned most of my time to
mathematical studies, and by my happy fortune the Saturday visits
to Mr. John Bernoulli continued.

At nineteen EULER published his first mathematical paper, an out-
growth of one of BERNOULLI'’s contests with the English; EULER had
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found that his teacher’s solution of a certain geometrical problem,
while indeed better than the English one, could itself be greatly
improved, generalized, and shortened. In the case of his own sons,
such turns aroused BERNOULLI’s jealousy and competition, but
EULER at once became and remained his favorite disciple.

The next year, at the age of twenty, EULER competed for the Paris
prize. These prizes were the principal scientific honors of the century;
golden honors they were, too, 2500 livres or even twice or thrice that
much, not the empty titles of our time. JoHN BERNOULLI himself won
the prize twice; his son DANIEL, ten times; EULER was to win it twelve
times, or about every fourth year of his working life. The assigned
topics were usually dull or vague or intricate matters of celestial
mechanics, nautics, or physics, never mathematics as such. Often they
were directed toward the interests of a specific Frenchman who had
something ready and was expected therefore to win, but the competi-
tions were administered fairly, and when an outsider sent in a fine
essay, as a rule he was given the prize. The Basler mathematicians had
a knack of twisting a promiseless subject into something more funda-
mental, upon which mathematics could be brought to bear. The prize
essays themselves rarely solved the problem announced and usually
were works of second class in their authors’ total outputs, but the
competitions caused the great savants to take up and deepen inquiries
they might otherwise never have begun, and so the competitions ten-
ded indirectly to broaden the range of mathematical theories of phys-
ics. Thus they played, though at a more individual and aristocratic
height, a role like that of military support for science in our time. The
subject of 1727 was the masting of ships. EULER had never seen a
seagoing ship, but his entry received honorable mention and was
published forthwith. The winner was BOUGUER, for whom the prize
had been designed, and who had submitted an entire treatise he had
been writing for some years; this treatise immediately became the
standard work on the subject. The other two classics of the eighteenth
century on naval science, one being much more general and mathe-
matical and profound, and the other being the little handbook to
which TURGOT referred, were both to be written later by EULER.

In the same year, his twenty-first, EULER on BERNOULLTI’s advice
competed for the chair of physics. While he was quickly eliminated as
a candidate, he published his specimen essay, A Physical Dissertation on
Sound. With the clarity and directness that were to become his
instantly recognizable signature, in sixteen pages he laid out in order
and in simple words, without calculations, all that was then known
about the production and propagation of sound, added some details
of his own, and listed a number of open problems. This work became
a classic at once; it was read and cited for over a hundred years,
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during which it served as the program for research on acoustics.
EULER himself later wrote at least 100 papers directly or indirectly
related to the problems set here, and many of these he solved once
and for all. The last page lists six annexes. The first denies the prin-
ciple of pre-established harmony; the second asserts that NEWTON’s
Law of gravitation is indeed universal; the fourth afirms that kinetic
energy is the true measure of the force of bodies; while the remaining
thre 2 announce solutions of problems concerning oscillation through
a hole in the earth, the rolling of a sphere, and the masting of ships.
The professorship was given to a man never heard of again, who in
fact was interested primarily in anatomy and botany. EULER at twenty
had entered the field of mechanical physics and philosophy as a chal-
lenger with firm positions, openly avowed, on every main question
then under debate. At the same time, and in equal measure, he was
able to announce definite and final solutions to several specific prob-
lems. When he died, fifty-five years later, his mastery of all physics as
it was then understood, and his ability to solve special problems, were
just the same. Indeed, most of the main general advances of the
entire century had been made by him, and in addition he had solved
many key-problems and hundreds of examples. On the day of his
death he had discussed with his disciples the orbit of the planet
Uranus, which HERSCHEL had discovered two years before. On his
slate was a calculation of the height to which a hot-air balloon could
rise. The news of the MONTGOLFIERS’ first ascent had just reached St.
Petersburg, where EULER had been residing for most of his life.
Having had the good luck not to win the chair of physics at Basel,
EULER went to Petersburg in 1727. JoHN BERNOULLI had been
invited but felt himself too old; instead he offered one of his two sons,
DANIEL and NicHOLAS, and then adroitly required that neither
should go unless the other went too for company and comfort. One
was a professor of law and the other was studying medicine in Italy;
both were pleased to accept chairs of mathematics or physics. They
promised the young EULER the first vacant place, but Russia’s thirst
for the mathematical sciences was slaked at the moment, and so they
suggested he take a position as “Adjunct in Physiology”. To this end
they advised him to read certain books and learn anatomy; accord-

ingly

I matriculated in the medical faculty of Basel and began to apply
myself with all industry to the medical course of study .. ..

EULER arrived in Petersburg on the day the empress died and the
Academy fell into
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the greatest consternation, yet I had the pleasure of meeting not
only Mr. Daniel Bernoulli, whose elder brother Mr. Nicholas had
meanwhile died, but also the late Professor Hermann, a
countryman and also a distant relative of mine, who gave me
every imaginable assistance. My pay was 300 rubles along
with free lodging, heat, and light, and since my inclination lay
altogether and only toward mathematical studies, I was made
Adjunct in Higher Mathematics, and the proposal to busy me
with medicine was dropped. I was given liberty to take part in
the meetings of the Academy and to present my developments
there, which even then were put into the Commentarii of the
Academy.

The Academicians were all foreigners—Germans, Swiss, and a
Frenchman, not only the professors but also the students. Thus
language was not a problem, but the senior colleagues were. To a man
the chiefs, like university officials today, were tumors, the only ques-
tion being whether benign or malignant. The most promising
mathematician, N1icHOLAS II BERNOULLI, had died of a fever before
EULER arrived. EULER’s friends were DANIEL BERNOULLI, seven years
older and already a famous mathematician and physicist, and GOLD-
BACH, an energetic and intelligent Prussian for whom mathematics
was a hobby, the entire realm of letters an occupation, and
espionage a livelihood. The Academy fell on evil days; its effective
director was an Alsatian named SCHUMACHER, whose main interest
lay in the suppression of talent wherever it might rear its
inconvenient head. SCHUMACHER was to play a part in EULER’s life for
more than a quarter century.

Soon most of the old tumors had been excised by departure or
death. So had most of the capable men. DANIEL BERNOULLI, after
having competed for every vacancy in Basel, in 1733 finally obtained
the chair of anatomy. Once back, he felt himself a new man in the
good Swiss air, but in the rest of his long life he never again reached
the level and the fruitfulness of his eight years in Petersburg, six of
which were enlivened by friendly competition with EULER.

EULER stayed on. For him, these were years of growth as well as
production. While he never lost his love for mechanics and the
“higher analysis”, he steadily enlarged his knowledge and power of
thought to include all parts of mathematics ever before cultivated by
anyone. He was able to create new synthetic theorems in the Greek
style, such as his magnificent discovery and proof that every rotation
has an axis. He sought and read old books such as FERMAT’s commen-
tary on DIOPHANTOS. On the basis of such antiquarian studies he
recreated the arithmetic theory of numbers, which had been scarcely
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noticed by the BERNOULLIs and LEIBN1Z, in whose school of thought
he had been trained. He gave this subject new life and discovered
more major theorems in it than had all mathematicians before him
put together. He was equally at home in the algebra of the seven-
teenth century, a field neither easy nor elementary, tightly wed to the
theory of numbers. He also probed new subjects which were to lower
only much later. One of these is combinatorial topology, in which he
conjectured but was not able to prove what later became a key-
theorem, now called the EULER polyhedron formula®. Unifying and
subjecting to system the work of many predecessors, he created
analytic geometry® as we know that discipline today; from his textbook,

® Namely, in any simple polyhedron the number of vertices plus the number of
faces is greater by two than the number of edges. EULER could not have known that the
same assertion lay in an unpublished manuscript of DESCARTES. EULER did publish a
proof, but it is false as it stands; the basic idea of it, nevertheless, is sound and has been
applied in countless later researches.

* Analytic geometry is ordinarily attributed to DESCARTES and FERMAT. Of course,
like any other mathematical innovation, it was neither without antecedents nor beyond
improvement. The reader who doubts my statement should draw his own conclusion
by comparing DESCARTES’ La Géométrie, Volume 2 of EULER’s Introductio in analysin
infinitorum, and a textbook of the 1930s.

EULER’s development of analytic geometry is described by C. B. BOYER on pages
180-181 of his History of Analytic Geometry, New York, Scripta Mathematica, 1956. Of
EULER’s Iniroductio in analysin infinitorum BOYER writes

The Introductio of Euler is referred to frequently by historians, but its
significance generally is underestimated. This book is probably the most influen-
tial textbook of modern times. It is the work which made the function concept
basic in mathematics. It popularized the definition of logarithms as exponents and
the definitions of the trigonometric functions as ratios. It crystallized the distinc-
tion between algebraic and transcendental functions and between elementary and
higher functions. It developed the use of polar coordinates and of the parametric
representation of curves. Many of our commonplace notations are derived from
it. In a word, the Introductio did for elementary analysis what the Elements of
Euclid did for geometry. It is, moreover, one of the earliest textbooks on college
level mathematics which a modern student can study with ease and enjoyment,
with few of the anachronisms which perplex and annoy the reader of many a
classical treatise.

“

BOYER states that EULER’s “treatment of the linear equation is characteristic for its
generality, but it is startlingly abbreviated.” By the standards of modern textbooks for
freshmen EULER’s book is rather advanced. For example, he stated “the geometry of
the straight line is well known.”

Finally, writes BOYER,

The Introductio closes with a long and systematic appendix on solid analytic
geometry. This is perhaps the most original contribution of Euler to Cartesian
geometry, for it represents in a sense the first textbook of algebraic geometry in
three dimensions.

By “Cartesian geometry” BOYER refers more or less to what is usually called “analytic
geometry”; by “algebraic geometry”, to what is usually called “co-ordinate geometry”.
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and from others based upon it, and still others based on them, and so
on, students of mathematics learned the subject from 1748 until the
1930s, when it was largely superseded by the rise of modern linear
algebra. Students of natural science even today learn it in essentially
EULER’s way. EULER was the first man to publish a paper on partial-
differential equations, and the world has learnt most of the elementary
calculus of partial derivatives from his books, although some of the
rules had been known to NEwTON and LEIBNIZ but not published by
them. It was mainly in his first Petersburg years that EULER developed
his taste for pure mathematics, which has remained forever after, in a
tradition deriving from him and unbroken by the most violent political
changes, a Russian specialty. About one-third of his total product was
regarded as “pure’” mathematics in his own day; in the classification of
our time, this term would apply to only about one-fifth of it; but that
small fraction includes many of his deepest and most permanent
contributions. One of these is the concept of real function: namely, a
rule assigning to each real number in some interval another real
number. In his earlier years EULER, like his predecessors, had used a
concept of function both narrow and vague, but his own discoveries in
the theory of partial-differential equations and wave propagation had
shown him the clear way’, which every mathematician since 1850 has
followed. Other great discoveries were the law of quadratic reciprocity®
in number theory and the addition theorem for elliptic functions’, but
these came later than the time of which I am now speaking.

What EULER did for mechanics blanks superlatives. The contents
of any one of the two dozen volumes of his Opera that concern
mechanics primarily would have sufficed to earn its author a place at
or near the summit of the field. There is no aspect of it as it stood
before his day that he did not change essentially; he solved problems
set by his predecessors, applied existing theories to important new
instances, simplified ideas while making them more general, unified
domains that before him had seemed separate. He created new con-
cepts and new disciplines to embrace phenomena of nature that pre-
viously were not understood. Sometimes he worked with the most

® The “clear way” is commonly attributed to DIRICHLET or other mathematicians of
the nineteenth century.

%That is, in the notation of GAUSS, of the two congruences x?=q(mod p) and
x’=p(mod q), p and q being prime numbers, either both are soluble or neither is
except if p =q =3(mod 4), in which case one is soluble and the other is not.

" That is, in the notation of JACOBI,

(snu)(cnv)(dnv)+ (cnu)(snv)(dnu)

1—k>(snu)(sn’v)

sn(u+v)=

and related formulze.
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abstruse mathematics known in his day; he was equally ready to
explain his results and their applications by simple rules of practice;
he regularly furnished numerical methods and worked-out instances.
Above all, he sought and achieved clarity.

Analysis was the key to mechanics, and in turn mechanics sug-
gested most of the problems of analysis that mathematicians of the
eighteenth century attacked. Astronomy and physics were mainly
applications of mechanics. Over half of the pages EULER published
were expressly devoted to mechanics or closely connected with it.

Nonetheless, there is no evidence that EULER preferred any one
part of mathematics to the rest®. The only sure conclusion we can
draw from his prodigious output is that he sought to enlarge the
domain of mathematics and its applications with a dediction as eager
as that which led Don GI0VANNI to seduce even ugly girls pel piacer di
porle in lista, but EULER’s outposts, even those ridiculed by some of his
contemporaries, have been bridgheads to future and permanent,
total conquests.

The first Petersburg years brought EULER success, instruction in
the facts of life, and misfortune.

In 1730, when Professors Hermann and Biilfinger returned to
their native land, I was named to replace the latter as Professor of
Physics, and I made a new contract for four years, granting me
400 rubles for each of the first two and 600 for the next two, along
with 60 rubles for lodging, wood, and light.

Then EULER had the experience, not uncommon in the Enlighten-
ment, of being unable to collect all of his contracted salary. In 1731
there was a matter of promotion: Four little men, who up to that time
had been receiving less than he, were set equal to him. In a formal
protest EULER wrote,

" In his beautiful book Fermat's Last Theorem, New York eic., Springer-Verlag, H. M.
EDWARDS writes as follows:

It is a measure of Euler’s greatness that when one is studying number theory
one has the impression that Euler was primarily interested in number theory, but
when one studies divergent series one feels that divergent series were his main
interest, when one studies differential equations one imagines that actually
differential equations was his favorite subject, and so forth. ... Whether or not
number theory was a favorite subject of Eulers, it is one in which he showed a
lifelong interest and his contributions to number theory alone would suffice to
establish a lasting reputation in the annals of mathematics.
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That we shall each be treated on the same footing is something I
can’t get through my head at all. ... It is true that I have never
applied myself so much to physics as to mathematics, but
nevertheless I doubt much that you can get from the outside such
a person as I for any 400 rubles. In the matter of mathematics, I
think the number of those who have carried it as far as I is pretty
small in the whole of Europe, and none of those will come for
1000 rubles.

(We should take note of EULER’s estimated difference of salaries: 400
for a physicist, 1000 for a mathematician. In those days physics was
a speculative or experimental science, not a mathematical one.)’
BULFINGER, whose talent was modest at best and for mathematics
naught, had been Professor of Physics; DANIEL BERNOULLI, whose
lifelong passion was what he himself called physics, was Professor of
Higher Mathematics. SCHUMACHER advised the President of the
Academy not to grant EULER the least concession, since otherwise he
would straightway grow impudent. EULER learned a lifelong lesson
from this experience: It is futile to argue with administrators but easy
to outwork and forget them.
In 1733, EULER states,

when Professor Daniel Bernoulli, too, went back to his native
land, I was given the professorship of Higher Mathematics, and
soon thereafter the directing senate ordered me to take over the
Department of Geography, on which occasion my salary was
increased to 1200 rubles.

Earlier in the same year, even before this splendid increase in his
salary, EULER had married, of course choosing a Swiss wife, the
daughter of a court artist; in this way he continued the tradition of the
BERNOULLIs, all of whom were either professors or painters, and his
younger brother also became a painter. The first of EULER’s many
children was born the next year. In 1738 a violent fever destroyed the
sight of one of EULER’s eyes. The work in the geographical depart-
ment strained his eyesight severely, but he was really interested in
constructing a good general map of Russia, and he succeeded in

? This difference in their predecessors is recognized by both mathematicians and
physicists today, since the latter are wont to say that the greatest discoveries in mathe-
matics were made by (theoretical) physicists, while the former often remark that most
of the major discoveries in theoretical physics were made by mathematicians (until very
recently). Usually they are speaking of the same persons, e.g., HUYGENS and NEWTON
and EULER and LAGRANGE and CAUCHY and FOURIER.
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doing so. He wrote to order a school arithmetic text and a great
treatise on naval science, receiving for this latter 1200 rubles, in this
way doubling his salary one year. EULER’s precise recollection of the
dates and salaries of his early appointments reflects his Swiss talent
for making and saving money. On at least one occasion even Tyche
smiled upon him: In the spring of 1749 he wrote to GOLDBACH that
he had received 600 Reichsthaler from a lucky ticket in a lottery,
“which was just as good as if I had won a Paris prize this year.”

In 1740 EULER was requested to cast the horoscope of the new
Czar, who was only a few weeks old. While such a task would have
been normal a century earlier, for the Enlightenment it was retar-
dataire. EULER smoothly passed the honor on to the Professor of
Astronomy. The contents of the horoscope is not known, but in less
than a year the child Czar was deposed and hidden; twenty-four years
later, still in prison, he died.

In 1740 FrEDERICK II ascended the throne of Prussia. This eccen-
tric and semi-educated general, flute player, and homosexual lay
under the spell of France and French men. He wished to create in
Berlin a mingled French Académie des Sciences and Académie
Frangaise. VOLTAIRE was his Apollo, and VOLTAIRE recommended as
director a trifling but extremely eminent French scientist named
MAauPERTUIS, whom he dubbed “Le Grand Aplatisseur” for his hav-
ing led an expedition to Lapland to measure the length of one degree
of a meridian, whence he had concluded that the earth was flatter at
the poles than at the equator. For VOLTAIRE, who endorsed mathe-
matical philosophy but did not understand it, this proved DESCARTES
wrong and NEWTON right about everything. The later philosophes fol-
lowed his judgment; the British gleefully followed them; and
somehow this minor and precarious if not puerile side issue has
assumed in the folklore of science an importance it never for a
moment deserved or enjoyed among those who knew what was what
in rational mechanics. In addition to being an argonaut, MAUPERTUIS
was an héros de salon and a causeur, a fit table companion for the king;
notwithstanding that, he had been a disciple of JoHN BERNOULLI, and
though no geometer himself, he knew mathematics when he saw it.
He proposed to bring all the BErNouLLIs and EULER to Berlin.

Only EULER was seduced, and at that only because, as he put it, in
the regency following the death of Empress ANNA “‘things began to
look rather awkward.” That the prospect in Russia was bad indeed, is
proved by EULER’s consenting to move at no increase in pay. Even so,
the Prussian king did not feel himself compelled to discharge his
promise in full. After his return to Petersburg, EULER’s dictated sum-
mary of his twenty-five years in Berlin was “What I encountered
there, is well known.”
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No sooner did EULER arrive in Berlin but the king’s wars over-
turned everything and endangered MAUPERTUIS, who withdrew
from Prussia until he was sure FREDERICK’s seat was firm. EULER,
meanwhile, was writing mathematical papers. Every associate mem-
ber of the Academy was required to compose for publication at least
one memoir per year; every pensioner, at least two; EULER never
presented fewer than ten.

The keys to the treasurehouse of learning in the eighteenth cen-
tury—I should be tempted to say also today, were it not that any such
statement would be empty because “learning” has been taken off
the gold standard—were the Latin language and the infinitesimal
calculus. FREDERICK II understood neither; he detested both. He
ordered his Academy to speak and publish only in French, and he
encouraged it to cultivate the sciences useful in promotion of trades
and manufactures, in the restraint of savage passions, and in the
development of a subject’s duties. EULER, despite his thoroughly
Classical training and his consummate mastery of the new “analysis of
curves”, easily accepted these conditions. He continued his connec-
tion with the Academy of Petersburg, not only sending it a stream of
papers, mainly on pure mathematics, but also serving as editor of its
publications; in addition, he conveyed to SCHUMACHER information
of all sorts regarding the scientific life of the West. In return, of
course, he received a salary. These relations continued even through
the Seven Years’ War, during which Russia joined the alliance against
Prussia and at one time overran Berlin. When a farm belonging to
EuLer'® was pillaged by the Russians, their commander, General
ToTLEBEN, saying he did not make war upon the sciences,
indemnified EULER for more than the damage sustained, and the
Empress EL1ZABETH added a further gift, finally turning the loss into
a handsome profit. EULER also lodged and boarded in his house
Russian students sent by the Petersburg Academy, one of these being
RasuMoOvski, hetman of the Cossacks, who later became president of
the Academy. EULER gave these students instruction in mathematics,
this being as close as he ever came to what is called “teaching” in
American universities. EULER taught mathematics and physics to the
whole world, and down to the present time his influence on instruc-
tion in the exact sciences has been second only to EucLID’s. In person,
had he held a chair in a university, he might have reached a few
hundred students at most; like EucLID, by writing EULER has taught
mathematics to millions.

' The episode has come down to us only through CONDORCET’s Eloge; we do not

know whether EULER had more than one farm.
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By no means all of EULER’s books were popular ones. Until about
fifteen years ago unopened copies of his more advanced works turned
up at low prices on the book market. At least five of these were the
first treatises ever published on their subjects, and while easy for a
dedicated reader to study, they seemed abstruse to the laity. Few as
were the copies sold in EULER’s own day'', they fell into the right
hands. His treatises on rigid-body dynamics, infinite series, differen-
tial and integral calculus, and the calculus of variations were mother’s
milk to three or four generations of mathematicians and theoretical
physicists, including the great Frenchmen of the NAPOLEONIc revival,
as well as the less eminent but equally influential German and Italian
professors of the same period; from the teaching of these three
schools the basic core of EULER’s work has passed into the common
tradition of the mathematical sciences'?. While it is a rare young Doc-
tor of Philosophy in America today who can decipher a page of
JounsoN’s London without a dictionary if not a crib or coach, and
while in another academic generation we can confidently expect that
Robinson Crusoe will have to be translated into “modern English”, even
the mediocre juniors in engineering the world over have learnt and
are able to use a dozen of EULER’s discoveries. With the music of the
same period, the contrast is more striking. For example, in the eight-
eenth century no-one outside Hamburg can have heard TELEMANN’s
Der Tag des Gerichtes; few can have been those who heard even some
part of BACH’s Messe in H-moll, and no-one, certainly, had heard the
whole of it or any part at all of Die Kunst der Fuge. While these works
seem to us now to stand at the summit of the Enlightenment, even
their authors had in their own day merely national or local reputa-
tions. Not so with EULER, who was famous far, far beyond the tiny
though international circle of those who could understand what he
wrote. He was one of those favored few who achieved even from their
own contemporaries the respect of which posterity has judged them
worthy. EULER won his later fame by the usual method: merciless

""EULER’s correspondence with KARSTEN shows that the printing of his book on
the motion of rigid bodies, an acknowledged masterpiece of mechanics, was delayed
four years for lack of interest. The publisher demanded subscriptions for 100 copies,
but after waiting eighteen months he had received only thirty. EULER finally waived
royalties; instead, he requested twenty free copies but said he would be satisfied with
twelve. It seems this latter number was what he did in the end receive. Twenty-five
years later, and after EULER’s death, the same publisher found it worthwhile to issue
the work in a second edition, adding some of EULER's major papers on the subject as
an appendix.

'2 It is well known that the British school of the mid-nineteenth century, the greatest
representatives of which were GREEN, STOKES, KELVIN, and MAXWELL, learnt
mathematics and mathematical physics primarily from French books.
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trials by the fire and water of time. In his own day, from his twenty-
fifth year onward, he was a senior academician, and he used well the
advantages his position gave him.

An academy of science on the Continent in the eighteenth century
was not the honorary power group of old men we associate with the
name today. Its senior members were employed to do research and
give expert opinions. Junior associates, also paid, were in a sense
students, but research was their duty; nothing then existed like the
elementary teaching—every course optional, effectively without pre-
requisites, and remedial—we regard today as the primary function of
an institution of higher learning, ravenous for tuition and subsidies.
In the eighteenth century the talented youngster was expected to have
had an intense, unremitting preparation already; to succeed afterward,
he had to learn at a pace faster than any college today would permit.
Nevertheless the academies were far from being either successful in
their purposes or happy places of work. To learn about an academy
of the eighteenth century, you had best read the Third Voyage in
Gulliver’s Travels by Jonathan Swift. While today the First Voyage in
some watered and censored abridgment is regarded as fit for children,
Swift in 1727 designed his book as bitter satire on life and society in
England and all Europe, and his readers then saw nothing jocose or
juvenile in it, only biting caricature of themselves, their friends, and
their enemies.

Gulliver goes to Laputa, an island magnetically suspended in the
air, whose inhabitants devoted themselves to the abstract arts: mathe-
matics and music. They were

. a race of mortals ... singular in their shapes, habits, and
countenances. Their heads were all reclined either to the right or
the left; one of their eyes turned inward, and the other directly
up to the zenith.

They were no good at anything other than mathematics and music:

Their houses are very ill built, the walls bevil, without one right
angle in any apartment, and this defect ariseth from the contempt
they bear to practical geometry, which they despise as vulgar and
mechanic, those instructions they give being too refined for the
intellectuals of their workmen. ...

And although they are dexterous enough upon a piece of paper
in the management of the rule, the pencil, and the divider, yet in
the common actions and behaviour of life, I have not seen a more
clumsy, awkward, and unhandy people, nor so slow and perplexed
in their conceptions upon all other subjects, except those of mathe-
matics and music.
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Beneath them, on the low and subject earth, lay the bipartite Grand

Academy of Lagado, where natural scientists and sociologists pursued
their researches, all of which were directed toward betterment of
human life. The former sought to reverse the processes of nature: to
get the sunlight back out of the cucumbers, to build houses from the
roof downward, to breed naked sheep so as to save the cost of shearing
them, to convert human excrement into human food, etc. If these
projects for achieving material good seem disturbingly up-to-date, just
go to the other side of the Academy and consult “the projectors in
speculative learning”—or, as we should say today, social studies. One
specimen there may suffice. In Swift’s words,

The first professor I saw was in a very large room, with forty
pupils about him. ...Observing me to look earnestly upon a
frame, ... he said perhaps I might wonder to see him employed
in a project for improving speculative knowledge by practical and
mechanical operations. ... Every one knew how laborious the usual
method is of attaining to arts and sciences; whereas by his contriv-
ance the most ignorant person at a reasonable charge, and with a
little bodily labour, may write books in philosophy, poetry, politics,
law, mathematics, and theology, without the least assistance from
genius or study. He then led me to the frame ... The superficies
was composed of several bits of wood, about the bigness of a
die ... . They were all linked together by slender wires. .. [and]
covered on every square with paper pasted on them, and on [them]
were written all the words of their language, . . ., but without any
order. The professor then desired me to observe, for he was going
to set his engine at work. The pupils at his command took each
of them hold of an iron handle, and giving them a sudden turn,
the whole disposition of the words was entirely changed. He then
commanded six and thirty of the lads to read the several lines
softly as they appeared upon the frame; and where they found
three or four words together that might make part of a sentence,
they dictated to the four remaining boys who were scribes. . . . Six
hours a day the young students were employed in this labour, and
the professor showed me several volumes . . . of broken sentences,
which he intended to piece together, and out of those rich materials
to give the world a complete body of all arts and sciences; which
however might be still improved, and much expedited, if the public
would raise a fund for making and employing five hundred such
frames in Lagado, and oblige the managers to contribute in com-
mon their several collections.

Everyone will recognize both the modernity and the obsoleteness of
the frame. It is a randomizer, to which is subjoined a noise filter, the
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whole designed to turn nonsense into sense. The elements it lacks are
statistics, by use of which a clever fellow may change his unstated
prejudices into scientific conclusions of high probability, and silicon
chips, which in rendering obsolete the child labor multiply its product
a billionfold and enable the project director to make money from the
credulity of people rather than have to beg it.

While this voyage of Gulliver was long interpreted as mere burlesque
of the sciences, about fifty years ago two scholars succeeded in tracing
every one of the some forty gossamer schemes of experimental science
in the Grand Academy for human betterment to actual projects already
undertaken or at least considered by the Academies of Europe. None
of those researches led to anything that we now value. All are examples
of the workings of Gresham’s Law, Parkinson’s Law, and the Law of
Light Weights rising to the Top in a Dense Medium. All are as actual
today as they were 250 years ago.

Of course the academies were required to consider projects for
weapons, and some of these were taken seriously. Few brought any
improvement in the arts of warfare, but they did yield as by-products
much basic science which every man curious to understand the world
around him must learn today, science upon which rests much of our
ordinary technology, that ubiquitous and supremely ugly technology
whose products the most humanitarian of humanists insist upon hav-
ing, and at low cost, however much they may despise the kind of
learning that has produced them. For example, EULER’s treatise on
naval science was based largely on assumptions about the inertial and
frictional resistances of water and air which were later shown to be
false, and so his tediously scrupulous calculations of the efficiency of
sails, oars, and paddle wheels, the design of hulls, and the courses of
sailing ships, while correct as calculations, can have been little but
useless to the Russian navy, yet his book contains also the first analysis
of the stability of floating bodies in general and of the motion of rigid
bodies about a variable axis. One device based upon EULER’s basic
theory but not invented until over 150 years after his death is the
gyrocompass, which has saved a thousand times the number of lives
it has helped to destroy. Much of the fundamental science that is part
of the toolbox of every engineer, which he may apply to kill or to
rescue or to accommodate his fellow man, derives from the mathemati-
cal research done in the academies of the eighteenth century. Notice
that in Gulliver’s Third Voyage it was the mathematicians of Laputa
who calculated and directed the course of the aerial island and enforced
its sway upon the base projectors of Lagado, of whom nothing but
busy work was expected. '

SwiFT did not mention the disputes of the academicians and the
precarious finances of the academies. Although by disposition
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somewhat irascible, EULER was not quarrelsome; he was exceptionally
generous, never once making a claim of priority and in some cases
actually giving away discoveries that were his own. He was the first to
cite the works of others in what is now regarded as the just way, that
is, so as to acknowledge their worth. Up to his time citation had been
little more than a weapon of attack, to show where predecessors went
wrong. EULER’s intellectual generosity can hardly be set as an
example, any more than a rich man’s scale of giving can be imitated by
a poor one: EULER was so wealthy in theorems that loss of a dozen
more or less would not be noticed.

It was a different matter with religious issues. EULER main-
tained throughout his life the simple Protestant faith his father had
preached. It had no pretensions in science, and science for EULER had
no just pretensions in morality and religion. Thus for EULER the
atheism or deism or agnosticism of the French philosophes was
devilish. King FREDERICK, on the other hand, while regarding organ-
ized religion as desirable for the ignorant, upheld the supremacy of
the human intellect so long as it impinged only upon Gobp’s rights, not
those of earthly kings. A Swiss Protestant was ready to bow to his king,
but not to the DEviL. EULER published anonymously a booklet called
The Rescue of Divine Revelation from the Objections of the Freethinkers.

In addition, EULER was a philosopher in his own right. Whereas
the philosophes ridiculed him as naive, KANT later was to derive his
own metaphysics from his study of EULER’s writings, but he was not
able enough in mathematics to understand EULER’s major metaphys-
ical paper, Reflections on Space and Time. The ridiculously narrow
doctrine of the physical universe we are accustomed to associate with
KANT and his successors in German philosophy was evolved after
EULER’s death, and EULER’s point of view did not come into its own
until the rise of non-Euclidean geometries and relativity, one and two
centuries later '®.

MAUPERTUIS, President of the Berlin Academy, was not precisely a
philosophe. EULER was loyal to him, and he stood between EULER and
the dislike, even contempt, of the king. MAUPERTUIS had sputtered
an overriding law of nature, the Law of Least Action, according to
which all natural operations rendered something the smallest it could
possibly be. MAUPERTUIS’ attempt to phrase this law in its application
to mechanics was wrong, and ridiculously so. A year earlier EULER
had found a correct statement for the motion of a single particle,
greatly more special than MAUPERTUIS’ pronouncement, but, as far as

13 FuLEeR did not anticipate these much later specific theories, but they are in no
way contradictory or repugnant to the general conceptions of space and time he for-
mulated.
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it went, right. When he heard of MAUPERTUIS’ principle, far from
claiming any credit, EULER published his own result as being a
confirmation of MAUPERTUIS’s grand idea, which he praised beyond
measure.

Not so the rest of the world. A distinguished nonresident member
of the Academy named KOENIG, a good mathematician and a friend
and former protégé of MAUPERTUIS, had some objections, which he
confided to MAUPERTUIS in a private conversation. A break followed,
for MAUPERTUIS tolerated no criticism. The next year KOENIG pub-
lished his objections, along with counterexamples, and he mentioned
that in any case the idea had been sketched in a letter of LEIBNIZ, long
dead, an extract from which he included. A dreadful rumpus ensued
in Berlin. KOENIG could not produce the letter, which he said he had
seen in the possession of his unfortunate friend HENzI, whom the
fathers of the Canton of Bern had beheaded because he had accepted
their invitation to make some suggestions regarding the government.
EULER came to the defense of Least Action and MAUPERTUIS. Having
handed over to MAUPERTUIS as a gift his own discovery of the one
case in which the principle could then be proved right, he was sure
MaupPERTUIS could not have stolen it from LEiBNiz, and he had
shown that something could be done with the principle if properly
corrected. Unfortunately he chose to launch a counterattack against
KOENIG, claiming that the letter was forged'*.

Meanwhile VOLTAIRE, who after the death of his mistress the Mar-
quise pu CHATELET had no agreeable lodging, came to visit King
FREDERICK at Potsdam. Formerly VOLTAIRE had been a great
admirer of MAUPERTUIS and had written:

Héros de la physique, Argonautes nouveaux
Qui franchissez les monts, qui traversez les eaux,
Dont le travail immense et Uexact mesure

De la terre étonnée ont fixé la figure.

Heroes of physics, new Argonauts,

Who cross the mountains and the seas,

Whose immense labor and exact measurement
Have fixed the figure of the astonished earth.

" In EULER’s entire life this episode is the only one that has given rise to any
suspicion of wrongdoing. With the gleeful desire now in fashion to show that everyone is
as evil as everyone else—or conversely, that nobody is better than anybody—-so that no
moral or intellectual values can have any but transitory and subjective, and hence
meaningless, meaning, every biographical notice on EULER, no matter how meagre or
slipshod, manages to mention his unfairness to KOENIG.
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After having sat for a while as the rival of MAUPERTUIS at the king’s
table, VOLTAIRE changed his mind and republished the quatrain with
“hero” replaced by “courier” and with the couplet about immense
work and exact measurement replaced by:

Ramenez des climats, soumis aux trois couronnes
Vos perches, vos secteurs, et surtout deux Lapones!

You bring back from climes subject to the three crowns
Your poles, your sectors, and above all two Lapp girls.

Indeed MAUPERTUIS had a strange household, which his Lapp mis-
tress had to share with tropical birds, exotic dogs, and a black man,
but this was only the beginning. Just at that time MAUPERTUIS pub-
lished a medley called Letter on the Progress of the Sciences, in which he
proposed numerous things worthy of the Academy of Lagado:
investigations of the Patagonian giants, methods of prolonging life, a
college composed of perfectly educated representatives of all nations,
vivisection of criminals, a town where only Latin would be spoken,
boring a study hole into the earth, use of drugs to allow experiments
on the brain, and other metaphysical matters. VOLTAIRE was thus well
prepared to regard the treatment of KOENIG by MAUPERTUIS as
unjust, and MAUPERTUIS’ eccentricities and pretensions furnished an
immediate subject for a satire: Dr. Akakia, Physician of the Pope. The
doctor’s mission was to cure MAUPERTUIS of his dreadful case of
insufferable arrogance.

The king, while presumably amused by the wit displayed, was
insulted by the attack on his own President. It must be remembered
that the king himself regularly participated in the doings of his
Academy by composing essays on moral philosophy for its memoirs.
He forbade VOLTAIRE's satire to be printed. VOLTAIRE printed it
anyway, using a permit issued for another work. The king, doubly
insulted, had the edition burnt by the hangman. The satire was
reprinted in Holland, and Berlin was flooded with copies. VOLTAIRE,
in increasing disgrace, left town as quickly as he could gain permission
to do so. On his slow progress to Switzerland he was in fact arrested
and detained for a while by the king’s officers. MAUPERTUIS, already
sick to death with tuberculosis, also left Berlin to take refuge in the
home of one of the BERNOULLIs in Basel, where in a few years
he died. VOLTAIRE published a sequel, in which Akakia induced
MavupeErTUIS and KOENIG to sign a treaty of peace. Article 19
concerns EULER:

...our lieutenant general L. Euler hereby through us openly
declares
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I. That he has never learnt philosophy and honestly repents
that by us he has been misled into the opinion that one could
understand it without learning it, and that in future he will rest
content with the fame of being the mathematician who in a given
time has filled more sheets of paper with calculations than any
other....”

Unfortunately the further sections of this article of the treaty, while
equally witty, repeat some of the specific objections of the Englishman
RoBINS about mathematical points, objections which reflect only the
inability of RoBINS to understand the advanced mathematics of his
day. In a typical effusion of literary philosophy, VoLTAIRE did no more
than blindly copy passages of bad science.

After MAUPERTUIS’ departure all the duties of the presidency fell
on EULER, but the king would not have a German (for as such he
regarded EULER) assume the title, be given the powers, or receive the
pay of the office. The Academy had to finance itself from the sale of
almanacs, and EULER had to direct their production and marketing.
The depression caused by the Seven Years’ War was severe. Serious
disputes with the king ensued. Meanwhile, the Academy grew smaller
from attrition, until besides EULER there was only one other man of
any capacity, namely, the lately arrived, self-taught Genevan genius
LAMBERT, whom FREDERICK regarded as a bear and could only with
great difficulty and after long delay be persuaded to accept.

Almost as soon as he had arrived in Berlin, EULER came to realize
that in leaving Russia he had made a grave mistake. He found neither
the leisure to work, for he was immediately engulfed in the administra-
tion of the academy, nor the stimulation from gifted friends and
acquaintances he had enjoyed in Petersburg. After having been in
Berlin for eight years he wrote

I and all those who have had the good fortune to spend some time
in the Imperial Russian Academy must admit that we owe all we
are to the advantageous circumstances in which we found our-
selves there. For my part, had I not had that splendid oppor-
tunity, I should have had to devote myself primarily to some other
field of study, in which by all appearances I should have become
only a bungler.

Such vehemence of expression may be due to its having been directed
to SCHUMACHER, on whose good will EULER’s pension depended, yet
because all evidence confirms his truthfulness at other times and in
other matters, it is unlikely that what he wrote here differed much
from what he felt.
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While throughout his long life FREDERICK again and again
expressed his contempt for the infinitesimal calculus, the elements of
which, it seems, he had tried to learn several times but in vain, he
insisted upon having a mathematician as President of his Academy.
At the same time this mathematician had to be French, a man of the
world, a lion of society. Few indeed have been the mathematicians of
this kind, but FREDERICK found one.

In 1759, when MauprerTUIS died, there were besides EULER
and LAMBERT only two other major mathematicians in Europe:
DANIEL BERNOULLI and D’ALEMBERT. The former did not fit
any of FREDERICK’s qualifications. The latter, a Frenchman ten
years younger than EULER, was at the height of his fame; he
was FREDERICK’s ideal, being a man of wit, a philosophe, a major col-
laborator on DIDEROT’s Encyclopédie, and a light of literature. Even
seven years earlier the king had offered him a salary of 12,000 francs,
which was seven times what he was receiving in Paris, and also free
lodging in the royal chiteau and meals at the royal table, but D’ALEM-
BERT had preferred freedom in poverty to the dangerous vicinity of a
king. Moreover, D’ALEMBERT had quarreled with the Berlin Academy
over one of its prizes, and for a time he seemed to be a rival of EULER
in mechanics and in some parts of analysis. The major scientific dis-
pute of the mid-century, which concerned the tones and motions of
the monochord, was at its hottest; the disputants were D’ALEMBERT,
EULER, and DANIEL BERNOULLI, three powerful parties each consist-
ing in just one man, since there was no-one else who could under-
stand the mathematics enough to form a founded opinion, let alone
take part. Here'®, as in several other circumstances of science, the

!5 While it had antecedents going back for over a century, the dispute began with a
paper by D'ALEMBERT published in 1749 and continued through D’ALEMBERT’s
remaining life. HANKINS on page 48 of his biography, Jean D’Alembert, Oxford,
Clarendon Press, 1970, states that D’ALEMBERT conceded defeat in a final volume of his
Opuscules, which exists in manuscript but was never published. On the whole, the
controversy was not resolved during the lifetimes of any of the main disputants but
rather just died out. EULER solved all the central problems concerning a homogenous
string correctly and in generality. DANIEL BERNOULLLI’s point of view has been used
more often subsequently and is susceptible of greater generalization, but he himself
was unable to do much on the basis of it, since the mathematical theory essential for
exploiting it was not developed until the middle of the next century. LAGRANGE also
took part from 1760 onward, but his work is largely. incomplete or incorrect. While it
made a great stir in its day and drew high praise from both EULER and D’ALEMBERT, it
stands up but ill under critical scrutiny. For a review of the whole matter, see pages
237-300 of my Rational Mechanics of Flexible or Elastic Bodies, 1638-1788, LEONHARDI
EULERI Opera omnia (II) 115, 1960. Although various historians of science have pro-
tested that my estimates of LAGRANGE’s work in mechanics and analysis (for I have
never formed any judgment whatever concerning his work in algebra and number
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eighteenth century is unique: never before had mathematics been so
highly regarded by the community of learning, but never before or
after were there so few persons able to enter the arena of mathematical
research.

D’ALEMBERT came to visit FREDERICK at Potsdam in 1763. The
Academicians, most of whom were Swiss, feared the worst. D’ALEM-
BERT spoke graciously to them and recommended them to the king.
In particular, he declined the presidency and recommended EULER
for it; the king positively refused, and indeed all along he had spoken
contemptuously of EULER, written to him with harsh disrespect, and
declined to grant him the least of the requests he had submitted from
time to time on behalf of his family and friends. After D’ALEMBERT
had returned to Paris, FREDERICK wrote for his advice on all matters
concerning the Academy of Berlin, to the extent that when the
Academicians wished to suggest something to the king, they found it
best to convey the message first to D’ALEMBERT in Paris, who
thereupon, if he agreed, offered it to the king as his own idea.

EULER then found the position intolerable. For a long time he had
been negotiating intermittently regarding return to the Petersburg
Academy. With the accession of a German princess as CATHERINE 11
of Russia in 1762, the auspices for the arts and sciences there
improved greatly, and EULER succeeded in obtaining an excellent
appointment. He tendered his resignation to King FREDERICK, who
brusquely told him to stop petitioning. EULER desisted from taking
part in any activity of the Academy. D’ALEMBERT, meanwhile, had
found a replacement for him, the young LAGRANGE, a Piedmontese
who had begun in 1760, at the age of twenty-four, to pour forth
brilliant research on analysis and mechanics at EULER’s own level and
speed. EULER had tried to induce him to come to Berlin, but
LAGRANGE, seeing that he had to choose between EULER and D’ALEM-
BERT, took D’ALEMBERT as his foster father in the politics of science,
though in research he always followed tacitly in EULER’s footsteps.
The choice reflected LAGRANGE’s sagacity. D’ALEMBERT, though not
old, had ceased to produce anything worthwhile and had become
merely a conniver; he had quarreled with all mathematicians of his
own age or older, and he was detested by his fellow academicians in
Paris; vain, he badly needed an admirer at the highest echelon of

theory) are too harsh, those estimates are induced from detailed examination of the
sources, page by page and line by line, and so I will not revise them until such time as [
be shown specific errors in my evaluations of specific passages. Anyone who has read
older essays on the history of mathematics will be accustomed to sweeping generalities
based on a glancing acquaintance with a few of the more elementary parts of works
cited, but I see no reason to respect utterances of this kind today.
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mathematics. EULER was at the summit and plateau of his creative
powers, was on excellent terms with everyone except D’ALEMBERT,
KOENIG, and King FREDERICK, and needed nothing but money and
rank. D’ALEMBERT arranged that LAGRANGE go to Berlin as EULER’s
successor '°. In order to do so, D’ALEMBERT had to tell FREDERICK a
white lie, namely, that LAGRANGE was a philosophe and man of the
world. In fact he was neither; he had no interests outside mathematics
and a narrow outlook within it, but in society he knew how to keep his
mouth shut when not expressing deference to the views of his seniors.
In addition, he could pass more or less for a Frenchman, and he later
became one”, but he never lost his heavy Piedmontese accent.

In all of EULER’s vast correspondence there is no mention of
politics and little reference to social conditions. Evidently one
country, government, or party was the same as another for him, pro-
vided it allowed free worship in the Protestant faith his father had
taught him and the chance to do a mountain of mathematics for a
good salary. Like many other men of the Enlightenment, EULER
expressed a general interest in human wellbeing and in good works
such as widows’ pensions, charity for orphans and cripples, and com-
mon measures for prevention of disease and promotion of trades and
manufactures, but his own contribution to these estimable objectives
seems to have been confined, beyond a few special mathematical
studies, to an exemplary personal life and a miraculously creative and
ageless exercise in mathematical science. Again and again he stated
that truth of all kinds, knowledge in general, and mathematics in
particular led to the betterment of man’s condition, and he never
showed evidence of seeing any conflict between service to his prince
and service to humanity. While obviously neither a Prussian national-
ist nor a Russian one, EULER served both countries with the total
loyalty which in those days was regarded as the ordinary, moral duty

'8 The relations between EULER and D’ALEMBERT in 1763-1766 are too compli-
cated to trace here. Like most other savants of the period, EULER despised D’ALEM-
BERT's character, and he did not wish to remain in the Academy if D’ALEMBERT were
to become its president. By the time D’ALEMBERT came to decline the presidency,
EULER wished only to leave Berlin and feared that D’ALEMBERT’s recommendation of
him might result in his being retained against his will; and by the time it came to
persuading FREDERICK to accept LAGRANGE as EULER’s successor, D’ALEMBERT’S
actions were in EULER’s best interest, because without a replacement EULER would not
have succeeded in getting permission to go.

"7 LAGRANGE’s mother tongue was the Piedmontese dialect; his first publication
was in Latin. The errors of language in his earliest papers in French have been
silently corrected in the reprints in his Euvres Complétes, the editors of which,
unfortunately, for the most part have not taken similar pains with the numerous errors
in mathematics.
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of a servant to his master. The personal failings of FREDERICK II as a
candidate for Gop’s lieutenant on earth must have been more than
obvious to EULER, but it was not those that drove him from Berlin.
Rather, he sought a social and financial position worthy of himself
and, above all, advancement for his children.

Finally FREDERICK granted EULER leave to depart with most of his
family and some of his servants, eighteen persons all told. EULER,
then in his sixtieth year, was entertained en route by the King of
Poland and the eminent nobility, and upon arrival in Russia was
received by the empress. In addition to his salary of 3000 rubles he
was given 8800 rubles to buy a good house and 2000 rubles for fur-
niture. He was not burdened with duties; his counsels were requested
regularly and often followed. His greatest reward was that good
places in the Academy or the imperial service were found for his sons,
and marriages into the nobility were arranged for his daughters.

In his last years in Petersburg EULER had more time free for
mathematics than ever before. He soon lost the sight of his one
remaining eye. Like BACH, he underwent the torment of an operation
for cataract, which was unsuccessful and rendered him almost totally
blind. If anything, this enforced end to most of the ordinary duties of
life left him still freer to work. About half of his 800 publications were
written in these, the last seventeen years of his life. In 1766, the year
he moved, EULER composed the first general treatise on hydrody-
namics; it was to be about 100 years before anyone wrote another.
The next year EULER wrote his famous Complete Introduction to
Algebra. After EucLiD’s Elements, this is the most widely read of all
books on mathematics, having been printed at least thirty times in
three editions and in six languages; selections were being used as
textbooks in the Boston schools in the 1830s. The next year, 1768,
EULER wrote his treatise on geometrical optics in three volumes and
his tract on the motion of the moon; both of these are filled with
colossal calculations, and the latter contains a single table 144 pages
long, calculated under EULER’s direction “by the tireless labor” of his
son, KRAFFT, and LEXELL, all of them academicians. In 1770 he wrote
a monograph on the difficult orbit of a comet which had appeared the
year before.

EULER’s total blindness put an end to composition of such long
treatises, and the great increase in the annual number of his publica-
tions reflects the change in his method of work. In the middle of his
study he had a large table with a slate top. Being barely able to distin-
guish white from black, he could write a few large equations. Every
morning a young Swiss assistant read him the post, the newspaper,
and some mathematical literature. EULER then explained some prob-
lem he had been sleeping on and proposed a method of attacking it.
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The assistant was usually able to produce the outline for a draught of
a short memoir, or part of one, by the next morning. In 1775, for
example, EULER composed more than one complete paper per week;
these run from ten to fifty pages in length and concern widely
different special problems.

Two years before his death EULER presented to the Petersburg
academy a pair of papers suggested by VERGIL’s line

anchora de prora jacitur, stant littore puppes.

The problem is to find the motion of a ship whose prow is anchored.
The title of the first paper tells us that the problem is “commonplace
enough, but very difficult to solve”; EULER derives the differential
equation of motion for a much simplified model and obtains some
integrals of the motion but despairs of proceeding further; in the
second paper he presents and analyses the general solution. The Acta
for that year include five further papers by EULER, but his output was
become too great for the ordinary channels, and in the year of his
death the Academy issued in addition to nineteen memoirs in the Acta
an extra volume called Opuscula analytica, which consists in thirteen of
his papers composed and presented to the Academy nine to twelve
years earlier.

EULER’s memory, always extraordinary, had by then become pro-
digious. He could still recite the &neid in Latin from beginning to
end, remembering also which lines were first and last on each page of
the edition from which he had learnt it some sixty or seventy years
earlier. Enormous equations and vast tables of numbers were ready
on demand for the eye of his mind. He became one of the sights of
the town for distinguished visitors, with whom he usually spoke on
nonmathematical topics. Amazed by the breadth and immediacy of
his knowledge concerning every subject of discourse, they spread
fairy tales about what he could do in his last years.

Only recently have we been able, by study of the manuscripts he
left behind, to determine the course of EULER’s thought. We now
know, for example, that many of the manuscript memoirs published
in the two volumes of posthumous works in 1862 he wrote while still a
student in Basel and himself withheld from publication for a reason—
which usually was some hidden error or an unacceptable or uncon-
vincing result. The first page of one of these memoirs is reproduced
here as Figure 22. The memoir it opens is the one that served to
introduce EULER to DANIEL BERNOULLI and was important in secur-
ing him his first post in Petersburg. There can be only one reason
EULER did not publish it: DANIEL BERNOULLI had obtained the same
result at about the same time by somewhat different means, and
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EULER did not wish to detract from his friend’s glory. The result
itself, the solution of the problem of eflux of water from a vessel,
became known through DANIEL BERNOULLI’s book, published twelve
years later.

The manuscript is a typical one. The spots are ink from the other
side showing through. There are few corrections in the smooth, easy
writing. The manuscripts of the books EULER wrote in later life are
much the same, but for some remain one or even two complete earlier
manuscripts of the whole, showing many differences from the final
one. When EULER wished to revise a work, he wrote it all out afresh,
neat and clean. Like MoOzART, he revised in his head and did not
begin to use paper until the revision was complete.

The most interesting of all EULER’s remains is his first notebook,
written when he was eighteen or nineteen and still a student of JouN
BERNOULLI. It could nearly be described as being all his 800 books
and papers in little. Much of what he did in his long life is an out-
growth of the projects he outlined in these years of adolescence.
Later, he customarily worked in some four domains of mathematics
and physics at once, but he kept changing these from year to year.
Typically he would develop something as far as he could, write eight
or ten memoirs on various aspects of it, publish most of them, and
drop the subject. Coming back to it ten or fifteen years later, he would
repeat the pattern but from a deeper point of view, incorporating
everything he had done before but presenting it more simply and in a
broader conceptual framework. Another ten or fifteen years would
see the pattern repeated again. To learn the subject, we need consult
only his last works upon it, but to learn his course of thought, we must
study the earliest ones, especially those he did not himself publish.

In an age when genius, intellectual ambition, and drive were com-
mon, no man surpassed EULER in any one, and none came near him
in combination of all three. Nevertheless, histories of the eighteenth
century and social or intellectual histories in general rarely mention
him. The explanation was written by FONTENELLE, before EULER was
born:

We like to regard as useless what we do not know; it is a kind of
revenge; and since mathematics and physics are rather generally
unknown, they rather generally pass for useless. The source of
their misfortune is plain; they are prickly, wild, and hard to
reach.. ..

Such is the destiny of sciences handled by few. The usefulness
of their progress is imperceptible to most people, especially if
they are practised by professions not particularly illustrious.



XXXVI C. TRUESDELL.

ANNOTATED BIBLIOGRAPHY
Biography:

Article X, pages 32-60 of Adumbratio eruditorum Basiliensium meritis apud
exteros olim hodieque celebrium, published as “Adpendix” to Athenae Rauricae,
stve catalogus professorum academiae Basiliensis ab anno 1770 ad annum 1778,
cum brevi singulorum biographia, Basileae, 1778. I know this work only
through the article by F. MULLER, “Uber eine Biographie L. Eulers
vom Jahre 1780 and Zusidtze zur Euler-Literatur”, Bericht der Deutschen
Mathematiker- Vereinigung 17 (1908): 36-39.

Ni1cO1.AUS FUSS, Lobrede auf Herrn Leonhard Euler... 28 Octob. 1783
vorgelesen . . ., Basel, 1786 = pages XLIII-XCV of LEONHARDI EULERI
Opera omnia (1)1, Leipzig & Berlin, Teubner, 1911.

M.-].-A.-N. CARITAT, Marquis de CONDORCET, “Eloge de M. Euler”, His-
toire de I’Académie Royale des Sciences (Paris) 1783: 37-68 (1786) = pages
287-310 of LEONHARDI EULERI Opera omnia (I111)12, Zurich, Orell Fussli,
1960.

O. SPIESS, Leonhard Euler, Ein Beitrag zur Getstesgeschichte des X VIII. Jahrhun -
derts, Frauenfeld/Leipzig, 1929.

Note: Fuss did not meet EULER until 1773, EULER’s sixty-seventh year;
CONDORCET never met him at all. Neither was competent in more than a
small part of the range of science enriched by EULER; both were younger
than he by more than thirty years, and neither showed evidence of having
studied EULER’s early work in detail. Their necrologies of EULER are
heavily weighted by hearsay and treat his youth as already legendary. The
accounts of EULER’s life and work in the general histories of mathematics
or collected biographies of mathematicians are mainly if not entirely their
authors’ personal embroideries upon odds and ends pecked out of the two
necrologies. The biography by SPIESS, in welcome contrast, is based upon
extensive study of unpublished letters and documents as well as all published
sources concerning EULER’s life. Nevertheless, it is a biography in the
literary sense; while SPIESS made some attempts to write what is now called
intellectual history, his understanding of the contents of EULER’s researches
was limited not only to what in SPIESS’s day was called pure mathematics
but even to elementary matters such as quadratures, properties of particular
curves, explicit sums of series, efc. Thus, inevitably, EULER appears in
SPIESS’s pages as the most dazzling of mathematical jugglers but not as the
great creator of concepts and organizer of doctrines he really was. In
general, the critical reader who would understand EULER’s conceptual
frame and intellectual achievement can find today no intermediary between
himself and EULER’s own writings except the prefaces to some volumes of
the Opera omnia, for which see below,” “EULER’s place in the history of
science”.

A. P. YOUSCHKEVITCH, article “Euler”, Dictionary of Scientific Biography,
Volume 4, 1971.
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Portraits:

H. THIERSCH, “Zur Ikonographie Leonhard und Johann Albrecht Euler’s”,
Gesellschaft der Wissenschaften zu Gottingen, Nachrichten der Philosophisch-
Historischen Classe 1928: 264-289 + 4 plates.

H. THIERSCH, “Leonhard Euler’s ‘verschollenes’ Bildnis und sein Maler”,
tbid. 1930: 193-217+ Nachtrag+ 2 plates.

H. THIERSCH, “Weitere Beitrage zur Ikonographie Leonhard und Johann
Albrecht Euler’s”, ibid. 219-249+ 3 plates.

Lists of publications, of manuscripts, and of letters:

G. ENESTROM, “Verzeichnis der Schriften Leonhard Eulers”, Jahresbericht
der Deutschen Mathematiker-Vereinigung 4. Erginzungsband (2 Lieferungen),
388 pages (1910) and 22: 191-205 (1910).

Manuscripta Euleriana Archivi Academiae Scientiarum URSS, 1 (Acta Archivi
Academiae Scientiarum URSS, fasciculus 17), Moscow & Leningrad, 1962.
(This volume, prepared by G. K. MIKHAILOV, describes the scientific
manuscripts preserved in Russia. According to ENESTROM, the manuscripts
left in the Archives of the Academy in Berlin were once described by
JAcoOBI. I have not seen his description and do not know if it was ever
published or if the manuscripts still exist.)

LEONHARDI EULERI commercium epistolicum. Descriptio commercii epistolici.
LEONHARDI EULERI Opera omnia (IVA)1, ediderunt A. P. JUSKEVIC, V.
I. SMIRNOV, & W. HABICHT, Basel, Birkhauser, 1975.

Works :

Memoirs, books, and manuscripts, mainly those published at least once before 1911:

LEONHARDI EULERI Opera omnia, at first Leipzig, then Zirich or other
cities of Switzerland, 1911-:
Series I. Opera mathematica (complete, 29 volumes issued in 30 parts).
Series 11. Opera mechanica et astronomica (27 of 32 part-volumes pub-
lished by the summer of 1984).
Series II1. Opera physica et miscellanea (11 of 12 volumes published by the
summer of 1984).

Manuscripts not published before 1911 :

Manuscripta Euleriana Archivi Academiae Scientiarum URSS, Volume 2 (Acta
Archivi Academiae Scientiarum URSS, fasciculus 20), Moscow & Lenin-
grad, 1965. This volume was prepared by G. K. MIKHAILOV.

Letters:

LEONHARDI EULERI Opera omnia (IVA)1, the catalogue of the letters, gives
references to the some thirty publications in which one or more letters
appear. Other volumes in this series are to publish the letters in full.
Volume 5 was published in 1980. It includes errata and addenda for
Volume 1.
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Euler’s place in the history of science:

Although it would be hard to find any history of mathematics or physics
that does not say something about one or more aspects of EULER’s work, and
although his name is used as a label for a dozen or more of the commonest
and most useful theorems in the mathematical sciences, the bulk and level of
his works seem to have discouraged critical study of them. Even volumes of
essays devoted to celebrations of EULERian anniversaries often contain no
more than musings by senior scientists who have glanced at a few pages
before composing variants of the generalities imparted to them by their
teachers in elementary courses half a century earlier. In regard to eighteenth-
century mathematics and physics the general histories of science or mathe-
matics or physics are grossly unreliable because they are based largely on
tale-bearing or caprice or both. Some of the prefaces to individual volumes of
LEONHARDI EULERI Opera omnia explain succinctly some part of EULER’s
work, especially those in Volumes (I)4 and 5 (by FUETER), (I)9 (by A.
SPEISER), (I)24 (by CARATHEODORY), (1)25 through 29 (by A. SPEISER), (11)3
(by BLANC), (II)5 (by FLECKENSTEIN), (1I)6, 7, and 9 (by BLANC), (ID11,
through 13 (by TRUESDELL), (II)14 (by SCHERRER), (I1)15 (by ACKERET),
(I1)16 and 17 (by BLANC & DE HALLER), (I1I)20 and 21 (by HABICHT), (11)22
(by COURVOISIER), (I1)23 (by FLECKENSTEIN), (I1)25 (by SCHURER), (11)28
(by A. SPEISER), (II)29 and 30 (by COURVOISIER), (I111)5 (by D. SPEISER),
(I11)6 (by A. SPEISER), (III)7 (by HABICHT), (I11)8 (by HERZBERGER), (111)9
(by HABICHT), (III)10 (by D. SPEISER), (III)11 and 12 (by A. SPEISER). A few
of these also place EULER’s work in the setting of its antecedents and its time.
For mechanics there is also my book, Essays in the History of Mechanics, New
York, Springer-Verlag, 1968, and SZABO’s Geschichte der Mechanischen Prin-
zipien, 2nd edition, Basel etc., Birkhiuser, 1979; both treat EULER merely
incidentally.

The only other occasional yet solid analyses of EULER’s work I have found
in languages other than Russian are included in Chapter VII of C. R.
BOYER’s History of Analytic Geometry, New York, Scripta Mathematica, 1956,
and in six articles in the Archive for History of Exact Sciences:

J. E. HOFMANN, “Uber zahlentheoretische Methoden Fermats und Eulers,
ihre Zusammenhinge und ihre Bedeutung”, 1(1960/1962): 122-159
(1961).

O. B. SHEYNIN, “On the mathematical treatment of observations by L.
Euler”, 9 (1972): 45-56.

H. ]J. M. Bos, “Differentials, higher-order differentials and the derivative
in the Leibnizian calculus”, 14 (1974/1975): 1-90 (1974).

R. CALINGER, “Euler’s ‘Letters to a Princess of Germany’ as an expression
of his mature scientific outlook”, 15 (1975/1976): 211-233 (1976).

A. P. YOUSCHKEVITSCH, “The concept of function up to the middle of
the 19" century”, 16 (1976/1977): 37-85 (1976).

C. A. WILSON, “Perturbations and solar tables from Lacaille to Delambre:
the rapprochement of observation and theory”, 22 (1980); 53-304.

Note also the chapter in EDWARDS’ book cited above in Footnote 8.
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A distinguished mathematician of our day, GEORG POLYA, has composed
a treatise on methods of discovery in mathematics which refers to EULER so
often, even including analyses and schemas of some of his papers, that
EULER might be said to be the hero of the work. This treatise is Mathematics
and Plausible Reasoning, 2 volumes, Princeton, Princeton University Press,
1954. POLYA’s estimate of EULER, on page 90 of Volume 1, is as follows:

Yet Euler seems to me almost unique in one respect: he takes pains to
present the relevant inductive evidence carefully, in detail, in good
order. He presents it convincingly but honestly, as a genuine scientist
should do. His presentation is “the candid exposition of the ideas that led
him to those discoveries” and has a distinctive charm. Naturally enough,
as any other author, he tries to impress his readers, but, as a really good
author, he tries to impress his readers only by such things as have
genuinely impressed himself.

We await with great eagerness the first volume of ANDRE WEIL’s history
of number theory, which will concern EULER’s work primarily.

Note for the Reprinting

This essay is reprinted, with the quotations from Gulliver’s Travels mainly
omitted, from An Idiot’s Fugitive Essays on Science, New York etc., Springer-
Verlag, 1984.
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LIFE AND CHARACTER OI' EULER,

BY THE LATE

FRANCIS HORNER, ESQ. M.P.

Such is the short history of this illustrious man.
The incidents of his life, like that of most other
laborious students, afford very scanty materials for
biography; little more than a journal of studies,
and a catalogue of publications ; but curiosity may
find ample compensation in surveying the charac-
ter of his mind. An object of such magnitude,
so far elevated above the ordinary range of human
intellect, cannot be approached without reverence,
nor nearly inspected, perhaps, without some de-
gree of presumption. Should an apology be ne-
cessary, therefore, for attempting the following
estimate of Euler’s character, let it be considered,
that we can neither feel that admiration, nor offer
that homage, which is worthy of genius, unless,
aiming at something more than the dazzling sensa-
tions of mere wonder, we subject it to actual ex-
amination, and compare it with the standards of
human nature in general.
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Whoever is acquainted with the memoirs of
those great men, to whom the human race is in-
debted for the progress of knowledge, must have
perceived, that, while mathematical genius is dis-
tinct from the other departments of intellectual
excellence, it likewise admits in itself of much di-
versity. The subjects of its speculation are become
so extensive and so various, especially in modern
times, and present so many interesting aspects, that
it is natural for a person, whose talents are of this
cast, to devote his principal curiosity and attention
to particular views of the science. 'When this hap-
pens, the faculties of the mind acquire a superior
facility of operation, with respect to the objects
towards which they are most frequently directed,
and the invention becomes habitually most active
and most acute in that channel of inquiry.

The truth of these observations is strikingly
illustrated by the character of Euler. His studies
and discoveries lay not among the lines and figures
of geometry,—those characters, to use an expres-
sion of Galileo, in which the great book of the
universe is written ;—nor does he appear to have
had a turn for philosophising by experiment, and
advancing to discovery through the rules of in-
ductive investigation. The region, in which he
delighted to speculate, was that of pure intellect.
He surveyed the properties and affections of
quantity under their most abstracted forms. With
the same rapidity of perception, as a geometrician
ascertains the relative position of portions of exten-
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sion, Euler ranges through the regions of abstract
quantities, unfolding their most involved combina-
tions, and tracing their most intricate proportions.
That admirable system of mathematical logic and
language, which at once teaches the rules of just
inference, and furnishes an instrument for prose-
cuting deductions, free from the defects, which
obscure and often falsify our reasonings on other
subjects ;—the different species of quantity, whether
formed in the understanding by its own abstrac-
tions, or derived from modifications of the repre-
sentative system of signs ;—the investigation of the
various properties of these, their laws of genesis,
the limits of comparison among the different
species, and the method of applying all this to the
solution of physical problems ; —these were the re-
searches on which the mind of Euler delighted to
dwell, and in which he never engaged without
finding new objects of curiosity, detecting sources
of inquiry, which had passed unobserved, and ex-
ploring fields of speculation and discovery, which
before were unknown.

The. subjects, which we have here slightly enu-
merated, form, when, taken together, what is called
the Modern Analysis: a science eminent for the
profound discoveries which it has revealed; for
the refined artifices that have been devised, in
order to bring the most abstruse parts of mathe-
matics within the compass of our reasoning powers,
and for applying them to the solution of actual
phanomena, as well as for the remarkable degree
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of systematic simplicity, with which the various
methods of investigation are employed and com-
bined, so as to confirm and throw light on one
another. The materials, indeed, had been col-
lecting for years, from about the middle of the
seventeenth century; —the foundations had been
laid by Newton, Leibnitz, the elder Bernoullis,
and a few others; but Euler raised the superstruc-
ture: it was reserved for him to work upon the
materials, and to arrange this noble monument of
human industry and genius in its present sym-
metry. Through the whole course of his scientific
labors, the ultimate and the constant aim on which
he set his mind, was the perfection of Calculus
and Analysis. Whatever physical inquiry he be-
gan with, this always came in view, and very fre-
quently received more of his attention than that
which was professedly the main subject. His
ideas ran so naturally in this train, that even in
the perusal of Virgil’s poetry, he met with images
that would recall the associations of his more fa-
miliar studies, and lead him back, from the fairy
scenes of fiction, to mathematical abstraction, as
to the element, most congenial to his nature.

That the sources of analysis might be ascertained
in their full extent, as well as the various modifica-
tions of form and restrictions of rule that become
necessary in applying it to different views of
nature ; he appears to have nearly gone through a
complete course of philosophy. The theory of
rational mechanics, the whole range of physical
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astronomy, the vibrations of elastic fluids, as well
as the movements of those which are incom-
pressible, naval architecture and tactics, the doc-
trine of chances, probabilities, and political arith-
metic, were successively subjected to the analytical
method ; and all these sciences received from him
fresh confirmation and further improvement.*

It cannot be denied that, in general, his at-
tention is more occupied with the analysis itself,
than with the subject to which he is applying it ;
and that he seems more taken up with his instru-
ments, than with the work, which they are to assist
him in executing. But this can hardly be made a
ground of censure, or regret, since it is the very
circumstance to which we owe the present perfec-
tion of those instruments ;—a perfection to which
he could never have brought them, but by the
unremitted attention and enthusiastic preference
which he gave to his favorite object. If he now
and then exercised his ingenuity on a physical, or
perhaps metaphysical, hypothesis, he must have
been aware, as well as any one, that his conclusions
would of course perish with that from which they
were derived. What he regarded, was the proper
means of arriving at those conclusions ; —the new
views of analysis, which the investigation might

* A complete edition of his works, comprising the numerous
papers, which he sent to the Academies of St. Petersburg,
Berlin, Paris, and other public societies, his separate Treatises
on Curves, the Analysis of Infinites, the Differential and Integral
Calculus, &c. would occupy, at least; forty quarto volumes.
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open ; and the new expedients of calculus, to which
it might eventually give birth. This was his uni-
form pursuit; all other inquiries were prosecuted
with reference to it; and in this consisted the
peculiar character of his mathematical genius.

The faculties that are subservient to invention
he possessed in a very remarkable degree. His
memory was at once so retentive and so ready,
that he had perfectly at command all those nu-
merous and complex formule, which enunciate
the rules and more important theorems of analysis.
As is reported of Leibnitz, he could also repeat
the Zneid from beginning to end; and could
trust his recollection for the first and last lines in
every page of the edition, which he had been ac-
customed to use. These are instances of a kind
of memory, more frequently to be found where
the capacity is inferior to the ordinary standard,
than accompanying original, scientific genius.
But in Euler, they seem to have been not so much
the result of natural constitution, as of his most
wonderful attention; a faculty, which, if we con-
sider the testimony of Newton* sufficient evi-
dence, is the great constituent of inventive power.
It is that complete retirement of the mind within
itself, during which the senses are locked up;—
that intense meditation, on which no extraneous
idea can intrude ;—that firm, straightforward pro-
gress of thought, deviating into no irregular sally,

* This opinion of Sir Isaac Newton respecting himself is
recorded by Dr. Pemberton.

b
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which can alone place mathematical objects in a
light sufficiently strong to illuminate them fully,
and preserve the perceptions of “the mind’s eye”
in the same order that it moves along.

Two of Euler’s pupils (we are told by M. Fuss,
a pupil himself) had calculated a converging
series as far as the seventeenth term ; but found,
on comparing the written results, that they dif-
fered one unit at the fiftieth figure: they com-
municated this difference to their master, who
went over the whole calculation by head, and his
decision was found to be the true one. — For the
purpose of exercising his little grandson in the
extraction of roots, he has been known to form to
himself the table of the six first powers of all num-
bers, from 1 to 100, and to have preserved it
actually in his memory.

The dexterity which he had acquired in analysis
and calculation, is remarkably exemplified by
the manner in which he manages formule of the
greatest length and intricacy. He perceives,
almost at a glance, the factors from which they
may have been composed; the particular system
of factors belonging to the question under present
consideration ; the various artifices by which that
system may be simplified and reduced ; and the
relation of the several factors to the conditions of
the hypothesis. His expertness in this particular
probably resulted, in a great measure, from the
ease with which he performed mathematical in-
vestigations by head. e had always accustomed
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himself to that exercise ; and having practised it
with assiduity, even before the loss of sight, which
afterwards rendered it a matter of necessity, he is
an instance to what an astonishing degrce of per-
fection that talent may be cultivated, and how
much it improves the intellectual powers. No
other discipline is so effectual in strengthening
the faculty of attention; it gives a facility of ap-
prehension, an accuracy and stcadiness to the
conceptions ; and, what is a still more valuable
acquisition, it habituates the mind to arrangement
in its reasonings and reflections.

If the reader wants a further commentary on
its advantages, let him proceed to the work of

Euler, of which we here offer a Translation ; and
if he has any taste for the beauties of method,
and of what is properly called composition, we
venture to promise him the highest satisfaction
and pleasure. The subject is so aptly divided,
the order is so- luminous, the connected parts
seem so truly to grow one out of the other, and
are disposed altogether in a manner so suitable to
their relative importance, and so conducive to
their mutual illustration, that, when added to the
precision, as well as clearness with which every
thing is explained, and the judicious selection of
examples, we do not hesitate to consider it, next
to Euclid’s Elements, the most perfect model of
clementary writing, of which the scientific world
is in possession.

When our reader shall have studied so much
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of these volumes as to relish their admirable style,
he will be the better qualified to reflect on the
circumstances under which they were composed.
They were drawn up soon after our author was
deprived of sight, and were dictated to his ser-
vant, who had originally been a tailor’s apprentice ;
and, without being distinguished for more than
ordinary parts, was completely ignorant of mathe-
matics. But Euler, blind as he was, had a mind
to teach his amanuensis, as he went on with the
subject. Perhaps, he undertook this task by way
of exercise, with the view of conforming the
operation of his faculties to the change, which the
loss of sight had produced. Whatever was the
motive, his Treatise had the advantage of being
composed under an immediate experience of the
method best adapted to the natural progress of a
learner’s ideas: from the want of which, men of
the most profound knowledge are often awkward
and unsatisfactory, when they attempt elementary
instruction. It is not improbable, that we may
be farther indebted to the circumstance of our
Author’s blindness; for the loss of this sense is
generally succeeded by the improvement of other
faculties. As the surviving organs, in particular,
acquire a degree of sensibility, which they did not
previously possess; so the most charming visions
of poetical fancy have been the offspring of minds,
on which external scenes had long been closed.
And perhaps a philosopher, familiarly acquainted
with Euler’s writings, might trace some improve-
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ment in perspicuity of method, and in the flowing
progress of his deductions, after this calamity had
befallen him ; which, leaving ¢ an universal blank
of Nature’s works,” favors that entire seclusion of
the mind, which concentrates attention, and gives
liveliness and vigor to the conceptions.

In men devoted to study, we are not to look for
those strong, complicated passions, which are con-
tracted amidst the vicissitudes and tumult of public
life. 'To delineate the character of Euler, requires
no contrasts of coloring. Sweetness of disposition,
moderation in the passions, and simplicity of man-
ners, were his leading features. Susceptible of the
domestic affections, he was open to all their amiable
impressions, and was remarkably fond of children.
His manners were simple, without being singular,
and seemed to flow naturally from a heart that
could dispense with those habits, by which many
must be trained to artificial mildness, and with the
forms that are often necessary for concealment.
Nor did the equability and calmness of his temper
indicate any defect of energy, but the serenity of a
soul that overlooked the frivolous provocations,
the petulant caprices, and jarring passions of
ordinary mortals.

Possessing a mind of such wonderful compre-
hension, and dispositions so admirably formed to
virtue and to happiness, Euler found no difficulty
in being a Christian : accordingly, “his faith was
unfeigned,” and his love “was that of a pure and
undefiled heart.” The advocates for the truth of
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revealed religion, therefore, may rejoice to add to
the bright catalogue, which already claims a Bacon,
a Newton, a Locke, and a Hale, the illustrious
name of Euler. But, on this subject, we shall
permit one of his learned and grateful pupils* to
sum up the character of his venerable master.
“ His piety was rational and sincere ; his devotion
“was fervent. He was fully persuaded of the
¢ truth of Christianity ; he felt its importance to
¢ the dignity and happiness of human nature;
¢ and looked upon its detractors, and opposers, as
¢ the most pernicious enemies of man.”

The length to which this account has been ex-
tended may require some apology; but the cha-
racter of Euler is an object so interesting, that,
when reflections are once indulged, it is difficult
to prescribe limits to them. Omne is attracted by
a sentiment of admiration, that rises almost to the
emotion of sublimity ; and curiosity becomes eager
to examine what talents and qualities and habits
belonged to a mind of such superior power. We
hope, therefore, the student will not deem this an
improper introduction to the work which he is
about to peruse; as we trust he is prepared to
enter on it with that temper and disposition, which
will open his mind both to the perception of ex-
cellence, and to the ambition of emulating what
he cannot but admire.

* M. Fuss, Eulogy of M. L. Euler.



ADVERTISEMENT BY M. BERNOULLI, THE
FRENCH TRANSLATOR.

TuE Treatise of Algebra, which I have undertaken to
translate, was published in German, 1770, by the Royal
Academy of Sciences at Petersburg. To praise its merits,
would almost be injurious to the celebrated name of its
author. It issufficient to read a few pages, to perceive, from
the perspicuity with which every thing is explained, what
advantage beginners may derive from it. Other subjects
are the purpose of this advertisement.

I have departed from the division which is followed in
the original, by introducing, in the first volume of the
French translation, the first Section of the Second Volume
of the original, because it completes the analysis of deter-
minate quantities. The reason for this change is obvious:
it not only favors the natural division of Algebra into de-
terminate and indeterminate analysis ; but it was necessary
to preserve some equality in the size of the two volumes,
on account of the Additions which are subjoined to the
Second Part.

The reader will easily perceive that those Additions come
from the pen of M. De la Grange ; indeed, they formed one
of the principal reasons that engaged me in this translation.
I am happy in being the first to shew more generally to
mathematicians, to what a pitch of perfection two of our
most illustrious mathematicians have lately carried a
branch of analysis but little known, the researches of
which are attended with many difficulties, and, on the
confession even of these great men, present the most diffi-
cult problems that they have ever resolved.
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I have endeavoured to translate this Algebra in the style
best suited to works of the kind. My chief anxiety was to
enter into the sense of the original, and to render it with
the greatest perspicuity. Perhaps I may presume to give
my translation some superiority over the original, because
that work having been dictated, and admitting of no revi-
sion from the author himself, it is easy to conceive that in
many passages it would stand in need of correction. IfI
have not submitted to translate literally, I have not failed
to follow my author step by step; I have preserved the
same divisions in the Articles; and it is only in sofew places
that I have taken the liberty of suppressing some details of
calculation, and inserting one or two lines of illustration
in the text, that I believe it unnecessary to enter into an
explanation of the reasons by which I was justified in
so doing.

Nor shall I take any more notice of the notes which I
have added to the First Part. They are not so numerous as
to make me fear the reproach of having unnecessarily in-
creased the volume; and they may throw light on several
points of mathematical history, as well as make known a
great number of Tables that are of subsidiary utility.

With respect to the correctness of the press, I believe it
will not yield to that of the original. I have carefully com-
pared all the calculations, and having repeated a great
number of them myself, have by those means been enabled
to correct several faults, beside those which are indicated
in the Errata.
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ALGEBRA.

PART I

CONTAINING THE ANALYSIS OF DETERMINATE QUANTITIES.

SECTION 1.

OF THE DIFFERENT METHODS OF CALCULATING
SIMPLE QUANTITIES.

CHAPTER 1.
Of Mathematics in general.

ARTICLE 1.

WHATEVER is capable of increase or diminution, is called
magnitude, or quantity.

A sum of money therefore is a quantity, since we may
increase it or diminish it. It is the same with a weight,
and other things of this nature.

2. From this definition it is evident, that the different
kinds of magnitude must be so various as to render it dif-
ficult to enumerate them : and this is the origin of the dif-
ferent branches of Mathematics, each being employed on
a particular kind of magnitude. Mathematics, in general,
is the science of quantity ; or, the science which investigates
the means of measuring quantity.

3. Now, we cannot measure or determine any quantity,
except by considering some other quantity of the same
kind as known, and pointing out their mutual relation.
If it were proposed, for example, to determine the quantity
of a sum of money, we should take some known piece of

B
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money, as a louis, a crown, a ducat, or some other coin,
and shew how many of these pieces are contained in the
given sum. In the same manner, if it were proposed to
determine the quantity of a weight, we should take a cer-
tain known weight; for example, a pound, an ounce, &c.,
and then shew how many times one of these weights is
contained in that which we are endeavouring to ascertain.
If we wished to measure any length or extension, we
should make use of some known length, such as a foot.

4. So that the determination, or the measure of magni-
tude of all kinds, is reduced to this: fix at pleasure upon
any one known magnitude of the same species with that
which is to be determined, and consider it as the measure
or unit ; then, determine the proportion of the proposed
magnitude to this known measure. This proportion is
always expressed by numbers; so that a number is no-
thing but the proportion of one magnitude to another
arbitrarily assumed as the unit.

5. From this it appears, that all magnitudes may be
expressed by numbers; and that the foundation of all the
Mathematical Sciences must be laid in a complete treatise
on the science of numbers, and in an accurate examination
of the different possible methods of calculation.

This fundamental part of mathematics is called Ana-
lysis, or Algebra.*

6. In Algebra, then, we consider only numbers, which
represent quantities, without regarding the different kinds
of quantity. These are the subjects of other branches of
the mathematics.

7. Arithmetic treats of numbers in particular, and is
the science of numbers properly so called ; but this science
extends only to certain methods of calculation, which
occur in common practice : Algebra, on the contrary, com-
prehends in general all the cases that can exist in the
doctrine and calculation of numbers.

* Several mathematical writers make a distinction between
Analysis and Algebra. By the term Analysis, they understand
the method of determining those general rules which assist the
understanding in all mathematical investigations; and by Alge-
bra, the instrument which this method employs for accomplish-
ing that end. This is the definition given by M. Bezout in the
preface to his Algebra.—F. T.



CHAP, II. OF ALGEBRA. 3

CHAPTER II.

LEzplanation of the Signs + Plus and — Minus.

8. When we have to add one given number to another,
this is indicated by the sign +, which is placed before the
second number, and is read plus. Thus 5 + 3 signifies
that we must add 3 to the number 5, in which case, every
one knows that the result is 8 ; in the same manner 12 4 7
make 19 ; 25 + 16 make 41 ; the sum of 25 + 41 is 66, &ec.

9. We also make use of the same sign + plus, to con-
nect several numbers together; for example, 7 +5+49
signifies that to the number 7 we must add 5, and also 9,
which make 21. The reader will therefore understand
what is meant by

8+5+13+114+1+3+10,
viz. the sum of all these numbers, which is 51.

10. All this is evident; and we have only to mention,
that in Algebra, in order to generalise numbers, we re-
present them by letters, as a, b, ¢, d, &c. Thus, the ex-
pression a + b, signifies the sum of two numbers, which we
express by a and b, and these numbers may be ecither very
great, or very small. In the same manner, f+m + b + z,
signifies the sum of the numbers represented by these four
letters.

If we know, therefore, the numbers that are represented
by letters, we shall at all times be able to find, by arith-
metic, the sum or value of such expressions.

11. When it is required, on the contrary, to subtract one
given number from another, this operation is denoted by the
sign —, which signifies minus, and is placed before the
number to be subtracted : thus, 8 — 5 signifies that the
number 5 is to be taken from the number 8; which being
done, there remain 3. Inlike manner, 12 — 7 is the same
as H; and 20 — 14 is the same as 6, &ec.

12. Sometimes, also, we may have several numbers to
subtract from a single one; as, for instance, 50 — 1 — 3 —
5—7—9. This signifies, first, take 1 from 50, and there
remain 49 ; take 3 from that remainder, and there will re-
main 46 ; take away 5, and 41 remain; take away 7, and
34 remain ; lastly, from that take 9, and there remain 25:
this last remainder is the value of the expression. But as
the numbers 1, 3, 5, 7, 9, are all t6 be subtracted, it is the
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same thing if we subtract their sum, which is 25, at once
from 50, and the remainder will be 25 as before.

13. It is also easy to determine the value of similar ex-
pressions, in which both the signs + plus and — minus are
found. For example,

12—3—5 +2—1 is the same as 5.
We have only to collect separately the sum of the numbers
that have the sign + before them, and subtract from it the
sum of those that have the sign —. Thus, the sum of 12
and 2 is 14 ; and that of 3, 5, and 1, is 9; hence 9 being
taken from 14, there remain 5.

14. It will be perceived, from these examples, that the
order in which we write the numbers is perfectly indif-
ferent and arbitrary, provided the proper sign of each be
preserved. We might with equal propriety have arranged
the expression in the preceding article, thus, 12+2—5
—~3—1,or2—1-3-5+12,0r2+12—3—1—5,0r
in still different orders ; where it must be observed, that m
the arrangement first proposed, the sign + is supposed to
be placed before the number 12.

15. It will not be attended with any more difficulty if, in
order to generalise these operations, we make use of letters
instead of real numbers. It is evident, for example, that

a—b—c+d—e,
signifies, that we have numbers expressed by @ and d, and
that from these numbers, or from their sum, we must sub-
tract the numbers expressed by the letters b, ¢, ¢, which
have before them the sign —.

16. Hence it is absolutely necessary to consider what
sign is prefixed to each number, for in Algebra, simple
quantities are numbers considered with regard to the signs
which precede, or affect them. Further, we call those
positive quantities, before which the sign + is found ; and
those are called negative quantities, which are affected by
the sign —.

l7.g The manner in which we generally calculate a per-
son’s property, is an apt illustration of what has just been
said. For we denote what a man really possesses by posi-
tive numbers, using, or understanding the sign + ; whereas
his debts are represented by negative numbers, or by using
the sign —. Thus, when it is said of any one that he has
100 crowns, but owes 50, this means that his real posses-
sion amounts to 100 —50; or, which is the same thing,
+ 100 — 50, that is to say, 50.

18. Since negative numbers may be considered as debts,
because positive numbers represent real possessions, we
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may say that negative numbers are less than nothing. Thus,
when a man has nothing of his own, and owes 50 crowns,
it is certain that he has 50 crowns less than nothing; for
if any one were to make him a present of 50 crowns to pay
his debts, he would still be only at the point nothing,
though really richer than before.

19. In the same manner, therefore, as positive numbers
are incontestably greater than nothing, negative numbers
are less than nothing. Now, we obtain positive numbers
by adding 1 to0, that is to say, 1 to nothing ; and by con-
tinuing always to increase thus from unity. This is the
origin of the series of numbers called natural numbers; the
following being the leading terms of this series:

0, +1, +2, +3, +4, +5, +6, +7, +8, +9, + 10,
and so on to infinity.

But if, instead of continuing this series by successive ad-
ditions, we continued it in the opposite direction, by per-
petually subtracting unity, we should have the following
series of negative numbers :

0,-1,-2,—-3,—4,—-5,—-6,—-7,—8, -9, —10,
and so on to infiinty.

20. All these numbers, whether positive or negative,
have the known appellation of whole numbers, or integers,
which consequently are either greater or less than nothing.
We call them integers, to distinguish them from fractions,
and from several other kinds of numbers of which we shall
hereafter speak. For instance, 50 being greater by an en-
tire unit than 49, it is easy to comprehend that there may
be, between 49 and 50, an infinity of intermediate num-
bers, all greater than 49, and yet all less than 50. We need
only imagine two lines, one 50 feet, the other 49 feet long,
and it is evident that an infinite number of lines may be
drawn, all longer than 49 feet, and yet shorter than 50.

21. It is of the utmost importance through the whole of
Algebra, that a precise idea should be formed of those ne-
gative quantities, about which we have been speaking. I
shall, however, content myself with remarking here, that
all such expressions as

+1—1,+2—-2, +3~3, +4 —4, &e.
are equal to 0, or nothing. And that
+2—51s equal to —3:
for if a person has 2 crowns, and owes 5, he has not only
nothing, but still owes 3 crowns. In the same manner,

7 —121is equal to — 5, and 25 — 40 is equal to — 15.

22. The same observations hold true, when, to make the
expression moregeneral, letters are used instead of numbers;



6 ELEMENTS SECT. 1.

thus 0, or nothing, will always be the value of +a—a;
but if we wish to know the value of + a — b, two cases are
to be considered.

The first is when a is greater than b; b must then be
subtracted from @, and the remainder (before which is
placed, or understood to be placed, the sign +) shews the
value sought.

The second case is that in which a is less than &: here
is to be subtracted from b, and the remainder being made
negative, by placing before it the sign —, will be the value
sought.

CHAPTER IIIL

Of the Multiplication of Simple Quantities.

23. When there are twd or more equal numbers to be
added together, the expression of their sum may be abridged :
for example,

a + ais the same with 2 x a,

at+a+4a coieeninnn 3 X a,

at+a+a+a..c.o... 4 x a, and so on, where x is the
sign of multiplication. In this manner we may form an
idea of multiplication ; and it is to be observed that,

2 X a signifies 2 times, or twice a,
3xa...... 3 times, or thrice a,
4xa...... 4 times a, &c.

24. If therefore a number expressed by a letter is to be
multiplied by any other number, we simply put that num-
ber before the letter, thus :—

a multiplied by 20 is expressed by 20a, and
b multiplied by 30 is expressed by 305, &ec.
It is evident, also, that ¢ taken once, or 1c, is the same as c.

25. Further, it is extremely easy to multiply such pro-
ducts again by other numbers ; for example,

2 times, or twice 3«, makes 6a,

3 times, or thrice 45, makes 120,

5 times 7x makes 35z,
and these products may be still multiplied by other numbers
at pleasure,

26. When the number by which we are to multiply is
also represented by a letter, we place it immediately before
the other letter ; thus, in multiplying & by «, the product is
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written ab; and pq will be the product of the multiplica-
tion of the number ¢ by p. Also, if we multiply this pq
again by «, we shall obtain apg.

27. It may be further remarked here, that the order in
which the letters are joined together is indifferent; thus
ab is the same thing as ba; for b multiplied by a is the
same as ¢ multiplied by 5. To understand this, we have
only to substitute for ¢ and b, known numbers, as 3 and 4,
and the truth will be self-evident; for 3 tiines 4 is the
same as 4 times 3.

28. It will not be difficult to perceive, that when we sub-
stitute numbers for letters joined together, in the manner we
have described, they cannot be written in the sanie way by
putting them one after the other. For, if we were to write
34 for 3 times 4, we should have 34, and not 12. When
therefore it is required to multiply common numbers, we
must separate them by the sign x, or by a point: thus,
3 X 4, or 3.4, signifies 3 times 4, that is, 12. So,1 x 2 is
equal to 2; and 1 x 2 x 3 makes 6. In like manner,
1 x2x3x4x56makes 1344;and 1 x 2x3 x4 x5 x
6 x 7 x 8 x9 x 10is equal to 3628800, &c.

29. In the same manner, we may discover the value of an
expression of this form, 5.7.8.abcd. 1t shews that 5 must
be multiplied by 7, and that this product is to be again
multiplied by 8; that we are then to multiply this product
of the three numbers by «, next by b, then by ¢, and lastly
by d. It may be observed, also, that instead of 5.7.8, we
may write its value, 280 ; for we obtain this number when
we multiply 35 (the product of 5 by 7) by 8.

30. The results which arise from the multiplication of
two or more numbers are called products; and the num-
bers, or individual letters, are called factors.

31. Hitherto we have considered only positive numbers ;
and there can be no doubt, but that the products which we
have seen arise are positive also: viz. +a by + b must
necessarily give +ab. But we must separately examine
what the multiplication of + @ by — b, and of — a by — b,
will produce.

32. Let us begin by multiplying —a by 3 or + 3. Now,
since — a may be considered as a debt, it is evident that if
we take that debt three times, it must thus become three
times greater, and consequently the required product is
—3¢. Soifwe multiply — a by + b, we shall obtain — ba,
or, which is the same thing, —ab. Hence, we conclude,
that if a positive quantity be multiplied by a negative quan-
tity, the product will be negative ; and it may be laid down
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as a rule, that + by + makes + or plus; and that, on the
contrary, + by —, or — by +, gives — or minus.

33. It remains to resolve the case in which — is multi-
plied by —; or, for example, —a by — b. Itisevident, at
first sight, with regard to the letters, that the product will
be ab ; but it is doubtful whether the sign +, or the sign —,
is to be placed before it; all we know is, that it must be
one or the other of these signs. Now, I say that it cannot
be the sign — ; for —a by + b gives — ab, and — a by — b
cannot produce the same result as —a by + &; but must
produce a contrary result, that is to say, + ab; conse-
quently, we have the following rule: — multiplied by —
produces +, that is, the same as + multiplied by + *

* A further illustration of this rule is generally given by alge-
braists as follows :—

First, we know that 4 a multiplied by + b gives the product
+ ab; and if + @ be multiplied by a quantity less than b,2s b —c,
the product must necessarily be less than ab; in short, from ab
we must subtract the product of «, multiplied by ¢; hence
a x (b—c) must be expressed by ab-—ac; therefore it follows
that @ x — ¢ gives the product — ac.

If now we consider the product arising from the multiplication
of the two quantities (z — ), and (¢ — d), we know that it is less
than that of (a — &) x ¢, or of ac — bc ;- in short, from this pro-
duct we must subtract that of (a —b) x d: but the product
(2 —b) x (¢ —d) becomes ac — bc — ad, together with the pro-
duct of — b x — d annexed ; and the question is only what sign
we must employ for this purpose, whether + or —. Now, we
have seen that from the product ac — bc we must subtract the
product of (a — 8) x d; that is, we must subtract a quantity less
than ad. We have therefore subtracted already too much by
the quantity &d; this product must therefore be added ; that is,
it must have the sign + prefixed ; hence we see that —b x —d
gives + bd for a product; or— minus multiplied by — minus
gives + plus. See Art. 273, 274.

Multiplication has been erroneously called a compendious
method of performing addition ; whereas it is the taking, or re-
peating of one given number as many times as the number by
which it is to be multiplied contains units. Thus, 9 x 3 means
that 9 is to be taken 3 times ; or, that the measure of multiplica-
tion is 3; again 9 x } means that 9 is to be taken half a time,
or that the measure of multiplication is 1. In multiplication
there are two factors, which are sometimes called the multipli-
cand and the multiplier. These, it is evident, may reciprocally
change places, and the product will be still the same: for
9x3=3x9, and 9x L=, x 9. Hence it appears, that
numbers may be diminished by multiplication, as well as in-
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34. The rules which we have explained are expressed
more briefly, as follows : —

Like signs, multiplied together, give + ; unlike or con-
trary signs give —. Thus, when it is required to multiply
the following numbers ; + a, — b, — ¢, + d; we have first
+ a multiplied by — b, which makes — ab; this by —c,
gives + abc; and this by + d, gives 4 abed.

35. The difficulties with respect to the signs being re-
moved, we have only to shew how to multiply numbers that
are themselves products. If we were, for instance, to mul-
tiply the number ab by the number cd, the product would
be abed, and it is obtained by multiplying first ab by ¢, and
then the result of that multiplication by d. Or, if we had

creased in any given ratio; which is wholly inconsistent with
the nature of addition; for 9 x 1=4%,9x $=1,9 X gl;=
x5, &c.  Thesame will be found true with respect to algebraic
quantities; a x b=ab, —9 x 3= —27, that is, 9 negative in-
tegers multiplied by 3, or taken 3 times, are equal to — 27, be-
cause the measure of multiplication is 3. In the same manner,
by inverting the factors, 3 positive integers multiplied by —9,
or taken 9 times negatively, must give the same result. There-
fore a positive quantity taken negatively, or a negative quantity
taken positively, gives a negative product.

From these considerations we shall illustrate the present sub-
ject in a different way, and endeavour to shew, that the product
of two negative quantities must be positive. First, algebraic
quantities may be considered as a series of numbers increasing
in any ratio, on each side of nothing, to infinity. See Art. 19.
Let us assume a small part only of such a series for the present
purpose, in which the ratio is unity, and let us multiply every
term of it by — 2.

5, 4, 3, 2, 1, 0,—1,—2, —3, —4, —5,
—9, —2, —2, —2, =2, —2, —2, —2, —2, —2, —2,

—10, —8, —6, —4, —2, 0, +2, +4, +6, +8, +10.
Here, of course, we find the series inverted, and the ratio dou-
bled. Further, in order to illustrate the subject, we may con-
sider the ratio of a series of fractions between 1 and 0, as in-
definitely small, till the last term being multiplied by —2, the
product would be equal to 0. If; after this, the multiplier hav-
mg passed the middle term 0, be multiplied into any negative
term, however small, between 0 and —1, on the other side of
the series, the product, it is evident, must be positive, otherwise
the series could not go on. Hence it appears, that the taking
of a negative quantity negatively destroys the very property of
negation, and is the conversion of negative into positive numbers.
So that if + x — = —, it necessarily follows that — x — must
give a contrary product, that is, +." See Art. 176, 177.
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to multiply 36 by 12; since 12 is equal to 3 times 4, we
should only multiply 36 first by 3, and then the product
108 by 4, in order to have the whole product of the mul-
tiplication of 12 by 36, which is consequently 432.

36. But if we wished to multiply 5ab by 3cd, we might
write 3cd x 5ab. However, as in the present instance the
order of the numbers to be multiplied 1s indifferent, it will
be better, as is also the custom, to place the common num-
bers before the letters, and to express the product thus:
5 x 3abed, or 15abced; since 5 times 3 is 15.

So ifwe had to multiply 12pgr by 7zy, we should obtain
12 x Tpgrzy, or 84pgray.

CHAPTER 1V.

Of the Nature of whole Numbers, or Integers, with respect
to their Factors.

37. We have observed that a product is generated by
the multiplication of two or more numbers together, and
that these numbers are called factors. Thus, the numbers
a, b, ¢, d, are the factors of the product abcd.

38. If, therefore, we consider all whole numbers as pro-
ducts of two or more numbers multiplied together, we shall
soon find that some of them cannot result from such a mul-
tiplication, and consequently have not any factors; while
others may be the products of two or more numbers mul-
tiplied together, and may consequently have two or more
factors. Thus, 4 is produced by 2 x 2; 6 by 2 x 3; 8 by
2x2x2;27by3 x3 x3; and 10 by 2 x 5, &e.

39. But, on the other hand, the numbers 2, 3, 5, 7, 11,
13, 17, &c. cannot be represented in the same manner by
factors, unless for that purpose we make use of unity, and
represent 2, for instance, by 1 x 2. But the numbers
which are multiplied by 1 remaining the same, it is not
proper to reckon unity as a factor.

All numbers, therefore, such as 2, 3, 5, 7, 11, 13, 17,
&c. which cannot be represented by factors, are called
simple, or prime numbers; whereas others, as 4, 6, 8, 9, 10,
12, 14, 15, 16, 18, &c. which may be represented by
factors, are called composite numbers.

40. Simple, or prime numbers deserve, therefore, parti-
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cular attention, since they do not result from the multi-
plication of two or more numbers. It is also particularly
worthy of observation, that if we write these numbers in
succession as they follow each other, thus,
2,3,5,7,11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, &c.*
we can trace noregular order; their increments being some-
times greater, sometimes less; and hitherto no one has been
able to discover whether they follow any certain law or not.
41. All composite numbers, which may be represented
by factors, result from the prime numbers above-mentioned ;
that is to say, all their factors are prime numbers. For, if
we find a factor which is not a prime number, it may always
be decomposed and represented by two or more prime num-

* All the prime numbers from 1 to 100000 are to be found
in the Tables of divisors, which I shall speak of in a succeeding
note. But particular Tables of the prime numbers from I to
101000 have been published at Halle, by M. Kruger, in a Ger-
man work, entitled Thoughts on Algebra ; M. Kruger had
received them from a person called Peter Jaeger, who had cal-
culated them. M. Lambert has continued these Tables as far as
102000 and republished them in his supplements to the loga-
rithmic and trigonometrical Tables, printed at Berlin in 1770 ;
a work which contains likewise several Tables that are of great
use in the different branches of mathematics, and explanations
which it would be too long to enumerate here.

The Royal Parisian Academy of Sciences is in possession of
Tables of prime numbers, presented to it by P. Mercastel de
I'Oratoire, and by M. du Tour; but they have not been pub-
lished. They are spoken of in Vol. V. of the Foreign Memoirs,
with a reference to a memoir, contained in that volume, by M.
Rallier des Ourmes, Honorary Counsellor of the Presidial Court
at Rennes, in which the author explains an easy method of
finding prime numbers,

In the same volume we find another method by M. Rallier des
QOurmes, which is entitled, ‘“ A new Method for Division, when
the Dividend is a Multiple of the Divisor, and may, therefore, be
divided without a remainder; and for the Extraction of Roots
when the Power is perfect.” This method, more curious, in-
deed, than useful, is almost totally different from the common
one: it is very easy, and has this singularity, that, provided we
know as many figures on the right of the dividend, or the power,
as there are to be in the quotient, or the root, we may pass over
the figures which precede them, and thus obtain the quotient.
M. Rallier des Ourmes was led to this new method by reflecting
on the numbers terminating the numerical expressions of pro-
ducts or powers, a species of numbers which I have remarked
also, on other occasions, it would be useful to consider.—F. T.
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bers. When we have répresented, for instance, the number
30 by 5 x 6, it is evident that 6 not being a prime number,
but being produced by 2 x 3, we might have represented
30 by 5 x 2 x 3, or by 2-x 3 x 5; that is to say, by factars
which are all prime numbers.

42. If we now consider those composite numbers which
may be resolved into prime factors, we shall observe a
great difference among them; thus we shall find thatsome
have only two factors, that others have three, and others
a still greater number. We have already seen, for
example, that

4 is the same as 2 x 2, | 6 is the same as 2 x 3,

8..... ceed2Xx2x2,0 9 i 3 x 3,
10 .e .o 2x5, (120, 2x3x%x2,
14 coevenne 2x7, |15 iiiiiannn. 3 x5,

16 ..... 2x2x2x2,|and so on.

43. Hence, it is easy to find a method for analysing any
number, or resolving it into its simple factors. Let there
be proposed, for instance, the number 360; we shall
represent it first by 2 x 180. Now 180 is equal to
2 x 90, and

90‘ 2 x 45,
45 - is the same as {3 x 15, and lastly
15) 3 x 5.

So that the number 360 may be represented by these
simple factors, 2 x 2 x 2 x 3 x 3 x 5; since all these
numbers multiplied together produce 360.*

44. This shews, that prime numbers cannot be divided
by other numbers; and, on the other hand, that the
simple factors of compound numbers are found most con-
veniently, and with the greatest certainty, by seeking the
simple, or prime numbers, by which those compound
numbers are divisible. But for this Division is necessary;
we shall, therefore, explain the rules of that operation in
the following chapter.

* There is a table at the end of a German book of arithmetic,
published at Leipsic, by Poetius, in 1728, in which all the num-
bers from 1 to 10000 are represented in this manner by their
simple factors.—F. T.
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CHAPTER V.
Of the Division of Simple Quantities.

45. When a number is to be separated into two, three, or
more equal parts, it is done by means of division, which
enables us to determine the magnitude of one of those parts.
When we wish, for example, to separate the number 12
into three equal parts, we find by division that each of
those parts is equal to 4.

The following terms are made use of in this operation.
The number which is to be decompounded, or divided, is
called the dividend; the number of equal parts sought is
called the divisor; the magnitude of one of those parts,
determined by the division, is called the quotient: thus,
in the above example,

12 is the dividend,
3 is the divisor, and
4 is the quotient.

46. It follows from this, that if we divide a number by 2,
or into two equal parts, one of those parts, or the quotient,
taken twice, makes exactly the number proposed ; and, in
the same manner, if we have a number to divide by 3, the
quotient taken thrice must give the same number again.
In general, the multiplication of the quotient by the
divisor must always reproduce the dividend.

47. Itis for this reason that division is said to be a rule,
which teaches us to find a number or quotient, which,
being multiplied by the divisor, will exactly produce the
dividend. For example, if 35 is to be divided by 5, we
seek for a number, which, multiplied by 5, will produce
35. Now, this number is 7, since 5 times 7 is 35. The
manner of expression employed in this reasoning is, 5 in
35 goes 7 times ; and 5 times 7 makes 35.

48. The dividend, therefore, may be cousidered as a pro-
duct, of which one of the factors is the divisor, and the other
the quotient. Thus, supposing we have 63 to divide by 7,
we endeavour to find such a product, that, taking 7 for
one of its factors, the other factor multiplied by this may
exactly give 63. Now 7 x 9 is such a product; and conse-
quently 9 is the quotient obtained when we divide 63 by 7.

49. In general, if we have to divide a number ab by a,
it is evident that the quotient will be & ; for a multiplied
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by b gives the dividend ab. It is clear also, that if we
had to divide ad by b, the quotient would be a. And in
all examples of division that can be proposed, if we divide
the dividend by the quotient, we shall again obtain the
divisor; for as 24 divided by 4 gives 6, so 24 divided by 6
will give 4.

50. As the whole operation consists in representing the
dividend by two factors, of which one may be equal to the
divisor, and the other to the quotient, the following
examples will be easily understood. I say first that the
dividend abe, divided by a, gives bc; for a, multiplied
by bc, produces abc: in the same manner abc, being
divided by b, we shall have ac; and abe, divided by ac,
gives b. It is also plain, that 12 mn, divided by 3m,
gives 4n; for 3m, multiplied by 4n, makes 12mn. But
if this same number 12mn had been divided by 12, we
should have obtained the quotient mn.

51. Since every number a may be expressed by leg,
or a, it is evident that if we had to divide a, or la, by 1,
the quotient would be the same number a. And, on the
contrary, if the same number a, or la, is to be divided
by a, the quotient will be 1.

52. It often happens that we cannot represent the
dividend as the product of two factors, of which one is
equal to the divisor; hence, in this case, the division
cannot be performed in the manner we have described.

When we have, for example, 24 to divide by 7, it is at
first sight obvious, that the number 7 is not a factor of 24;
for the product of 7 x 3 is only 21, and consequently too
small; and 7 x 4 makes 28, which is greater than 24,
We discover, however, from this, that the quotient must
be greater than 3, and less than 4. In order, therefore, to
determine it exactly, we employ another species of num-
bers, which are called fractions, and which we shall con-
sider in one of the following chapters.

53. Before we proceed to the use of fractions, it is usual
to be satisfied with the whole number which approaches
nearest to the true quotient, but at the same time paying
attention to the remainder which is left ; thus we say, 7 in
24 goes 3 times, and the remainder is 3, because 3 times 7
produces only 21, which is 3 less than 24. We may also
consider the following examples in the same manner:

6)34(5, that is to say, the divisor is 6, the
30 dividend 34, the quotient 5, and the
2 remainder 4.
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9)41(4, here the divisor is 9, the dividend 41,
3)' the quotient 4, and the remainder 5.

5

The following rule is to be observed in examples where
there is a remainder : —

54. Multiply the divisor by the quotient, and to the
product add the remainder, and the result will be the
dividend. This is the method of proving the division,
and of discovering whether the calculation is right or not.
Thus, in the first of the two last examples, if we multiply
6 by 5, and to the product 30 add the remainder 4, we
obain 34, or the dividend. And, in the last example,
if we multiply the divisor 9 by the quotient 4, and to
the product 36 add the remainder 5, we obtain the
dividend 41.

55. Lastly, it is necessary to remark here, with regard
to the signs + plus and — minus, that if we divide + ab
by + a, the quotient will be + b, which is evident. But
if we divide + ab by — a, the quotient will be —b; be-
cause —a x —b gives +ab. If the dividend is — ab,
and is to be divided by the divisor + @, the quotient will
be —b; because it is — b which, multiplied by + a,
makes —ab. Lastly, if we have to divide the dividend
—ab by the divisor — a, the quotient will be + b; for
the dividend — ab is the product of —a by + b.

56. With regard, therefore, to the signs + and —,
division requires the same rules to be observed that we
have seen take place in multiplication ; viz.

+ by + makes +; + by — makes —;

— by + makes —; — by — makes +:
or, in few words, like signs give plus, and unlike signs
give minus.

57. Thus when we divide 18pg by — 3p, the quotient is
—G6g. Farther:—

— 302y divided by + 6y gives — 5z, and

— b4abe divided by — 9b gives + 6ac;
for, in this last example, — 95 multiplied by + 6ac makes
— 6 x 9abe, or — b4abe. But enough has been said on
the division of simple quantities; we shall, therefore,
hasten to the explanation of fractions, after having added
some further remarks on the nature of numbers, with
respect to their divisors.
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CHAPTER VL

Of the Properties of Integers, with respect to their Divisors.

58. As we have seen that some numbers are divisible
by certain divisors, while othersare not; it will be proper,
in order to obtain a more particular knowledge of num-
bers, that this difference should be carefully observed,
both by distinguishing the numbers that are divisible by
divisors from those which are not, and by considering the
remainder that is left in the division of the latter. For
this purpose, let us examine the divisors

2,3,4,5,6,7,8,9, 10, &c.

59, First, let the divisor be 2; the nurngbers divisible
by it are, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, &c. which, it
appears, increase always by two. These numbers, as far
as they can be continued, are called even numbers. But
there are other numbers, viz.

1,3,5,7,9, 11, 13, 15, 17, 19, &e.
which are uniformly less or greater than the former
by unity, and which cannot be divided by 2, without the
remainder 1 ; these are called odd numbers.

The even numbers may all be comprehended in the
general expression 2a ; for they are all obtained by succes-
sively substituting for a the integers 1,2, 3, 4, 5, 6, 7, &e.
and hence it follows that the odd numbers are all compre-
hended in the expression 2a + 1, because 2a + 1 is greater
by unity than the even number 2a.

60. In the second place, let the number 3 be the
divisor ; the numbers divisible by it are,

3,6,9, 12, 15, 18, 21, 24, 27, 30, and so on;
which numbers may be represented by the expression 3a ;
for 3a, divided by 3, gives the quotient a without a re-
mainder. All other numbers which we would divide by 3,
will give 1 or 2 for a remainder, and are consequently
of two kinds. Those which after the division leave the
remainder 1, are,

1,4,7,10, 13, 16, 19, &e.
and are contained in the expression 3a + 1.; but the other
kind, where the numbers give the remainder 2, are,

2, 5, 8, 11, 14, 17, 20, &e.
which may be generally represented by 3a +2; so that
all numbers may be expressed either by 3a, or by 3¢ +1;
or by 3a + 2.
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61. Let us now suppose that 4 is the divisor under con-

sideration; then the numbers which it divides are,
4, 8, 12, 16, 20, 24, &ec.

which increase uniformly by 4, and are comprehended in
the expression 4a. Al other numbers, that is, those which
are not divisible by 4, may either leave the remainder 1,
or be greater than the former by 1; as,

1,5,9,13, 17, 21, 25, &c.
and consequently may be comprehended in the expression
4a + 1; or they may give the remainder 2; as,

2, 6, 10, 14, 18, 22, 26, &e.
and be expressed by 4a + 2 ; or, lastly, they may give the
remainder 3; as,

3,7, 11, 15, 19, 23, 27, &ec.
and may then be represented by the expression 4a + 3.

All possible integer numbers are contained, therefore,
in one or other of these four expressions : —

4a,4a + 1, 4a + 2, 4a + 3.

62. It is also nearly the same when the divisor is 5;
for all numbers which can be divided by it are compre-
hended in the expression 5a, and those which cannot be
divided by 5 are reducible to one of the following ex-
pressions :—

S5a+1,5a+2,5a+3, 5a +4;
and in the same manner we may continue, and consider
any greater divisor.

63. It is here proper to recollect what has been already
said on the resolution of numbers into their simple factors;
for every number, among the factors of which is found

' 2,0r3,or4,orb, or7,
or any other number, will be divisible by those numbers.
For example; 60 being equal to 2 x 2:x 3 x 5, it is evi-
dent that 60 is divisible by 2, and by 3, and by 5.*%

* There are some numbers which it is easy to perceive
whether they are divisors of a given number or not.

1. A given number is divisible by 2, if the last digit is even ;
it is divisible by 4, if the two last digits are divisible by 4; it is
divisible by 8, if the three last digits are divisible by 8; and
in general, it is divisible by 2", if the » last digits are divisible
by 2~

y2. A number is divisible by 3, if the sum of the digits is
divisible by 3; it may be divided by 6, if, beside this, the last
digit is even ; it is divisible by 9, if the sum of the digits may be
divided by 9.

3. Every number that has the last digit 0 or 5, is divisible
by 5. i

C
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64. Farther, as the general expression abed is not only

divisible by a, and 5, and ¢, and d, but also by

ab, ac, ad, be, bd, cd, and by

abe, abd, acd, bed, and lastly by

abed, that is to say, its own value;
it follows that 60, or 2 x 2 x 3 x 5, may be divided not
only by these simple numbers, but also by those which are
composed of any two of them ; that is to say, by 4, 6, 10,
15 : and also by those which are composed of any three of
its simple factors; that is to say, by 12, 20, 30, and lastly
also, by 60 itself.

65. When, therefore, we have represented any number
assumed at pleasure, by its simple factors, it will be very
easy to exhibit all the numbers by which it is divisible.
For we have only, first, to take the simple factors one by
one, and then to multiply them together two by two,

4. A number is divisible by 11, when the sum of the first,
third, fifth, &c. digits is equal to the sum of the second, fourth,
sixth, &c. digits.

It would be easy to explain the reason of these rules, and to
extend them to the products of the divisors which we have just
now considered. Rules might be devised likewise for some
other numbers, but the application of them would in general be
longer than an actual trial of the division.

For example, I say that the number 53704689213 is divisible
by 7, because I find that the sum of the digits of the number
64004245433 is divisible by 7; and this second number is formed,
according to a very simple rule, from the remainders found after
dividing the component parts of the former number by 7.

Thus, 53704689213 = 50000000000 + 3000000000 -+
700000000 4- 0 + 4000000 4 600000 + 80000 4+ 9000 + 200
+ 10 + 3; which being, each of them, divided by 7, will leave
the remainders 6, 4, 0,0, 4, 2, 4, 5, 4, 3, 3, the number here
given.—BERNOULLI.

If a, b, ¢, d, e, &c. be the digits composing any number, the
number itself may be expressed universally, thus; « + 1056 +
10%¢ + 10%d, + 10%e, &c. to 10"z ; where it is easy to perceive
that, if each of the terms a, 105, 102, &c. be divisible by =, the
number itself @ + 10 & + 102, &c. will also be divisible by =.

..a 106 10% . o -
And, if o &c. leave the remainders p, ¢, r, &c. it is
obvious, that @ + 105 4 10%¢, &c. will be divisible by =, when
P -+ q + r, is divisible by n ; which renders the principle of the
rule sufficiently clear.

The reader 1s indebted to that excellent mathematician, the
late Professor Bonnycastle, for this satisfactory illustration of
M. Bemnoulli’s note. ’
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three by three, four by four, &c. till we arrive at the
number proposed.

66. It must here be particularly observed that every
number is divisible by 1; and also, that every number is
divisible by itself; so that every number has at least two
factors, or divisors, the number itself and unity: but every
number which has no other divisor than these two, belongs
to the class of numbers which we have before called simple,
or prime numbers.

Except these simple numbers, all other numbers have,
beside unity and themselves, other divisors, as may be
seen from the following Table, in which are placed under
each number all its divisors.*

TABLE.
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67. Lastly, it ought to be observed that 0, or nothing,
may be considered as a number which has the property of
being divisible by all possible numbers ; because by what-
ever number, a, we divide 0, the quotient is always 0; for
it must be remarked, that the multiplication of any num-
ber by nothing produces nothing, and therefore O times a,
or Oa, 1s 0.

* A similar Table for all the divisors of the natural numbers,
from 1 to 10000, was published at Leyden, in 1767, by M.
Henry Anjema. We have likewise another Table of divisors,
which goes as far as 100000, but it gives only the least divisor
of each number. It is to be found in Harris’s Lexicon Tech-
nicum, the Encyclopédie, and in M. Lambert’s Recueil, which
we have quoted in the note to p. 11.  In this last work, it is
continued as far as 102000.—F. T.."
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CHAPTER VII.

Of Fractions in general.

68. When a number, as 7, for instance, is said not to
be divisible by another number, let us suppose by 3, this
only means, that the quotient cannot be expressed by an
integer number ; but it must not by any means be thought
that it is impossible to form an idea of that quotient.
Ouly imagine a line of 7 feetin length ; nobody can doubt
the possibility of dividing this line into 3 equal parts, and
of forming a notion of the length of one of those parts.

69. Since, therefore, we may form a precise idea of the
quotient obtained in similar cases, though that quotient
may not be an integer number, this leads us to consider a
particular species of numbers, called fractions, or broken
numbers; of which the instance adduced furnishes an
illustration. For if we have to divide 7 by 3, we easily
conceive the quotient which should result, and express
it by %; placing the divisor under the dividend, and
separating the two numbers by a stroke or line.

70. So, in general, when the number a is to be divided

by the number b, we represent the quotient by C-Z-, and call
this form of expression a fraction. We cannot, therefore,
give a better idea of a fraction 5, than by saying that it

expresses the quotient resulting from the division of the
upper number by the lower. We must remember, also,
that in all fractions the lower number is called the deno-
minator, and that above the line the numerator.

71. In the above fraction Z, which we read seven thirds,
7 is the numerator, and 3 the denominator. We must
also read %, two thirds; §, three fourths; 3, three eighths
4%, twelve hundredths; and 1, one half, &e.

72. In order to obtain a more perfect knowledge of the
nature of fractions, we shall begin by considering the case,
in which the numerator is equal to the denominator, as in

g. Now, since this expresses the quotient obtained by
dividing a by q, it is evident that this quotient is exactly

unity, and that consequently the fraction 2 is of the same
a
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value as 1, or one integer; for the same reason, all the
following fractions,

%a %’ %a %’ %a %9 gr &C'
are equal to one another, each being equal to 1, or one
integer.

73. We have seen that a fraction whose numerator is
equal to the denominator, is equal to unity. All fractions,
therefore, whose numerators are less than the denomina-
tors, have a value less than unity : for if I have a number
to divide by another, which is greater than itself, the
result must necessarily be less than 1. If we cut a line
for example, two feet long, into three equal parts, one of
those parts will undoubtedly be shorter than a foot: it is
evident then, that £ is less than 1, for the same reason;
that is, the numerator 2 is less than the denominator 3.

74. If the numerator, on the contrary, be greater than
the denominator, the value of the fraction is greater than
unity. Thus 3 is greater than 1, for § is equal to £ together
with . Now, % 1s exactly 1; consequently 3 is equal to
1414, thatis, to an integer and a half. Inthe same manner,
4 is equal to 11, 5 to 1%, and % to 25.  And, in general, it
is sufficient in such cases to divide the upper number by
the lower, and to add to the quotient a fraction, having
the remainder for the numerator, and the divisor for the
denominator. Ifthe given fraction, for example, were 4,
we should have for the quotient 3,and 7 for the remainder;
whence we conclude that 43 is the same as 35.

75. Thus we see how fractions, whose numerators are
greater than the denominators, are resolved into two mem-
bers ; one of which is an integer, and the other a fractional
number, having the numerator less than the denominator.
Such fractions as contain one or more integers, are called
improper fractions, to distinguish them from fractions
properly so called, which, having the numerator less thau
the denominator, are less than unity, or than an integer.

76. The nature of fractions is frequently considered in
another way, which may throw additional light on the
subject. If, for example, we consider the fraction %, it is
evident that it is three times greater than . Now, this
fraction 4 means, that if we divide 1 into 4 equal parts,
this will be the value of one of those parts; it is obvious
then, that by taking 3 of those parts we shall have the value
of the fraction 4.

In the same manner we may consider every other frac-
tion; for example, % ; if we divide unity into 12 equal parts,
7 of those parts will be equal to the fraction proposed.
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77. From this manner of considering fractions, the ex-
pressions numerator and denominator are derived. For, as
in the preceding fraction {4, the number under the line
shews that 12 is the number of parts into which unity is to
be divided ; and as it may be said to denote, or name, the
parts, it bas not improperly been called the denominator.

Farther, as the upper number, viz. 7, shews that, in
order to have the value of the fraction, we must take, or
collect, 7 of those parts, and therefore may be said to
reckon or number them, it has been thought proper to
call the number above the line the numerator.

78. As it is easy to understand what $ is, when we know
the signification of 4, we may consider the fractions whose
numerator is unity, as the foundation of all others. Such
are the fractions,

_ Lhhb bbb T n e &
and it is observable that these fractions go on continually
diminishing : for the more you divide an integer, or the
greater the number of parts into which you distribute it,
the less does each of those parts become. Thus, ;15 is
less than & ; 3¢5 is less than 1155 and ;34 is less than
177> &c-

79. As we have seen that the more we increase the
aenominator of such fractions the less their values become,
it may be asked, whether it is not possible to make the
denominator so great that the fraction shall be reduced to
nothing? I answer, No; for into whatever number of
parts unity (the length of a foot, for instance) is divided;
let those parts be ever so small, they still preserve a
certain magnitude, and, therefore, ean never be absolutely
reduced to nothing.

80. It is true, if we divide the length of a foot into 1000
parts, those parts will not easily fall under the cognisance
of our senses; but view them through a good microscope,
and each of them will appear large enough to be still sub-
divided into 100 parts, and more.

At present, however, we have nothing to do with what
depends on ourselves, or with what we are really capable of
performing, and what our eyes can perceive; the question
is rather what is possible in itself: and, in this sense, it is
certain, that, however great we suppose the denominator,
the fraction will never entirely vanish, or become equal to 0.

81. We can never, therefore, arrive completely at 0, or
nothing, however great the denominator may be; and, con-
sequently, as those fractions must always preserve a cer-
tain quantity, we may continue the series of fractions in the
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78th article without interruption. This circumstance has
introduced the expression, that the denominator must be
infinite, or infinitely great, in order that the fraction may
be reduced to 0, or to nothing ; hence the word infinite
in reality signifies here, that we can never arrive at the
end of the series of the above-mentioned fractions.

82. To express this idea, according to the sense of it
above-mentioned, we make use of the sign e , which con-
sequently indicates a number infinitely great; and we may
therefore say, that this fraction  is in reality nothing;
because a fraction cannot be reduced to nothing, until the
denominator has been increased to infinity.

83. It is the more necessary to pay attention to this
idea of infinity, as it is derived from the first elements of
our knowledge, and as it will be of the greatest importance
in the following part of this treatise.

We may here deduce from it a few consequences that
are extremely curious, and worthy ofattention. Thefrac-
tion % represents the quotient resulting from the division
of the dividend 1 by the divisor @ . Now, we know, that
if we divide the dividend 1 by the quotient &, which is
equal to nothing, we obtain again the divisor oo : hence,
we acquire a new idea of infinity ; and learn that it arises
from the division of 1 by 0; so that we are thence autho-
rised in saying, that 1 divided by O expresses a number
infinitely great, or o .

84. It may be necessary also, in this place, to correct
the mistake of those who assert, that a number infinitely
great is not susceptible of increase. This opinion is incon-
sistent with the just principles which we have laid down;
for 1 signifying a number infinitely great, and % being
incontestably the double of 1, it is evident that a number,
though infinitely great, may still become twice, thrice, or
any number of times greater.*

* There appears to be a fallacy in this reasoning, which con-
sists in taking the sign of infinity for infinity itself, and in apply-
ing the property of fractions in general to a fractional expression,
whose denominator bears no assignable relation to unity. Itis
certain, that infinity may be represented by a series of units (that
is, by § = Tl—]— =1+ 1+ 1, &c.), or by a series of numbers
increasing in any given ratio. Now, though any definite part
of one infinite series may be the half, the third, &c. of a definite
part of another, yet still that part bears no proportion to the
whole, and the series can only be said, in that case, to go on
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CHAPTER VIII.

Of the Properties of Fractions.

85. We have already seen, that each of the fractions,

2 3 4 35 6 1 8 &c

. 2 32 4 5 6> 7y gy XU
makes an integer, and that consequently they are all equal
to one another. The same equality prevails in the fol-
lowing fractions.

H4H55H Y 8, ke
each of them making two integers; for the numerator of
each,divided byits denominator, gives 2. So all the fractions

3,6 9 12 15718 &e.

1929739 49 52 69 _
are equal to one another, since 3 is their common value.

86. We may likewise represent the value of any frac-
tion in an infinite variety of ways. For if we multiply
both the numerator and the denominator of a fraction by
the same number, which may be assumed at pleasure, this
fraction will still preserve the same value. For this
reason, all the fractions

bHH L e Lo 1o Ty T 35 &e
are equal, the value of each being 4. Also,

55 H 5 Tor 31 75 275 56 &e. ]
are equal fractions, the value of each being 4. The fractions
2,4 .8 10 12 14 16 &o

. . 32 6% 122 152 187 213 24 *
have likewise all the same value. Hence we may conclude,
a
b
a

of the following expressions, each of which is equal to 3 viz.

in general, that the fraction 5 may be represented by any

to infinity in a different ratio. But, farther, , or any other
numerator, having 0 for its denominator, is, when expanded,
precisely the same as 1.

Thus, £ = by division becomes

22’
2—2)2 (1 +1 41, &c. ad infinitum.
2
2—-2

i
Iww
|
ol
&
S‘.



CHAP. VIII. OF ALGEBRA. 25

a2a3a4a5a6a,7a&

52535 16 5 66° T8
87. To be convinced of this, we have only to write for the
a
b
this letter ¢ the quotient of the division of a by 4; and to
recollect that the multiplication of the quotient ¢ by the
divisor 5 must give the dividend. For since ¢ multiplied by
b gives a, it is evident that ¢ multiplied by 25 will give 2a,
that ¢ multiplied by 36 will give 3a, and that, in general, ¢
multiplied by mb will give ma. Now, changing this into an
example of division, and dividing the product ma by mb,
one of the factors, the quotient must be equal to the other
factor ¢; but ma divided by mb gives also the fraction

value of the fraction - a certain letter ¢, representing by

%, which is consequently equal to ¢ ; and this is what was
to be proved : for ¢ having been assumed as the value of the
fraction %, it is evident that this fraction is equal to the

ma
mb

88. We have seen that every fraction may be represented
in an infinite number of forms, each of which contains the
same value; and it is evident that of all these forms, that
which is composed of the least numbers will be most easily
understood. For example, we may substitute, instead of
%, the following fractions,

% £ 18 1%, &e.

but of all these expressions % 1s that of which it is easiest to
form an idea. Here, therefore, a problem arises, how a
fraction, such as -#;, which is not expressed by the least
possible numbers, may be reduced to its simplest form, or to
its least terms ; that is to say, in our present example, to %.

89. It will be easy to resolve this problem, if we consider
that a fraction still preserves its value, when we multiply
both its terms, or its numerator and denominator, by the
same number. For from this it also follows, that if we
divide the numerator and denominator of a fraction by the
same number, the fraction will still preserve the same value.
This is made more evident by means of the general ex-

fraction —, whatever be the value of m.

pression ;l—%; for if we divide both the numerator ma and

the denominator mb by the number m, we obtain the fraction
%, which, as was before proved, is-equal to Z:——Z
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90. In order therefore to reduce a given fraction to its
least terms, it is required to find a number, by which both
the numerator and denominator may be divided. Such a
number is called a common divisor ; and as long as we can
find a common divisor to the numerator and the denomi-
nator, it is certain that the fraction may be reduced to a
lower form ; but, on the contrary, when we see that, ex-
cept unity, no other common divisor can be found, this
shews that the fraction is already in its simplest form.

91. To make this more clear, let us consider the fraction
8. Weseeimmediately that both the terms are divisible
by 2, and that there results the fraction £4; which may also
be divided by 2, and reduced to 1%; and as this likewise
has 2 for a common divisor, it is evident that it may be re-
duced to 5. DBut now we easily perceive, that the nume-
rator and denominator are still divisible by 3; performing
this division, therefore, we obtain the fraction £, which is
equal to the fraction proposed, and gives the simplest ex-
pression to which it can be reduced ; for 2 and 5 have no
common divisor but 1, which cannot diminish these numbers
any farther,

92. This property of fractions preserving an invariable
value, whether we divide or multiply the numerator and
denominator by the same number, is of the greatest import-
ance, and is the principal foundation of the doctrine of
fractions. For example, we can seldom add together two
fractions, or subtract the one from the other, before we
have, by means of this property, reduced them to other
forms; that is to say, to expressions whose denominators
are equal. Of this we shall treat in the following chapter.

93. We will conclude the present, however, by remark-
ing, that all whole numbers may also be represented by
fractions. For example, 6 is the same as ¢, because 6
divided by 1 makes 6 ; we may also, in the same manner,
express the number 6 by the fractions 17, 18, %#, 36, and
an infinite number of others, which have the same value.

QUESTIONS FOR PRACTICE.

cx + x* .
1. Reduce ———+—,Z— to its lowest terms. Ans. f,;
ca” + a*x a®
a3 — bz . 2__}
2. Reduce ——~A_r—~——l——5 toitslowestterms. Aus. =— =,
2% + 2bx + b2 x40

%3 4 2 ¥4

, at— b . 22+ b

3. Reduce z—55— to its lowest terms.  Auns. .
2 — b a3
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22—y . 1

4, Reduce to its lowest terms. Ans. ———.
x4__y4 1ﬂ_Fy2

4__ 4

5. Reduce a4z to its lowest terms.

a®—a’x—ax® + a3
Ans, ©EZ
a—x

5a% + 10a*z + 5a®2?

TS I, PP g to its lowest terms.

6. Reduce
‘ Sat+ 5a’x
" a*x+aa® +a¥

Ans

CHAPTER IX.

Of the Addition and Subtraction of Fractions.

94. When fractions have equal denominators, thereis no
difficulty in adding and subtracting them; for £ 4 3 is
equal to 4, and 4 — £ is equal to . In this case, therefore,
either for addition or subtraction, we alter only the nume-
rators, and place the common denominator under the line,
thus:

+ 185 — 75 — 7% + £ Is equal to 1§5;
— i — 3% + 3} is equal to &5, or 1;
— Pp— 4} + 13 is equal to 15, or £
also 1 + £ is equal to %, or 1, that is to say, an integer ; and
% — 3 4 1is equal to 4, that is to say, nothing, or 0.

95. But when fractions have not equal denominators, we
can always change them into other fractions that have the
same denominator. For example, when it is proposed to
add together the fractions 4 and 4, we must consider that §
is the same as 3, and that 1 is equivalent to%; we have
therefore, instead of the two fractions proposed, % + £, the
sum of which is4. And if the two fractions were united
by the sign minus, as 1 — 1, we should have 4 — %, or L.

As another example, let the fractions proposed be 4 + £.
Here, since 4 is the same as §, this value may be substituted
for 4, and we may then say ¢ + 4 makes 3}, or 13.

Suppose farther, that the sum of 1 and 1 were required, I
say that it is {55 for 1=, and L =2;: therefore, £ +

[ Sy
Sl opp o=

Tz

96. Wemay have a greater number of fractions to reduce
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to a common denominator; for example, 1, £, 3,4, 4. In
this case, the whole depends on finding a number that shall
be divisible by all the denominators of those fractions. In
this instance, 60 is the number which has that property, and
which consequently becomes the common denominator. We
shall therefore have 38, instead of 1; 49, instead of £ ; 41,
instead of 3; 48, instead of ¢; and 24, instead of §. If
now it be required to add together all these fractions, 49,
40 45 48 and £9; we have only to add all the numera-
tors, and under the sum place the common denominator
60; that is to say, we shall have 213, or 3 integers, and
the fractional remainder, $3, or £3.

97. The whole of this operation consists, as we before
stated, in changing fractions, whose denominators are un-

equal, into others whose denominators are equal. In order,
therefore, to perform it generally, let % and %be the frac-

tions proposed. First, multiply the two terms of the

first fraction by d, and we shall have the fraction % equal

to %; next multiply the two terms of the second fraction
by b, and we shall have an equivalent value of it expressed
by—bz—)gl; thus the two denominators are become equal. Now,

if the sum of the two proposed fractions be required, we

‘“’—;C‘lb-? : and if their dif-
ad—be
bd
% and -, for example, were proposed, we should obtain in
their stead, 44 and £&; of which the sum is 12}, and the
difference 11.%*

98. To this part of the subject belongs also the question,
Of two proposed fractions which is the greater or the less?

may immediately answer that it is

ference be asked, we say that it is . If the fractions

* The rule for reducing fractions to a common denominator
may be concisely expressed thus :—Multiply each numerator
into every denominator except its own, for a new numerator, and
all the denominators together for a common denominator.
When this operation has been performed, it will appear, that the
numerator and denominator of each fraction have been multiplied
by the same quantity, and consequently, that the fractions retain
the same value.
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for, to resolve this, we have only to reduce the two fractions
to the same denominator. Let us take, for example, the
two fractions £ and £ ; when reduced to the same denomi-
nator, the first becomes 14, and the second 1%, where it is
evident that the second, or %, is the greater, and exceeds
the former by ;.

Again, if the fractions 3 and £ be proposed, we shall
have to substitute for them %4 and $4; whence we may
conclude, that £ exceeds £, but only by ;.

99. When it is required to subtract a fraction from an
integer, it is sufficient to change one of the units of that
integer into a fraction, which has the same denominator as
that which is to be subtracted ; then in the rest of the ope-
ration there is no difficulty. Ifit be required, for example,
to subtract ¢ from 1, we write § instead of 1, and say that
% taken from 4 leaves the remainder 1. So ;- subtracted
from 1, or 1%, leaves 7.

If it were required to subtract 3 from 2, we should write
2 x 4 instead of 2, and should then immediately see that
after the subtraction there must remain 1.

100. It happens also sometimes, that having added two
or more fractions together, we obtain more than an inte-
ger; that is to say, a numerator greater than the denomi-
nator: this is a case which has already occurred, and
deserves attention.

We found, for example [Article 96], that the sum of the
five fractions 1, £, 2, 4, and £, was 23, and remarked, that
the value of this sum was 333, or 311. Likewise, 2 + %, or
£ + %, makes 11, or 1.5;. We have therefore only to
perform the actual division of the numerator by the deno-
minator, to see how many integers there are for the quotient,
and to set down the remainder.

Nearly the same must be done to add together numbers
compounded of integers and fractions; we first add the
fractions, and if the sum produces one or more integers,
these are added to the other integers. If it be proposed,
for example, to add 3% and 2%; we first take the sum of
1 and £, or of £ and 4, which is Z, or 11; and thus we
tind the total sum to be 64.

QUESTIONS FOR PRACTICE,
2z b .
1. Reduce — and Py to a common denominator.

Ans. 20z and a_b.
ac ac
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2. Reduce < 3 and 272 b to a common denominator.

ac ab+b?
Ans. *b—c and '——b—c——.

3. Reduce 3z gb, and d to fractions having a common
9cx 4ab 6acd

denominator, Ans. 6ac’ Gas’ an bae
4. Reduce 3 23 ,and a +2— to a common denominator.
Ans 3{1_ % and w12a2+24x

T 12e 12 12¢ °

.’L'Q+2

5., Reduce .3’ and e to a common denominator.

An 3r+3a 2a%x +2a% 6224 6a?
"6x+6a’ 6x+6a ’ Gx+6a

b d .
6. Reduce ~—;, —C—, and - to a common denominator.
2a% 2a a

2a%h 2a3c 4a3d b ac 2ad

and

Ans, ——, —, an ore—, ~— —
4%’ 4a¥’ g o 2a% 2a?

CHAPTER X.

Of the Multiplication and Division of Fractions.

101. The rule for the multiplication of a fraction by an
integer, or whole number, is to multiply the numerator
only by the given number, and not to change the denomi-
nator : thus,

2 times, or twice 4 makes 2, or 1 integer;
2 times, or twice 3} makes %; and

3 times, or thrice 1 makes £, or &

4 times 5; makes —1—*1, or 18 or 1

But, instead of this rule, we may use that of dividing the
denominator by the given integer, which is preferable when
it can be done, because it shortens the operation. Let it be
required, for example, to multiply § by 3; if we multiply
the numerator by the given mteger we obtain %#, which
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product we must reduce to §. But if we do not change the
numerator, and divide the denominator by the integer, we
find immediately &, or 2%, for the given product; and, in
the same manner, 43 multiplied by 6 gives 13, or 31.
102. Ingeneral, therefore, the product of the multiplica-
a ac
b b’
marked, when the integer is exactly equal to the denomi-
nator, that the product must be equal to the numerator.

1 taken twice, gives 1;
So that< 2 taken thrice, gives 2;
3 taken four times, gives 3.

tion of a fraction + by c is and here it may be re-

And, in general, if we multiply the fraction ; by the

number b, the product must be a, as we have already shewn;
a
13

vision of the dividend a by the divisor b, and because it has
been demonstrated that the quotient multiplied by the divi-

for since 5 expresses the quotient resulting from the di-

sor will give the dividend, it is evident that ‘—;multiplied by

b must produce a.

103. Having thus shewn how a fraction is to be mul-
tiplied by an integer, let us now consider also how a frac-
tion is to be divided by an integer. This inquiry is neces-
sary, before we proceed to the multiplication of fractions
by fractions. It is evident, if we have to divide the frac-
tion £ by 2, that the result must be 4 ; and that the quo-
tient of ¢ divided by 3 is 4. The rule therefore is, to
divide the numerator by the integer without changing the
denominator. Thus:

12 divided by 2 gives % ;
12 divided by 3 gives % ; and
12 divided by 4 gives g%, &c.

104. This rule may be easily practised, provided the
numerator be divisible by the number proposed ; but very
often it is not: it must therefore be observed, that a frac-
tion may be transformed into an infinite number of other
expressions, and in that number there must be some, by
which the numerator might be divided by the given inte-
ger. If it were required, for example, to divide 4 by 2,
we should change the fraction into §, and then dividing
the numerator by 2, we should immediately have £ for the
quotient sought. ’
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In general, if it be proposed to divide the fraction %

by ¢, we change it into %, and then dividing the nume-

a
be

105. When therefore a ﬁ‘action% is to be divided by an
integer ¢, we have only to multiply the denominator by that
number, and leave the numerator asit is. Thus § divided
by 3 gives -5, and 2 divided by 5 gives .

This operation becomes easier, when the numerator
itself is divisible by the integer, as we have supposed in
article 103. For example, % divided by 3 would give,
according to our last rule, % ; but by the first rule, which
is applicable here, we obtain 3, an expression equivalent
to %, but more simple.

106. We shall now be able to understand how one fraction
% may be multiplied by another fraction ‘_ci For this pur-
pose, we have only to consider that -:—; means that ¢ is di-
vided by d ; and on this principle we shall first multiply the

%ﬁ : after which

rator ac by ¢, write —— for the quotient sought.

fraction %by ¢, which produces the result

we shall divide by d, which gives 7.

Hence the following rule for multiplying fractions. Mul-
tiply the numerators together for a numerator, and the de-
nominators together for a denominator.

Thus 1 by % gives the product £, or £ ;
2 by ¢ makes & ;
2 by & produces 14, or % ; &c.

107. It now remains to shew how one fraction may be
divided by another. Here we remark first, that if the two
fractions have the same number for a denominator, the
division takes place only with respect to the numerators ;
for it is evident, that -3; are contained as many times in 1%
as 3 is contained in 9, that is to say, three times; and, in
the same manner, in order to divide & by %, we have
only to divide 8 by 9, which gives . We shall also
have -f; in 18, 3 times; 134 In 4%, 7 times; % in -5, §,
&e.

108. Butwhen the fractions have not equal denominators,
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we must have recourse to the method already mentioned for
reducing them to a common denominator. Let there be,
for example, the fraction% to be divided by the fraction
;ci. We first reduce them to the same denominator, and
ad
there results W
the quotient must be represented simply by the division of
ad
be”

Hence the following rule: Multiply the numerator of
the dividend by the denominator of the divisor, and the
denominator of the dividend by the numerator of the
divisor ; then the first product will be the numerator of
the quotient, and the second will be its denominator.

109. Applying this rule to the division of § by %, we
shall have the quotient 1% ; also the division of 4 by 4 will
give &, or 4, or 14; and %% by 3 will give 133, or .

110. This rule for division is often expressed in a manner
that is more easily remembered, as follows : —Invert the
terms of the divisor, so that the denominator may be in the
place of the numerator, and the latter be written under the
line ; then multiply the fraction, which is the dividend by
this inverted fraction, and the product will be the quo-
tient sought. Thus, 4 divided by % is the same as 4 mul-
tiplied by £, which makes §, or 14. Also § divided by %is
the same as 4 multiplied by %, which is 13 or 44 divided
by £ gives the same as 4§ multiplied by ¢, the product of
which is 144, or §.

We see then, in general, that to divide by the fraction
1 is the same as to multiply by £, or 2; and that dividing
by 1 amounts to multiplying by 3, or by 3, &c.

111. The number 100 divided by 4 will give 200; and
1000 divided by 4 will give 3000. Farther, if it were re-
quired to divide 1 by 154, the quotient would be 1000;
and dividing 1 by 1g'vo0, the quotient is 100000. This
enables us to conceive that, when any number is divided by
0, the result must be a number indefinitely great ; for even
the division of 1 by the small fraction yooessro0 gives
for the quotient the very great number 1000000000,

112. Every number, when divided by itself, producing
unity, it is evident that a fraction divided by itself must also
give 1 for the quotient ; and the same follows from our rule:

: D

to be divided by %; it is now evident that

ad by bc; which gives
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for, in order to divide 4 by 4, we must multiply $ by 4, in
which case we obtain 1%, or 1; and if it be required ‘to

divide % by %, we multiply % by —2 ; where the product

EZ—) is also equal to 1.

ab

113. We have still to explain an expression which is
frequently used. 1t may be asked, for example, what is
the half of 4?7 This means, that we must multiply £ by 1.
So likewise, if the value of % of 4 were required, we
should multiply § by %, which produces 1$; and $ of 4%
is the same as <% multiplied by 4, which produces £%.

114. Lastly, we must here observe, with respect to the
signs + and —, the same rules that we before laid down
for integers. Thus, + 1 multiplied by —4, makes —3;
and — 2 multiplied by — ¢, gives + 8. Farther, —3
divided by + %, gives —1%; and —3 divided by —3,
gives + 1%, or + 1.

QUESTIONS FOR PRACTICE.

L .
1. Required the product of % and —29£ Ans. ;—7
3
2. Required the product of'g, 432—7 and ]2%15 Ans%’%.
. z T+a x*+ax
3. Required the product of p and oIy Ans. Frac
4. Required the product of %‘f and 3Ta_ Ans. %%E.
. 2 3
5. Required the product of 2—5'2—’ and %%. Ans. i?.%.
6. Required the product of 27“”, §Z—b, and %(29. Ans.9az.
7. Required the product of b +b_x and 2,
a Ans, 20+ bx
x
272 2 2
8. Required the product of bcb and xb—T—i .
4 at—b*

O v T
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9. Required the product of z, '—7—;———]- nd ‘EI—;)
x3—z
Ans .m.
10. Required the quotient of 3 3 ® divided by . Ans. 11,
11. Required the quotient of—— divided by —.
b d ad
Ans. '2—bE.
. . r+a . . x+b
12. Required the quotient of 5755 divided by Y
An 5z +6ax + a?
2a%— 2b2
13. Required the quotient of d1v1ded by
2.22 + 2(11:
44.77.6'. 3 3
z3 + a
. . 7z ,. . 12 91z
14. Required the quotient of 5 divided by 3 Ans. 60
2
15. Required the quotient of 5 divided by 5z. Ans. 52,
16. Required the quotient of x-é-l divided by %ﬂf
z+1
Ans. iz
17. Required the quotient of d1v1ded by 3“
z—b
Ans. Y
. . z*— bt ..
181; Required the quotient of P divided by
2%+ bx b?
Py Ans. x +5
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CHAPTER XI.
Of Square Numbers.

115. The product of a number, when multiplied by
itself, is called @ square ; and, for this reason, the number,
considered in relation to such a product, is called a square
root. For example, when we multiply 12 by 12, the
product 144 is a square, of which the root is 12.

The origin of this term is borrowed from geometry,
which teaches us that the contents of a square are found
by multiplying its side by itself.

116. Square numbers are found, therefore, by multipli-
cation; that is to say, by multiplying the root by itself:
thus, 1 is the square of 1, since 1 multiplied by 1 makes 1;
likewise, 4 is the square of 2; and 9 the square of 3;
2 also is the root of 4, and 3 is the root of 9.

We shall begin by considering the squares of natural
numbers; and for this purpose shall give the following
small Table, on the first line of which several numbers, or
roots, are ranged, and on the second their squares.*

13

169

9|10|11}12
81100{121{144

Numbers,| 1{2(3|4]5|6

114)9|16/25|36

7[8
e

Squares.

117. Here it will be readily perceived that the series of
square” numbers thus arranged has a singular property ;
namely, that if each of them be subtracted from that which
immediately follows, the remainders always increase by 2,
and form this series;

3,5,7,9,11, 13, 15, 17, 19, 21, &e.
which is that of the odd numbers.

118. The squares of fractions are found in the same
manner, by multiplying any given fraction by itself. For
example, the square of 1 is 4,

* We have very complete Tables for the squares of natural
numbers, published under the title Teiragonometria Tabularia,
&ec. Auct. J. Jobo Ludolfo, Amstelodami, 1690, in 4to. These
Tables are continued from 1 to 100000, not only for finding
those squares, but also the products of any two numbers less
than 100000; not to mention several other uses, which are
explained in the introduction to the work.—F. T.
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1y 1
3 9
2 4
3 1 ’
The square of ( 3 ) is 9’
4 16
9
4 15 &e.

We have only, therefore, to divide the square of the
numerator by the square of the denominator, and the
fraction which expresses that division will be the square
of the given fraction; thus, 25 is the square of §; and
reciprocally, £ is the root of £4.

119. When the square of a mixed number, or a number
composed of an integer and a fraction, is required, we have
only to reduce it to a single fraction, and then take the
square of that fraction. Let it be required, for example,
to find the square of 24 ; we first express this mixed num-
ber by £, and taking the square of that fraction, we have
25, or 6%, for the value of the square of 2. Also to
obtain the square of 3%, we say 31 is equal to 3 ; there-
fore its square is equal to 162, or to 10%. The squares
of the numbers between 3 and 4, supposing them to in-
crease by one fourth, are as follow : —

4

Numbers. | 3| 3% ‘3% 3

Squares. | g 10195,112% 141116

e

From this small Table we may infer, that if a root con-
tain a fraction, its square also contains one. Let the root,
for example, be 175 ; its square is 284, or 2134 ; that is to
say, a little greater than the integer 2.

120. Letus now proceed to general expressions. First,
when the root is a, the square must be aa; if the root be
2a, the square is 4aa; which shews that by doubling the
root, the square becomes 4 times greater ; also, if the root
be 3, the square is 9aa; and if the root be 4a, the square
is 16aa. Farther, if the root be ab, the square is aabb;
and if the root be abe, the square is aabbcc ; or abc2.

121. Thus, when the root is composed of two, or more
factors, we multiply their squares together; and, reci-
procally, if a square be composed of two, or more factors,
of which each is a square, we have only to multiply together
the roots of those squares, to obtain the complete root of
the square proposed. Thus, 2304 is equal to 4 x 16 x 36,
the square root of which is 2 x 4 x 6, or 48; and 48 is
found to be the true square root of 2304, because 48 x 48
gives 2304, :

122 Let us now consider what must be observed on this
subject with regard to the signs + and —. First, it is
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evident that if the root have the sign +, that is to say, if
it be a positive number, its square must necessarily be a
positive number also, because + multiplied by + makes
-+ : hence the square of + a will be + aa: but if the root
be a negative number, as —a, the square is still positive,
for it is 4+ aa. We may therefore conclude, that + aa
is the square both of 4+« and of —a, and that, conse-
quently, every square has two roots, one positive and the
other negative. The square root of 25, for example, is
both + 5 and — 5, because — 5 multiplied by — 5 gives
25, as well as + 5 by + 5.

CHAPTER XII.

Of Square roots, and of Irrational Numbers resulting
Jrom them.

123. What we have said in the preceding chapter
amounts to this; that the square root of a given number
is that number whose square is equal to the given num-
ber; and that we may put before those roots either the
positive or the negative sign.

124. So that when a square number is given, provided
we retain in our memory a sufficient number of square
numbers, it is easy to find its root. If 196, for example,
be the given number, we know that its square root is 14.

Fractions, likewise, are easily managed in the same way.
It is evident, for example, that £ is the square root of 5 ;
to be convinced of which, we have only to take the square
root of the numerator and that of the denominator.

If the number proposed be a mixed number, as 121, we
reduce it to a single fraction, which, in this case, will be 42 ;
and from this we immediately perceive that Z, or 31, must
be the square root of 124.

125. But when the given number is not a square, as 12,
for example, it is not possible to extract its square root; or
to find a number, which, multiplied by itself, will give the
product 12. 'We know, however, that the square root of 12
must be greater than 3, because 3 x 3 produces only 9;
and less than 4, because 4 x 4 produces 16, which is more
than 12; we know also, that this root is less than 34, for we
have seen that the square of 34, or %, is 124 ; and we may
approach still nearer to this root, by comparing it with 375 ;
for the square of 375, or of $%, is'41%*, or 12,4 ; so that this
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fraction is still greater than the root required, though
but very little so, as the difference of the two squares is
only 4.

126. We may suppose that as 34 and 3 are numbers
greater than the root of 12, it might be possible to add to
3 a fraction a little less than ., and precisely such, that
the square of the sum would be equal to 12.

Let us therefore try with 33, since $ is a little less than .
Now, 3% is equal to %#, the square of which is 475, and con-
sequently less by 4% than 12, which may be expressed by
58, It is therefore proved that 3% is less, and that 3%
is greater than the root required. Letus then trya num-
ber a little greater than 33, but yet less than 37 ; for ex-

1
ample, 35 ; this number, which is equal to 22, has for its

11

square 44 5 and by reducing 12 to this denominator, we
obtain 1452 which shews that 3% is still less than the root
of 12, viz. by 181; let us, therefore, substitute for % the
fraction i, which is a little greater, and see what will be
the result of the comparison of the square of 3-8, with the
proposed number 12. Here the square of 38 is 2025 ;
and 12 reduced to the same denominator is 2228 ; so that
395 is still too small, though only by %4, whilst 3% has
been found too great.

127. It is evident, therefore, that whatever fraction is
joined to 3, the square of that sum must always contain a
fraction, and can never be exactly equal to the integer 12.
Thus, although we know that the square root of 12 is greater
than 38, and less than 3%, yet we are unable to assign an
intermediate fraction between these two, which, at the same
time, if added to 3, would express exactly the square root
of 12; but notwithstanding this, we are not to assert that
the square root of 12 is absolutely and in itself indetermi-
nate : it only follows from what has been said, that this
root, though it necessarily has a determinate magnitude,
cannot be expressed by fractions.

128, There is, therefore, a sort of numbers, which
cannot be assigned by fractions, but which are neverthe-
less determinate quantities; as, for instance, the square
root of 12: and we call this new species of numbers,
irrational numbers. They occur whenever we endeavour
to find the square root ofa number which is not a square ;
thus, 2 not being a perfect square, the square root of 2,
or the number which multiplied by itself would produce 2,
is an irrational quantity. These numbers are also called
surd quantities, or incommensurables.

129. These irrational quantities, though they cannot he
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expressed by fractions, are nevertheless magnitudes of which
we may form an accurate idea ; since, however concealed
the square root of 12, for example, may appear, we are not
ignorant that it must be a number, which, when multiplied
by itself, would exactly produce 12; and this property is
sufficient to give us an idea of the number, because it is in
our power to approximate towards its value continually.

130. As we are, therefore, sufficiently acquainted with
the nature of irrational numbers, under our present con-
sideration, a particular sign has been agreed on to express
the square roots of all numbers that are not perfect
squares ; which sign is written thus 4/, and is read square
root. Thus, 4/12 represents the square root of 12, or the
number which, multiplied by itself, produces 12; and 1/2
represents the square root of 2; 4/3 the square root of 3;
1% that of % ; and, in general, 4/a represents the square
root of the number a. Whenever, therefore, we would
express the square root of a number, which is not a
square, we need only make use of the mark 4/ by placing
it before the number.

131. The explanation which we have given of irrational
numbers will readily enable us to apply to them the
known methods of calculation. For, knowing that the
square root of 2, multiplied by itself, must produce 2; we
know also, that the multiplication of 4/2 by 4/2 must
necessarily produce 2 ; that, in the same manner, the mul-
tiplication of 4/3 by 4/3 must give 3; that 4/5 by 4/5
makes 5; that 4/% by 4/% makes %; and, in general, that
4/a multiplied by 4/a produces a.

132. But when it is required to multiply 1/a by 1/, the
product is 4/ab ; for we have already shewn, thatif a square
has two or more factors, its root must be composed of the
roots of those factors ; we, therefore, find the square root
of the product ab, which is 4/ab, by multiplying the square
root of a, or 4/a, by the square root of b, or 4/b; &c. It
is evident from this, that if b were equal to a, we should
have 4/aa for the product of 4/a by 4/b. But 4/aa is
evidently q, since aa is the square of a.

133. In division, if it were required, for example, to

divide 4/a by +/b, we obtain 1/%; and, in this instance,

the irrationality may vanish in the quotient. Thus, having
to divide 4/18 by 4/8, the quotient is 4/%?, which is
reduced to 1%, and consequently to 4, because § is the
square of %. :

134. When the numLer before which we have placed the
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radical sign 4/, is itself a square, its root is expressed in the
usual way ; thus, 4/4 is the same as 2; 179 is the same as
3; 1736, the same as 6; and 1/12%, the same as I, or 31.
In these instances, the irrationality is only apparent, and
vanishes of course.

135. It is easy also to multiply irrational numbers by
ordinary numbers; thus, for example, 2 multiplied by 1/5
makes 24/5; and 3 times 172 makes 31/2. In the second
example, however, as 3 is equal to 479, we may also ex-
press 3 times 1/2 by 479 multiplied by 1/2, or by 1+/18;
also, 21/a is the same as 1/4a, and 31/a the same as1/9a ;
and, in general, 54/a has the same value as the square root
of bba, or 1/bba : whence we infer reciprocally, that when
the number which is preceded by the radical sign contains
a square, we may take the root of that square, and put it
before the sign, as we should do in writing b4/a instead of
4/bba. After this, the following reductions will be easily
understood :

/8, or ¢/(2.4)% 212
1’12, or 1/(3.4) \ 2y/3
118, or 1/(2.9) \. . 312
124, or 1/(6.4) (15 equal tol o g
1/32, or V(2.16)f 442

1/75, or 4/(3.25) 53
and so on.
136. Division is founded on the same principles; as 1/a
ivi ives Y2 e
divided by 4/b gives B’ or 4/ 5 In the same manner,
8
%g (1/5, or y/4, or 2,
—11;—;8 is equal to 1/12§, or 4/9, or 3,
%2' 1/%, or 1/4, or 2.
P
Farther, —1/—2 %, or V%, or4/2,
73 is equal to —%, or 1/3—, or 4/3,
12 144 144
76 k*:jb , OF VT’ or 1/24,

or 4/(6 x 4), or lastly, 24/6.
137. There is nothing in particular to be observed in

* The point between 2.4, 3.4, &c. indicates multiplication.
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addition and subtraction, because we only connect the
numbers by the signs + and — : for example, 1/2 added
to 473 is written 1/2 + 473 ; and 4/3 subtracted from 1/5
is written 45 — /3.

138. We may observe, lastly, that in order to distinguish
the irrational numbers, we call all other numbers, both in-
tegral and fractional, rational numbers ; so that, whenever
we speak of rational numbers, we understand integers, or
fractions.

CHAPTER XIII.

Of Impossible, or Imaginary Quantities, whick arise from
the same source.

139. We have already seen that the squares of numbers,
negative as well as positive, are always positive, or affected
by the sign + ; having shewn that — @ multiplied by —«a
gives - aa, the same as the product of +a by +a:
wherefore, in the preceding chapter, we supposed that all
the numbers, of which it was required to extract the
square roots, were positive.

140. When it is required, therefore, to extract the root
of a negative number, a great difficulty arises ; since there
1s no assignable number, the square of which would be a
negative quantity. Suppose, for example, that we wished
to.extract the root of —4; we here require such a number
as, when multiplied by itself, would produce —4: now,
this number is neither 4+ 2 nor —2, because the square
both of +2 and of —2, is +4, and not — 4.

14]. We must therefore conclude, that the square
root of a negative number cannot be either a positive
number or a negative number, since the squares of nega-
tive numbers also take the sign plus: consequently, the
root in question must belong to an entirely distinct species
of numbers; as it cannot be ranked either among posi-
tive, or negative numbers.

142. Now, we before remarked, that positive numbers
are all greater than nothing, or 0, and that negative
numbers are all less than nothing, or 0; so that what-
ever exceeds 0 is expressed by positive numbers, and
whatever is less than O is expressed by negative num-
bers. The square roots of negative numbers, therefore,
are neither greater nor less than nothing; yet we cannot
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say, that they are 0; for 0 multiplied by O produces 0,
and consequently does not give a negative number.

143. And, since all numbers which it is possible to con-
ceive are either greater or less than 0, or are 0 itself, it is
evident that we cannot rank the square root of a negative
number amongst possible numbers, and we must therefore
say that it is an impossible quantity. In this manner we are
led to the idea of numbers, which from their nature are im-
possible ; and therefore they are usually called imaginary
quuantities, because they exist merely in the imagination.

144. All such expressions as 4/—1, 4/ —2, 4/—3,
4/ —4, &c. are consequently impossible, or imaginary
numbers, since they represent roots of negative quantities;
and of such numbers we may truly assert that they are
neither nothing, nor greater than nothing, nor less than
nothing ; which necessarily constitutes them imaginary,
or impossible.

145. But notwithstanding this, these numbers present
themselves to the mind ; they exist in our imagination,
and we still have a sufficient idea of them ; since we know
that by 4/ —4 is meant a number which, multiplied by
itself, produces — 4; for this reason also, nothing prevents
us from making use of these imaginary numbers, and em-
ploying them in calculation.

146. The first idea that occurs on the present subject
is, that the square of 4/ —3, for example, or the pro-
duct of 4/ — 3 by 4/ — 3, must be — 3; that the product
of 4/ —1by 4/ —1,is —1; and in general, that by mul-
tiplying 4/ —a by 4/ —a, or by taking the square of
4/ — a, we obtain —a.

147. Now, as — aisequal to + ¢ multiplied by —1, and
as the square root of a product is found by multiplying
together the roots of its factors, it follows that the root of
a times —1, or 4/ —a, is equal to 4/a multiplied by
4/ —1; but 4/a is a possible or real number, consequently
the whole impossibility of an imaginary quauntity may be
always reduced to 4/ — 1 ; for this reason, 4/ — 4 is equal
to 4/4 multiplied by 4/ — 1, or equal to 24/ — 1, because
y/4isequal to2; likewise 4/ — 9is reduced to /9 x 4/—1,
or34/—1;4/—161is equal to 44/ — 1.

148. Moreover, as 4/a multiplied by 4/b makes 4/ab,
we shall have 4/6 for the value of 4/ —2 multiplied by
v/ —38; and 4/4, or 2, for the value of the product of
4/ —1by 4/ —4. Thus we see that two imaginary num-
bers, multiplied together, produce.a real, or possible one.

But, on the contrary, a possible number, multiplied by an
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impossible number, gives always an imaginary produet:
thus, 4/ — 3 by 4/ + 5, gives 4/ —15.
149. It is the same with regard to division; for 4/a

divided by 4/ making 1/%, it is evident that 4/ — 4 di-

vided by 4/— 1 will make 1/ + 4, or2; that 4/ 4 3 divided
by 4/—3 will give 4/ — 1; and that 1 divided by 4/ —1

gives ¢/ ;}, or 4/ — 1; because 1 is equal to 4/ + 1.

150. We have before observed, that the square root of
any number has always two values, one positive and the
other negative; that 4/4, for example, is both +2 and
—2, and that, in general, we may take — 1/a as well as
+ 4/a for the square root of a. 'This remark applies also
to imaginary numbers; the square root of —a is both
+ 4/ —aand — 4/ —a; but we must not confound the
signs + and —, which are before the radical sign 4/, with
the sign which comes after it.

151. It remains for us to remove any doubt which may
be entertained concerning the utility of the numbers of
which we have been speaking ; for those numbers being im-
possible, it would not be surprising if they were thought
entirely useless, and the object only of an idle specu-
lation. This, however, would be a mistake; for the cal-
culation of imaginary quantities is of the greatest impor-
tance, as questions frequently arise, of which we cannot
immediately say whether they include any thing real and
possible, or not; but when the solution of such a question
leads to imaginary numbers, we are certain that what is
required is impossible.

In order to illustrate what we have said by an example,
suppose it were proposed to divide the number 12 into two
such parts, that the product of those parts may be 40. If
we resolve this question by the ordinary rules, we find for
the parts sought 6 +4/—4 and 6 —4/—4; but these num-
bers being imaginary, we conclude that it is impossible
to resolve the question.

The difference will be easily perceived, if we suppose the
question had been to divide 12 into two parts which, mul-
tiplied together, would produce 35; for it is evident that
those parts must be 7 and 5.



CHAP. XIV. OF ALGEBRA. 45

CHAPTER XIV.

Of Cubic Numbers.

152. When a number has been multiplied twice by itself,
or, which is the same thing, when the square of a number
has been multiplied once more by that number, we obtain
a product which is called a cube,or a cubic number. Thus,
the cube of @ is aaa, since it is the product obtained by
{)nultiplying a by itself, or by a, and that square aa again

a.

yThe cubes of the natural numbers, therefore, succeed
each other in the following order: *

71819110

3431512|729|1000

1]

1|8

3|14 5|6
27|64|125|216

Numbers.
Cubes.

153. If we consider the differences of those cubes, as
we did of the squares, by subtracting each cube from that
which comes after it, we obtain the following series of
numbers :

7, 19, 37, 61, 91, 127, 169, 217, 271.
Where we do not at first observe any regularity in them ;
but if we take the respective differences of these numbers,
we find the following series :
12, 18, 24, 30, 36, 42, 48, 54,60 ;
in which the terms, it is evident, increase always by 6.

154. After the definition we have given of a cube, it will
not be difficult to find the cubes of fractional numbers;
thus, 1 is the cube of 4; 2, is the cube of 4 ; and -8; is the
cube of £. In the same manner, we have only to take the
cube of the numerator and that of the denominator sepa-
rately, and we shall have %% for the cube of 2.

155. If it be required to find the cube of a mixed num-
ber, we must first reduce it to a single fraction, and then
proceed in the manner that has been described. To find,
for example, the cube of 11, we must take that of 4, which

* We are indebted to a mathematician of the name of J. Paul
Buchner, for Tables, published at Nuremberg in 1701, in which
are to be found the cubes, as well as the squares, of all numbers
from 1 to 12000.—F. T.
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is &7, or 33 ; also the cube of 11, or of the single fraction
4, 18 125, or 1415 and the cube of 34, or of 13, is 2197,
or 34%L.

156. Since aaa is the cubeof @, that of ab will be aaabbb ;
whence we see, that if a number has two or more factors,
we may find its cube by multiplying together the cubes of
those factors. For example, as 12 is equal to 3 x 4, we
multiply the cube of 3, which is 27, by the cube of4, which
is 64, and we obtain 1728, the cube of 12 ; and farther, the
cube of 2a is 8aaa; consequently, 8 times greater than
the cube of a : likewise, the cube of 3a is 27aaa ; that is
to say, 27 times greater than the cube of a.

157. Let us attend here also to the signs + and —. It
is evident that the cube of a positive number + a must also
be positive, that is + aaa ; but if it be required to cube a
negative number — g, it is found by first taking the square,
which is + aa, and then multiplying, according to the rule,
this square by — «, which gives for the cube required — aaa.
In this respect, therefore, it is not the same with cubic num-
bers as with squares, since the latter are always positive :
whereas the cube of —1 is — 1, that of —2is — 8, that of
—31is — 27, and so on.

CHAPTER XV.

Of Cube Roots, and of Irrational Numbers resulting from
them.

158. As we can, in the manner already explained, find
the cube of a given number, so, when a number is pro-
posed, we may also reciprocally find a number, which,
multiplied twice by itself, will produce that number. The
number here sought is called, with relation to the other,
the cube root ; so that the cube root of a given number is
the number whose cube is equal to that given number.

159. It is easy therefore to determine the cube root,
when the number proposed is a real cube; such as in the
examples in the last chapter: for we easily perceive that
the cube root of 1 is 1; that of 8 is 2 ; that of 27 is 3;
that of 64 is 4, and soon. And, in the same manner, the
cube root of —27is — 3; and that of — 125 is — 5.

Farther, if the proposed number be a fraction, as -8, the
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cube root of it must be %; and that of 8¢ is 4. Lastly,
the cube root of a mixed number, such as 219 must be 4,
or 11; because 219 is equal to §+.

160. But if the proposed number be not a cube, its cube
root cannot be expressed either in integers, or in fractional
numbers. For example, 43 is not a cubic number ; there-
fore it is impossible to assign any number, either integer or
fractional, whose cube shall be exactly 43. We may,
however, affirm, that the cube root of that number is
greater than 3, since the cube of 3 is only 27 ; and less
than 4, because the cube of 4 is 64: we know, therefore,
that the cube root required is necessarily contained be-
tween the numbers 3 and 4.,

161. Since the cube root of 43 is greater than 3, if we
add a fraction to 3, it is certain that we may approximate
still nearer and nearer to the true value of this root : but we
can never assign the number which expresses the value
exactly ; because the cube of a mixed number can never
be perfectly equal to an integer, such as 43. If we were
to suppose, for example, 3%, or % to be the cube root
required, the error would be §; for the cube of £ is only
343, or 421,

162. This, therefore, shews that the cube root of 43
cannot be expressed in any way, either by integers or by
fractions. However, we have a distinct 1dea of the mag-
nitude of this root; and therefore we use, in order to
represent it, the sign 3/ , which we place before the pro-
posed number, and which is read cube root, to distinguish
it from the square root, which is often called simply z/e
o0t ; thus, 3/ 43 means the cube root of 43 ; that is to say,
the number whose cube is 43, or which, multiplied by
itself, and then by itself again, produces 43.

163. Now, it is evident that such expressions cannot
belong to rational quantities, but that they rather form a
particular species of irrational quantities. They have
nothing in common with square roots, and it is not
possible to express such a cube root by a square root; as,
for example, by 1/12; for the square of /12 being 12, its
cube will be 124712, consequently still irrational, and,
therefore, it cannot be equal to 43.

164. If the proposed number be a real cube, our ex-
pressions become rational. Thus, 3/ 1 is equal to 1;
¥ 8 is equal to 2; 3/ 27 is equal to 3; and, generally,
¥ aaa is equal to a.

165. If it were proposed to multiply one cube root, 3/ a,
by another, /5, the product must be $/ab; for we know that
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the cube root of a product «b is found by multiplying to-
gether the cube roots of the factors. Hence, also, if we

divide ¥/ a by ¥/ b, the quotient will be ¥/ %

166. We farther perceive, that 2%/ « is equal to ¥/ 8,
because 2 is equivalent to ¥/ 8 ; that 3}/ a is equal to ¥/ 27a,
b/ ais equal to ¥/ abbb; and, reciprocally, if the number
under the radical sign has a factor which is a cube, we
may make it disappear by placing its cube root before the
sign ; for example, instead of 3/ 64« we may write 4}/ a;
and 5/ a instead of §/ 125a : hence ¥/ 16 is equal to 2%/ 2,
because 16 is equal to 8 x 2.

167. When a number proposed is negative, its cube root
is not subject to the same difficulties that occurred in
treating of square roots; for, since the cubes of negative
numbers are negative, it follows that the cube roots of
negative numbers are also negative; thus, 3/ —8 is equal
to —2, and 3/ —27 to —3. It follows also, that }/ —12
is the same as —3/ 12, and that 3/ —a may be expressed
by —3%/ a. Whence we see that the sign —, when it is
found after the sign of the cube root, might also have been
placed before it. We are not, therefore, led here to im-
possible, or imaginary numbers, which happened in con-
sidering the square roots of negative numbers.

CHAPTER XVI.
Of Powers in general.

168. The product which we obtain by multiplying a
number once, or several times by itself, is called a power.
Thus, a square which arises from the multiplication of a
number by itself, and a cube which we obtain by mul-
tiplying a number twice by itself, are powers. We say
also in the former case, that the number is raised to the
second degree, or to the second power ; and, in the latter,
that the number is raised to the third degree, or to the
third power.

169. We distinguish these powers' from one another by
the number of times that the given number has been mul-
tiplied by itself. For example, a square is called the second
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power, because a certain given number has been multiplied
by itself; and if a number has been multiplied twice by
itself we call the product the third power, which therefore
means the same as the cube; also, if we multiply a number
three times by itself we obtain its fourth power, or what is
commonly called the biquadrate: and thus it will be easy
to understand what is meant by the fifth, sixth, seventh,
&c. power of a number. I shall only add, that powers,
after the fourth degree, cease to have any other but these
numeral distinctions.

170. To illustrate this still better, we may observe, in
the first place, that the powers of 1 remain always the
same; because, whatever number of times we multiply 1
by itself, the product is found to be always 1. We shall
therefore begin by representing the powers of 2 and of 3,
which succeed each other as in the following order :

Powers. Of the number 2. | Of the number 3.
Ist 2 3
2d 4 9
3d 8 27
4th 16 81
5th 32 243
6th 64 729
7th 128 2187
8th 256 6561
9th 512 19683

10th 1024 59049
11th 2048 177147
12th 4096 531441
13th 8192 1594323
14th 16384 4782969
15th 32768 14348907
16th 65536 43046721
17th 131072 129140163
18th 262144 387420489

But the powers of the number 10 are the most remark-
able: for on these powers the system of our arithmetic is
founded. A few of them ranged in order, and beginning
with the first power, are as follow :

I1st 2d 3d. 4th 5th 6th
10, 100, 1000, 10000, 100000, 1000000, &c.

171. In order to illustrate this subject, and to consider
it in a more general manner, we may observe, that the
E
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powers of any number, a, succeed each other in the follow-
ing order : —

Ist 2d 3d  4th 5th 6th

o, aa, aaa, aaaa, aacaa, aaaaaa, &e.

But we soon feel the inconvenience attending this manner
of writing the powers, which consists in the necessity of re-
peating the same letter very often, to express high powers;
and the reader also would have no less trouble, if he were
obliged to count all the letters, to know what power is
intended to be represented. The hundredth power, for
example, could not be conveniently written in this man-
ner; and it would be equally difficult to read it.

172. To avoid this inconvenience, a much more commo-
dious method of expressing such powers has been devised,
which, from its extensive use, deserves to be carefully ex-
plained. Thus, for example, to express the hundredth
power, we simply write the number 100 above the quantity,
whose hundredth power we would express, and a little
towards the right hand ; thus, a!® represents a raised to
the 100th power, or the hundredth power of @. It must
be observed, also, that the name ezponent is given to the
number written above that whose power, or degree, it
represents, which, in the present instance, is 100.

173. In the same manner, a? signifies a raised to the 2d
power, or the second power of a, which we represent some-
times also by aa, because both these expressions are
written and understood with equal facility ; but to express
the cube, or the third power aaa, we write a?, according
to the rule, that we may occupy less room ; so a* signifies
the fourth, a® the fifth, and a6 the sixth power of a.

174. In a word, the different powers of a will be re-
presented by a, a?, a?, a?, a5, db, a7, @&, a9, a'®, &c. Hence
we see, that in this manner we might very properly have
written a! instead of @ for the first term, to shew the order
of the series more clearly. In fact, o' is no more than a,
as this unit shews that the letter o is to be written only
once. Such a series of powers is called also a geometrical
progression, because each term is greater by one-time, or
term, than the preceding.

175. As in this series of powers each term is found
by multiplying the preceding term by a, which increases
the exponent by 1; so when any term is given, we may
also find the preceding term, if we divide by a, because this
diminishes the exponent by 1. This shews that the term
which precedes the first term a! must necessarily be
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a . .
—, or 1; and, if we proceed according to the exponents, we
a

immediately conclude, that the term which precedes the
first must be «°; and hence we deduce this remarkable
property, that a°is always equal to 1, however great or
small the value of the number ¢ may be, and even when
@ is nothing ; that is to say, a® is equal to 1.

176. We may also continue our series of powers in a
retrograde order, and that in two different ways ; first, by
dividing always by @ ; and secondly, by diminishing the
exponent by unity ; and it is evident that, whether we
follow the one or the other, the terms are still perfectly
equal. This decreasing series is represented in both
forms in the following Table, which must be read back-
wards, or from right to left : —

1 1 1 1171
— 1 | a
aaaaaalaaaaalaaaalaaal aal a
1st. 1 1 1 11111
@ | @B | @t |ad|at|ad
ad. a | a5 | a4 |a8a2|a1] a° a1|

177. We are now come to the knowledge of powers
whose exponents are negative, and are enabled to assign
the precise value of those powers. Thus, from what has
been said, it appears that

@ ) 1
a! 1
a
2 ..1_ or 1
= VYisequalto | aa ° af
_ 1
Q 3 ?
1
a—* L F &C.

J

178. It will also be easy, from the foregoing notation,
to find the powers of a product, ab; for they must
evidently be ab, or a'd!, a%b?, a®h®, a*b*, a®b%, &c. and the
powers of fractions will be found in the same manner;

for example, those of % are

a' o a® at ab . af o

—— A — s o —t
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179. Lastly, we have to consider the powers of nega-
tive numbers. Suppose the given number to be —a;
then its powers will form the following series : —

—a, +a, —ad, +a*, —a’, + af, &e.

Where we may observe, that those powers only become
negative whose exponents are odd numbers, and that,
on the contrary, all the powers which have an even
number for the exponent are positive. So that the
third, fifth, seventh, ninth, &ec. powers have all the
sign — ; and the second, fourth, sixth, eighth, &c. powers
are affected by the sign +.

CHAPTER XVII.

Of the Calculation of Powers.

180. We have nothing particular to observe with re-
gard to the Addition and Subtraction of powers; for we
only represent those operations by means of the signs +
and —, when the powers are different. For example,
a® + a® is the sum of the second and third powers of «;
and a® — a* is what remains when we subtract the fourth
power of a from the fifth ; and neither of these results can
be abridged : but when we have powers of the same kind
or degree, it is evidently annecessary to connect them by
signs; as a® 4+ a® becomes 243, &ec.

181. But in the Multiplication of powers, several cir-
cumstances require attention.

First, when it is required to multiply any power of a by
a, we obtain the succeeding power ; that is to say, the power
whose exponent is greater by an unit. Thus, a* multiplied
by a produces a®; and &® multiplied by a produces at.
In the same manner, when it is required to multiply by «
the power of any number represented by a, having negative
exponents, we have only to add 1 to the exponent. Thus,
o~ multiplied by a produces a°, or 1; which is made more

evident by considering that ¢~ is equal to %, and that the
product of % by @ being %, it is consequently equal to 1;

likewise ¢—2 multiplied by « produces a, ortlz; and



CHAP. XVII. OF ALGEBRA. 53

a~'° multiplied by a gives a9, and soon. [See Art. 175,
176.]

182. Next, if it be required to multiply any power of a
by a?, or the second power, I say that the exponent becomes
greater by 2. Thus, the product of a? by a? is a*; that of
a® by a® is a%; that of a* by a? is af; and, more generally,
a* multiplied by a* makes "2, With regard to negative
exponents, we shall have a!, or a, for the product of ! by

a?; for a=! being equal to %, it is the same as if we had

divided aa by a; consequently, the product required is
C;—a, or a; also @~ multiplied by a? produces a° or 1;
and ¢—* multiplied by a? produces a™'.

183. It is no less evident, that to multiply any power
of a by a®, we must increase its exponent by three units;
consequently, the product of a” by «? is ¢*t3. And when-
ever it is required to multiply together two powers of a,
the product will be also a power of @, and such that its
exponent will be the sum of those of the two given
powers. For example, a* multiplied by ¢ will make a9,
and «'? multiplied by a7 will produce a?, &c.

184. From these considerations we may easily determine
the highest powers. To find, for instance, the twenty-
fourth power of 2, I multiply the twelfth power by the
twelfth power, because 2% is equal to 212 x 2'2. Now, we
have already seen [Table, p. 49] that 2!% is 4096 ; I say
therefore that the number 16777216, or the product of
4096 by 4096, expresses the power required, namely, 2%.

185. Letus now proceed to division. We shall remark,
in the first place, that to divide a power of a by a, we must
subtract 1 from the exponent, or diminish it by unity ;
thus, a% divided by a gives a*; and a° or 1, divided by a,

. 1 .. .
is equal to a~! or Pt also a3 divided by a, gives a—*.

186. If we have to divide a given power of a by a® we
must diminish the exponent by 2; and if by a3, we must
subtract three units from the exponent of the power pro-
posed ; and, in general, whatever power of « it is required
to divide by any other power of a, the rule is always to
subtract the exponent of the second from the exponent of
the first of those powers; thus, a!® divided by a7 will give
a®; af divided by o' will give ' and a~? divided by a*
will give a~7.

187. From what has been said, it is easy to understand
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the method of finding the powers of powers, this being
done by multiplication. When we seek, for example, the
square, or the second power, of ¢, we find af; and in the
same manner we find ¢ for the third power, or the cube,
of a*. To obtain the square of a power, we have only to
double its exponent ; for its cube, we must triple the expo-
nent; and so on. Thus, the square of a" is a®*; the cube
of a* is a® ; the seventh power of a” is o™, &ec.

188. The square of a2 or the square of the square of a,
being a*, we see why the fourth power is called the bigua-
drate: also, the square of a® being af, the sixth power has
received the name of the square-cubed.

Lastly, the cube of a® being a9, we call the ninth power
the cubo-cube : after this, no other denominations of this
kind have been introduced for powers; and, indeed, the
two last are very little used.

CHAPTER XVIIL
Of Roots, with relation to Powers in general.

189. Since the square root of a given number is a num-
ber whose square is equal to that given number ; and since
the cube root of a given number is a number whose cube
is equal to that given number ; it follows, that any number
whatever being given, we may always suppose such roots
of it, that the fourth, or the fifth, or any other power of
them, respectively, may be equal to the given number.
To distinguish these different kinds of roots better, we shall
call the square root the second root; and the cube root,
the third root ; because, according to this denomination,
we may call the fourth root, that whose biquadrate is equal
to a given number; and the fifth root, that whose fifth
power is equal to a given number, &c.

190. As the square, or second root, is marked by the
sign 4/, and the cubic, or third root, by the sign ¥/, so the
fourth root is represented by the sign 4/ ; the fifth root, by
the sign /; and so on. It is evident that, according to
this method of expression, the sign of the square root ought
to be Z/; but as of all roots this occurs most frequently, it
has been agreed, for the sake of brevity, to omit the num-
ber 2 as the sign of this root. So that when the radical
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sign has no number prefixed to it, this always shews that
the square root is meant.

191. To explain this matter still better, we shall here
exhibit the different roots of the number a, with their
respective values:

Ja 2d a,
Ya 3d a,
t/a) isthe {4th) rootof (a,
3/a 5th a,
$ra 6th a, and so on.
So that, conversely,
The 2d ( V& a,
The 3d ¥a a,
The 4th ) power of ¢ ¥/a ) is equal to( a,
The 5th |{/a a,
The 6th L?/a a, and so on.

192. Whether the number a therefore be great or small,
we know what value to aflix to all these roots of different
degrees.

It must be remarked also, that if we substitute unity
for a, all those roots remain constantly 1; because all the
powers of 1 have unity for their value. If the number a
be greater than 1, all its roots will also exceed unity.
Lastly, if that number be less than 1, all its roots will also
be less than unity.

193. When the number a is positive, we know, from
what was before said of the square and cube roots, that all
the other roots may also be determined, and will be real
and possible numbers.

But if the number a be negative, its second, fourth,
sixth, and all its even roots, become impossible, or imagi-
nary numbers; because all the powers of an even order,
whether of positive or of negative numbers, are affected by
the sign + : whereas the third, fifth, seventh, and all its
odd roots, become negative, but rational ; because the odd
powers of negative numbers are also negative.

194. We have here also an inexhaustible source of new
kinds of surds, or irrational quantities; for whenever the
number ¢ is not really such a power, as some one of the
foregoing indices represents, or seems to require, it is im-
possible to express that root either in whole numbers or in
fractions, and, consequently, it must be classed among the
numbers which are called irrational.
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CHAPTER XIX.

Of the Method of representing Irrational Numbers by
Fractional Exponents.

195. We have shewn in the preceding chapter, that the
square of any power is found by doubling the exponent of
that power ; or that, in general, the square, or the second
power, of a*, is a*; and the converse also follows, viz.
that the square root of the power a™ is a*, which is found
by taking half the exponent of that power, or dividing it
by 2.

y196. Thus, the square root of a? is a!, or a; that of a*
is a?; that of af is a®; and so on: and, as this is general,

. 1

the square root of a® must necessarily be a*, and that of
5 .

a® must be a? ; consequently, we shall in the same manner

have a? for the square root of a'. Whence we see that a*
is equal to »/a; which new method of representing the
square root demands particular attention.

197. We have also shewn, that, to find the cube of a
power, as a”, we must multiply its exponent by 3, and con-
sequently that cube is a*".

Hence, conversely, when it is required to find the third,
or cube root, of the power a®", we have only to divide that
exponent by 3, and may therefore with certainty conclude,
that the root required 1s a”: consequently, al, or a, is the
cube root of a3; a?is the cube root of af; a® of a5 and
so on.

198. There is nothing to prevent us from applying the
same reasoning to those cases, in which the exponent is not
divisible by 3, or from concluding that the cube root of a*

.2 . 4 1

is @3, and that the cube root of a*is «3, or a*¥; conse-
. 1

quently, the third, or cube root of @, or a', must be a®:

i,
whence also it appears, that a® is the same as J/a.
199. It is the same with roots of a-higher degree : thus,

the fourth root of a will be a%, which expression has the

1
same value as #/a; the fifth root of « will be a®, which is
consequently equivalent to i/a; and the same observation
may be extended to all roots of a-higher degree.
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200. We may therefore entirely reject the radical signs
at present made use of, and employ in their stead the
fractional exponents which we have just explained: but
as we have been long accustomed to those signs, and meet
with them in most books of Algebra, it might be wrong to
banish them entirely from calculation; there is, however,
sufficient reason also to employ, as is now frequently done,
the other method of notation, because it manifestly cor-
responds with the nature of the thing. In fact, we see

. . 1.

immediately that a® is the square root of a, because we
1 . 1 -

know that the square of a?, that is to say, a? multiplied by

1 .
a®, is equal to a', or a.
201. What has been now said is sufficient to shew how
we are to understand all other fractional exponents that

4 .
may occur. If we have, for example, a?, this means, that
we must first take the fourth power of @, and then extract

. . 4,
its cube, or third root; so that a3 is the same as the com-

a
mon expression ¥/a*. Hence, to find the value of a%, we
must first take the cube, or the third power of a, which is
a®, and then extract the fourth root of that power; so

5 5.

that a* is the same as /a3, and a® is equal to 3/a%, &e.
202. When the fraction which represents the exponent

exceeds unity, we may express the value of the given quan-

_ . . 4 .

tity in another way : for instance, suppose it to be a?; this
e - 1 ..

quantity is equivalent to a®?, which is the product of a” by

1 > - . 5.

a?: now a® being equal to 4/a, it is evident that a2 is
10 sl .

equal to a?¢/a%: also @ ®, or a”?, is equal to a® /a; and

L5 ) 3.
a® ,thatis,a®*, expresses a3%/a3. These examples are suf-
ficient to illustrate the great utility of fractional exponents.

203. Their use extends also to fractional numbers : for if

there be given L we know that this quantity is equal to

1 ve
— ; and we have seen already that a fraction of the form
a?

1 . . 1
— may be expressed by a~"; so that instead of va Ve

. -1 1 s
may use the expression a”%; and, in the same man-
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1, -1 o . .

ner, Va is equal to @ °. Again, if the quantity {/% be
2

proposed ; let it be transformed into this, %, which is the
al

-3 . . .
product of a® by a™*; now this product is equivalent to

a%, or to al‘k, or lastly, to ai/a. Practice will render
similar reductions easy.

204. We shall observe, in the last place, that each root
may be represented in a variety of ways ; for 4/a being the

1 . . .
same as a?, and  being transformable into the fractions, %,
3, 4, £5, & &c. it is evident that 4/a is equal to ¥/4?, or to
8/a3, or to ¥/a*, and soon. In the same manner, 3/a, which

is equal to a%, will be equal to §/a?, or to /a3, or to *¥/a*.
Hence also we see that the number a, or a', might be
represented by the following radical expressions :—

yat, yad, yat, Yy’ &e. .

205. This property is of great use in multiplication and
division; for if we have, for example, to multiply 2/a by ¥/a,
we write §/a3 for 2/a, and $/a? instead of ¥/a ; so that in this
manner we obtain the same radical sign for both, and the
multiplication being now performed, gives the product §/a°.

] 1.1 L

The same result is also deduced from @23, which is the
1 ) 1 .

product of a* multiplied by a®; for 4 + 4 is £, and conse-

. . &
quently the product required is a¢, or §/a®.
On the contrary, if it were required to divide %/a, or

L 1 . 1.1
a*, by ¥/a, or a®, we should have for the quotient a*" 3,

-3 : $ or6
or a® °, that is to say, a®, or {/a.

QUESTIONS FOR PRACTICE RESPECTING SURDS.

1. Reduce 6 to the form of /5. Ans. 4/36.
2. Reduce a + & to the form of 1/bec.
Ans. ¢/ (a® + 2ab + b?).
2

a a
3. Reduce e to the form of 1/d. Ans. 1/—1)76-

3. .
4. Reduce a? and 5% to the common index 1.
L 2L
Ans. c?l-", and b_z]3.
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14.
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18.

19.
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22.

23.

24.
25.

. Reduce ¥/
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. Reduce 1748 to its simplest form. Ans. 44/3.
. Reduce 1/(a’z — a’z?) to its simplest form.

Ans. ar/(ax — 2%).

27a%0* | . .
85 —ag O its simplest form.

3ab a
Ans. 2 Viza

. Add 6 to 2/6; and /8 to 4/50.

Ans. 3¢/6; and 7./2.

. Add v/4a and %/aS together. Ans. (a +2)v/a.
oL o3 b2+
Add;‘ and;] together. Ans. VI
Subtract +/4a from /45, Ans. (a —2)va.
L4 3 —é-l—} *—c |1

Subtract‘b] from 4 Ans. ——Z—J 7o

. 2ab 9ad 3atd
Multiply » B0 by v 55 Ans. -
Multiply +/d by 3/ab. Ans. ¥/(a*b*d?).

Multiply +(4a — 3z) by 2a.
Ans. »/(16a® — 12atz).

Multiply —2% v (a—z) by (¢ —d)v/ ax.

ac—ad

Ans. 55

v (a*z — az?).

L1
Divide a* by a*; and a” by a”.

Ans.a'’; anda
N (@2 — ax®) by%\/(a—x).

Ans. (c—d)/ ax.
Divide a*—ad —b + d\/b by a— /.

ac—ad

Divide 25

Ans. a + b—d.
What is the cube of /27 Ans. 8.
. What is the square of 33/5¢*? Ans. 9c¥/b%e.

a 2a
What i i ?
hat is the fourth power of 23 */c A

Ans. O
"8 45 —=2be + B2)’
What is the square of 34+ 352  Ans. 14 +6./5.
What is the square root of a*?  Ans. a¥ 5 or vad.

What is the cube root of ./ (a?— a2)?
K Ans. §/(a* — z?).



60 ELEMENTS SECT. I.

26. What multiplier will render @ + /3 rational?
Ans. a— /3.
27. What multiplier will render »/a— /b rational ?
Ans. /a + /b,
28. What multiplier will render the denominator of the

V6 Lational? Ans. 7 — /3.

fraction Wi EWE

CHAPTER XX.

Of the different Methods of Calculation, and of their
mutual Connexion.

206. Hitherto we have only explained the different me-
thods of calculation : namely, addition, subtraction, mul-
tiplication, and division ; the involution of powers, and the
extraction of roots. It will not be improper, therefore, in
this place, to trace back the origin of these different methods,
and to explain the connexion which subsists among them ;
in order that we may satisfy ourselves whether it be pos-
sible or not for other operations of the same kind to exist.
This inquiry will throw new light on the subjects which we
have considered.

In prosecuting this design, we shall make use of a new
character, which may be employed instead ofthe expression
that has been so often repeated, is equal to ; this signis =,
which is read is equal to: thus, when I write a =2, this
means that a is equal to b: so, for example, 3 x 5=15.

207. The first mode of calculation that presents itself to
the mind, is undoubtedly addition, by which we add two
numbers together and find their sum : let therefore ¢ and
be the two given numbers, and let their sum be expressed
by the letter ¢, then we shall have a + b= ¢ ; so that when
we know the two numbers a and b, addition teaches us to
find the number c.

208. Preserving this comparison a + b = ¢, let us reverse
the question by asking, how we are to find the number 5,
when we know the numbers a and c.

It is here required therefore to know what number must
be added to a, in order that the sum may be the number c:
suppose, for example, a=3 and ¢=8; so that we must
have 3 + b=8; then b will evidently be found by sub-
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tracting 3 from 8; and, in general, to find 4, we must sub-
tract a from ¢, whence arises b=c—a; for, by adding a
to both sides again, we have b 4 a=c— a + a, that is to
say, =c, as we supposed.

209. Subtraction therefore takes place, when we invert
the question which gives rise to addition. But the number
which it is required to subtract may happen to be greater
than that from which it is to be subtracted; as, for example,
if it were required to subtract 9 from 5: this instance there-
fore furnishes us with the idea of a new kind of numbers,
which we call negative numbers, because 5 —9 = —4,

210. When several numbers are to be added together,
which are all equal, their sum is found by multiplication,
and is called a product. Thus, ab means the product
arising from the multiplication of a by b, or from the
addition of the number a, b number of times; and if we
represent this product by the letter ¢, we shall have
ab=c; thus multiplication teaches us how to determine
the number ¢, when the numbers a and b are known.

211. Let us now propose the following question: the
numbers a and ¢ being known, to find the number 5. Sup-
pose, for example, a=3, and ¢=15; so that 36=15,
and let us inquire by what number 3 must be multiplied,
in order that the product may be 15; for the question pro-
posed is reduced to this. This is a case of division; and
the number required is found by dividing 15 by 3; and, in
general, the number b is found by dividing ¢ by a; from

which results the equation b = Ec-

212. Now, as it frequently happens that the number ¢
cannot be really divided by the number a, while the letter
b must however have a determinate value, another new
kind of numbers present themselves, which are called
Jractions. For example, suppose ¢ =4, and ¢ =3, so that
4b=3; then it is evident that b cannot be an integer, but
a fraction, and that we shall have b =3.

213. We have seen that multiplication arises from ad-
dition ; that is to say, from the addition of several equal
quantities : and if we now proceed farther, we shall perceive
that, from the multiplication of several equal quantities to-
gether, powers are derived ; which powers are represented
In a general manner by the expression a’. This signifies
that the number a must be multiplied as many times by
itself, minus 1, as is indicated by the number b. And we
know from what has been already said, that, in the present
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instance, a is called the root, b the exponent, and a* the
power.

214. Farther, if we represent this power also by the
letter ¢, we have o’ =¢, an equation in which three letters
a, b, ¢, are found; and we have shewn in treating of
powers, how to find the power itself, that is, the letter ¢,
when a root a and its exponent b are given. Suppose, for
example, a=>5, and b=23, so that ¢=>5%: then it is evi-
dent that we must take the third power of 5, which is 125,
so that in this case ¢ = 125.

215. We have now seen how to determine the power ¢,
by means of the root a and the exponent 4 ; but if we wish
to reverse the question, we shall find that this may be done
in two ways, and that there are two different cases to be
considered : for if two of these three numbers a, b, ¢, were
given, and it were required to find the third, we should
immediately perceive that this question would admit ofthree
different suppositions, and consequently ofthree solutions.
We have considered the case in which a and b were the
given numbers; we may therefore suppose farther that ¢
and a, or ¢ and b, are known, and that it is required to
determine the third letter. But, before we proceed any
farther, let us point out a very essential distinction between
involution and the two operations which lead to it. When,
in addition, we reversed the question, it could be done
only in one way; it was a matter of indifference whether
we took c and a, or cand b, for the given numbers, because
we might indifferently write @ + b, or b + a; and it was
also the same with multiplication; we could at pleasure
take the letters a and & for each other, the equation ab =c
being exactly the same as ba =c: but in the calculation of
powers, the same thing does not take place, and we can
by no means write 4 instead of «’; as a single example
will be sufficient to illustrate: for let =5, and b=3;
then we shall have a®* =53 =125 ; butb®=35=243: which
are two very different results.

216. It is evident, then, that we may propose two
questions more: one, to find the root @ by means of the
given power ¢, and the exponent b; the other, to find the
exponent b, supposing the power ¢ and the root a to be
known.

217. It may be said, indeed, that the former of these
questions has been resolved in the chapter on the extraction
of roots ; since if b =2, for example, and a? =¢, we know
by this means, that a is a numberwhose square is equal to
¢, and consequently that a=4/¢. In the same manner, if
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b =3, and @® = ¢, we know that the cube of 2 must be equal
to the given number ¢, and consequently that a=3/¢c. It
is therefore easy to conclude, generally, from this, how to
determine the letter a by means of the letters ¢ and 4; for
we must necessarily have a —2/c.

218. We have already remarked also the consequence
which follows, when the given number is not a real power;
a case which very frequently occurs ; namely, that then the
required root, @, can neither be expressed by integers, nor
by fractions; yet since this root must necessarily have a
determinate value, the same consideration led us fo a new
kind of number, which, as we observed, are called surds, or
irrational numbers ; and which we have seen are divisible
into an infinite number of different sorts, on account of the
great variety of roots. Lastly, by the same inquiry, we
were led to the knowledge of another particular kind of
numbers, which have been called imaginary numbers.

219. It remains now to consider the second question,
which was to determine the exponent, the power ¢ and
the root @ both being known. On this question, which
has not yet occurred, is founded the important theory of
Logarithms, the use of which is so extensive through the
whole compass of mathematics, that scarcely any long cal-
culation can be carried on without their assistance; and
we shall find, in the following chapter, for which we reserve
this theory, that it will lead us to another kind of numbers
entirely new, as they cannot be ranked among the irra-
tional numbers before mentioned.

CHAPTER XXI.

Of Logarithms in general.

220. Resuming the equation a’=¢, we shall begin by
remarking that, in the doctrine of Logarithms, we assume
for the root @, a certain number taken at pleasure, and sup-
pose this root to preserve invariably its assumed value.
This being laid down, we take the exponent b such, that
the power o’ becomes equal to a given number c; in which
case this exponent b is said to be the logarithm of the num-
ber c. To express this, we shall use the letter L. or the
initial letters log. Thus, by 6=L. ¢, or b=1log. c, we
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mean that b is equal to the logarithm of the number ¢, or
that the logarithm of ¢ is 6.

221. We see, then, that the value of the root a being
once established, the logarithm of any number, ¢, is nothing
more than the exponent of that power of @, which is equal
to c: so that ¢ being =a”, b is the logarithm of the power
a’. 1If, for the present, we suppose b =1, we have 1 for
the logarithm of a, and consequently log. a=1; but if we
suppose b =2, we have 2 for the logarithm of a?; that is
to say, log. a* =2, and we may, in the same manner, ob-
tain log. a®*=3; log. a*=4; log. a®=>5, and so on.

222. If we make b=0, it is evident that 0 will be the
logarithm of a°; but «®=1; consequently, log. 1 =0, what-
ever be the value of the root a.

Suppose b= —1, then — 1 will be the logarithm of

al; but a1 =—; 80 that we have log. %: — 1, and in
the same manner, we shall have log. %= —2; log. %

=—3; log.(%;:—ll, &e.

223. It is evident, then, how we may represent the loga-
rithms of all the powers of a, and even those of fractions,
which have unity for the numerator, and for the denominator
a power of a. We see also, thatin all those cases the loga-
rithms are integers ; but it must be observed, thatif b were
a fraction, it would be the logarithm of an irrational num-
ber : if we suppose, for example, b =1, it follows, that 1 is

the logarithm of a%, or of 4/a; consequently we have also
log. v/a=1; and we shall find, in the same manner, that
log.ya=1, log. {/a=1, &ec.

224. Butifit be required to find the logarithm of another
number ¢, it will be readily perceived, that it can neither
be an integer, nor a fraction; yet there must be such an
exponent b, that the power a* may become equal to the
number proposed; we have therefore b=1Iog.c; and
generally, a“*=c.

225. Let us now consider another number, d, whose loga-
rithm has been represented in a similar manner by log. d;
so that a™’=d. Here if we multiply this expression by
the preceding one a"“=c, we shall have a““+“*=cd;
hence, the exponent is always the logarithm of the power ;
consequently, log. ¢ + log. d=log. cd. But 1f, instead of
multiplying, we divide the former expression by the latter,
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we shall obtain a""‘“:zlc- ; and, consequently, log. ¢ —

log. d=1log. 2.

226. This leads us to the two principal properties of loga-
rithms, which are contained in the equations log. c +log. d

= log. cd, and log. ¢ — log. d = log. 5 The former of these

equations teaches us, that the logarithm of a product,
as cd, is found by adding together the logarithms of the
factors; and the latter shews us this property, namely,
that the logarithm of a fraction may be determined by
subtracting the logarithm of the denominator from that
of the numerator.

227. It also follows from this, that when it is required
to multiply, or divide, two numbers by one another, we
have only to add, or subtract, their logarithms; and this
is what constitutes the singular utility of logarithws in cal-
culation : for it is evidently much easier to add, or sub-
tract, than to multiply, or divide, particularly when the
question involves large numbers.

228. Logarithms are attended with still greater advan-
tages, in the involution of powers, and in the extraction of
roots; for if d=c, we have, by the first property, log. ¢+
log. ¢ = log. cc, or ¢*; consequently, log.cc=2log. c; and,
in the same manner, we obtain log. ¢*= 3 log. c; log. c* =
4 log.c; and generally, log.c”=nlng.c. If we now sub-
stitute fractional numbers for », we shall have, for example,

1 . .
log. c?, that is to say, log. /¢, =1 log.c; and lastly, if we
suppose n to represent negative numbers, we shall have Jog.

¢!, or Zog.? = —lug.c; log.c, or log. o= 2log.c,

and so on; which follows not only from the equation
log. ¢* = n log. ¢, but also from log. 1 = 0, as we have already
seen.

229. If therefore we had Tables, in which logarithms
were calculated for all numbers, we might certainly derive
from them very great assistance in performing the most
prolix calculations : such, for instance, as require frequent
maultiplications, divisions, involutions, and extractions of
roots : for, in such Tables, we should have not only the
logarithms of all numbers, but also the numbers answering
to all logarithms. If it were required, for example, to find

the square root of the number ¢, we must first find the
F
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logarithm of ¢, that is, log. ¢, and next taking the half of
that logarithm, or 1log. ¢, we should have the logarithm of
the square root required : we have therefore only to look
in the Tables for the number answering to that logarithm,
in order to obtain the root required.

230. We have already seen, that the numbers, 1,2, 3,4,
5, 6, &c. that is to say, all positive numbers, are logarithms
of the root a, and of its positive powers; consequently,
logarithms of numbers greater than unity : and, on the con-
trary, that the negative numbers, as —1, —2, &e. are

logarithms of the fractions %, -;—2, &c. which are less than

unity, but yet greater than nothing.

Hence, it follows, that, if the logarithm be positive, the
number is always greater than unity : but if the logarithm
be negative, the number is always less than unity, and yet
greater than 0; cousequently, we cannot express the loga-
rithms of negative numbers: we must therefore conclude,
that the logarithms of negative numbers are impossible,
and that they belong to the class of imaginary quantities.

231. In order to illustrate this more fully, it will be
proper to fix on a determinate number for the root a. Let
us make choice of that, on which the common Logarithmic
Tables are formed, that is, the number 10, which has been
%referred, because it is the foundation of our Arithmetic.

ut it is evident that any other number, provided it were
greater than unity, would answer the same purpose: and
the reason why we cannot suppose a=unity, or 1, is
manifest ; because all the powers, a’, would then be con-
stantly equal to unity, and could never become equal to
another given number, c.

CHAPTER XXII.

Of the Logarithmic Tables now in use.

232. In those Tables, as we have already mentioned, we
begin with the supposition, that the root ais =10 ; so that
the logarithm of any number, ¢, is the exponent to which
we must raise the number 10, in order that the power re-
sulting from it may be equal to the numberc; orif we denote
the logarithm of ¢ by L.c, we shall always have 10™=c.
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233. We have already observed, that the logarithm of
the number 1 is always 0 ; and we have also 10°=1; con-
sequently, log.1=0; /log.10=1; log.100, or 10°=2;
log. 1000=3; log. 10000=4; log. 100000=5; log.
1000000 =6. Farther, log. 4= —1; log. t}5=—2;
log. vdo5=—3; log. r5boo=—4; log. 159505 =—"5;
°9> Toobgo5 = — 0- .

234. The logarithms of the principal numbers, therefore,
are easily determined; but it is much more difficult to
find the logarithms of all the other intervening numbers ;
and yet they must be inserted in the Tables. This how-
ever is not the place to lay down all the rules that are
necessary for such an inquiry ; we shall therefore at present
content ourselves with a general view only of the subject.

235. First, since log. 1 =0, and log. 10 =1, it is evident
that the logarithms ofall numbers between 1 and 10 miust be
included between Oand unity ; and, consequently, be greater
than 0, and less than 1. It will therefore be sufficient to
consider the single number 2; the logarithm of which is
certainly greater than 0, but less than unity: and if we re-
present this logarithm by the letter z, so that log.2 =,
the value of that letter must be such as to give exactly
10°=2.

We easily perceive, also, that # must be considerably

less than 1, or which amounts to the same thing, 10%
is greater than 2; for if we square both sides, the square of

101‘5=10, and the square of 2=4. Now, this latter is
much less than the former; and, in the same manner, we

. 1,
see that z is also less than %; that is to say, 10° is greater

than 2: for the cube of 105 is 10, and that of 2 is only 8.
But, on the contrary, by making x =1, we give it too small

a value; because the fourth power of 10% being 10, and

that of 2 being 16, it is evident that 10% is less than 2.
Thus, we see that z, or the log. 2, is less than 1, but greater
than 1: and, in the same manner, we may determine, with
respect to every fraction contained between 1 and 4, whether
it be too great or too small.

In making trial, for example, with £, which is less than

1, and greater than %, 10%, or 10%, ought to be =2; or

the seventh power of l()%, that is to say, 102, or 100, ought
to be equal to the seventh power of 2, or 128; which is
consequently greater than 100. We see, therefore, that
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2 is less than log. 2, and that log. 2, which was found less
than 1, is however greater than £.

Let us try another fraction, which, in consequence of
what we have already found, must be contained between %
and 4. Such a fraction between these limits is -3;; and it

is therefore required to find whether 10735 =2; if this be
the case, the tenth powers of those numbers are also equal :

but the tenth power of 10735 is 103=1000, and the tenth

power of 2 is 1024 ; we conclude, therefore, that 1077 is
Iess than 2, and, consequently, that 4% is too small a frac-
tion ; and therefore the log. 2, though less than i, is yet
greater than 3;.

236. This discussion serves to prove, that log. 2 has a
determinate value, since we know that it is certainly
greater than 3;, but less than 4; we shall not, however,
proceed any farther in this investigation at present. Being
therefore still ignorant of its true value, we shall represent
it by z, so that log. 2=z ; and endeavour to shew how, if
it were known, we could deduce from it the logarithms of
an infinity of other numbers. For this purpose, we shall
make use of the equation already mentioned, namely, log.
cd=log. c+ log. d, which comprehends the property, that
the logarithm of a product is found by adding together the
logarithms of the factors.

237. First, as log. 2=, and log. 10 = 1, we shall have

log.20=z+1, log. 200 =2 +2
log. 2000 = x +-3, log. 20000 =z +4

* log. 200000 =z +5,  log. 2000000 = z + 6, &e.

238. Farther, as log. c*=2 log. ¢, and log. c3=3 log. ¢,
and log. ¢*=4 log. c, &c. we have

log.4=2z; lvg.8=3x; log. 16 =4z, log. 32 =5z
log. 64 =61, &c. Hence we find also, that

log. 40 =2z +1, log. 400 =2z +2

log. 4000 =2z + 3, log. 40000 = 2z + 4, &ec.

log. 80 =3z+1, log. 800 =3z 42

log. 8000 =3z +3, log. 80000 =3z +4, &e.

log. 160=4z+1, log. 1600 =42 +2

log. 16000 =4z +3, log. 160000 =4z +4, &c.
239. Let us resume also the other fundamental equation,

.log.ﬁ:log.c— log. d, and let us suppose ¢=10, and

d=2; since log.10=1, and log. 2=2=x, we shall have
log. P, or log. 5=1 — z, and shall deduce from hence the
fcllowing equations :
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log. 50 =2 — z, log. 500 =3 — x

log. 5000 =4 — =z, log. 50000 =5 — z, &c.
log. 25 =2 — 2z, log. 125=3 —3x

log. 625 =4 — 4z, log. 3126 =5 — 5z, &c.
log. 250 =3 — 2z, log. 2500 =4 — 2x

log. 25000 =5 — 2z, log. 250000 = 6 — 2z, &c.
log. 1250 =4 — 3z, log. 12500 =5 — 3x

log. 125000 = 6 - 3z, log. 1250000 =7 — 3z, &c.
log. 6250 =5 — 4z, log. 62500 =6 —4r

log. 625000 =7 — 4z, log. 6250000 = 8 — 4z, &ec.
and so on.

240. If we knew the logarithm of 3, this would be the
means also of determining a number of other logarithms ;
as appears from the following examples. Let the log. 3
be represented by the letter y: then,

log. 20 =y +1, log. 300 =y +2

log. 3000=y +3, log. 30000 =y +4, &c.

log. 9 =2y, log. 27 =3y, log. 81 =4y, &c. we shall
have also,

log. 6=x+y, log. 12=2x+y, log. 18 =x+2y,
log. 15=log. 3+ Ing. 5=y +1—u.

241. We have already seen that all numbers arise from
the multiplication of prime numbers. If therefore we
only knew the logarithms of all the prime numbers, we
could find the logarithms of all the other numbers by
simple additions. The number 210, for example, being
formed by the factors 2, 3, 5, 7, its logarithm will be
log. 2+ lvg. 3+ log.5+ log. 7. In the same manner, since
360=2x2x2x3x3x5=2x3"%x5, we have log.
360 =3 log. 2+2 log. 3+ log.5. It is evident, therefore,
that by means of the logarithms of the prime numbers, we
may determine those of all others; and that we must first
apply to the determination of the former, if we would
construct Tables of Logarithms,

CHAPTER XXIII.

Of the Method of expressing Logarithms.

242. We have seen that the logarithm of 2 is greater than
1%, and less than 4, and that, consequently, the exponent
of 10 must fall between those two fractions, in order that
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the power may become 2. Now, although we know this,
yet whatever fraction we assume on this condition, the
power resulting from it will be always an irrational num-
ber, greater or less than 2; and, consequently, the loga-
rithm of 2 cannot be accurately expressed by such a frac-
tion : therefore we must content ourselves with determining
the value of that logarithm by such an approximation as
may render the error of little or no importance ; for which
purpose, we employ what are called decimal fractions,
the nature and properties of which ought to be explained
as clearly as possible.

243. 1t is well known that, in the ordinary way of writing
numbers by means of the ten figures, or characters,

07 1’ .2" 3’ 4’ 5, 6’ 7’ 8’ 9’
the first figure on the right alone has its natural significa-
tion ; that the figures in the second place have ten times
the value which they would have had in the first ; that the
figures in the third place have a hundred times the value;
and those in the fourth a thousand times, and so on: so
that as they advance towards the left, they acquire a value
ten times greater than they had in the preceding rank.
Thus, in the number 1765, the figure 5 is in the first place
on the right, and is just equal to 5; in the second place is
6; but this figure, instead of 6, represents 10 x 6, or 60
the figure 7 is in the third place, and represents 100 x 7, or
700; and lastly, the 1, which is in the fourth place,
becomes 1000 ; so that we read the given number thas:
One thousand, seven hundred, and sixty-five.

244. As the value of figures becomes always ten times
greater as we go from the right towards the left, and asit
consequently becomes continually ten times less as we go
from the left towards the right ; we may, in conformity with
this law, advance still farther towards the right, and obtain
figures whose value will continue to become ten times less
than in the preceding place: but it must be observed, that
the place where the figures have their natural value is
marked by a point. So that if we meet, for example, with
the number 36:54892, it is to be understood in this manner:
the figure 6, in the first place, has its natural value; and the
figure 3, which is in the second place to the left, means 30.
But the figure 5, which comes after the point, expresses
only -5 and the 4 is equal only to +45; the figure 8 is
equal to & ; the figure 9 is equal to 15855 ; and the
figure 2 is equal to y5%5o. We see then, that the more
‘those figures advance towards the right, the more their
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values diminish; and at last, those values become so
small, that they may be considered as nothing.*

245. This is the kind of numbers which we call decimal

Jractions, and in this manner logarithms are represented in
the Tables. The logarithm of 2, for example, is expressed
by 0-3010300 ; in which we see, 1st. That since there is 0
before the point, this logarithm does not contain an integer;
2dly, that its value is 7 + +$5 + 1555 + w5300 + Todo00
+ 1505000 + 1ooa5ooge  Ye might have left out the two
last ciphers, but they serve to shew that the logarithm in
question contains none of those parts which have 1000000
and 10000000 for the denominator. It is however to be
understood, that, by continuing the series, we might have
found still smaller parts; but with regard to these, they
are neglected, on account of their extreme minuteness.

246. The logarithm of 3 is expressed in the Table by
0-4771213; we see, therefore, that it contains no integer,
and that it is composed of the following fractions : & +
T:(% + 10700 + 10(1)00 + 1000000 + 100(150_00 +_TO'0030000'
But we must not suppose that the logarithm is thus ex-
pressed with the utmost exactness ; we are only certain that
the error is less than 1555555 which is certainly so small,
that it may very well be neglected in most calculations.

247. According to this method of expressing logarithms,
that of 1 must be represented by 0-0000000, since it is
really = 0 : thelogarithm of 10 is 1 0000000, where it evi-
dently is exactly = 1 : the logarithm of 100 is 2-:0000000,
or 2. And hence we may couclude, that the logarithms of
all numbers, which are included between 10 and 100, and

* The operations of arithmetic are performed with decimal
fractions in the same manuner nearly as with whole numbers ;
some precautions only are necessary, after the operation, to
place the point properly, which separates the whole numbers
from the decimals. On this subject, we may consult almost any
of the treatises on arithmetic. In the multiplication of these
fractions, when the multiplicand and multiplier contain a great
number of decimals, the operation would become too long, and
would give the result much more exact than is for the most
part necessary ; but it may be simplified by a method, which is
not to be found in many authors, and which is pointed out by
M. Marie in his edition of the mathematical lessons of M. de la
Caille, where he likewise explains a similar method for the
division of decimals.—F. T.

The method alluded to in this note is clearly explained in
Bonnycastle’s Arithmetic.
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consequently composed of two figures, are comprehended
between 1 and 2, and therefore must be expressed by 1 plus
a decimal fraction, as log. 50 = 1:6989700 : its value there-
fore is unmity, plus f5+ 185 + 1% T Toog0 T 10007
and it will be also easily perceived, that the logarithms of
numbers, between 100 and 1000, are expressed by the in-
teger 2 with a decimal fraction : those of numbers between
1000 and 10000, by 3 plus a decimal fraction ; those of
numbers between 10000 and 100000, by 4 integers plus
a decimal fraction, and so on. Thus, the log. 800, for
example, is 2:9030900 ; that of 2290 is 3:3598355, &c.

248. On the other hand, the logarithms of numbers which
are less than 10, or expressed by a single figure, do not
contain an integer, and for this reason we find 0 before the
point: so that we have two parts to consider in a logarithm.
First, that which precedes the point, or the integral part ;
and the other, the decimal fractions that are to be added
to the former. The integral part of a logarithm, which is
usually called the characteristic, is easily determined from
what we have said in the preceding article. Thus, it is
0, for all the numbers which have but one figure; it is 1,
for those which have two ; it is 2, for those which have
three; and, in general, it is always one less than the num-
ber of figures. If therefore the logarithm of 1766 be re-
quired, we already know that the first part, or that of the
integers, is necessarily 3.

249. So reciprocally, we know at the first sight of the
integer part of a logarithm, how many figures compose the
number answering to that logarithm ; since the number of
those figures always exceed the integer partof the logarithm
by unity. Suppose, for example, the number answering
to the logarithm 6:4771213 were required, we know imme-
diately that that number must have seven figures, and be
greater than 1000000. And in fact this number is 3000000
for log. 3000000 = log. 3 + log. 1000000. Now log.3 ==
0-4771213, and log. 1000000 = 6, and the sum of those
two logarithms is 6:4771213.

250. The principal consideration therefore with respect
to each logarithm is, the decimal fraction which follows the
point ; and even that, when once known, serves for several
numbers. In order to prove this, let us consider the loga-
rithm of the number 365 ; its first part is undoubtedly 2 ;
with respect to the other, or the decimal fraction, let us at
present representit by the letter z; we shall have log. 365
= 2 + x; then multiplying continually by 10, we shall
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have log. 3650 = 3 + z; log. 36500 = 4 +a:; log. 365000
=5 4+, and so on.

But we can also go back, and continually divide by 10;
which will give us log. 365 =1 +x; log. 3:65=0+ x;
log. 0365 = —1+x; log. 0-03656 = — 2+ x; log. 0:00365
= —3 + z, and so on.

251. All those numbers then which arise from the figures
365, whether preceded or followed by ciphers, have always
the same decimal fraction for the second part of the loga-
rithm : and the whole difference lies in the integer before
the point, which, as we have seen, may become negative ;
namely, when the number proposed is less than 1. Now, as
ordinary calculators find a difficulty in managing negative
numbers, it is usual, in those cases, to increase the integers
of the logarithm by 10, that is, to write 10 instead of 0
before the point ; so that instead of—1 we have9 : instead
of —2 we have 8 ; instead of—3 we have 7, &e.; but then
we must remember, that the characteristic has been taken
ten units too great, and by no means suppose that the num-
ber consists of 10, 9, or 8 figures. It is likewise easy to
conceive, that,if in the case we speak of, this characteristic
be less than 10, we must write the figures of the number
after a point, to shew that they are decimals: for example,
if the characteristic be 9, we must begin at the first place
after a point; if it be 8, we must also place a cipher in
the first row, and not begin to write the figures till the
second : thus 9:5622929 would be the logarithm of 0-365,
and 8:5622929 the log. of 0:0365. But.this manner of
writing logarithmsis principally employedin Tables of sines.

252. In the common Tables, the decimals of logarithms
are usually carried to seven places of figures, the last of
which consequently represents the 15545557 part, and we
are sure that they are never erroneous by the whole of this
part, and that therefore the error cannot be of any import-
ance. Thereare, however, calculations in which we require
still greater exactness ; and then we employ the large Tables
of Vlacq, where the logarithms are calculated to ten decimal
places.*

* The most valuable set of Tables we are acquainted with are
those published by Dr. Hutton, late Professor of Mathematics
at the Royal Military Academy, Woolwich, under the title of
‘¢ Mathematical Tables; containing common, hy perbolic, and
logistic logarithms, Also sines, tangents, &c.: to which is pre-
fixed a large and original history of discoveries and treatises
relating to those subjects.” '
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253. As the first part, or characteristic of alogarithm, is
subject to no difficulty, it is seldom expressed in the Tables;
the second part only is written, or the seven figures of the
decimal fraction. There is a set of English Tables in which
we find the logarithms of all numbers from 1 to 100000,
and even those of greater numbers; for small additional
Tables shew what is to be added to the logarithms, in pro-
portion to the figures, which the proposed numbers have
more than those in the Tables. We easily find, for ex-
ample, the logarithm of 379456, by means of that of 37945
and the small Tables of which we speak.*

254. From what has been said, it will easily be perceived
how we are to obtain from the Tables the number corre-
sponding to any logarithm which may occur. Thus, in mul-
tiplying the numbers 343 and 2401 ; since we must add

* The English Tables spoken of in the text are those which were
published by Sherwin in the beginning of the seventeenth century,
and have been several times reprinted ; they are likewise to be
found in the Tables of Gardener, which are commonly made use
of by astronomers, and which have been reprinted at Avignon.
With respect to these Tables it is proper to remark, that as they
do not carry logarithms farther than seven places, independently
of the characteristic, we cannot use them with perfect exact-
ness except on numbers that do not exceed six digits ; but when
we employ the great Tables of Vlacq, which carry the loga-
rithms as far as ten decimal places, we may, by taking the pro-
portional parts, work, without error, upon numbers that have
as many as nine digits. The reason of what we have said, and
the method of employing these Tables in operations upon still
greater numbers, is well explained in Saunderson's Elements
of Algebra, Book IX. Part II.

It is farther to be observed, that these Tables only give the
logarithms answering to given numbers, so that when we wish
to get the numbers answering to given logarithms, it is seldom
that we find in the Tables the precise logarithms, that are given;
and we are, for the most part, under the necessity of seeking for
these numbers in an indirect way, by the method of interpola-
tion. In order to supply this defect, another set of Tables was
published in London, 1742, under the title of ¢ The Anti-
logarithmic Canon, &c., by James Dodson.” He has arranged
the decimals of logarithms from 0,0001 to 1,0000, and opposite
to them, in order, the corresponding numbers carried as far as
eleven places. He has likewise given the proportional parts
necessary for determining the numbers which answer to the
intermediate logarithms that are not to be found in the
Table.—F. T.
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together the logarithms of those numbers, the calculation
will be as follows :

log. 343 = 2:5352941

log. 2401 = 3-3803922 J 2dded

59156863 their sum
log. 823540 = 5-9156847 nearest tabular log.

16 difference,

which in the Table of Differences answers to 3; this there-
fore being used instead of the cipher, gives 823543 for the
product sought ; for the sum is the logarithm of the product
required ; and its characteristic 5 shews that the product
is composed of 6 figures ; which are found as above.

. 255. But it is in the extraction of roots that logarithms
are of the greatest service; we shall therefore give an ex-
ample of the mannerin which they are used in calculations
of this kind. Suppose, for example, it were required to
extract the square root of 10. Here we have only to divide
the logarithm of 10 which is 10000000 by 2; and the
quotient 05000000 is the logarithm of the root required.
Now, the number in the Tables which answers to that
logarithm is 3'16228, the square of which is very nearly
equal to 10, being only one hundred thousandth part too
great.*

* In the same manner, we may extract any other root, by
dividing the log. of the number by the denominator of the index
of the root to be extracted ; that is, to extract the cube root,
divide the log. by 3, the fourth root by 4, and so on for any
other extraction. For example, if the 5th root of 2 were re-
quired, the log. of 2 is 0:3010300 : therefore

5)0-3010300

0:0602060 is the log. of the root, which
by the Tables is found to correspond to 1:1497 ; and hence we
have 3/2 = 1:1497. When the index, or characteristic of the
log. is negative, and not divisible by the denominator of the
index of the root to be extracted, then as many units must be
borrowed as will make it exactly divisible, carrying those units
to the next figure, as in common division,
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SECTION II.

OF THE DIFFERENT METHODS OF CALCULATING COMPOUND
QUANTITIES.

CHAPTER I

Of the Addition of Compound Quantities.

256. When two or more expressions, consisting of
several terms, are to be added together, the operation is
frequently represented merely by signs, placing each
expression between two parentheses, and connecting it
with therest by means of the sign +. Thus, for example,
if it be required to add the expression a + b + ¢ and
d + e + f, we represent the sum by

(@+b+c)+d+e+f).

257. It is evident that this is not to perform addition,
but only to represent it. We see, however, at the same
time, that in order to perform it actually, we have only to
leave out the parentheses ; for as the number d+e+ f is
to be added to a+ b 4+ ¢, we know that this is done b
joining to it first +d, then +e, and then + f; whic
therefore gives the sum ¢ +b+c+d+e+f ; and the same
method is to be observed, if any of the terms are affected
by the sign — ; as they must be connected in the same
way, by means of their proper sign.

258. To make this more evident, we shall consider an
example in pure numbers, proposing to add the expression
15—6to 12—8. Here, if we begin by adding 15, we
shall have 12—84-15; but this is adding too much, since
we had only to add 15— 6, and it is evident that 6 is the
number which we have added too much ; let us therefore
take this 6 away by writing it with the negative sign, and
we shall have the true sum,

12—8 +15—6;
which shews that the sums are found by writing all the
terms, each with its proper sign.
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259. If it were required therefore to add the expression

d—e— f to a—b+c, we should express the sum thus ;
a—b+c+d—e—~f;

remarking, however, that it is of no consequence in what

order we write these terms; for their places may be

changed at pleasure, provided their signs be preserved ;

so that this sum might have been written thus ;
c—e+a—f+d—b.

260. It is evident, therefore, that addition is attended
with no difficulty, whatever be the form of the terms to
be added. Thus, if it were necessary to add together the
expression 2a3+61/b—4log.c and 5/a—T7¢, we should
write them

2a3 +61/b—4log.c + 5i/a—Tc,
either in this or in any other order of the terms; for if the
signs are not changed, the sum will always be the same.

261. But it frequently happens that the sums repre-
sented in this manner may be considerably abridged, as is
the case when two or more terms destroy each other : for
example, if we find in the same sum the terms +a—a, or
3a—4a+a; or when two or more terms may be reduced
to one, &e. Thus, in the following examples:

3a +2a=>5a, 7b—3b=+4b
—6¢c+ 10c= +4c, 4d—2d=2d

5a—8a=—3a, —7b+b=—6b
—3c—dc=—-T¢, —3d—-5d=—8d

2a—ba+a=—2a, —3b—5b+2b=—06b.

Whenever two or more terms, therefore, are entirely the
same with regard to letters, their sum may be abridged ;
but those cases must not be confounded with such as these,
2a%+ 3a, or 26°—b*, which admit of no abridgement.
262. Let us consider now some other examples of re-
duction, as the following, which will lead us immediately
to an important truth. Suoppose it were required to add
together the expressions a+b and a—b; our rule gives
a+b+a—>b; now a+a=2a, and b—b=0; the sum there-
fore is 2a: consequently, if we add together the sum of
two numbers (¢ +b) and their difference (¢a—b5), we obtain
the double of the greater of those two numbers.
This will be better understood perhaps from the follow-
ing examples :
3a—2b—c a®—2a%b +2ab?
5b—6¢c+a — a%b+2ab*—b°

4a+43b—"7c a3—3a?b +4ab?—b?
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4q°—3b4 2c a*+2ab 4 b3
3u? +20—12¢ —a*—2a%b 4 363
7a®— b—10c —2a%b +2ab + 453

CHAPTER II.

Of the Subtraction of Compound Quantities.

263. If we wish merely to represent subtraction, we
enclose each expression within two parentheses, joining,
by the sign —, the expression which is to be subtracted,
to that from which we have to subtract it.

When we subtract, for example, the expression d—e
+ f from the expression a—b+c, we write the remainder
thus:

(a—b+c) — (d—e+ f);
and this method of representing it sufficiently shews which
of the two expressions is to be subtracted from the other.

264. But if we wish to perform the actual subtraction,
we must observe, first, that when we subtract a positive
quantity +& from another quantity «, we obtain a—b:
and secondly, when we subtract a negative quantity —b
from a, we obtain ¢ +b; because to free a person from
a debt is the same as to give him something.

265. Suppose now it were required to subtract the
expression b—d from a—c. We first take away b, which
gives a—c—b: but this is taking away too much by the
quantity d, since we had to subtract only b—d; we must
therefore restore the value of d, and then shall have

a—c—b+d;
whence it is evident that the terms of the expression to be
subtracted must change their signs, and then be joined
with those contrary signs, to the terms of the other
expression.

266. Subtraction is therefore easily performed by this
rule, since we have only to write the expression from
which we are to subtract, joining the other to it without
any change beside that of the signs. Thus, in the first
example, where it was required to subtract the expression
d—e-+f from a—b+c, we obtain a—b+c—d+e—f.

An example in numbers will render this still more
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clear; for if we subtract 6 —2 44 from 9—3+2, we
evidently obtain

9—3+2—-6+2—4=0;
for 9—3+2=8; also, 6—~2+4=8; and 8—-8=0.

267. Subtraction being therefore subject to no difficulty,
we have only to remark, that if there are found in the
remainder two or more terms, which are entirely similar
with regard to the letters, that remainder may be reduced
to an abridged form by the same rules that we have given
in addition.

268. Suppose we have to subtract a—b from a+b;
that is, to take the difference of two numbers from their
sum : we shall then have (a+b)—(a—0b); but a—a=0,
and b+5=26; the remainder sought is therefore 25;
that is to say, the double of the less of the two quantities.

269. The following examples will supply the place of
further illustrations:

a?+ab+0%|3a—4b+5c|a®+3ab+3ab2+ 3|/ a+2vb
—at+ab+52|2b+4c—6a|a’—3a?h+3ab*—b3 |/ a—3 /b
242, | 92a—6b+c. | 642 +263. | 5w0.

CHAPTER III.
Of the Multiplication of Compound Quantities.

270. When it is only required to represent multiplica-
tion, we put each of the expressions that are to be mul-
plied together within two parentheses, and join them to
each other, sometimes without any sign, and sometimes
placing the sign x between them. Thus, for example, to
represent the product of the two expressions a—b+c and
d—e+f, we write

(a—b+c) x (d—e+f)
or barely, (a—b+c) (d—e+f)
which method of expressing products is much used, be-
cause it immediately exhibits the factors of which they are
composed.

271. But in order to shew how multiplication is actually
performed, we may remark, in the first place, that to mul-
tiply a quantity, such as a—b+c, by 2, for example,
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each term of it is separately multiplied by that number;
so that the product is

2a—2b+2c.
And the like takes place with regard to all other num-
bers; for if d were the number by which it was required to
maltiply the same expression, we should obtain

ad—bd + cd.

272. In the last article, we have supposed d to be a
positive number; but if the multiplier were a negative
number, as —e, the rule formerly given must be applied ;
namely, that unlike signs multiplied together produce —,
and like signs +. Thus we should have

—ae+ be—ce.

273. Now, in order to shew how a quantity, 4, is to be
multiplied by a compound quantity, d—e; let us first
consider an example in numbers, supposing that a is to
be multiplied by 7—3. Here it is evident, that we are
required to take the quadruple of 4 : for if we first take 4
seven times, it will then be necessary to subtract 34 from
that product.

In general, therefore, if it be required to multiply a
by d—e, we multiply the quantity a first by d, and then
by e, and subtract this last product from the first : whence
results da—ea.

If we now suppose A=a-—5b, and that this is the
quantity to be multiplied by d—e; we shall have
da=ad—bd

eA = qae — be
whence da —eA =ad — bd — ae + be is the product re-
quired.

274. Since therefore we know accurately the product
(a—b) x (d—e), we shall now exhibit the same example
of multiplication under the following form :

a—b
d—e
ad—bd—ae+ be.

Which shews, that we must multiply each term of the
upper expression by each term of the lower, and that,
with regard to the signs, we must strictly observe the
rule before given; a rule which this circumstance would
completely confirm, if it admitted of the least doubt.

275. It will be easy, therefore, according to this method,
to calculate the following example, which is to multiply
a+bbya—b;
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a+b

a—b

a®+ab
—ab—p*

Product a?—0?

276. Now, we may substitute for @ and b any numbers
whatever; so that the above example will furnish the
following theorem ; viz. The sum of two numbers, multi-
plied by their difference, is equal to the difference of
the squares of those numbers: which theorem may be
expressed thus:

(@a+b) x (a—b) =a?—b°.
And from this another theorem may be derived ; namely,
The difference of two square numbers is always a product,
and divisible both by the sum and by the difference of the
roots of those two squares; consequently, the difference
of two squares can never be a prime number.*

277. Let us now calculate some other examples :

2a—3 402 —6a+9
a+2 2a+3
2a%?—3a 8a3—12a%+18a
40—6 1222 —18a +27
2a*+ a—6 8a3 427
3a®—2ab a®+ab®
2a —4b at—a’b®
6a3—4a?b ad + a’h3 )
— 12a%b + 8al® —a%h’— uth®
6a®— 16a%b + 8ab® ab—a*bb

* This theorem is general, except when the difference of the
two numbers is only 1, and their sum is a prime; then it is
evident that the difference of the two squares will also be a
prime : thus, 62—52=11, 72—62=13, 92—8%=17, &c.
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278. When we have more than two quantities to mul-
tiply together, it will easily be understood that, after
having multiplied two of them together, we must then
multiply that product by one of those which remain, and

ELEMENTS SECT.

a®+2ab +2b°
a?—2ab + 202
a* +2a3b + 24202
—2a3hb—4a°b*—4ab’
2a2b% + 4ab3 + 4b?
a* +4bt

2a%—3ab—4b°
3a?—~2ab + b?

6a*—9a3b—124%b°
—4a3b + 6a%*+ 8ab’
2a%b% — 3ab® —1b%
6at — 13a3b —4a*b* 4- 5ab3 —4b*

a4+ b*+c?—ab—ac—bc
a +b+c
a® +ab® + ac?—a?b—atc—abc
a®b+ b3 +bc*—ab®*—abc—bc
a’c+b%c+c® —abc—ac®—bct

a—3abc + b3+ ¢3

II.

so on : but it is indifferent what order is observed in those

muiltiplications.
Let it be proposed, for example, to find the value, or

product, of the four following factors, viz.

L II. 1. Iv.
(a+b) (a®+ab+b% (a=b) (a*—ab+0b?.
1st. The product of the fac-|2d. The product of the fac-
tors 1. and II. tors I11. and IV.
a’+ab + b* a*—ab+b*
a4+ b a— b

a’ -+ a*b + ab®

a®—a®b + ab?

+a?b 4 ab®+ b3 —a®h+ab®*— b3

ad +2a%b + 2ab* + b3

a’—2a%h +2ab®— b
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It remains now to multiply the first product I. II. by
this second product 11I. 1IV.
a® +2a%b + 2ab® + b*
a’—2a%b + 2ab*— b3

ab +2a3b + 2a*b* + a3b3
—2a%b —4a*h*— 44363 — 2a%b*
2a*b® + 4a%b® + 4a%b* + 2ab®
— a*h*—2a?b*—2ab®— b6
ab— B0
which is the product required.
279. Now let us resume the same example, but change

the order of it, first multiplying the factors I. and IIL.
and then II. and I'V. together.

a+b a’+ab+b?

a—b a?—ab+b°

a*+ab a*+ a®b + a*b?

—ab—-b* —a’b—a%h?—ab?
at— b2 a?b® + ab3 + bt
a4- + a’ZbQ + b4-
Then multiplying the two products I. III. and IL. 1V.

(l4 -+ aﬂb‘l + b4-
a*—b?

af + a*b® + atbt
— b — a2bt— b
aS— b
which is the product required. .
280. We may perform this calculation in a manner

still more concise, by first multiplying the I** factor by
the IV®™, and then the 1I¢ by the I11°

a?—ab+ b a?+ab+b*

a +b a—b

a®—a?b +ab? a® + a?b + ab®
atb—ab® + b3 —a*b—ab?—=b?

a3 + b3 a3— bs
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It remains to multiply the product I. IV. by that of
H. and 1L
a3+b3
a3— D3

b + a3bh?
— 33—}

a%— b
the same result as before.

281. It will be proper to illustrate this example by a
numerical application. For this purpose, let us make
a=3 and b=2, we shall then have a+b=>5,and a—b=1;
farther, a*=9, ab=6, and b?*=4: therefore a®+ab+ b2
=19, and a®*—ab+b*=7 : so that the product required is
that of 5x 19 x 1 x 7, which is 665.

Now, ¢5=729, and 5°=64; consequently, the product
required is a®—b5=665, as we have already seen.

CHAPTER 1V.

Of the Division of Compound Quantities.

282. When we wish simply to represent division, we
make use ofthe usual mark of fractions; which is, to write
the denominator under the numerator, separating them
by a line; or to enclose each guantity between paren-
theses, placing two points between the divisor and
dividend, and  a line between them. Thus, if it were
required, for example, to divide a+b by c+d, we should
represent the quotient thus; :—3, according to the former
method ; and thus,

(a+b) = (c+d)
according to the latter, where each expression is read a+b
divided by c+d.

283. When it is required to divide a compound quantity
by a simple one, we divide each term separately, as in the
following examples :

(6a—8b+4c) — 2=3a—4b+2¢
(a*—2ab) - a=a—2b
(@*—2a°b + 3ab?) — a=a*—2ub+ 3b*
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(4a®—6a%c + 8abc) = 2a=2a—3uc +4bc
(9a?bc—12ab% + 15abc?) = 3abc=3a—4b + 5¢.

284. If it should happen that a term of the dividend is
not divisible by the divisor, the quotient is represented by
a fraction, as in the division of a+b by a, which gives

2
1 +g. Likewise, (a?—ab+5%) - at=1 _g +z—
In the same manmer, if we divide 2a+5 by 2, we

obtain a + g: and here it may be remarked, that we may

. . b . . b
write 15, instead of§, because 1 times b is equal to 5 and,

. b. 2b
in the same manner, 3 is the same as 1, and =~ the same

3
as 2b, &e.

285. But when the divisor is itself a compound quantity,
division becomes more difficult. This frequently occurs
where we least expect it; and when it cannot be per-
formed, we must content ourselves with representing the
quotient by a fraction, in the manner already described.
At present, we will begin considering some cases in which
actual division takes place.

286. Suppose, for example, it were required to divide
ac—bc by a—b, the quotient must here be such as, when
multiplied by the divisor a—&, will produce the dividend
ac—bc. Now, it is evident that this quotient must
include ¢, since without it we could not obtain «c; in
order therefore to try whether ¢ is the whole quotient, we
have ouly to multiply it by the divisor, and see if that
multiplication produces the whole dividend, or only a
part of it. In the present case, if we multiply a—5 by ¢,
we have ac—bc, which is exactly the dividend; so that ¢
is the whole quotient. It is no less evident, that

(a*+ab) = (a+b)=a;
(3a®—2ad) -~ (3a—2b) =a;
(6a?—9ab) = (2a—3b) =3a, &ec.

287. We cannot fail, in this way, to find a part of the
quotient; if, therefore, what we have found, when mul-
tiplied by the divisor, does not exhaust the dividend, we
have only to divide the remainder again by the divisor,
in order to obtain a second part of the quotient; and to
continue the same method, until we have found the
whole.
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Let us, as an example, divide a®+3ab+2b* by a+b.
It is evident, in the first place, that the quotient will
include the term a, since otherwise we should not obtain
a®. Now, from the multiplication of the divisor a+b&
by a, arises a?4ab ; which quantity being subtracted from
the dividend, leaves the remainder, 2ab+256%; and this
remainder must also be divided by a+b, where it is
evident that the quotient of this division must contain
the term 2b. Now, 25, multiplied by a+b5, produces
2ab +2b° ; consequently, a +2b is the quotient required ;
which multiplied by the divisor a+5, ought to produce
the dividend a?+3ab+2b° See the operation.

a+b)a®+3ab+2b%(a+2b
a*+ ab

2ab +2b%
2ab +2b%

0.

288. This operation will be considerably facilitated by
choosing one of the terms of the divisor, which contains
the highest power, to be written first; and then, in ar-
ranging the terms of the dividend, begin with the highest
powers of that first term of the divisor, continuing it
according to the powers of that letter. This term in the
preceding example was a. The following examples will
render the process more perspicuous.

a—>b)a®—8a%b + 3ab*— b3(a*—2ab + b*

a’— a?b

—2a%b + 3ab®
—2a2b + 2ab?

ab?—b*
ab?~— b3

0.

a+bya*—b%a—b
a’+ab

—ab—b*
—ab—b*

0.
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3u—2b)18a2— 8464 +4b

18a?—12ab
12abh—8b°
12ab—84°
0.

o+ bYu® + b et —ab+ b°
a*+a*h

—ath+ b
—atb—ab®

ab®+ b3
ab®+ b*

0.

20— b)8a® — b3(4a® +2ab + b*

8a®—4a%b
4a2h—b*
4a2b—2ab*
Qab*— b
2ab*— b3
0.

42— 2ab + b)a* — 4a3b + 6¢2b*—4ab® + b*(a* — 2ab + b*
a*—2a3b + a?b?

—2:3b + 5a%b* —4ab®
—2a3b +4a%b*— 2ab®

a?b?—2ab® + b*
a?b?*—2ab? + b*

0.




88 ELEMENTS SECT. II.

a®—2ab +4b%)a* + 4a2b* + 16b*(a® + 2ab + 4b*
a*—2a%b +4a2b?

2a%b +165*
2a3b —4a%h* + 8ab®

4a2b%—8ab3 + 1654
4a2b%—8ab® + 16b*

0.

a®—2ab +2b%)a* + 4b*(a* + 2ab +2b*
a*— 2a3b +2a2b?
20%b—2a%b* + 44
2a%b— 4020 +4ab3

20202 —4ab® +4b*
2a%%? —4ab® + 4b*

0.
1 =2z 4+ 291 —52 4+ 1022 — 102 + St — 25(1 — 3z + 322 — 22
1—2z 42
—3z+922—102°
-3z + 62— 3a°

3x2—T7x% + bt
322 —623 4+ 3x*

— 23 4 22— 25
— 23 4 21t —g°

0.
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CHAPTER V.

Of the Resolution of Fractions into Infinite Series.*

289. When the dividend is not divisible by the divisor,
the quotient is expressed, as we have already observed, by
a fraction : thus, if we have to divide 1 by 1—a, we obtain

the fraction

Tp— This, however, does not prevent us from

attempting the division according to the rules that have
been given, nor from continuing it as far as we please ;
and we shall not fail thus to find the true quotient, though
under different forms.
290. To prove this, let us actually divide the dividend 1
by the divisor 1 —a, thus:
1-a)l * (1+

a

l—a
l1—a
remainder a
2
or,1—a)l * (l+a+7—
l1—a
a
a—a?

remainder a?
To find a greater number of forms, we have only to con-
tinue dividing the remainder a? by 1—a;

* a
1—a)a? a4+
) @+y—
C—ad
a3

* The Theory of Series is one of the most important in all the
mathematics. The series considered in this chapter were dis-
covered by Mercator, about the middle of the seventeenth cen-
tury ; and soon after, Newton discovered those which are derived
from the extraction of roots, and which are treated of in Chapter
XI1I. of this section. This theory has gradually received improve-
ments from several other distinguished mathematicians. The
works of James Bernoulli, and the second part of the Differen-
tial Calculus of Euler, are the books in which the fullest infor-
mation is to be obtained on these subjects. There is likewise in
the Memoirs of Berlin for 1768, a new. method by M. de la
Grange for resolving, by means of infinite series, all literal equa-
tions of any dimensions whatever.—F. T.
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4
a
then, 1—a)a® * (a®+
—a
a*—a*
a4r

5
and again, 1—a)a* *(a*+ la—a

a*—a’

a’, &e.

201 This shews that the fraction —— may be exhibit-

ed under all the following forms :
2

L1+ -2 I 1+a+ =
l—a 1—

4

3
IL 1 +a+a+ ——. IV. l+a+a®+ad+ ~——
1—a l—a

V.l+a+a®*+ad+a*+ ]

Now, by considering the ﬁrst of these expressions, which
l—a

s 1+ 1—2—a’ and remembering that 1 is the same as

1—a&

we have

14 _l—a a _l—ata_ 1

1— 1 T 1=~ T 1=a  1=a

1f we follow the same process, with regard to the second
2
a pt that is to say, if we reduce the

expression, 1 +a+

1
integral part ! +ato the same denominator, 1 —a, we shall
a?
have 11 , to which if we add + T Ve shall have
1—a®+ az2 1
N P , that is to say, —— T—

3
In the third expression, 1+a+d* +1 the integers

3
reduced to the denominator 1 —a make i ‘Z ; and if we

1
~» as before ;

3
, we have T—

T—a

. . 1
therefore all these expressions are equal in value to =

add to that the fraction ——

the proposed fraction.
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292. This being the case, we may continue the series as
far as we please, without being under the necessity of per-
forming any more calculations ; and thus we shall have

1 1 2 3 4 5 6 7 s
T—a— ta+a ta’ +a*+a’+a’+a +l—a;

or we might continue this farther, and still go on without
end; for which reason it may be said that the proposed
fraction has been resolved into an infinite series, which is,
l+a+a®+a®+a*+a®+ab+d” + a® +a®+a® +a + a?, &e.
to infinity : and there are sufficient grounds to maintain,
that the value of this infinite series is the same as that of

the fraction

l—a’

293. What we have said may at first appear strange ;
but the consideration of some particular cases will make
it easily understood. Let us suppose, in the first place,

a=1; our series will become 1 +1+1+14+1+1+1, &e.;
and the fraction to which it must be equal, becomes

1 .
T—p o & Now, we have before remarked, that } is a

l—a’

number infinitely great ; which is therefore here confirmed
in a satisfactory manner. See Art. 83 and 84.

Again, if we suppose @ = 2, our series becomes 142+
44+8+16+32+64, &c. to infinity, and its value must

be the same as that is to say—_l—]= —1; which at first

1
1-2
sight will appear absurd. But it must be remarked, that if
we wish to stop at any term of the above series, we cannot
do so without annexing to it the fraction which remains.
Suppose, for example, we were to stop at 64, after having
written 14+2+44+8+16+4+32+64, we must add the frac-
tionTl—Q%, or 1—2% or, —128; we shall therefore have 127
— 128, that is in fact —1.

Were we to continue the series without intermission, the
fraction would be no longer considered ; but, in that case,
the series would still go on.

294. These are the considerations which are necessary,
when we assume for @ numbers greater than unity ; but if
we suppose a less than 1, the whole becomes more intel-
ligible : for example, let a = % ; and we shall then have
I ! a=l—l—l=%=2, which will be equal to the following

2 2 . .
series 144 4+1+1 4+ +5+ g +11y &c. to infinity.
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Now, if we take only two terms of this series, we

shall have 1+1, and it wants % of being equal to lia=2.

If we take three terms, it wants 1; for the sum is 13. If
we take four terms, we have 1}, and the deficiency is only
1. Therefore, the more terms we take, the less the dif-
ference becomes; and, consequently, if we continue the
series to infinity, there will be no difference at all between

its sum and the value of the fraction or 2.

1—a’

will then be =

295. Let a = 1; and our fraction
3 1—a

1 . < p .
+—= =4 = 14, which reduced to an infinite series, be-
3
comes 1 + 1+ %+ + g4 + 513, &e. which is conse-

quently equal to T—a
Here, if we take two terms, we have 11, and there wants
L. Ifwe take three terms, we have 14, and there will still
be wanting 4. If we take four terms, we shall have 113,
and the difference will be ;1;; since, therefore, the error
always becomes three times less, it must evidently vanish
at last.
1 1
1—a 1—2 3,
=1+%+ 448 416+ 32, &c. to infinity; and here,
by taking first 1%, the error is 11; taking three terms,
which make 2, the error is § ; taking four terms, we have

211, and the error is 14.

296. Suppose @ =% ; we shall have

297, If a =1, the fraction is i ! = ';li'= 11; and the
series becomes 1414+ +?1;, &e. The first two

terms are equal to 11, which gives ;& for the error; and
taking one term more, we have 13, that is to say, only
an error of 1.

298. In the same manner we may resolve the fraction
mmto an infinite series, by actually dividing the nu-
merator 1 by the denominator 1 + a, as follows.*

* After a certain number of terms have been obtained, the
law by which the following terms are formed will be evident;
so that the series may be carried ,to any length without the
trouble of continual division, as is shewn in this example.



CHAP. V. OF ALGEBRA. 93

1+a) 1 (l—a+a*—a®+a*

1+4a
—u
——?
a?
a®+d®
—d—at

a4+a5
—a’, &e.

Whence it follows, that the fraction

1 .
T7a equal to the
series,

l—a+a*—a®+a*—a®+ab—d', &e.

299. If we make a =1, we have this remarkable com-

parison :
T_1+_a=2=1_1+1_1+1_1 +1-1, &e. to in-
finity ; which appears rather contradictory ; for if we stop
at —1, the series gives 0; and if we finish at +1, it gives
I'; but this is precisely what solves the difficulty ; for since
we must go on to infinity, without stopping eitherat —1 or
at +1, it is evident that the sum can neither be O nor 1,
but that this result must lie between these two, and there-
fore be 4.*

300. Let us now make a = 1, and our fraction will be
1_1*_% = %, which must therefore express the value of the
series 1—1+4+414+L—3%+4 &c. to infinity; here
if we take only the two leading terms of this series, we
have 1, which 1s too small by 1; if we take three terms,
we have 4, which is too much by ;- ; if we take four terms,
we have §, which is too small by -, &e.

* It may be observed, that no infinite series is in reality equal
to the fraction from which it is derived, unless the remainder be
considered ; which, in the present case, is alternately +3 and
—4%; that is, +}when the series is 0, and —4 when the series
is I, which still gives the same value for the whole expression.
Vid. Art. 293.
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301. Suppose again a = %, our fraction will then be =

5= 3, which must be equal to this series 1—1+5—
3 . .
#7 + dr— ok + 7o &c. continued to 1nﬁn1tX. Now,
by considering only two terms, we have %, which is too
small by 4 ; three terms make }, which is too much by
%3 four terms give 29, which is too small by +15, and soon.

302. The fraction T+a

finite series another way ; namely, by dividing 1 by a+1,
as follows :

may also be resolved into an in-

1 1 1
a+1)1 *(F—Tﬁ+a—3,&c.
1+l—
a
!
a
~1_1
a a
1
“a?
1 1
=TT
—%,&c*

Consequently, our fraction aL-H’ is equal to the infinite
.1 1 1 1 1 1
senes—a— - + = R + == &e. Let us make
a =1, and we shall have the series 1 —14+1—1+4+1-—1,
&c. =1, as before: and if we suppose @« =2, we shall

1 1 1.1 — —
have the series 1 —1 4 4 —% + 5 — &e. = 1.

* It is unnecessary to carry the actual division any farther,
as the series may be continued to any length from the law ob-
servable in the terms already obtained ; for the signs are alter-
nately plus and minus, and any subsequent term may be
o})tained by multiplying that immediately preceding it by

a.
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303. In the same manner, by resolving the general

. c . < n .
fraction —— into an infinite series, we shall have,

a+b
¢ bec b b
e *C-GtE G
c+b—c
a
_te
a
_be_ b
a a®
b
‘a’
b%c  bsc
@@
b3c
— &

Whence it appears, that we may compare &%I-)with the

be b bic

series %-—— EtE &c. to infinity.

Let e =2, b =4, c=3, and we shall have

c 3 .

If 4 =10, 5=1, and ¢ =11, we shall have

c l] 11 11 11 11
Py S Y 1 =14 — %5 — 13ds + To'hor &C-

Here if we consider only one term of the series, we
have 11, which is too much by -%; ; if we take two terms,
we have 9, which is too small by 11, if we take three
terms, we have 1331, which is too much by +z:5, &c.

304. When there are more than two terms in the divisor,
we may also continue the division to infinity in the same

* Here again the law of continuation is manifest; the signs
being alternately + and —, and each succeeding term is formed

by multiplying the foregoing by é
ta
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. . 1
manner. Thus, if the fraction l—:mwere proposed, the

infinite series, to which it is equal, will be found as follows :
l—a+a®) 1 * *(14a—a*—at+dS5, &c.

l—a+a*
a—a’
a—a’+a®
—3
_a.‘l +a4___a5
—at+4a’®
—at4-a’—ab
ab
a—d +d°
al—a®
I
—ad

We have therefore the equation
1
l—a+a®
a=1, we have 1=1+1—-1—1+4+1+4+1—1—1, &e. which
series contains twice the series found above 1—14+1—1
+1, &c. Now, as we have found this to be 1, it is not
extraordinary that we should find %, or 1, for the value of

that which we have just determined.

=14a—at—a*+ab+d, &c.; where, if we make

=4 =

By making a=1, we shall have the equation -=4=

]+‘§“'—' "‘_'6‘"'04"" |2 3‘12:&0

-»k»l'—

If a=1, we shall have the equation %:i,}:l +4—F—

. 9 - 3
41+ 719, &c. and if we take the four leading terms of this
series, we have 1%#, which is only ;1 less than {.

1+_2___8___

m»a

Suppose again a=%, we shall have

9
1646+ &c. This series is therefore equal to the pre-
ceding; and, by subtractmg the one from the other, we
obtain 1——27———%+ &5, &c. which is necessarily =0.
305. The method, which we have here explained, serves
toresolve, enerally, all fractions into infinite series ; which
is often found to be of the greatest utility. It is also
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remarkable, that an infinite series, though it never ceases,
may have a determinate value. It should likewise be
observed, that, from this branch of mathematics, inven-
tions of the utmost importance have been derived; on
which account the subject deserves to be studied with the
greatest attention.

QUESTIONS FOR PRACTICE.

ar . . . .
. 1. Resolve Py into an infinite series.
x&’ x3 x4
Ans. x+; tot &e.
px
b . . . .
.2. Resolve —— into an infinite series.
a+x
b x 1t z
Ans. - x (1 ==+ = —= +, &e.
a ( a a a '’ )
aQ

into an infinite series.

3. Resolve
x

-+
o™

a? b b b
Ans. —; X(l—;—{-}—é‘—;g-l-, &C.)
142 . . . .
4. Resolve 1 into an infinite series.

Ans. 1 +2x -+ 222 + 223 +22*, &ec.

2

A, Resolve(a—j_ﬁé into an infinite series.
322 4r3
Ans. 1— g{ + 2 _f_, &e.
a a® a’

CHAPTER VI

Of the Squares of Compound Quantities.

306. When it is required to find the square of a com-
pound quantity, we have only to multiply 1t by itself, and
the product will be the square required.

For example, the square of @ + b is found in the following

manner:
n
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a+b
a+b

at+ab
ab+10?

a® +2ab + 6°

307. When the root consists of two terms added together,
as a+ b, the square comprehends, 1st, the squares of each
term, namely, «? and 5%; and 2dly, twice the product of the
two terms, namely, 2ab: so that the sum a®+42ab+ 52 is
the square of a+b. Let, for example, a =10, and 6 =3;
that is to say, let it be required to find the square of 1043,
or 13, and we shall have 100 +60+9, or 169.

308. We may easily find, by means of this formula, the
squares of numbers, however great, if we divide them into
two parts. Thus, for example, the square of 57, if we con-
sider that this number is the same as 50 +7, will be found
=2500 4 700 + 49=3249.

309. Hence it is evident, that the square of a+1 will
be a?+2a+1: for since the square of a is a?, we find the
square of @+ 1 by adding to that square 2a+1; and it
must be observed, that this 2a+1 is the sum of the two
roots a, and a+1.

Thus, as the square of 10 is 100, that of 11 will be 100
+21: the square of 57 being 3249, that of 58 is 3249 +
1156=3364; the square of 59=3364+117=3481; the
square of 60=3481 +119=3600, &c.

310. The square of a compound quantity, as a+¥5, is
represented in this manner (¢+56)2. We have therefore
(a+b)*=0a*+2ab+b% whence we deduce the following
equations:

(a+1)Y=a?+2a+1; (a+2)=a*+4a+4;
(a+3)¥=a*+6a+9; (a+4)=a*+8a+16; &e.

311. If the root be a—b, the square of it is a®—2ab+
b2, which contains also the squares of the two terms, but
in such a manner, that we must take from their sum twice
the product of those two terms. Let, for example, a=10,
and b= —1, then the square of 9 will be found equal to
100—20 4 1=<81.

312. Since we have the equation (a—b)*=a?—2ab+
5%, we shall have (a—1)2=a’—2a+1. The square of
a—1 is found, therefore, by subtracting from a? the sum of
the two roots » and a—1, namely, 2a—1. Thus, for
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example, if a=50, we have a*=2500, and 2¢—1=99;
therefore 492=2500—99=2401.

313. What we have said here may be also confirmed and
illustrated by fractions; for if we take as the root # + %=1,
the square will be, % + 12 +5=%i=1L

Farther, the square of L—1 =1 will be 1 —1+4=75.

314. When the root consists of a greater number of
terms, the method of determining the square is the same.
Let us find, for example, the square of a+b+c:

a+b+c
a+b+c

a®+ab+cc
ab+ b+ be
ac+bec+c?

a®+2ab +2ac + b* + 2bc + ¢*

We see that it contains, first, the square of each term of
the root, and beside that, the double products of those
terms multiplied two by two.

315. To illustrate this by an example, let us divide the
number 256 into three parts, 200+50+6; its square will
then be composed of the following parts:

2002=40000
507= 2500
6= 36

2 (50 x 200)=20000
2 ( 6x200)= 2400
65536 =256 x 256, or 256°.

316. When some terms of the root are negative, the
square is still found by the same rule; only we must be
careful what signs we prefix to the double products. Thus,
(a—b—c)*=a*+b*+*—2ab—2ac+2bc; and if we repre-
sent-the number 256 by 300—40—4, we shall have,
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Positive Parts. Negative Parts.
3002=90000 2(40 x 300)=24000
40°= 1600 2( 4 x 300)= 2400
2(40x4)= 320
4= 16 —26400
91936
~-26400

B 65636, the square of 256 as before.

CHAPTER VII.

Of the Extraction of Roots applied to Compound
Quantities.

317. In order to give a certain rule for this operation,
we must consider attentively the square of the root a4-b,
which is a?+2ab+ 0%, in order that we may reciprocally
find the root of a given square.

318. We must consider therefore, first, that as the
square, a?+2ab-+b%, is composed of several terms, it is
certain that the root also will comprise more than one
term ; and that if we write the terms of the square in such
a manner, that the powers of one of the letters, as a, may
go on continually diminishing, the first term will be the
square of the first term of the root; and since, in the
present case, the first term of the square is a?, the first
term of the root must be a.

319. Having therefore found the first term of the roet,
that is to say, a, we must consider the rest of the square,
namely, 2uab + 2, to see if we can derive from it the second
part of the root, which isb. Now, this remainder, 2ab+
b%, may be represented by the product, (2a¢+ )b ; where-
fore the remainder having two factors, (24 +5), and b, it
is evident that we shall find the latter, b, which is the
second part of the root, by dividing the remainder,
2ab+b*, by 2a+5b.

320. So that the quotient, arising from the division of the
above remainder by 2a+b, is the second term of the root
required ; and in this division we observe, that 2a is the
double of the first term a, which is already determined : so
that although the second term is yet unknown, and it is
necessary, for the present, to leave its place empty, we may
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nevertheless attempt the division, since in it we attend only
to the first term 2a; but as soon as the quotient is found,
which in the present case is 4, we must put it in the vacant
place, and thus render the division complete.

321. The calculation, therefore, by which we find the
root of the square a?+2ab + 5%, may be represented thus:
a*+2ab+b¥a+b

2

a

2a+ b)2ab + b*
2ab + b*

0.

322. We may, also, in the same manner, find the
square root of other compound quantities, provided they
are squares, as will appear from the following examples :

a*+6ab+982 (a+3b

a?

2a+3b) 6ab +95°
Gab +95b°

0.

4a®—4ab+b* (20—1b
4a?

4a—0b) —4ab+ b
—4ab 4+ b*

0.
9p° +24pq +164* (3p +4g
9p?
6p +4q) 24pg + 1647
24pq + 164*
0.
2522—60x 436 (br—6
252°

102—6) —60z+36
—60xr+36

0.
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323. When there is a remainder after the division, it is
a proof that the root is composed of more than two terms.
We must in that case consider the two terms already found
as forming the first part, and endeavour to derive the other
from the remainder, in the same manner as we found the
second term of the root from the first. The following
examples will render this operation more clear.

a?+2ab—2ac—2bc+b*+ca+b—c

a’

2a + b)2ab—2ac—2bc + b? + ¢*

2ab +b°
20 +20—c) —2ac—2bc+c?
—2ac—2bc +¢*

0.

a*+2a®+3a*+2a+1 (a*+a+1
a4-

2a% +a) 2a° +3a®
2+ &

22 +2a+1) 2a®+2a+1
2a2+4+2a+1

0.
a*—4a3%b + 8ab® +4b* (a®—2ab—2b°

at

2a?—2ab) —4a°b + 8ab? + 4b*
—4a3b + 4a%b*

2at—4ab—~2b%) —4a?b®+8ab®+4b*
—4a?b? +8ab® +4b*

0.
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af—6adh + 15ab2 — 20030 + 15a2b* —6ab® + b9
b (a3 —3a%b + 3ab*—b*

2a*—3a%h) —6a’b + 15a4b*
—~6a’b+ 9a*d*

2a’—6a2b + 3ab*)6a*62—20a%b® + 15a2b*
6a*b*— 18a%b + 9a2b*

24’ —6a?b + 6ab*— b3) —2a®b® + 6a%b* —6ab’ + b°
—2a3b® + 6a2b*—6ab’ + bb

0.

324. We easily deduce from the rule which we have
explained, the method which is taught in books of
arithmetic for the extraction of the square root, as will
appear from the following examples in numbers :

520 (23 2304 (48
4 16
43) 129 88) 704
129 704
0. 0.
4096 (64 9604 (98
36 81
124) 496 188) 1504
496 1504
0. 0.
15625 (125 998001 (999
1 81
22) 56 189) 1880
44 1701
245) 1225 1989) 17901
1225 17901
0. 0.

325. But when there is a remainder after all the figures
have been used, it is a proof that the number proposed is
not a square; and consequently, that its root cannot be
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assigned. In such cases, the radical sign, which we
before employed, is made use of. This is written before
the quantity, and the quantity itself is placed between
parentheses, or under a line; thus, the square root of
a?+b* is represented by 1/(a®+5%), or by +/a*+6%; and
v/ (1—a?%), or 1/1 —a?, expresses the square root of 1—z2
Instead of this radical sign, we may use the fractional
exponent 1, and represent the square root of a?-+42%, for

instance, by (a?+1? ,%, or by a*+ be]%.

CHAPTER VIIIL
Of the Calculation of Irrational Quantities,

326. When it is required to add together two or more
irrational quantities, this is to be done, according to the
method before laid down, by writing all the terms in suc-
cession, each with its proper sign: and, with regard to
abbreviations, we must remark that, instead of v a+ v/ a,
for example, we may write 2./ a; and that 4/a— v/ a=0,
because these two terms destroy one another. Thus, the
quantities 3+ 42 and 1+ ./2, added together, make
44+2.,2, or 4+ 8; the sum of 543 and 4— /3,
is 9; and that of 2./3+43+/2 and 4/3—4/2, is 3/3+
2v2.

327. Subtraction also is very easy, since we have only
to add the proposed numbers, after having changed their
signs ; as will be readily seen in the following example,
by subtracting the lower line from the upper.

4— 4/2+2¢/3—345+416
1+24/2—24/3—51/5+64/6

3-312+413+2v5—2¢6
328. In multiplication, we must recollect that ./a
multiplied by +/a produces a; and that if the numbers
which follow the sign ./ are different, as @ and b, we
have ./ab for the product of ./a multiplied by ./b.
After this, it will be easy to ealculate the following
examples :
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14+v2 44242
1+v2 2— v2
1+.v2 8442
V242 —4/2—4
14+2v242=3+24/2. 8—4=4,

329. What we have said applies also to imaginary
quantities; we shall only observe farther, that + —a
multiplied by »/ —a produces —a. If it were required to
find the cube of —14 &/ —3, we should take the square
of that number, and then multiply that square by the
same number; as in the following operation :

—1+v-=3
—1+v-3
1—v -3
—v—3-3
1-2¢/~3—-3=—-2—-2-3
-1+ v-3
242y -3
-2 —3+6
2+6=8.

330. In the division of surds, we have only to express
the proposed quantities in the form of a fraction ; which
may be then changed into another expression having a
rational denominator; for if the denominator be a+ 15,
for example, and we multiply both this and the numerator
by a—4/b, the new denominator will be a*—b, in which
there is no radical sign. Let it be proposed, for example,
todwme3+2¢2by14-¢2;wedmuﬁmthme%iggé

s
then multiplying the two terms of the fraction by 1—./2,
we shall have for the numerator :

3+2v2
1—- v2

3422
—3y2—4

3—y2—d=—y2-1;
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and for the denominator:

1+ /2
1—v2
14+ 4/2
—2=2
1—2=-1.
. .o—a/2—1 . .
Our new fraction therefore is —1 and if we again

multiply the two terms by —1, we shall have for the
numerator 4/2+1, and for the denominator +1. Now,
it is easy to shew that 4/2+1 is equal to the proposed
3+242 . . 1

m; for 1/2+1 being multiplied by the
divisor 1+ 4/2, thus,

1+ 2

14 v2

1+v2
V2+2

fraction

we have 1 4+2./2+2=3+2.2.

Another example. Let 8 —5./2 be divided by 3—2;/2.
This, in the first instance, is 3—_—2—5—3; and multiplying
the two terms of this fraction by 3+2.:/2, we have for
the numerator,

8—-5v2
3+2v2

24—15y2
16./2—-20

24+ v2—-20=4+v2;
and for the denominator,

3—2.v2

3+2v2

9—-6.2
6,/2—-8

9—8=1.
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Consequently the quotient will be 4+ /2. The truth of
this may be proved, as before, by multiplication ; thus,
4+ v2
3—-2v2

1243172
—8.,2—4
12—5,2—4=8-56.2.
331. In the same manner, we may transform irrational
fractions into others, that have rational denominators. If

. 1 N
we have, for example, the fraction 5206 and multiply its

numerator and denominator by 5+24/6; we transform it

into this, 5+?"/6 =5+42./6; in like manner, the fraction

:%—Wg assumes this form, 2+2_“{1—3=1+i/2—3.
VO6+1v5  11+2430

Also, 6= 5= 1 = 11+2.:30.

332. When the denominator contains several termns, we
may, in the same manner, make the radical signs in it

. . . 1
vanish one by one. Thus, if the fraction JT0—v3—3
be proposed, we first multiply these two terms by /10
V104 v/2+ 3

+22+41/3, and obtain the fraction 5—26 H

then multiplying its numerator and denominator by 5 +2
A/ 6, we have 5,/10+11./24+9yv3+24,60.

CHAPTER IX.
Of Cubes, and of the Extraction of Cube Roots.

333. To find the cube of a+ b, we have only to
multiply its square, a? +2ab +b%, again by a+b, thus;
a? +2ab+ b*
a +b

@ +2a%b +ab®
a*b +2ab* + b

and the cube will be a® + 3a2b + 3ab? + b°
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We see therefore that it contains the cubes of the two
parts of the root, and, beside that, 3% +3ab?; which
quantity is equal to (3abd) x (a+b); thatis, the triple pro-
duct of the two parts, @ and b, multiplied by their sum.

334. So that whenevera root is composed of two terms, it
is easy to find its cube by thisrule: for example, the num-
ber 5=3 +2; its cube is therefore 27 +8 + (18 x 5)=125.

And if 74+3=10 be the root; then the cube will be
343 +27 + (63 x 10)=1000.

To find the cube of 36, let us suppose the root 36=30
+6, and we have for the cube required, 27000+216+
(540 x 36) = 46656.

335. But if, on the other hand, the cube be given,
namely, a®+3a®h+ 3ab® + 1%, and it be required to find its
root, we must premise the following remarks :

First, when the cube is arranged according to the
powers of one letter, we easily know by the leading term
a®, the first term a of the root, since the cube of it is a®;
if, therefore, we subtract that cube from the cube pro-
posed, we obtain the remainder, 3a%b+3ab®+ 5%, which
must furnish the second term of the root.

336. But as we already know, from Art. 333, that the
second term is+ b, we have principally to discover how it
may be derived from the above remainder. Now, that re-
mainder may be expressed by two factors, thus, (3a*+3ab
+5%) x (b); 1if, therefore, we divide by 3a*®+3ab+ 0%,
we obtain the second part of the root +5, which is re-

uired.

1 337. But as this second term is supposed to be unknown,
the divisor also is unknown; nevertheless we have the first
term of that divisor, which is sufficient : for it is 3¢, that
is, thrice the square of the first term already found ; and by
means of this, it is not difficult to find also the other part,
b, and then to complete the divisor before we perform the
division ; for this purpose, it will be necessary to join to
3a? thrice the product of the two terms, or 3ab, and 5%, or
the square of the second term of the root.

338. Let us apply what we have said to two examples
of other given cubes.

a®+12a° +48a 464 (a+4
a3

3a2+12a +16) 12a +48a + 64
12a° + 48a +- 64

0.
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@ —6a’® 4 15a*—20a + 15a2—6a+1(a?—2a + 1
af
3a*—6a® +4a?)—6a’ + 15a* —20a°
—6a®+12a*— 8a°

304 — 124+ 12a2 + 3a?—6a+ 1) 3a*—124°+ 1502 —6a +1
3a*—124° + 15a*—6a + 1
0.

339. The analysis which we have given is the founda-
tion of the common rule for the extraction of the cube root
in numbers. See the following example of the operation
in the number 2197 :

2197 (10 +3=13
1000

30011197
90

9
3990|1197
0.
Let us also extract the cube root of 34965783 :
34965783(300 420 + 7, or 327
27000000

270000 :
18000 7965783

400
288400| 5768000
307200, 2197783

6720
49

313969| 2197783
0.
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CHAPTER X.
Of the kigher Powers of Compound Quantities.

340. After squares and cubes, we must consider higher
powers, or powers of a greater number of degrees; which
are generally represented by exponents in the manner be-
fore explained : we have only to remember, when the root
is compound, to enclose it in a parenthesis: thus (a+5)°
means that a+b is to be raised to the fifth power, and
(a—0b)5 represents the sixth power of a—b, and so on.
We shall in this chapter explain the nature of these
powers.

341. Let a+b be the root, or the first power, and the
higher powers will be found, by multiplication, in the
following manner:

(a+b)=a+b
a+b

a?+ab
ab+ b

(a+b)=a’+2ab+b?
a+b

@+ 2a°b + ab®
a®h +2ab? + b*

(a+bY'=a*+3a%b + 3ad? + b3
a+b

at+3a’b + 3a2b? + ab®
@b + 3a2b? + 3ab® + bt

(a+byr=a*+ 44 + 6022 + 4ab® + b4
a +b

@ +4a*b + 643b? + 4(¢ngr+ ab?
@b +4a7b° + 602 + 4ab* + b

@ + 5% + 1008 4+ 10a°F + Babt + b
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(a +b)°=a’+ 5a*b +10ah° + 10a2b® + Had* 4 b°
a+b

a® + 5a°b + 10a*02 + 104383 + 5a2b* + ab®
&b+ 5a*b® +10a3b® + 1002b* + 5ab® + b6

(a+ b)b=ab + 6a%b + 15a*b% + 20a°6® + 15a°b* +-6ab® -+ bS5, &c.

342. The powers of the root a—b are found in the same
manner : and we shall immediately perceive that they do
not differ from the preceding, excepting that the 2d, 4th,
6th, &c. terms are affected by the sign minus.

(a—b)y'=a —b
a—b
a?—ab
—ab 4 b2
(a—b)=a*—2ab+b*
a —b
a®—2a%b+ ab?
— ath+2ab*+ b

(a—b)Y’=a®*—3a% 43;;2—23
a—>b

a*—3a3b + 3a%b*— ab®
— a®b+3a2b%—3ab® +b*

(a —b)*=a*—4a%h + 6a%b® —4ab® + b*
a—b

a®—4a*b + 6a*b*—4a*b> + ab*
— a*b+4a’h?*—6a2b® +4ab*—b°

(a—Db)>=a’—5a*b + 10a°b?— 10a%b® + bab* — b°
a—b

aS—5a%b + 10a*b?*— 10a%0> + Ha?h*— ab’®
— a%h+ 5a*h?*—10a°b* + 10a2b* —5ab® + b°

(a— b)Y =ab—6ab + 15a*b*— 20a’p® + 15a%b* — 6ab® + b0, &e.

Here we see that all the odd powers of b have the sign
—, while the even powers retain the sign +. The reason
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of this is evident ; for since —b is a term of the root, the
powers of that letter will ascend in the following series,
—b, +b, —b% +b*, —b% +b5 &c. which clearly shews
that the even powers must be affected by the sign -+, and
the odd ones by the contrary sign —.

343. Animportant question occurs in this place ; namely,
how we may find, without being obliged to perform the
same calculation, all the powers either of a +5, or a—b.

We must remark, in the first place, that if we can
assign all the powers of @+ b, those of a—b are also found ;
since we have only to change the signs of the even terms,
that is to say, of the second, the fourth, the sixth, &c. The
business then is to establish a rule, by which any power of
a+b, however high, may be determined without the ne-
cessity of calculating all the preceding powers.

344. Now, if from the powers which we have already
determined, we take away the numbers that precede each
term, which are called the coefficients, we observe in all
the terms a singular order : first, we see the first term a of
the root raised to the power which is required ; in the fol-
lowing terms, the powers of a diminish continually by unity,
and the powers of b increase in the same proportion; so
that the sum of the exponents of ¢ and of b is always the
same, and always equal to the exponent of the power
required ; and, lastly, we find the term b by itself raised
to the same power. If therefore the tenth power of a+b
were required, we are certain that the terms, without their
coefficients, would succeed each other in the following
order; a'®, a%, a®b?, a'b%, ab*, a’b®, a*bl, a*b’, a*b®, ab?, b°.

345. It remains therefore to shew how we are to de-
termine the coeflicients, which belong to those terms, or
the numbers by which they are to be multiplied. Now,
with respect to the first term, its coefficient is always
unity ; and, as to the second, its coefficient is constantly
the exponent of the power. With regard to the other
terms, it is not so easy to observe any order in their
coefficients; but, if we continue those coefficients, we
shall not fail to discover the law by which they are
formed ; as will appear from the following Table :
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Powers. Coefficients.

] 1,1

2 ciie it 1, 2, 1
3d........ ceeeee e 1, 3, 3, 1
4th......covvnn. 1,4,6,4,1
Sth............ 1, 5, 10, 10, 5, 1
Gth.......... 1, 6, 15, 20, 15, 6, 1
7th........ 1,7, 21, 35, 35,21, 7, 1
8th...... 1, 8, 28, 56, 70, 56, 28, 8, 1

9th.... 1,9, 36, 84, 126, 126, 84, 36, 9, 1
10th 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, &e.

We see then that the tenth power of a+b will be a'®+
1049 + 45a°b* + 120a70% + 210a%* + 252a°0° + 210a*b6 +
120436 +45a°0° + 10ab? + b*°.

346. Now, with regard to the coefficients, it must be ob-
served, that for each power their sum must be equal to the
number 2 raised to the same power; forlet a=1and b=1,
then each term, without the coeflicients, will be 1; conse-
quently, the value of the power will be simply the sum of
the coefficients. This sum, in the preceding example, is
1024, and accordingly (1 +1)1°=21°=1024. Itisthesame
with respect to all other powers; thus, we have for the

Ist 141=2=2,

2d 1+2+1=4=22,

3d 14+3+3+1=8=23,

5th 14+5+104+1045+1=32=2°

6th 14+6+154+2041546+1=064=25,

7th 147421 +354+35+4+21+4+7+1=128=27, &c.

347. Another necessary remark, with regard to the co-
efficients, is, that they increase from the beginning to the
middle, and then decrease in the same order. In the even
powers, the greatest coeflicient is exactly in the middle;
but in the odd powers, two coefficients, equal and greater
than the others, are found in the middle belonging to the
mean terms.

The order of the coeflicients likewise deserves particular
attention ; for it is in this order that we discover the means
of determining them for any power whatever, without cal-
culating all the preceding powers. We shall here explain
this method, reserving the demonstration however for the
next chapter.

348. In order to find the coefficients of any power pro-
posed, the seventh for example, let us write the following
fractions one after the other:

3 o

T 6 5 4 3.2 |1
Tr 2y %9 4> 51 Er T
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In this arrangement, we perceive that the numerators
begin by the exponent of the power required, and that they
diminish successively by unity; while the denominators
follow in the natural order of the numbers, 1, 2, 3, 4, &e.
Now, the first coefficient being always 1, the first fraction
gives the second coefficient; the product of the first two
fractions, multiplied together, represents the third coeffi-
cient; the product of the three first fractions represents
the fourth coefficient, and so on. Thus, the

Ist coefficient is 1 = 1
Y DT ! =7
3d e, 73 =21
Aheenenenn.... 782 =35
Btheeeenenenn.. Z:g:gé 3 =35
(0 S L KL 2 =21
Theesernnnnnn. Z:g:g:::g:g 1 =7
8theeneannnnnn. 3:5:2:3:2:6:7= 1

349. So that we have, for the second power, the fractions
2, 1; whence the first coefficient is 1, the second $=2, and
the third 2x 4 =1.

The third power furnishes the fractions 4, %, 1; where-

fore the

1st coeflicient =1 ; 2d=3=3;
3d=3.%£=3; and 4th=3.%2.1=1.
We have, for the fourth power, the fractions 4, 4, %, 4,

consequently, the
1st coefficient =1
2d4=4; 3d4.4=6;
4th4.3.4=4; and 5th$.3.%3.1=1.

350. This rule evidently renders it unnecessary to find
the coefficients of the preceding powers, as it enables us to
discover immediately the coefficients which belong to any
one proposed. Thus, for the tenth power, we write the
fractions Y0, ¢, £, 1, &, 4, 4, 3, %, 1, by means of which
we find the
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1st coefficient =1

2d =12=10; 7th=252.56—=210;
3d = ]0.%: 45; 8th =210. 4 =120;
4th= 45.8=120; 9th=120. § =45;
5th=120.%1=210; 10th= 45. ¢ =10;

6th=210.8=252; and 11th= 10.4& =1.

351. We may also write these fractions as they are,
without computing their value; and in this manner it is
easy to express any power of a+b. Thus, (a+b)®=
100.99.98 .97

323 i a%b* 4, &c.* Whence the law of the

succeeding terms may be easily deduced.

CHAPTER XI.

Of the Transposition of the Letters, on which the demon-
stration of the preceding Rule is founded.

352. If we trace back the origin of the coefficients which
we have been considering, we shall find, that each termis
presented as many times as it is possible to transpose the
letters of which that term is composed ; or, to express the
same thing differently, the coefficient of each term is equal
to the number of transpositions which the letters composing
that term admit of. In the second power, for example, the
term ab is taken twice, that is to say, its coefficient is 2;
and in fact we may change the order of the letters which
compose that term twice, since we may write ab and da.

* Or, which is a more general mode of expression,

< (n—1
(a+dy=a"+ '%a"—lb+ ’%—)aﬂ—ebz

+ n. (nl—-lz) :(;_2)11"—31;3-{- n. (n—ll) én-;221 (n—3) -
n.(n—1).(n—2).(n—=3)..... 1

&e..... 1.2.3 ... "

This elegant theorem for the involution of a compound quantity
of two terms, evidently includes all powers whatever; and we
shall afterwards shew how the same may be applied to the ex-
traction of roots.—See Art. 361. ’
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The term aa, on the contrary, is found only once, and
here the order of the letters can undergo no change, or
transposition. In the third power of a+ b, the term aab
may be written in three different ways; thus, aab, aba,
baa; the coefficient therefore is 3. In the fourth power,
the term a®b or aaab admits of four different arrangements,
eaab, aaba, abaa, baaa; and consequently the coeflicient
is 4. The term aabb admits of six transpositions, aabb, abba,
baba, abab, bbaa, baab, and its coeflicient is 6. It is the
same in all other cases.

353. In fact, if we consider that the fourth power, for
example, of any root consisting of more than two terms, as
(@+b+c+d), is found by the multiplication of the four
factors, (a+b+c+d) (a+b+c+d) (a+b+c+d) (a+b
+c+d), we readily see, that each letter of the first factor
must be multiplied by each letter of the second, then by
each letter of the third, and, lastly, by each letter of the
fourth. So that every term is not only composed of four
letters, but it also presents itself, or enters into the sum,
as many times as those letters can be differently arranged
with respeet to each other; and hence arises its coefficient.

354. It is therefore of great importance to know, in how
many different ways a given number of letters may be ar-
ranged’; but, in this inquiry, we must particularly consider,
whether the letters in question are the same, or different :
for when they are the same, there can be no transposition
of them ; and for this reason the simple powers, as a?, a3,
a*, &c. have all unity for their coefficients.

355. Let us first suppose all the letters different; and,
beginning with the simplest case of two letters, or ab, we
immediately discover that two transpositions may take
place, namely, ab and ba.

If we have three letters, abc, to consider, we observe
that each of the three may take the first place, while the
two others will admit of two transpositions; thus, if a be
the first letter, we have two arrangements abe, ach; if b
be in the first place, we have the arrangements bac, bca;
lastly, if ¢ occupy the first place, we have also two ar-
rangements, namely, cab, cba; consequently the whole
number of arrangements is 3 x 2=6.

If there be four letters, abed, each may occupy the first
place; and in every case the three others may form six
different arrangements, as we have just seen ; therefore the
whole number of transpositions is 4 x6=24=4x3 x
2x1,

If we have five letters, abcde, each of the five may be the
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first, and the four others will admit of twenty-four trans-
positions ; so that the whole number of transpositions will
be 5x24=120=56x4x3x2x1.

356. Consequently, however great the number of letters
may be, it is evident, provided they are all different, that
we may easily determine the number of transpositions, and,
for this purpose, may make use of the following Table:

Number of Letters. Number of Transpositions.
) 1=1.
52 2.1=2.

S 2 3.2.1=6.

L 4.3.2.1=24.

L5 J N 5.4.3.2.1=120.

G vieerennnnnnn. 6.5.4.3.2.1=1720.
A 7.6.5.4.3.2.1=5040.
8., 8.7.6.5.4.3.2.1=40320.
9...... 9.8.7.6.5.4.3.2.1=362880,
10..10.9.8.7.6.5.4.3.2.1=%628800

357. But, as we have intimated, the numbers in this
Table can be made use of only when all the letters are dif-
ferent ; for if two or more of them are alike, the number of
transpositions becomes much less; and if all the letters are
the same, we have only one arrangement: we shall there-
fore now shew how the numbers in the Table are to be
diminished, according to the number of letters that are
alike.

358. When two letters are given, and those letters are
the same, the two arrangements are reduced to one, and
consequently the number, which we have found above, is
reduced to the half ; that is to say, it must be divided by 2.
If we have three letters alike, the six transpositions are
reduced to one; whence it follows, that the nambers in the
Table must be divided by 6=3 .2 .1; and, for the same
reason, if four letters are alike, we must divide the num-
bers found by 24, 0r 4.3 .2 .1, &c.

It is easy therefore to find how many transpositions the
letters aaabbc, for example, may undergo. They are in
number 6, and consequently, if they were all different, they
would admitof 6 . 5.4 . 3. 2.1 transpositions ; but since
a is found thrice in those letters, we must divide that num-
ber of transpositions by 3.2.1; and since b occurs twice,
we must again divide it by 2.1: the number of trans-
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. . . 6.5.4.3.2.1
positions required will therefore be 35 1.3 1 =5.

4 .3=060.

359. We may now readily determine the coefficients of
all the terms of any power; as for example of the seventh
power, (a+b).

The first term is a7, which occurs only once; and as all
the other terms have each seven letters, it follows that the
number of transpositions for each term would be 7.6 .5.
4.,3.2.1, if all the letters were different ; but since in the
second term, afh, we find six letters alike, we must divide
the above product by 6 .5.4.3.2.1, whence it follows

. .. 7.6.5.4.3.2.1 7
that the coefficient is 65 432 1T -7 7.

In the third term, a®b?, we find the same letter a five

times, and the same letter b twice; we must therefore

divide that number first by 5.4.3.2.1, and then by

. ,7.6.5.4.3.2.1
2.1; whence results the coeflicient 53332 121

18y
The fourth term a*b® contains the letter a four times, and
the letter b thrice; consequently, the whole number of the
transpositions of the seven letters must be divided, in the
first place, by 4.3 . 2. 1, and secondly, by 3.2 .1, and
the coefficient becomes—‘7 6.56.4.3.2.1.7.6.5
T4.3.2.1.3.2.171.2.%

In the same manner, we ﬁnd%for the coefficient
of the fifth term, and so of the rest; by which the rule
before given is demonstrated.*

360. These considerations carry us farther, and shew us

#* From the Theory of Combinations, also, are frequently de-
duced the rules that have just been considered for determining
the coefficients of terms of the power of a binomial ; and this is
perhaps attended with some advantage, as the whole is then
reduced to a single formula.

In order to perceive the difference between permutations and
combinations, it may be observed, that in the former we inquire
in how many different ways the letters, which compose a certain
formula, may change places; whereas, in combinations, it is
only necessary to know how many times these letters may be
taken, or multiplied together, one by one, two by two, three by
three, &e.
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also how to find all the powers of roots composed of more
than two terms.* We shall apply them to the third power
of a+b+c; the terms of which must be formed by all
the possible combinations of three letters, each term
having for its coefficient the number of its transpositions,
as shewn, Art. 352.

Here, without performing the multiplication, the third
power of (a+b-+c) will be, a3+ 3a% + 3ac + 3ab? +6abe
+3ac? + b3 4 3b% +3bc* + ¢’

Suppose a =1, b =1, ¢ =1, the cube of 14141, or
of 3, will be 143 +34+3+6+3+1+3+34+1=27;

Tet us take the formula abc; here we know that the letters
which compose it admit of six permutations, namely, abe, ach,
bac, bea, cab, cba: but as for combinations, it is evident that by
taking these three letters one by one, we have three combinations,
namely, a, b, and ¢; if two by two, we have three combinations,
ab, ac, and be; lastly, if we take them three by three, we have
only the single combination abe.

Now, in the same manner as we prove that » different things
admit of 1 X 2 x 3 x 4..n different permutations, and that if
r of these n things are equal, the number of permutations is
Ix2x3x4..n

I1x2x3x%x ..r
nx(n—1)x(n—2)...(n—r+1)
I1x2x3..r
that we may take r of these n things in so many different ways.
Hence, if we call n the exponent of the power to which we wish
to raise the binomial ¢+, and r the exponent of the letter &
in any term, the coefficient of that term is always expressed
nx(n—1)x (n'—Q. (n—r4 1).. Thus, in the

I1x2x3....r
example, Article 359, where n="7, we have a5 for the third
term, the exponent » = 2, and consequently the coefficient =
7x6
1x2’
= i—-><6—x,5, and so on; which are evidently the same results as

1x2x3 ’
the permutations.

For complete and extensive treatises on the theory of com-
binations, we are indebted to Frenicle, De Montmort, James
Bernoulli, &c. The last two have investigated this theory,
with a view to its great utility in the calculation of proba-
bilities.—F. T.

* Roots, or quantities, composed of more than two terms, are
called polynomials, in order to distinguish them from binomials,
or quantities composed of two terms.—F. T.

; so likewise we prove that » things may be taken

number of times; or

r by r,

by the formula

for the fourth term we have r =3, and the coefficient
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which result is accurate, and confirms the rule. Butif we
had supposed a=1, b=1, and ¢=—1, we should have
found for the cube of 1 +1—1, that isof 1,

1+3-3+3—6+3+1—-3+3—1=1, which is a still
further confirmation of the rule.

CHAPTER XII.

Of the Expression of Irrational Powers by Infinite Series.

361. As we have shewn the method of finding any
power of the root a+b, however great the exponent may
be, we are able to express, generally, the power of a+b,
whose exponent is undetermined ; for it is evident that if
we represent that exponent by z, we shall have by the rule
already given (Art. 348 and the following) :

n n—_——la"—‘~’59+" n—1 n—2

N o o _n_ n—1 - L
(a+b)---a+1 b+1.2 1" 3 "3
nszs 0 =1 n—=2 n-3 ..
ub+1.2.3.4d b* + &e.

362. If the same power of the root a—5 were required,
we need only change the signs of the second, fourth, sixth,
&c. terms, and should have

_ P n_@ n—1 2 n—l n—QQ_ZI_' TL-—] 72—-2
(a—=0bY=ua % b+1.—2a b 1" "3
nsps L 1 n—1 n~2 n—3 .
ab+].2.3.4ab &e.

363. These formule are remarkably useful, since they
serve also to express all kinds of radicals ; for wehave shewn

that all irrational quantities may assume the form of powers
1 1
whose exponents are fractional, and that /e =a*, ¥/a=a?3,
1
and {/a=a*, &c.: we have, therefore,

1 1
V(@a+b)=(a+b)*; ¥(a+b)=(a+b)*;
and ¥/(a+b)=(a+b)}, &c.

Consequently, if we wish to find the squareroot of @ + 5,
we have only to substitute for the exponent n the fraction
4, in the general formula, Art. 361, and we shall have
tirst, for the coefficients,
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n_, n—=1 L.n=2 ,.n—3 5. n—4
I=® 2 TTeT3 T Ty TR T T
"= _ Then, @* = a4 = 4/a and o™
_Tﬁi‘_G—'—_Tz en)a—ag—Vaan a =
! ;@ 2= B S &c. or we might express
Vva’ ay'a’ atya,
those powers of @ in the following manner: ¢" = 1/a; a*!
=1/(,l. an—2=£=1/a.an—-3=a_l=‘/a. an—‘&____ a_" =
a’ a? a?’ a’ a*’ at
Va
7, &e.

364. This being laid down, the square root of @+ b may
be expressed in the following manner :
Va 1/ a

Via+b)=va+pLi_y Ve

zZ =z 1p2 2 - 4 1, 1 3p°
a 2'46 i2 2‘4'6b
a
— 1 1 3 ,5441_
2.4.6.86 4,&c.

365. 1f a therefore be a square number, we may assign
the value of 4/a, and, consequently, the square root of
a+b may be expressed by an infinite series, without any
radical sign.

Let, for example, @ = ¢?, we shall have 1/a = ¢; then

b b b b*
Vet +b)=c+4%. L. + £

- 1, P S
c g " o3 16 5 T23 P
&e

c
We see, therefore, that there is no number, whose
square root we may not extract in this manner; since
every number may be resolved into two parts, one of
which is a square represented by c2. If, for example, the
square root of 6 were required, we make 6=4+2, conse-
quently, ¢?=4, c=2, b=2; whence results
V6 =2+ § — 45 + 35 — s, &e.

If we take only the two leading terms of this series, we
shall have 2} = 4, the square of which, %7, is 4 greater
than 6; but if we consider three terms, we have 21 =44,
the square of which, 1522, is still ;L3 too small.

366. Since, in this example, § approaches very nearly to
the true value of 1/6, we shall take for 6 the equivalent
quantity 25 — 1 ; thus 2 =%%; c =4, b=1; and cal-
culating only the two leading terms, we find 4/ 6=5+1.

Ta_5 1 % 5 _ 31— 49
5. 2 2 5 2 20 — 20
2 2

; the square of which



122 ELEMENTS SECT. II.

fraction being 2401, it exceeds the square of 4/6 only
by +¥5-

Now, making 6 = 242} — ;1,,s0 that c =45 and b =
— 435 and still taking only the two leading terms, we
1

— 1

have 46 =42 + L. 42;:%—%.%:

20 20

=4801, the square of which is gaoa060l o and 6, when

reduced to the same denominator, is = 23022600 : the
error therefore is only 5551545-

367. In the same manner, we may express the cuberoot of

a+ b by an infinite series; for since 3/(a+b)=(a+ b)Y, we

shall have in the general formula, n=1, and for the coeffi-

(=2
e

9

1
0 1960

.o

'«OQ_‘N}

c1ents,T=_‘li; 3 =_J5;__3_=_0; - =—%;
ng4 = — 11, &c. and, with regard to the powers of a, we

3 3 3
‘\/a.an—g_\/a.an—:%:__‘\ég
s - a? H a3’

3 3
&c. then ¥/ (a + 8) =¥ a +%_biaa___)§.bz:{1_2a+%_5_f

shall have ¢" = Y/a; a*' =

3 3
BYE o Ml g
* a3 243 ° a-lv ’ ¢

368. If a therefore be a cube, or a=c¢3, we have 3/ a=

¢, and the radical signs will vanish ; for we shall have

b b b*
?\/ (Cs+b)=C+J§.—Ez——-b'.—c§+§5T.—c§—1ﬁ%. El—li
+, &c.

369. We have therefore arrived at a formula, which
will enable us to find, by approxzimation, the cube root of
any number; since every number may be resolved into
two parts, as ¢®+ b, the first of which is a cube.

If we wish, for example, to determine the cube root of
2, we represent 2by 1 +1,s0 thatc=1and b=1; con-
sequently, /2 =1 + 1 — § + &, &c. The two leading
terms of this series make 14 = 4, the cube of which £4% is
too great by 12: let us therefore make 2 = 4 — 19, we

have ¢ =4 and b = — 19, and consequently 3/ 2 =4 +
—10
27 . 1 = 01
1. i these two terms give 4 — -5 = %%, the cube of
which is #3311 : but, 2 = 748496, so that the error is

519%4% ; and in this way we might still approximate the
faster in proportion as we take a greater number of terms.*

* In the Philosophical Transactions for 1694, Dr. Halley has
given a very elegant and general method for extracting roots of
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CHAPTER XIII.

Of the Resolution of Negative Powers.

370. We have already shewn, that%may be expressed

by a!; we may therefore express -—1—- also by (a + &) ;
d y PresS o ¥ J

so that the fraction ;:-_b may be considered as a power of
a+b, namely, that power whose exponent is — 1 ; from
which it follows that the series already found as the value
of (a+b)" extends also to this case.

371. Since, therefore, Zz—-il-_b is the same as (a + b)7%, let

us suppose, in the general formula, [Art. 361.]n = —1;
and we shall first have, for the coefficients, 7{ = =1;

n—1 n—2 —3
> =_1;_3_=_..1;n4 = — 1, &c. And, for the
1

powers of a, we have ¢ = a* = rt l=qa? =

1 1

1 1
| - o g"3 — . 1=~
33 @ = A = a4,&c sothat(a+Db) ==

2 3 4 5
% % _b(;‘. % %—%,&c.whichisthesame

series that we found before by division.

1 ) . _
372. Farther, @Iy being the same with (a+5)~2, let

any degree whatever by approximation; where he demonstrates
this general formula,
- m—2 a? 25
¥ (a" k)= m—14tv ((m— l)’li (m2—m)a™1 ) ’

Those who have not an opportunity of consulting the Philo-
sophical Transactions, will find the formation and the use of this
formula explained in the new edition of Lecons Elementaires
de Mathematiques by M. D’Abbé de la’ Caille, published by
M. L’Abbé Marie. F.T. See also. Dr. Hutton’s Math. Dic-
tionary.
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us reduce this quantity also to an infinite series. For this
purpose we must suppose n=—2, and we shall first have

—1 —2
for the coefficients, = 1=—1; n2( =—1; 2 - =—1%;
n—3

=— 3, &c.; and, for the powers of a, we obtain a"=

1 1 1 1
g e gh =2 . gn=3— — ‘ o
;@ A OT= e _a5’&c' We have there

a?
Y 1 1 20 2.3.0¢ 2.3.4.58
fore (a+by~= a a2 a3+1.2.a“_1.2.3.a5
2.3.4.5. b 2.3 2.3.4

ke Now, $=25 175=3 33
1

=35, &c. and consequently, ——— L —2

(@+by " a?
b b? b3 bt ~ b6
(F+3Z‘i_ $+5ZLE—6$+/E” ke,

wfo

NS oa-h'
.4:-01

373. Let us proceed, and suppose n=—3, and we shall

have a series expressing the value of ———, or of (a +5)3.

(a+b)
Here the coefficients will be = =—3$; 12_—_1=_%;n"—2
1 2 23
=—3, &c. and the powers of ¢ become, a"=i3; a =
a
1 weo_ 1 . . 11 3.b
PRt &c. which gives (_a—-i-—b?_a?_m_*_
3.4.0° 3.4.5. b 3.4.5.6.b4__1__3i 6_‘-’
124 123.8 1.234.a0- @& “atF~
b bt b b8
105 + 15— 21—(?+28&5, &e.
If now we make n=-—4; we shall have for the
. n n—1 n—2 n—3
coefficients T:—%- 5 =—4; S =—% =

1 1
S — o =1 — . 2
—1, &c. And for the powers, a = ET= o a

1 1 1 .
— A= a"‘*:ag, whence we obtain,
a

as’
1 _ 1 4 4.55° 456" 1 b
Grby @ 18T T.2.8 T.238.a “CTa %%

5
+10£)——20b +35b 56219—+,&c.

374. The d,ﬂ"elent cases that have been considered
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enable us to conclude with certainty, that we shall have,
generally, for any negative power of a+5;

I 1 m.b mm=01)0 m(m—1).(m—=2).5
(@a+by  a a1 24"+ 2.3.a™+3 ?
&c. And, by means of this formula, we may transform
all such fractions into infinite series, substituting fractions
also, or fractional exponents, for m, in order to express
irrational quantities.

375. The following considerations will illustrate this
subject still farther: for we have seen that,
1 1 5 b b b b

it e @tE TatE et

If, therefore, we multiply this series by a+ 5, the pro-

duct ought to be =1; and this is found to be true, as will
be seen by performing the multiplication :

1 b b2 B b

—_—— 4+ &e.
3 at a’d ab ’

a a* a

a+b
b b b b
-y ta—wta—az b
b b2 b b b
‘o T@te @ tE %

where all the terms but the first cancel each other.
376. We have also found that
1 1 2 3 4 ob* _ 65° &e
(at+h? a2 & ' o & ab a’
And if we multiply this series by (a+5)% the product
ought also to be equal to 1. Now, (a+b)*=0a*+ 2ab
+ 42, and
1 2b  3b*  4b®  5b* 6b’

et e v T
a® + 2ab + b*

2 3b* 463 Hb* 6b°
-t et e @ T
2b  4b* 6% 8p* 108
t T w t e T T ke
] 4 4p5
b 20 30t AP g

a? a® a*- a®
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which gives 1 for the product, as the nature of the thing

required.
377. If we multiply the series which we found for the

(a-il-b)z’ by a+b only, the product ought to

. 1 .
answer to the fraction sl be equal to the series

2 3 4
already found, namely, Zli—hl—; + 2—3 — 2; + %, &e. and this

value of

the actual multiplication will confirm.
1 26 3b* 4 56

@ @ at & 7’&0'

a+b

1 2 3b* 4 5b* &

aT@tT Tt X
+b 267 3b® 4b*
Ao Wl &e.

a? a3 a* a5 ?

2 3 4
cl_z_—% i—3 — % + 2—5, &c. as required.

SECTION III.

OF RATIOS AND PROPORTIONS.

CHAPTER 1.

Of Arithmetical Ratio, or of the Difference between two
Numbers.

378. Two quantities are either equal to one another, or
they are not. In the latter case, where one is greater
than the other, we may consider their inequality under
two different points of view : we may ask, Aow muck one of
the quantities is greater than the other? Or we may ask,
how many times the one is greater than the other? The
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results which constitute the answers to these two questions
are both called relations or ratios. We usually call the
former an arithmetical ratio, and the latter a geometrical
ratio, without these denominations, however, having any
connexion with the subject itself. The adoption of these
expressions is entirely arbitrary.

379. It is evident, that the quantities of which we
speak must be of one and the same kind; otherwise
we could not determine any thing with regard to their
equality or inequality : for it would be absurd to ask if
two pounds and three ells are equal quantities. So that
in what follows, quantities of the same kind only are to
be considered ; and since they may always be expressed
by numbers, it is of numbers only that we shall treat, as
was mentioned at the beginning.

380. When of two given numbers, therefore, it is
required how much the one is greater than the other, the
answer to this question determines the arithmetical ratio
of the two numbers; but since this answer consists in
giving the difference of the two numbers, it follows, that
an arithmetical ratio is nothing but the difference between
two numbers ; and as this appears to be a better expres-
sion, we shall reserve the words ratio and relation to
express geometrical ratio.

381. As the difference between two numbers is found by
subtracting the less from the greater, nothing can be easier
than resolving the question how much one is greater
than the other: so that when the numbers are equal,
the difference being nothing, if it be required how much
one of the numbers is greater than the other, we answer,
by nothing; for example, 6 being equal to 2 x 3, the
difference between 6 and 2 x 3 is 0.

382. But when the two numbers are not equal, as 5 and
3, and it is required how much 5 is greater than 3, the
answer is 2; which is obtained by subtracting 3 from 5.
Likewise 15 is greater than 5 by 10; and 20 exceeds 8
by 12.

y383. We have therefore three things to consider on this
subject; 1st. the greater of the two numbers; 2d. the
less; and 3d. the difference: and these three quantities
are so connected together, that any two of the three being
given, we may always determine the third.

Let the greater number be a, the less b, and the
difference d ; then d will be found by subtracting b from
a, so that d=a—b; whence we see how to find d, when
a and b are given. ’



128 ELEMENTS SECT. 111,

384. But if the difference and the less of the two num-
bers, that is, if d and & were given, we might determine
the greater number by adding together the difference and
the less number, which gives a=b+d; for if we take
from b+d the less number b, there remains d, which is
the known difference: suppose, for example, the less
number is 12, and the difference 8, then the greater
number will be 20.

385. Lastly, if beside the difference d, the greater
number a be given, the other number 4 is found by sub-
tracting the difference from the greater number, which
gives b=a—d; for if the number a—d be taken from the
greater number g, there remains d, which is the given
difference.

386. The connexion, therefore, among the numbers, q,
b, d, is of such a nature as to give the three following
results : 1st. d=a—b; 2d. a==b+d; 3d. b=a—d; and if
one of these three comparisons be just, the others must
necessarily be so also; therefore, generally, if 2=z +y, it
necessarily follows, that y=z—z, and z=z—y.

387. With regard to these arithmetical ratios we must
remark, that if we add to the two numbers o and b, any
number ¢, assumed at pleasure, or subtract it from them,
the difference remains the same; that is, if d is the
difference between a and b, that number d will also be the
difference between a+c and b+¢, and between a—c and
b—c. Thus, for example, the difference between the
numbers 20 and 12 being 8, that difference will remain
the same, whatever number we add to, or subtract from,
the numbers 20 and 12.

388. The proof of this is evident: for if a—b=d, we
have also (a+¢)— (b+c)=d; and likewise (a — ¢)—
(b—c)=d.

389. And if we double the two numbers « and 5, the
difference will also become double ; thus, when a—b=d,
we shall have 2a—2b=2d; and generally, na—nb=nd,
whatever value we give to n.
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CHAPTER II.
Of Arithmetical Proportion.

390. When two arithmetical ratios, or relations, are
equal, this equality is called an arithmetical proportion.

Thus, when a—b=d, and p—¢=d, so that the differ-
ence is the same between the numbers p and ¢, as between
the numbers a and b, we say that these four numbers form
an arithmetical proportion ; which we write thus, a—b=
P—q, expressing clearly by this, that the difference between
a and b is equal to the difference between p and q.

391. An arithmetical proportion consists therefore of
four terms, which must be such, that if we subtract the
second from the first, the remainder is the same as when
we subtract the fourth from the third; thus, the four
numbers 12, 7, 9, 4, form an arithmetical proportion,
because 12—7=9—4.

392. When we have an arithmetical proportion, as a—b
=p—g¢, we may make the second and third terms change
places, writing a—p=b—q: and this equality will be no
less true; for, since a—b=p—gq, add b to both sides, and
we have a=0+p—g¢: then subtract p from both sides,
and we have a—p=b—gq.

In the same manner, as 12—7=9—4, so also 12—9=
7—4.%

393. We may in every arithmetical proportion put the
second term also in the place of the first, if we make the
same transposition of the third and fourth; thatis,if a—b
=p—q, we have also b—a=¢g—p; for b—a is the nega-
tive of a—b, and ¢g—p is also the negative of p—g; and
thus, since 12—7=9—4, we have also, 7—12=4-9.

394. But the most interesting property of every arith-
metical proportion is this, that the sum of the second and
third term 1s always equal to the sum of the first and fourth.
This property, which we must particularly consider, is ex-
pressed also by saying that the sum of the means is equal
to the sum of the extremes. Thus, since 12—-7=9—4,
we have 74+9=12+4; the sum being in both cases 16.

* To indicate that those numbers form such a proportion,

some authors write them thus: 12.7::9.4.
K
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395. In order to demonstrate this principal property,
let a—b=p—q; then if we add to both b+¢, we have
a+q=>b+p; that is, the sum of the first and fourth
terms is equal to the sum of the second and third: and,
inversely, if four numbers, a, b, p, ¢, are such, that the
sum of the second and third is equal to the sum of the first
and fourth; that is, if b+p=a+¢, we conclude, without
a possibility of mistake, that those numbers are in arith-
metical proportion, and that ¢ —b=p—¢q; for, since
a+q=>b+p, if we subtract from both sides b + ¢, we obtain
a—b=p—gq.

Thus}: the numbers 18, 13, 15, 10, being such, that the
sum of the means (13 +15=28)is equal to the sum of the
extremes (18 +10=28), it is certain that they also form
an arithmetical proportion; and, consequently, that 18—
13=15—-10.

396. Itis easy, by means of this property, to resolve the
following question. The first three terms of an arithmeti-
cal proportion being given, to find the fourth? Leta, b, p,
be the first three terwms, and let us express the fourth by ¢,
which it is required to determine: then a+¢=b+p; by
subtracting a from both sides, we obtain g=b+p—a.

Thus, the fourth term is found by adding together the
second and third, and subtracting the first from that sum.
Suppose, for example, that 19, 28, 13, are the three first
given terms, the sum of the second and third is 41 ; and
taking from it the first, which is 19, there remains 22 for
the fourth term sought, and the arithmetical proportion
will be represented by 19 —28=13—22, or by 28— 19=22
—13, or, lastly, by 28—22=19—13.

397. When, in an arithmetical proportion, the second
term is equal to the third, we have only three numbers ; the
property of which is this, that the first, minus the second, is
equal to the second, minus the third ; or that the difference
between the first and second number is equal to the dif-
ference between the second and third. The three numbers
19, 15, 11, are of this kind, since 19—15=15—11.

398. Three such numbers are said to form a continued
arithmetical proportion, which is sometimes written thus,
19.:15: 11.  Such proportions are also called arithmetical
progressions, particularly if a greater number of terms
follow each other according to the same law.

An arithmetical progression may be either increasing, or
decreasing. 'The former distinction-is applied when the
terms go on increasing; that is to-say, when the second ex-
ceeds the first, and the third exceeds the second by the
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same quantity ; as in the numbers 4, 7, 10; and the de-
creasing progression is that in which the terms go on
always diminishing by the same quantity, such as the
numbers 9, 5, 1.

399. Let us suppose the numbers a, 3, ¢, to be in arith-
metical progression; then a—b=5—c, whence it follows,
from the equality between the sum of the extremes and
that of the means, that 2b=a4c¢; and if we subtract
from both, we have 2b—a=c.

400. So that when the first two terms a, b, of an arith-
metical progression are given, the third is found by taking
the first from twice the second. Let 1 and 3 be the first
two terms of an arithmetical progression, the third will
then be 2x3—1=5; and these three numbers 1, 3, 5,
give the proportion

1—-3=3-5.

401. By following the same method, we may pursue the
arithmetical progression as far as we please ; we have only
to find the fourth term by means of the second and third,
in the same manner as we determined the third by means
of the first and second, and so on. Let a be the first term,
and b the second, the third will be 2b—a, the fourth 45—
2a—b=3b—2a, the fifth 6b—4a—2b+a=4b—3a, the
sixth, 86 —6a—3b +2a=5b—4a, the seventh 10b—8a—
4b +3a=06b—ba, &c.

CHAPTER IIL
Of Arithmetical Progressions.

402. We have already remarked, that a series of num-
bers composed of any number of terms, which always in-
crease, or decrease, by the same quantity, is called an
arithmetical progression.

Thus, the natural numbers written in their order, as
1,2,3,4,5,6,7,8,9, 10, &c. form an arithmetical pro-
gression, because they constantly increase by unity; and
the series 25, 22, 19, 16, 13, 10, 7, 4, 1, &c. is also such
a progression, since the numbers constantly decrease by 3.

403, The number, or quantity, by which the terms of an
arithmetical progression become greater or less, is called the
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difference ; so that when the first term and the difference
are given, we may continue the arithmetical progression to
any length.

For example, if the first term be 2, and the difference 3,
we shall have the following increasing progression: 2, 5, 8,
11, 14, 17, 20, 23, 26, 29, &ec. in which each term is found
by adding the difference to the preceding term.

404. 1t is usual to write the natural numbers, 1,2, 3, 4,
5, &c. above the terms of such an arithmetical progression,
in order that we may immediately perceive the rank
which any term holds in the progression ; which numbers,
when written above the terms, are called indices; thus, the
above example will be written as follows :

Indices. 123 4 5 6 7 8 9 10

Arith. Prog. 2,5, 8, 11, 14, 17, 20, 23, 26, 29, &ec.
where we see that 29 is the tenth term.

405. Let a be the first term, and d the difference, the
arithmetical progression will go on in the following order :

1 2 3 4 5 6 7

a, axd, ax2d, a+3d, a*+4d, a+5d, ax6d, &c.
according as the series is increasing, or decreasing ; whence
it appears that any term of the progression might be easily
found, without the necessity of finding all the preceding
ones, by means only of the first term a and the difference d ;
thus, for example, the tenth term will be a+9d, the hun-
dredth term «+99d, and, generally, the nth term will be
ax(n—1)d.

406. When we stop at any point of the progression, it
is of importance to attend to the first and the last term,
since the index of the last term will represent the number
of terms. If, therefore, the first term be a, the difference
d, and the number of terms n, we shall have for the last
term a=:(rn—1)d, according as the series is increasing or
decreasing ; which is consequently found by multiplying
the difference by the number of terms minus one, and add-
ing, or subtracting, that product from the first term. Sup-
pose, for example, in an ascending arithmetical progression
of a hundred terms, the first term is 4, and the difference
3; then the last term will be 99 x 3 +4=301.

407. When we know the first term a, and the last 2z, with
the number of terms n, we can find the difference d; for,
since the last term z=a=%(n—1)d, if we subtract @ from
both sides, we obtain z—a=(n—1)d. So that by taking
the difference between the first and last term, we have the
product of the difference multiplied by the number of terms
minus 1; we have therefore only to divide z—a by n—1
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in order to obtain the required value of the difference d,
which will be =7,
rule: Subtract the first term from the last, divide the re-
mainder by the number of terms minus 1, and the quotient
will be the common difference ; by means of which we
may write the whole progression.

408. Suppose, for example, that we have an increasing
arithmetical progression of nine terms, whose first is 2,
and last 26, and that it is required to find the difference.
We must subtract the first term 2 from the last 26, and
divide the remainder, which is 24, by 9—1, that is, by 8;
the quotient 3 will be equal to the difference required, and
the whole progression will be :

123 4 5 6 7 8 9
2, 5,8, 11, 14, 17, 20, 23, 26.

To give another example, let us suppose that the first
term 1s 1, the last 2, the number of terms 10, and that the
arithmetical progression, answering to these suppositions,
is required ; we shall immediately have for the difference
2—-1
10—1

This result furnishes the following

=1, and thence conclude that the progression is:

1 2 3 4 5 6 7 8 910
1, 13, 1%, 13, 14, 15, 14, 13, 18, 2.

Another example. Let the first term be 21, the last term
121, and the number of terms 7; the difference will be
121—21 104

7—-1 — 6
gression :

=81 =125, and consequently the pro-

1 2 3 4 5 6 7
2’%1 4316’ 5%%’ 7T5?’ 9'9%’ 10%%’ 12‘%'

409. If now the first term a, the last term 2z, and the dif-
ference d, are given, we may from them find the number
of terms 7 ; for since z—a=(n— 1)d, by dividing both
Z—a

d

1 than n—1, we have n=

sides by d, we have =n—1; also »n being greater by

z—a
d
number of terms is found by dividing the difference
between the first and the last term, or z—a, by the dif-
ference of the progression, and adding unity to the quotient.

For example, let the first term be 4, the last 100, and the
100—4 129
g +1=9;

+1; consequently, the

difference 12, the number of terms will be
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and these nine terms will be,
1 2 3 4 5 6 7 8 9
4, 16, 28, 40, 52, 64, 76, 88, 100.
If the first term be 2, the last 6, and the difference 14, the

number of terms will be 4 + 1=4; and these four terms

15
will be,
1 2 3 4
2, 31, 43, 6.
Again, let the first term be 34, the last 7%, and the dif-
7531

+1=4;
1%

ference 14, the number of terms will be

which are,
31, 4, 62, 72.

410. It must be observed, however, that as the number
of terms is necessarily an integer, if we had not obtained
such a number for n, in the examples of the preceding
article, the questions would have been absurd.

Whenever we do not obtain an integer number for the
z—a

d b
and consequently, in order that questions of this kind may
be possible, z—a must be divisible by d.

411. From what has been said, it may be concluded,
that we have always four quantities, or things, to consider
in an arithmetical progression :

1st. The first term, a ; 2d. The last term, z;

3d. The difference, d; and 4th. The number of terms, n.

The relations of these quantities to each other are such,
that if we know three of them, we are able to determine
the fourth ; for, "

1. If a, d, and n, are known, we have z=a + (n —1)d.

2. If z, d, and n, are known, we have a =2 — (n — 1)d.

z—a
3. If g, 2, and =, are known, we have d=n_f; and

value of

it will be impossible to resolve the question;

4. If a, 2, and d, are known, we have n= z:i-a + 1.
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CHAPTER IV.
Of the Summation of Arithmetical Progressions.

412. It is often necessary also to find the sum of an
arithmetical progression. This might be done by adding
all the terms together ; but as the addition would be very
tedious, when the progression consisted of a great number
of terms, a rule has been devised, by which the sum may
be more readily obtained.

413. We shall first consider a particular given progres-
sion, in which the first term is 2, the difference 3, the last
term 29, and the number of terms 10;

123 4 5 6 7 8 9 10
2, 5, 8, 11, 14, 17, 20, 23, 26, 29.

In this progression, we see that the sum of the first and
last term is 31; the sum of the second and the last but
one 31 ; the sum of the third and the last but two 31 ; and
so on: hence we conclude, that the sum of any two terms
equally distant, the one from the first, and the other from
the last, is always equal to the sum of the first and the
last term.

414. The reason of this may be easily traced ; for if we
suppose the first to be @, the last z, and the difference d,
the sum of the first and the last term is a+2z; and the
second term being a -+d, and the last but one z2—d, the sum
of these two terms is also a+2z. Farther, the third term
being a+2d, and the last but two z—2d, it is evident
that these two terms also, when added together, make
a+z; and the demonstration may be easily extended to
any other two terms equally distant from the first and last.

415. To determine, therefore, the sum of the progres-
sion proposed, let us write the same progression, term by
term, inverted, and add the corresponding terms together,
as follows:

24+ 64+ 84+114+144174+20423+264+29
294+26+23+204+174+14+114+ 84 54 2

314+31+31+31+31+31+31+31+31+31
This series of equal terms is evidently equal to twice the
sum of the given progression: now, the number of those
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equal terms is 10, as in the progression, and their sum
consequently is equal to 10 x31=310. Hence, as this
sum is twice the sum of the arithmetical progression, the
sum required must be 155.

416. If we proceed in the same manner with respect to
any arithmetical progression, the first term of which is a,
the last z, and the number of terms z, writing under the
given progression the same progression inverted, and
adding term to term, we shall have a series of n terms,
each of which will be expressed by a+z; therefore the
sum of this series will be n(a +2), which is twice the sum
of the proposed arithmetical progression ; the latter, there-
fore, will be represented by n(a2+ z).

417. This result furnishes an easy method of finding
the sum of any arithmetical progression; and may be
reduced to the following rule:

Multiply the sum of the first and the last term by the
number of terms, and half the product will be the sum of
the whole progression. Or, which amounts to the same,
multiply the sum of the first and the last term by half the
number of terms. Or, multiply half the sum of the first
and the last term by the whole number of terms.

418. It will be necessary to illustrate this rule by some
examples.

First, let it be required to find the sum of the progres-
sion of the natural numbers, 1, 2, 3, &e. to 100. This

will be by the first rule, -1—0—0:;—}21- = 10100 =5050,

If it were required to tell how many strokes a clock
strikes in twelve hours; we must add together the num-
bers 1, 2, 3, &c. as faras 12 ; now this sum is found imme-

diately to be 12; 13_ 6 x13=78. Ifwe wished to know
the sum of the same progression, continued to 1000, we
should find it to be 500500 ; and the sum of this progres-
sion, continued to 10000, would be 50005000.

419. Suppose a person buys a horse, on condition that
for the first nail he shall pay 5 pence, for the second
8 pence, for the third 11 pence, and so onm, always
increasing 3 pence for each nail, the whole number of
which is 32 ; required the purchase of the horse?

In this question it is required to find the sum of an
arithmetical progression, the first term of which is 5, the
difference 3, and the number .of terms 32; we must
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therefore begin by determining the last term; which is
found by the rule, in Articles 406 and 411, to be 5+
(31 x 3)=98; after which, the sum required is easily

103 x 32
found to be 5
the horse costs 1648 pence, or 61. 17s. 4d.

420. Generally, let the first term be a, the difference d,
and the number of terms # ; and let it be required to find,
by means of these data, the sum of the whole progression.
As the last term must be a=+= (n—1)d, the sum of the first
and the last will be 2a+ (n—1)d; and multiplying this
sum by the number of terms », we have 2na xn(n—1)d;
the sum required therefore will be na+ ﬁn_z_l)_d .

Now, this formula, if applied to the preceding example,

or to a=5, d=3, and n=32, gives 5x32+32"31‘3

=160+ 1488=1648 ; the same sum that we obtained
before.

421. If it be required to add together all the natural
numbers from 1 to n, we have, for finding this sum, the
first term 1, the last term 2, and the number of terms = ;

2
therefore the sum required is - ;—n___n(n2+1). If we
make n=1766, the sum of all the numbers, from 1 to
1766, will be 883, (half the number of terms,) multiplied
by 1767=1560261.

422. Let the progression of uneven numbers be pro-
posed, such as 1, 3, 5, 7, &ec. continued to » terms, and
let the sum of it be required. Here the first term is 1,
the difference 2, the number of terms n; the last term
will therefore be 1+ (n—1)2=2n —1, and consequently
the sum required =n2,

The whole therefore consists in multiplying the number
of terms by itself; so that whatever number of terms of
this progression we add together, the sum will be always
a square, namely the square of the number of terms;
which we shall exemplify as follows :

Indices, 12 3 4 5 6 7 8 9 10, &e.
Progress. 1,3,5, 7, 9,11,13,15,17, 19, &ec.
Sum. 1, 4,9, 16, 25, 36, 49, 64, 81, 100, &c.

493. Let the first term be 1, the difference 3, and the
number of terms z ; we shall have the progression 1, 4, 7,
10, &c. the last term of which will be 1 +(rn—1)3=3r—2;

=103 x 16 ; whence we conclude that
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wherefore the sum of the first and the last term is 3n—1,
and consequently the sum of this progression is equal to

n(3n—1)  3n*—n
2 2
be 10 x 59=590.
424. Again, let the first term be 1, the difference d, and
the number of terms n; then the last term will be 1+
(n—1)d; to which adding the first, we have 24+ (n—1)d,
and multiplying by the number of terms, we have 2z +
n(n—1)d; whence we deduce the sum of the progression
n(n—1)d
n+ T.
And by making d successively equal to 1, 2, 3, 4, &c.,
we obtain the following particular values, as shewn in the
subjoined Table.

; and if we suppose =20, the sum will

n(n—1) _ n%+n

If d = 1, the sum is n + 5 =—g
d = 2, .......... + 2]2(1;—1) = n?

_ 3n(n—1) 3n*—n
d=3,..c000un.. + ) )
d=4,.......... + 471(712—1) 2n2—n

_ Sn(n—1) _ 5n%—3n
d=25,..... N 5 =3
d=6,.......... n + 6n(—n2_—l—) = 3n?—2n

_ Tn(n—1) _ Tn*—bn
d=7ccccci... + 5 =—
d=8,.......... n+§17(n2——_])=4n2—3n

_ In(n—1) _ 9n2—Tn
d=9,........ P+ 3 = 5
d=10,....... coon + 2220 D gy

QUESTIONS FOR PRACTICE.

1. Required the sum of an increasing arithmetical pro-
gression, having 3 for its first term, 2 for the common
difference, and the number of terms 20. Ans. 440.

2. Required the sum of a decreasing arithmetical
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progression, having 10 for its first term, 1 for the com-
mon difference, and the number of terms 21.  Ans. 140.

3. The clocks of Italy go on to 24 hours; how many
strokes do they strike in a complete revolution of the
index ? Ans. 300.

4. One hundred stones being placed on the ground, in
a straight line, at the distance of a yard from each other,
how far will a person travel who shall bring them one by
one to a basket, which is placed one yard from the first
stone ? Ans. 5 miles and 1300 yards.

CHAPTER V.

Of Figurate,* or Polygonal Numbers.

495. The summation of arithmetical progressions, which
begin by 1, and the difference of which is 1, 2, 3, or any

# The French translator has justly observed, in his note at
the conclusion of this chapter, that algebraists make a distinc-
tion between figurate and polygonal numbers; but as he has
not entered far upon this subject, the following illustration may
not be unacceptable.

It will be immediately perceived in the following Table, that
each series is derived immediately from the foregoing one,
being the sum of all its terms from the beginning to that place ;
and hence also the law of continuation, and the general term of
each series, will be readily discovered.

Natural 1,2, 3, 4, 5,...... n general term

. (nt1
Triangular 1,3, 6,10, 15,...... aatl)
n(n+1).(n+2)

Pyramidal 1, 4, 10, 20, 35,...... 53
Triangular- n(n+1).(n4+2).(n+3)
pyramidal } 1,5,15,35,70...... 931

And, in general, the figurate number of any order m will be
expressed by the formula,
n(n+1).(n+2).(n+3)...... (n+m—1)
12 . 3 . 4 ...... m
Now, one of the principal properties of these numbers, and
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other integer, leads to the theory of polygonal numbers,
which are formed by adding together the terms of any
such progression.

426. Suppose the difference to be 1; then, since the
first term 1s 1 also, we shall have the arithmetical pro-
gression, 1,2, 3,4,5,6,7,8,9, 10, 11, 12, &c. and if in
this progression we take the sum of one, of two, of three,
&c. terms, the following series of numbers will arise:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, &c.
for 1=1,14+2=3,14+24+3=6,1+24+3+4=10, &e.

Which numbers are called ¢riangular, or trigonal num-
bers, because we may always arrange as many points in
the form of a triangle as they contain units, thus:

1 3 6 10 15

427. In all these triangles, we see how many points
each side contains. In the first triangle, there is only one
point ; in the second there are two in each side; in the
third there are three; in the fourth there are four, &ec.:
so that the triangular numbers, or the number of points,
which is simply called the #riangle, are arranged accord-
ing to the number of points which the side contains,
which number is called the side; that is, the third tri-
angular number, or the third triangle, is that whose side
has three points; the fourth, that whose side has four,
and so on; which may be represented thus :

which Fermat considered as very interesting, (sce his notes on
Diophantus, page 16), is this : that if from the nth term of any
series the (n—1) term of the same series be subtracted, the re-
mainder will be the ath term of the preceding series. Thus, in
n(n+1).(n+2) .

2.3 ?
consequently, the (n—1) term, by substituting (r—1) instead
(n—1).n.(n+1) .

2.3 ?

the former, the remainder is

the third series above given, the nth term is

and if the latter be subtracted from

n.(n—1)
2
the preceding order of numbers. The same law will be observed

between two consecutive terms of any one of these sums.

of n, is

, which is the nth term of
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Side

" .

Trianylel

428. A question therefore presents itself here, which s,
how to determine the triangle when the side is given?
and, after what has been said, this may be easily resolved.

For if the side be n, the triangle willbe 1 +2+3 +4 +...n.

2

Now, the sum of this progression is " ; consequently

2
2
the value of the triangle is TH
n= 1’1 1’
Thus, if Z:g,’ fthe triangle is g:
‘n=4, 10,

and so on: and when » = 100, the triangle will be 5050.

429. This formula ™ ;- Z is called the general formula of
triangular numbers ; because by it we find the triangular
number, or the triangle, which answers to any side in-
dicated by n.

n(n+1)
2

to facilitate the calculation ; since one of the two numbers

n, or n+4 1, must always be an even number, and con-

sequently divisible by 2.

This may be transformed into ; which serves also

12x13 =6x13=78; and

So, if z = 12, the triangle is

2
5x10 — 15%8 =120, e.
430. Let us now suppose the difference to be 2, and we
shall have the following arithmetical progression:
1,3,5,79, 11,13, 15,17, 19, 21, &c.
the sums of which, taking successively one, two, three,

four terms, &c. form the following series :
1, 4,9, 16, 25, 36, 49, 64, 81, 100, 121, &e.

if » = 15, the triangle isl

* M. de Joncourt published at the Hague, in 1762, a Table
of trigonal numbers answering to all the natural numbers from
1 to 20000. Such Tables are found useful in facilitating a
great number of arithmetical operations, as the author shews in
a very long introduction.—F. T.
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the terms of which are called quadrangular numbers, or
squares ; since they represent the squares of the natural
numbers, as we have already seen; and this denomination
is the more suitable from this circumstance, that we can
always form a square with the number of points which
those terms indicate, thus:

1 4 9 16 25

431. We sece here, that the side of any square contains
precisely the number of points which the square root in-
dicates. Thus, for example, the side of the square 16 con-
sists of 4 points; that of the square 25 consists of 5 points ;
and, in general, if the side be =, that is, if the number of
the terms of the progression, 1, 3, 5, 7, &c. which we have
taken, be expressed by n, the square, or the quadrangular
number, will be equal to the suin of those terms; that is
to n%, as we have already seen, Article 422 ; but it is un-
necessary to extend our consideration of square numbers
any farther, having already treated of them at length.

432. If now we call the difference 3, and take the sums
in the same manner as before, we obtain numbers which
are called pentagons, or pentagonal numbers, though they
cannot be so well represented by points.*

* It is not, however, that we are unable to represent, by
points, polygons of any number of sides; but the rule which I
am going to explain for this purpose seems to have escaped all
the writers on algebra whom 1 have consulted.

I begin with drawing a small polygon that has the number of
sides required ; this number remains constant for one and the
same series of polygonal numbers, and it is equal to 2 plus the
difference of the arithmetical progression from which the series
is produced. I then choose one of its angles, in order to draw
from the angular point all the diagonals of this polygon, which,
with the two sides containing the angle that has been taken, are
to be indefinitely produced ; after that, I take these two sides,
and the diagonals of the first polygon on the indefinite lines,
each as often as I choose; and draw, from the corresponding
points marked by the compass, lines parallel to the sides of the
first polygon, and divide them into as many equal parts, or by
as many points as there are actually in-the diagonals and the
two sides produced. This rule is general, from the triangle up
to the polygon of an infinite number of sides: and the division
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Indices, 1234 5 6 7 8 9, &ec

Arith. Prog. 1, 4, 7, 10, 13, 16, 19, 22, 25, &c.

Pentagon, 1,5, 12,22, 35, 51, 70, 92,117, &e.
the indices shewing the side of each pentagon. .

433. It follows from this, that if we make the side =,
3n’—n__ n(3n—1)

2 - 2

Let, for example, n=7, the pentagon will be 70 ; and
if the pentagon, whose side is 100, be required, we make
n=100, and obtain 14950 for the number sought.

434. 1f we suppose the difference to be 4, we arrive at
hexagonal numbers, as we see by the following progressions:
Indices, 12 3 4 5 6 7 38 9, &ec.
Arith. Prog. 1,5, 9,13, 17, 21,25, 29, 33, &ec.
Hexagon, 1,6, 15, 28, 45, 66, 91, 120, 153, &ec.

where the indices still shew the side of each hexagon.

435. So that when the side is », the hexagonal number
is 2n?—n=n(2n—1); and we have farther to remark, that
all the hexagonal numbers are also triangular; since, if
we take of these last the first, the third, the fifth, &c. we
have precisely the series of hexagons.

436. In the same manner, we may find the numbers
which are heptagonal, octagonal, &ec. It will be sufficient
therefore to exhibit the following Table of formulz for all
numbers that are comprehended under the general name
of polygonal numbers.

Supposing the side to be represented by n, we have
for the

the pentagonal number will be

n?+n __n(n+1)

Triangle. ... 53— ="
D2

Square %(—)ﬁ=n'~’.
v-zon 3n*—n _ n(3Bn-—1)

gon ...... g = TR

Q—
vi-gon . .... ﬂ——z—ﬁ =21 —n=u(2n—1).
viI 5n’—3n _ n(bn—3)
-gon .... =y

of these figures into triangles might furnish matter for many
curious considerations, and for elegant transformations of the
general formulee, by which the polygonal numbers are expressed
in this chapter; but it is unnecessary to dwell on them at
present.—F, T. ‘



144 ELEMENTS SECT. III.

6n%?—4n

VII-gon .. .. —5— =3n*—2n=n(3n—2).
1x-gon Tn°—b5n _ n(7Tn—5)
i
g-—
X-gON «vouns ﬁ%@- =4n*—3n=n{4n—3).
<I-zon In*—Tn _ n9n—"7)
j240) N =g
2—
XII-gom. .. .. -1—0712_871- =52 —4n=n(5n—4).
2-—
XX-gOll ..... l_§n2—l6n =97°—8n=n(9n—8).
XXV-gon 23n*—21n _ n(23n—21)
gon.... 5 = 5 .
— 2— —
M-gON +see .- (m—2)n 5 (m—A)n,,

437. So that the side being n, the m-gonal number
(m—2*—(m—4)n
2
deduce all the possible polygonal numbers which have
the side n. Thus, for example, if the bigonal numbers
were required, we should have m=2, and consequently
the number sought =z ; that is to say, the bigonal num-

bers are the natural numbers, 1, 2, 3, &c.*
n’+n
2

; whence we may

will be represented by

If we make m=3, we have for the triangular

number required.
If we make m=4, we have the square number 2%, &c.
438. To illustrate this rule by examples, suppose that
the xxv-gonal number, whose side is 36, were required ; we

* The general expression for the m-gonal number is easily
derived from the summation of an arithmetical progression,
whose first term is 1, common difference d, and number of terms
n; as in the following series, viz. 1+ (1+4d) + (1+2d) +, &ec.
@+(n—1).d)n

2 b
butin all cases d=m—2, therefore substituting this value for d, the
2n4(nt—n).(m—2) (m—2)t—(m—4)n

2 - 2

(1+(n—1).d), the sum of which is expressed by

expression becomes

as in the formula.
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look first in the Table for the xxv-gonal number, whose
23n°—21n Th ki
— en making
n=36, we find 14526 for the number sought.

439. Question. A person bought a house, and he is asked
how much he paid forit. Heanswers that the 365-gonal
number of 12 is the number of crowns which it cost him.

In order to find this number, we make m=365, and
n=12; and substituting these values in the general for-
mula, we find for the price of the house 23970 crowns.*

side is n, and it is found to be

* This chapter is entitled ““ Of Figurate or Polygonal Num-
bers.” It is not however without foundation that some alge-
braists make a distinction between figurate numbers and poly-
gonal numbers. For the numbers commonly called figurate are
all derived from a single arithmetical progression, and each
series of numbers is formed from it by adding together the terms
of the series which goes before.  On the other hand, every series
of polygonal numbers is produced from a different arithmetical
progression. Hence in strictness, we cannot speak of a single
series of figurate numbers, as being at the same time a series of
polygonal numbers. This will be made more evident by the
following Tables.

TABLE OF FIGURATE NUMBERS.
Constant numbers.......1. 1. 1. 1. 1. 1. &ec.

Natural.............. L2, 3. 4. 5. 6. &ec.
Triangular............ 1.3, 6.10. 15. 21. &ec.
Pyramidal ............. 1. 4. 10. 20. 35. 56. &ec.
Triangular-pyramidal ....1. 5. 15. 35. 70. 126. &c.

TABLE OF POLYGONAL NUMBERS.
Diff. of the progr. | Numbers

1 |triangular....1. 3. 6. 10. 15. &c.
2 | square ...... 1. 4. 9. 16. 25. &c.
3 | pentagon ....1. 5. 12. 22. 35. &c.
4 | hexagon. .... 1. 6. 15. 28. 45. &e.

Powers likewise form particular series of numbers. The first
two are to be found among the figurate numbers, and the third
among the polygonal; which will appear by successively sub-
stituting for ¢ the numbers 1, 2, 3, &c.

TABLE OF POWERS.

A% o iiiiieenaan 1. 1. 1. 1. 1. &ec.
Aleviiiiiieennann 1. 2. 3. 4. 5. &ec.
17 1. 4. 9. 16, 25. &e.
7 l. 8. 27. 64. 125. &c.
(75 I . 16. 81. 256. 625. &c.

The algebraists of the sxxteenth and seventeenth centuries paid
L
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CHAPTER VI
Of Geometrical Ratio.

440. The Geometrical ratio of two numbers is found by
resolving the question, How many times is one of those
numbers greater than the other? This is done by dividing
the one by the other; and the quotient will express the
ratio required.

441. We have here three things to consider; lst, the
first of the two given numbers, which is called the antece-
dent ; 2dly, the other number, which is called the conse-
quent ; 3dly, the ratio of the two numbers, or the quotient
arising from the division of the antecedent by the conse-
quent. For example, if the relation of the numbers 18
and 12 be required, 18 is the antecedent, 12 is the conse-
quent, and the ratio will be 18 = 14; whence we see that
the antecedent contains the consequent once and a half.

442. It is usual to represent geometrical relation by two
points, placed one above the other, between the antece-
dent and the consequent. Thus, a:b means the geome-
trical relation of these two numbers, or the ratio of @ to b.

We have already remarked that this sign is employed
to represent division,* and for this reason we make use of
it here; because, in order to know the ratio, we must
divide a by &; the relation expressed by this sign being
read simply, a is to .

443. Relation therefore is expressed by a fraction, whose
numerator is the antecedent, and whose denominator is
the consequent; but perspicuity requires that this fraction
should be always reduced to its lowest terms: which is
done, as we have already shewn, by dividing both the
numerator and denominator by their greatest common
divisor. Thus, the fraction 1& becomes 3, by dividing both
terms by 6.

great attention to these different kinds of numbers and their
mutual connexion, and they discovered in them a variety of
curious properties ; but as their utility is not great, they are now
seldom introduced into the systems of mathematics.—F. T.

* Tt will be observed that we have made use of the symbol
for division, as is now usually done in’books on this subject.
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444. So that relations only differ according as their ratios
are different ; and there are as many different kinds of
geometrical relations as we can conceive different ratios.

The first kind is undoubtedly that in which the ratio
becomes unity. This case happens when the two numbers
are equal,as in3:3::4:4::a:a; the ratio is here 1,
and for this reason we call it the relation of equality.

Next follow those relations in which the ratio is another
whole number. Thus, 4:2 the ratio is 2, and is called
double ratio ; 12:4 the ratio is 3, and is called ¢riple ratio ;
24 : 6 the ratio is 4, and is called quadruple ratio, &c.

We may next consider those relations whose ratios are
expressed by fractions; such as 12:9, where the ratio is
4, or 14; and 18:27, where the ratio is %, &c. We may
also distinguish those relations in which the consequent
contains exactly twice, thrice, &c. the antecedent: such
are the relations 6 : 12, 5: 15, &c. the ratio of which some
call subduple, subtriple, &c. ratios.

Farther, we call that ratio rational which is an expressible
number; the antecedent and consequent being integers,
such as 11:7, 8:15, &c. and we call that an irrational
or surd ratio, which can neither be exactly expressed by
integers nor by fractions, such as »/5: 8, or 4: /3.

445. Let a be the antecedent, b the consequent, and d
the ratio. We know already, that a and b being given, we
find d= %: if the consequent b were given with the ratio,
we should find the antecedent a=bd, because bd divided
by b givesd : and lastly, when the antecedent « is given, and
the ratio d, we find the consequent b=§; for,dividing the
a

o e obtain the quo-

antecedent @ by the consequent

tient d; that is to say, the ratio.

446. Every relation a : b remains the same, if we mul-
tiply or divide the antecedent and consequent by the same
number, because the ratio is the same: thus, for example,

a

let d be the ratio of a: b, we have d=—b; now the ratio of
the relation na : nb is also gg- =d, and that of the relation

b. .. . na
— is likewise — =d.
n n

b
447. When a ratio has been reduced to its lowest terms,

a
o
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it is easy to perceive and enunciate the relation. For ex-

ample, when the ratio % has been reduced to the fraction

]—7, we say @a:b=p:q,ora:b::p:q, which is read, « is
to baspistogq. Thus, the ratio of 6:3 being £, or 2,
wesay 6:3::2:1. We have likewise 18:12::3:2,
and 24:18::4:3, and 30:45::2:3, &c. But if the
ratio cannot be abridged, the relation will not become
more evident; for we do not simplify it by saying 9:7::
9:7.

448. On the other hand, we may sometimes change the
relation of two very great numbers into one that shall be
more simple and evident, by reducing both to their lowest
terms. Thus, for example, we can say, 28844 : 14422::
2:1; or,10566: 7044 : : 3 : 2; or, 57600:25200::16: 7.

449. In order, therefore, to express any relation in the
clearest manner, it is necessary to reduce 1t to the smallest
possible numbers; which is easily done, by dividing the
two terms of it by their greatest common divisor. Thus,
to reduce the relation 57600 : 25200 to that of 16 : 7, we
have only to perform the single operation of dividing the
numbers 57600 and 25200 by 3600, which is their greatest
common divisor.

450. It is important, therefore, to know how to find the
greatest common divisor of two given numbers; but this
requires a Rule, which we shall explain in the following
chapter.

CHAPTER VII.

Of the Greatest Common Divisor of two given Numbers.

451. There are some numbers which have no other com-
mon divisor than unity; and when the numerator and
denominator of a fraction are of this nature, it cannot be
reduced to a more convenient form.* The two numbers
48 and 35, for example, have no common divisor, though
each has its own divisors; for which reason, we cannot

* In this case, the two numbers are said to be prime to each
other. See Art. 66.
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express the relation 48 :35 more simply, because the
division of two numbers by 1 does not diminish them.

452. But when the two numbers have a common divisor,
it is found, and even the greatest which they have, by the
following Rule:

Divide the greater of the two numbers by the less;
next, divide the preceding divisor by the remainder ; what
remains in this second division will afterwards become
a divisor for a third division, in which the remainder of
the preceding divisor will be the dividend. We must con-
tinue this operation till we arrive at a division that leaves
no remainder ; and this last divisor will be the greatest
common divisor of the two given numbers.

Thus, for the two numbers 576 and 252.

252) 576 (2
504

72) 252 (3
216

"36) 72 (2
72
0.

So that, in this instance, the greatest common divisor

is 36.

453, It will be proper to illustrate this rule by some
other examples; and, for this purpose, let the greatest
common divisor of the numbers 504 and 312 be required.

312) 504 (1
312

192) 312 (1
192
120) 192 (1
120
72) 120 (1
72
48) 72 (1
48
24) 48 (2
BT

0
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So that 24 is the greatest common divisor ; and conse-
quently the relation 504 :312 is reduced to the form
21:13.

454. Let the relation 625 : 529 be given, and the greatest
common divisor of these two numbers be required.

529) 625 (1
529

96) 529 (5
480
49) 96 (1
49
47) 49 (1
47
2) 47 (23
46
2@
2
0.

Wherefore 1 is, in this case, the greatest common divisor,
and consequently we cannot express the relation 625 : 529
by less numbers, nor reduce it to simpler terms.

455. It may be necessary, in this place, to give a demon-
stration of the foregoing Rule. In order to this, let a be
the greater, and b the less, of the given numbers; and let
d be one of their common divisors; it is evident that a and
b being divisible by d, we may also divide the quantities,
a—b, a—2b, a—3b, and in general, a—nb by d.

456. The converse is no less true: that is, if the num-
bers b and a—nb are divisible by d, the number a will
also be divisible by d; for nb being divisible by d, we could
not divide a—nb by d, if a were not also divisible by d.

457. We observe farther, that if d be the greatest com-
mon divisor of two numbers, b and a—nb, it will also be
the greatest common divisor of the two numbers @ and b;
for if a greater common divisor than d could be found for
these numbers ¢ and 3, that number would also be a com-
mon divisor of » and a—nb ; and consequently  would not
be the greatest common divisor of these two numbers : but
we have supposed d to be the greatest divisor common to b
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and a—nb ; therefore d must also be the greatest common
divisor of @ and b.

458. These things being laid down, let us divide, ac-
cording to the rule, the greater number a by the less b}
and let us suppose the quotient to be n ; then the remain-
der will be a—nb,* which must necessarily be less than b;
and this remainder ¢—nb having the same greatest com-
mon divisor with b, as the given numbers « and b, we have
only to repeat the division, dividing the preceding divisor
b by the remainder ¢—nb; and the new remainder which
we obtain will still have, with the preceding divisor, the
same greatest common divisor, and so on.

459. We proceed, in the same manner, till we arrive at
a division without a remainder; that is, in which the re-
mainder is nothing. Let therefore p be the last divisor,
contained exactly a certain number of times in its divi-
dend; this dividend will evidently be divisible by p, and
will have the form mp ; so that the numbers p and mp are
both divisible by p: and it is also evident that they have
no greater common divisor, because no number can ac-
tually be divided by a number greater than itself; conse-
quently, this last divisor is also the greatest common
divisor of the given numbers a and b.

460. We will now give another example of the same
rule, requiring the greatest common divisor of the num-
bers 1728 and 2304. The operation is as follows :

1728) 2304 (1
1728

576) 1728 (3
1728

0.

Hence it follows that 576 is the greatest common divi-
sor, and that the relation 1728 : 2304 is reduced to 3:4;
that is to say, 1728 is to 2304 in the same relation as 3 is
to 4.

* Thus, b)a. .. .(n, the supposed quotient.
n

a—nb
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CHAPTER VIIL
Of Geometrical Proportions.

461. Two geometrical relations are equal when their
ratios are equal; and this equality of two relations is
called a geometrical proportion. Thus, for example, we
write a:b=c:d,ora:b::c:d, to indicate that the re-
lation a : b is equal to the relation ¢ : d; but this is more
simply expressed by saying « is to b as ¢ to d. The fol-
lowing is such a proportion,8:4::12:6; for the ratio
of the relation 8: 4 is £, or 2, and this is also the ratio of
the relation 12: 6.

462. So thata:b:: c: d being a geometrical proportion,
the ratio must be the same on both sides, consequently

and, reciprocally, if the fractions %:%, we have

a_c.
b~ d’
a:b::c:d.

463. A geometrical proportion consists therefore of four
terms, such, that the first divided by the second gives the
same quotient as the third divided by the fourth; and
hence we deduce an important property, common. to all
geometrical proportions, which is, that the product of the
first and the last term is always equal to the product of the
second and third ; or, more simply, that the product of
the extremes is equal to the product of the means.

464. In order to demonstrate this property, let us take
the geometrical proportion @ :b::c:d, so that %":2
Now, if we multiply both these fractions by b, we obtain
a == %c-,
ad =bc; but ad is the product of the extreme terms, and
be is that of the means, which two products are found to
be equal.

465. Reciprocally, if the four numbers, a,b,¢,d, are such,
that the product of the two extremes, @ and d, is equal to
the product of the two means, b and ¢, we are certain that
they form a geometrical proportion : for, since ad = be, we

and multiplying both sides farther by d, we have
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have only to divide both sides by &d, which gives us %g =
be
Z*(z, or
466. The four terms of a geometrical proportion, as
a:b::c:d, may be transposed in different ways, without
destroying the proportion ; for the rule being always, that
the product of the extremes is equal to the product of the
means, or ad = bc, we may say,

Ist, b:a::d:c; 2ly. a:c::5:d;
3dly.d:b::c:a; 4thly.d:c:: b : a.

%: f_i’ and consequently e : b::¢:d.

467. Beside these four geometrical proportions, we may
deduce some others from the same proportion,a:bd::c: d;
for we may say,a+b: a:: c+d: c,orthe first term, plus
the second, is to the first, as the third, plus the fourth, is
to the third; thatis, a+b:a::c+d:c. '

We may farther say, the first, minus the second, is to
the first, as the third, minus the fourth, is to the third, or
a—b:a::¢—d:c. For, if we take the product of the
extremes and the means, we have ac—bc=ac—ad, which
evidently leads to the equality ad=bc.

And, in the same manner, we may demonstrate that ¢ +
b:b::c+d:d; andthata—b:b6::c—d: d.

468. All the proportions which we have deduced from
a: b ::c:dmay be represented generally as follows :

ma+nb : pa+qb :: mc+nd : pc+qd.
For the product of the extreme terms is mpac+ npbc+
mgad +ngbd ; which, since ad=bc becomes mpac + npbc
+mgbc +nqbd; also the product of the mean terms is
mpac +mgbe +npad +ngbd ; or, since ad=bc, it is mpac +
mqbc +npbc+nqbd : so that the two products are equal.

469. It is evident, therefore, that a geometrical propor-
tion being given, for example, 6 : 3 :: 10 : 5, an infinite
number of others may be deduced from it. We shall, how-
ever, give only a few:

3:6::5:10; 6:10::3:5; 9:6::15:10;
3:3::5: 5; 9:156::3:5; 9:3::15: 5.

470. Since in every geometrical proportion the product of
the extremes is equal to the product of the means, we may,
when the three first terms are known, find the fourth from
them. Thus, let the three first terms be 24 : 15 :: 40 to
the fourth term : here, as the product of the means is 600,
the fourth term multiplied by the first, that is by 24, must
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also make 600 ; consequently, by dividing 600 by 24 the
quotient 25 will be the fourth term required, and the whole
proportion will be 24 : 15 :: 40 : 25. In general, there-
fore, if the first three terms are a: b :: c; we put d for
the unknown fourth letter; and since ad=bc, we divide

both sides by a, and have d=l;—c; so that the fourth term

is !)aﬁ’ which is found by multiplying the second term by

the third, and dividing that product by the first.

471. This is the foundation of the celebrated Rule of
Three in Arithmetic; for in that rule we suppose three
numbers given, and seek a fourth, in geometrical propor-
with those three; so that the first may be to the second,
as the third is to the fourth.

472. But here it will be necessary to pay attention to
some particular circumstances. First, if in two proportions
the first and the third terms are the same, asina:b::¢: d,
and a@:f::c:g, then the two second and the two fourth
terms will also be in geometrical proportion, so that b : d : :
J:g; for the first proportion being transformed into this,
a:c::b:d, and the second into this, a:c::f: g, it fol-
lows that the relations & : d and f: g are equal, since each
of them is equal to the relation a:c. Thus, for example,
if5:100::2:40,and 5:15::2:6, we must have 100 :
40::15:6.

473. But if the two proportions are such, that the
mean terms are the same in both, I say that the first terms
will be in an inverse proportion to the fourth terms: that
is,ifa:b::c:d,and f:b::c:g, it follows that a: f::
g :d. Let the proportions be, for example, 24 :8::9:3,
and 6:8::9:12, we have 24:6::12:3; the reason is
evident ; for the first proportion gives ad =bc; and the
second gives fy =bc; therefore ad=fg, and a: f::g:d,
ora:g::f:d.

474. Two proportions being given, we may always pro-
duce a new one by separately multiplying the first term of
the one by the first term of the other, the second by the
second, and so on with respect to the other terms. Thus,
the proportionsa:b::c:d,ande:f::¢: % will furnish
this, ae: bf : : cg : dh; for the first giving ad=bc, and the
second giving eh=fg, we have also adeh=bcfy; but now
adel is the product of the extremes, and bcfy is the product
of the means in the new proportion: so that the two pro-
ducts being equal, the proportion is true.
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475. Let the two proportions be 6:4::15: 10, and
9:12::15: 20, their combination will give the proportion
6x9:4x12::156x15:10x20,

or 54 : 48 : : 225 : 200,
or 9: 8:: 9: 8.

476. We shall observe, lastly, that if two products are
equal, ad=>bc, we may reciprocally convert this equality
into a geometrical proportion; for we shall always have
one of the factors of the first product in the same proportion
to one of the factors of the second product, as the other fac-
tor of the second product is to the other factor of the first
product: that is, in the present case,a: c::b:d,ora:
b::¢c:d. Let3x8=4x6,and we may form from it this
proportion, 8 : 4 :: 6 : 3,0rthis, 3 : 4 :: 6 : 8. Likewise,
if 3x5=1x15, we shall have 3:15::1:5,0r5:1::
15:3,0r3:1::15:5.

CHAPTER IX.

Observations on the Rules of Proportion and their Utility.

477. This theory is so useful in the common occurrences
of life, that scarcely any person can do without it. There
is always a proportion between prices and commodities;
and when different kinds of money are the subject of ex-
change, the whole consists in determining their mutual
relations. The examples furnished by these reflections
will be very proper for illustrating the principles of propor-
tion, and shewing their utility by the application of them.

478. If we wished to know, for example; the relation
between two kinds of money; suppose an old louis d’or
and a ducat : we must first know the value of those pieces
when compared with others of the same kind. Thus,
an old louis being, at Berlin, worth 5 rixdollars and
8 drachms, and a ducat being worth 3 rixdollars, we may
reduce these two values to one denomination ; either to
rixdollars, which gives the proportion 1IL: 1D : 54R : 3R,
or::16:9; or to drachms, in which case we have 1L:
1D::128:72::16:9; which proportions evidently give
the true relation of the old louis to the ducat; for the
equality of the products of the extremes and the means
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gives, in both cases, 9 louis=16 ducats ; and, by means of
this comparison, we may change any sum of old louis into
ducats, and vice versi. Thus, suppose it were required
to find how many ducats there are in 1000 old lous, we
have this proportion :
Lou. Lou. Duc. Duc.
As 9:1000:: 16 : 1777%, the number sought.

If, on the contrary, it were required to find how many
old louis d’or there are in 1000 ducats, we have the
following proportion :

Duc. Duc. Lou.
As 16 : 1000 : : 9 : 562} louis. Auns.

479. At Petersburgh the value of the ducat varies, and
depends on the course of exhange; which course deter-
mines the value of the ruble in stivers, or Dutch half-
pence, 105 of which make a ducat. So that when the
exchange is at 45 stivers per ruble, we have this pro-
portion:

As45:1056::3:7;
and hence this equality, 7 rubles=3 ducats.

Hence again we shall find the value of a ducat in
rubles; for

Du. Du. Ru.
As 3:1::7:2% rubles;
that is, 1 ducat is equal to 21 rubles.

But if the exchange were at 50 stivers, the proportion
would be,

As50:105::10:21;
which would give 21 rubles=10 ducats; whence 1 ducat
=27 rubles. Lastly, when the exchange is at 44 stivers,
we have
As 44 :105:: 1 : 2% rubles:
which is equal to 2 rubles, 38, copecks.

480. It follows also from this, that we may compare
different kinds of money, which we have frequently
occasion to do in bills of exchange.

Suppose, for example, that a person of Petersburgh
has 1000 rubles to be paid to him at Berlin, and that he
wishes to know the value of this sum in ducats at Berlin.

The exchange is at 474 ; that is to say, one ruble makes
471 stivers; and in Holland, 20 stivers make a florin; 24
Dutch florins make a Dutch dollar: also the exchange of
Holland with Berlin is at 142; that is to say, for 100
Dutch dollars, 142 dollars are paid at Berlin ; and lastly,
the ducat is worth 3 dollars at Berlin.

481. To resolve the question proposed, let us proceed
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step by step. Beginning therefore with the stivers,
since 1 ruble = 471 stivers, or 2 rubles = 95 stivers, we
shall have
Ru. Ru. Stiv.
As 2 : 1000 :: 95 : 47500 stivers;
then again,
Stiv.  Stiv.  Flor. .
As 20 : 47500 :: 1 : 2375 florins.
Also, since 21 florins = 1 Dutch dollar, or 5 florins = 2
Dutch dollars ; we shall have
Flor. Flor. D.D.
As 5 : 2375 :: 2 : 950 Dutch dollars.

Then, taking the dollars of Berlin, according to the
exchange, at 142, we shall have
D.D. D.D. Dollars.
As 100 : 950 :: 142 : 1349 dollars of Berlin.
And lastly,
Dol. Dol. Du.,
As3 : 1349 :: 1 : 449% ducats,
which is the number sought.

482. Now, in order, to render these calculations still
more complete, let us suppose that the Berlin banker
refuses, under some pretext or other, to pay this sum, and
to accept the bill of exchange without five per cent
discount; that is, paying only 100 instead of 105. In
that case, we must make use of the following proportion .

As 105 : 100 : : 449% : 42815 ducats;
which is the answer under those conditions.

483. We have shewn that six operations are necessary
in making use of the Rule of Three; but we can greatly
abridge those calculations by a rule which is called the
Rule of Reduction, or Double Rule of Three. To explain
which, we shall first consider the two antecedents of each
of the six preceding operations :

1st. 2 rubles : 95 stivers.

2d. 20 stivers : 1 Dutch florin.
3d. 5 Dutch flor. : 2 Dutch dollars.
4th. 100 Dutch doll. : 142 dollars.

5th. 3 dollars. : 1 ducat.

6th. 105 ducats : 100 ducats.

If we now look over the preceding calculations, we
shall observe, that we have always multiplied the given
sum by the third terms, or second antecedents, and
divided the products by the first: it is evident, therefore,
that we shall arrive at the same results by multiplying at
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once the sum proposed by the product of all the third
terms, and dividing by the product of all the first terms:
or, which amounts to the same thing, that we have only
to make the following proportion: As the product of all
the first terms, is to the given number of rubles, so is the
product of all the second terms, to the number of ducats
payable at Berlin.

484. This calculation is abridged still more, when
amongst the first terms some are found that have common
divisors with the second or third terms; for, in this case,
we destroy those terms, and substitute the quotient arising
from the division by that common divisor. The pre-
ceding example will, in this manner, assume the following
form.

As (2.20.5.100.3.105):1000::(95.2.142.100):
1000.95.2.142.100 and after cancelli
2.20.5.100.3.105°
divisors in the numerator and denominator, this will

10.19.142 n
become ) 26080 = 42816 ducats, as before.

485. The method which must be observed in using the
Rule of Reduction is this: we begin with the kind of
money in question, and compare it with another which is
to begin the next relation, in which we compare this
second kind with a third, and so on. Each relation,
therefore, begins with the same kind as the preceding
relation ended with; and the operation is continued till
we arrive at the kind of money which the answer
requires ; at the end of which we must reckon the frac-
tional remainders.

486. Let us give some other examples, in order to
facilitate the practice of this calculation.

If ducats gain at Hamburgh 1 per cent on two dollars
banco ; that is to say, if 50 ducats are worth, not 100, but
101 dollars banco; and if the exchange between Ham-
burgh and Konigsberg is 119 drachms of Poland ; that is,
if 1 dollar banco is equal to 119 Polish drachms: how
many Polish florins are equivalent to 1000 ducats ?

It being understood that 30 Polish drachms make
1 Polish florin,

Here 1 : 1000 :: 2 dollars banco

ng the common

100 — 101 dollars banco
1 — 119 Polish drachms
30 — 1 Polish florin;

therefore,
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(10030 : 1000 :: (2 . 101 . 119) ; 1900 2. 101.119

100.30 -
2100119 _80193 Polish florins. Ans.

487. We will propose another example, which may
still farther illustrate this method.

Ducats of Amsterdam are brought to Leipsic, having in
the former city the value of 5 flor. 4 stivers current; that
is to say, 1 ducat is worth 104 stivers, and 5 ducats are
worth 26 Dutch flovins. If, therefore, the agio of the
bank at Amsterdam is 5 per cent; that is, if 105 currency
are equal to 100 banco; and if the exchange from Leipsic
to Amsterdam, in bank money, is 1331 per cent; that is,
if for 100 dollars we pay at Leipsic 133% dol]ars, and
lastly, 2 Dutch dollars making 5 Dutch florins ; ; it is
required to determine how many dollars we must pay at
Leipsic, according to these exchanges, for 1000 ducats?

By the rule,

5 : 1000 :: 25 flor. Dutch curr.

105 —_ 100 flor. Dutch banco
400 — 533 doll. of Leipsic
5 — 2 doll. banco ;

therefore,
As (5.105.400.5) : 1000 :: (26.100.533.2):
1000.26.100.533.2 4.26.533
5.105.400.5 = 21 — 20991 dollars,
the number sought.

CHAPTER X.
Of Compound Relations.

448. Compound Relations are obtained by multiplying
the terms of two or more relations, the antecedents by the
antecedents, and the consequents by the consequents ; we
then say, that the relation between those two products is
compounded of the relations given.

Thus the relations a: b, ¢: d, e : f, give the compound
relation ace : bdf*

* Each of these three ratios is sald to be one of the roots of
the compound ratio.
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489. A relation continuing always the same, when we
divide both its terms by the same number, in order to
abridge it, we may greatly facilitate the above composition
by comparing the antecedents and the consequents, for
the purpose of making such reductions as we performed in
the last chapter.

For example, we find the compound relation of the
following given relations thus:

Relations given.

12 : 25, 28 : 33, and 55 : 56.
Which, by cancelling the common divisors, becomes
(12.28.55):(25.33.56) =2 : 5
So that 2 : 5 is the compound relation required.
490. The same operation is to be performed, when it is
required to calculate generally by letters; and the most
remarkable case is that in which each antecedent is equal

to the consequent of the preceding relation. If the given
relations are

® QO N
SEC IR WIS IRS

the compound relation is 1 : 1.

491. The utility of these principles will be perceived
when it is observed, that the relation between two square
fields is compounded of the relations of the lengths and
the breadths.

Let the two fields, for example, be A and B ; A having
500 feet in length by 60 feet in breadth ; the length of B
being 360 feet, and its breadth 100 feet; the relation of
the lengths will be 500 : 360, and that of the breadths
60 : 100. So that we have

(500 . 60) : (360.100)=5 : 6.
Wherefore the field A is to the field B, as 5 to 6.

492. Again, let the field A be 720 feet long, 88 feet
broad ; and let the field B be 660 feet long, and 90 feet
broad ; the relations will be compounded in the following
manner:

Relation of the lengths 720 : 660
Relation of the breadths 88 : 90

and, by cancelling, the relation ¢f A and Bis 16 : 15.
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493. Farther, if it be required to compare two rooms
with respect to the space, or contents, we observe, that that
relation is compounded of three relations; namely, that
of the lengths, breadths, and heights. Let there be, for
example, a room A, whose length is 36 feet, breadth 16
feet, and height 14 feet, and a room B, whose length is 42
feet, breadth 24 feet, and height 10 feet; we shall have
these three relations:

For the length 36 : 42

For the breadth 16 : 24

For the height 14 : 10
And cancelling the common measures, these become 4 : 5,
So that the contents of the room A, is to the contents of
the room B, as 4 to 5.

494. When the relations which we compound in this
manner are equal, there result multiplicate relations.
Namely, two equal relations give a duplicate ratio, or ratio
of the squares ; three equal relations produce the riplicate
ratio, or ratio of the cubes ; and so on. For example, the
relations @ : band a : b give the compound relation a2 : 4%;
wherefore we say, that the squares are in the duplicate
ratio of their roots. And the ratio ¢ : b multiplied twice,
giving the ratio a®: 4%, we say that the cubes are in the
triplicate ratio of their roots.

495. Geometry teaches, that two circular spaces are in
the duplicate relation of their diameters ; this means, that
they are to each other as the squares of their diameters.

Let A be such a space, having its diameter 45 feet, and
B another circular space, whose diameter is 30 feet; the
first space will be to the second as 45 x 45 is to 30 x 30 ;
or, compounding these two equal relations, 9 : 4. There-
fore the two areas are to each other as 9 to 4.

496, It is also demonstrated, that the solid contents of
spheres are in the ratio of the cubes of their diameters : so
that the diameter of a globe, A, being 1 foot, and the
diameter of a globe, B, being 2 feet, the solid content of A
will be to that of B, as 1% : 23; or as 1 to 8. If, therefore,
the spheres are formed of the same substance, the latter
will weigh 8 times as much as the former.

497. 1t is evident that we may in this manner find the
weight of cannon balls, their diameters, and the weight of
one, being given. For example, let there be the ball A,
whose diameter is 2 inches, and weight 5 pounds; and if
the weight of another ball be required, whose diameter is
8 inches, we have this proportion,

23 : 8% :: 5 : 320 pounds,
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which gives the weight of the ball B : and for another ball
C, whose diameter is 15 inches, we should have,
23 : 153 :: 5 : 210931b.

498. When the ratio of two fractions, as % : %,
quired, we may always express it in integer numbers; for
we have only to multiply the two fractions by bd, in order
to obtain the ratio ad : bc, which is equal to the other;

1s re-

and from hence results the proportion % : f—lz tad: be. If,
therefore, ad and b¢ have common divisors, the ratio may
be reduced to fewer terms. Thus 45 : 24 :: (15.36) : (24.25)
::9:10.

499, If we wished to know the ratio of the fractions
1 1 .. . 11
- and 7 it is evident that we should have 270 b:a;
which is expressed by saying, that two fractions, which
have unity for their numerator, are in_the reciprocal, or
inverse ratio of their denominators: and the same thing is
said of two fractions which have any common numerator;
for %:E ::b:a. But if two fractions have their deno-

b
. b . , ,
minators equal, as % e they are in the direct ratio of the

numerators; namely, as a: b. Thas, %:3::6:3, or
2:1,and 2 : 35 ::10:15,0r2: 3.

500. It has been observed, in the free descent of bodies,
that a body falls about 16 English feet in a second, that in
two seconds of time it falls from the height of 64 feet, and
in three seconds it falls 144 feet. Hence it is concluded,
that the heights are to each other as the squares of the
times; and, reciprocally, that the times are in the sub-
duplicate ratio of the heights, or as the square roots of the
heights.*

If, therefore, it be required to determine how long a
stone will be in falling from the height of 2304 feet; we
have 16 : 2304 :: 1 : 144, the square of the time; and
consequently the time required is 12 seconds.

501. If it be required to determine how far, or through

* The space, through which a heavy body descends, in the
latitude of London, and in the first second of time, has been
found by experiment to be 16%; English feet; but in calcula-
tions where great accuracy is not required, the fraction may be
omitted.
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what height, a stone will pass by descending for the space
of an hour, or 3600 seconds; we must say,

As 12 : 36002 :: 16 : 207360000 feet,

the beight required.

Which being reduced is found equal to 39272 miles ; and
consequently nearly five times greater thau the diameter
of the earth.

502. It is the same with regard to the price of precious
stones, which are notsold in the proportion of their weight ;
every body knows that their prices follow a much greater
ratio. The rule for diamonds is, that the price is in the
duplicate ratio of the weight; that is to say, the ratio of
the prices is equal to the square of the ratio of the weights.
The weight of diamonds is expressed in carats, and a carat
is equivalent to 4 grains; if, therefore, a diamond of one
carat is worth 10 livres, a diamond of 100 carats will be
worth as many times 10 livres as the square of 100 contains
1; so that we shall have, according to the Rule of Three,

As 1:10000 :: 10 : 100000 liv. Ans.

There is a diamond in Portugal which weighs 1680
carats; its price will be found, therefore, by making

12 : 16802 : : 10 : 28224000 livres.

503. The posts, or mode of travelling, in France, fur-
nish sufficient examples of compound ratios; because the
price is regulated by the compound ratio of the number
of horses, and the number of leagues, or posts. Thus, for
example, if one horse cost 20 sous per post, it is required
to find how much must be paid for 28 horses for 41 posts.

We write first the ratio of the horses........ 1: 28

Under this ratio we put that of the stages....2: 9

And, compounding the two ratios, we have 2:252
francs, or 42 crowns. Abridging the two terms, the rela-
tion is, as 1 : 126,

Again, If | pay a ducat for eight horses for 3 miles, how
much must I pay for thirty horses for four miles? The
calculation is as follows:

8:30

3: 4
By compounding these two ratios, and abridging,
1:5::1 duc. : 5 ducats ; the sum required.

504. The same composition occurs when workmen are to
be paid, since those payments generally follow the ratio
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compounded of the number of workmen and that of the
days which they have been employed.

If, for example, 25 sous per day be given to one mason,
and it is required what must be paid to 24 masons who
have worked for 50 days, we state the calculation thus:

1:24
1:50

1:17200 :: 25 : 30000 sous, or 1500 francs.
In these examples, five things being given, the rule
which serves to resolve them is called, in books of arith-
metic, The Rule of Five, or Double Rule of Three,

CHAPTER XI.
Of Geometrical Progressions.

505. A series of numbers, which are always becoming a
certain number of times greater, or less, is called a geome-
trical progression, because each term is constantly to the
following one in the same geometrical ratio : and the num-
ber which expresses how many times each term is greater
than the preceding, is called the exponent, or ratio. Thus,
when the first term is 1, and the exponent, or ratio, is 2,
the geometrical progression becomes,

Terms 1 2 34 5 6 7 8 9 &c.
Prog. 1,2, 4, 8,16, 32, 64, 128, 256, &c.
The numbers 1, 2, 3, &c. always marking the place which
each term holds in the progression.

506. If we suppose, in general, the first term to be a,
and the ratio b, we have the following geometrical pro-
gression :

1,2, 3, 4 5, 6, 7, 8 ....n
Prog. a, ab, ab?, ab?, ab*, ab®, al, ab" . .. . ab™ 1.

So that, when this progression consists of n terms, the
last term is ab”~1. We must, however, remark here, that
if the ratio b be greater than unity, the terms increase con-
tinually ; if 5=1, the terms are all equal; lastly, if b be
less than 1, or a fraction, the terms continually decrease.
Thus, when a=1, and 6=1, we have this geometrical
progression :
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Lt b e % 3 30 1ie &e

507. Here, therefore, we have to consider:

1. The first term, which we have called «.

2. The exponent, which we call &.

3. The number of terms, which we have expressed by =.

4. And the last term, which, we have already seen, is
ab™ 1,

So that, when the first three of these are given, the last
term is found by multiplying the n—1 power of b, or 5,
by the first term a.

If, therefore, the 50th term of the geometrical progres-
sion 1, 2, 4, 8, &c. were required, we should have a=1,
b=2, and n=50; consequently, the 50th term would be
249, and as 29=512, we shall have 21°=1024 ; where-
fore the square of 2, or 2%, =1048576, and the square
of this number, which is 1099511627776, =2%*. Multi-
plying therefore this value of 2° by 29, or 512, we have
249=562949953421312 for the 50th term.

508. One of the principal questions which occurs on
this subject, is to find the sum of all the terms of a geome-
trical progression; we shall therefore explain the method
of doing this. Let there be given, first, the following
progression, consisting of ten terms :

1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
the sum of which we shall represent by s, so that
s=1+2+4+8+16+32+644+128+256+512;

doubling both sides, we shall have

2s=2+4+4+8+16432+64 +128+256+512+1024;
and subtracting from this the progression represented by s,
there remains s=1024—1=1023; wherefore the sum
required is 1023.

509. Suppose now, in the same progression, that the
number of terms is undetermined, that is, let them be
generally represented by x, so that the sum in question, or

s, =1 4242242342+, ., . 2",
If we multiply by 2, we have

=240 423420425, ... 2",
then subtracting from this equation the preceding one,
we have s=2°—1; or, generally, s=2"—1. It is evident,
therefore, that the sum required is found, by multiplying
the last term, 2", by the exponent 2, in order to have
2", and subtracting unity from that product.

510. This is made still more evident by the following
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examples, in which we substitute snccessively for n, the

numbers, 1, 2, 3, 4, &ec.

1=1; 1+2=3;1+2+4=7; 1 +2+44+8=15;

1424+4+8+16=31; 14+2+4+4+8+164+32=32x2—
=63

511. On this subject, the following question is generally
proposed. A man offers to sell his horse on the following
condition ; that is, he demands 1 penny for the first nail,
2 for the second, 4 for the third, 8 for the fourth, and so
on, doubling the price of each succeeding nail. Tt is
required to find the price of the horse, the nails being 32
in number?

This question is evidently reduced to find the sum of
all the terms of the geometrical progression 1, 2, 4, 8, 16,
&e. continued to the 32d term. Now, that last term is
2315 and, as we have already found 22°=1048576, and
219221024, we shall have 22° x 210==230=1073741824 ; and
multiplying again by 2, the last term 231=2147483648 ;
doubling therefore this number, and subtracting unity from
the product, the sum required becomes 4294967295 pence ;
which being reduced, we have 178956971. 1s. 3d. for the
price of the horse.

512. Let the ratio now be 3, and let it be required to
find the sum of the geometrical progression 1, 3, 9, 27,
81, 243, 729, consisting of 7 terms.

Calling the sum s as before, we have

s=14+349+27 481 +243 4-729.
And multiplying by 3,
8s=3 +94+27 481 +243 + 729 + 2187.
Then subtracting the former series from the latter, we have
2s=2187—1=2186: so that the double of the sum is
2186, and consequently the sum required is 1093. ‘

513. In the same progression, let the number of terms

be %, and the sum s; so that

s=14+3+32+334+34+........ 371,
If now we multiply by 3, we have
3s=3+3*+33+3*+........ 3.
Then subtracting from this series the value of s, as be-
fore, we shall have 2s=3"—1; therefore s= 3 2_1 . So

that the sum required is found by multiplying the last
term by 3, subtracting 1 from the product, and dividing
the remainder by 2; as will appear, also, from the
following particular cases :
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Loveinnns e, .(1"3)‘1 = 1
143, ciiiienn.., (3><_%)—___1 = 4
14+34+9..ccviveensn Q—X—g—):—l = 13
143+9+27........ 2X2D=1 g
1+3+9+27+81....@<3L‘_1 —121

514. Let us now suppose, generally, the first term to
be a, the ratio b, the number of terms =, and their sum s,

so that

s=a+t+ab+ab*+abP+abt+........ ab™1.,
If we multiply by b, we have
bs=ab+ab*+ab3+ab*+ab’+ ..... ab*,

and taking the difference between this and the above
equation, there remains (b—1)s=ab"—a; whence we
easily deduce the sum required s=-c#:l-9. Conse-
quently, the sum of any geometrical progression is found
by multiplying the last term by the ratio, or exponent of
the progression, and dividing the difference between this
product and the first term, by the difference between 1
and the ratio.’

515. Let there be a geometrical progression of seven
terms, of which the first 1s 3; and let the ratio be 2: we
shall then have a=3, =2, and n=7; therefore the last
term is 3 x 29, or 3 x 64, =192; and the whole progression
will be

3, 6, 12, 24, 48, 96, 192,

Farther, if we multiply the last term 192 by the ratio
2, we have 384 ; subtracting the first term, there remains
381; and dividing this by 6—1, or by 1, we have 381 for
the sum of the whole progression.

516. Again, let there be a geometrical progression of
six terms, of which the first is 4 ; and let the ratio be 3 ;
then the progression is

4,6,9, %, 8, 243,

If we multiply the last term by the ratio, we shall have
129 ; and subtracting the first term =844, the remainder
is ¢83 ; which, divided by b—1=1, gives °4% =83 for
the sum of the series. S
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517. When the exponent is less than 1, and, conse-
quently, when the terms of the progression continually
diminish, the sum of such a decreasing progression,
carried on to infinity, may be accurately expressed.

For example, let the first term be 1, the ratio 1, and
the sum s, so that :

s=l+i+i+d+4+9:+d +; &e
ad infinitum,
If we multiply by 2, we have
26=24 14 b+ d+d+ 24+ 55 +, &e.
ad infinitum : and, subtracting the preceding progression,
there remains s=2 for the sum of the proposed infinite
progression.

518. If the first term be 1, the ratio %, and the sum s;

so that
s=1+1+4 + 5% + & +, &c. ad infinitum :
Then multiplying the whole by 3, we have
3s=3+1+1+3+4+, &c. ad infinitum;
and subtracting the value of s, there remains 2s=3:
wherefore the sum s =11.

519. Let there be a progression whose sum is s, the

first term 2, and the ratio % ; so that
s=2+3+2+%5+-8%+, &c. ad infinitum.

Multiplying by %, we have

4s=8+2+ 3+ ¢+ %% + &% +, &c. ad infinitum ;
and subtracting from this progression s, there remains
4s=28: wherefore the sum required is 8.

520. If we suppose, in general, the first term to be a,

and the ratio of the progression to be - 50 that this frac-

tion may be less than 1, and consequently ¢ greater
than b; the sum of the progression, carried on ad
infinitum, will be found thus:

2 3 4
Make s=a+ (l—b-f--(}-é— +a_b_+ﬂ+’ &e.
c c? c? c*

Then multiplying by %, we shall have

b ab  ab®  ab® ab* o .
=ttt + - +, &ec. ad infinitum ;

and subtracting this equation from the preceding, there

remains (1— E)s:a.
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a

ac 1o
— =5 by multiplying both the

Consequently, s =

c
numerator and denominator by c.

The sum of the infinite geometrical progression proposed
is, therefore, found by dividing the first term « by 1 minus
the ratio; or by multiplying the first term a by the de-
nominator of the ratio, and dividing the product by the
same denominator diminished by the numerator of the
ratio.

521. In the same manner we find the sums of progres-
sions, the terms of which are alternately affected by the
signs + and —. Suppose, for example,

s——a—a—b iz_bj_a_bj_f_@‘_‘_ &e
o c c? ¢ et T
Multiplying by g, we have,
b_ab _ab b o
¢’ ¢ & e T e
And, adding this equation to the preceding, we obtain

&e.

(14 g)s =a; whence we deduce the sum required,

ac
c+b

S=

or s=

a
?
142
c
522. Tt is evident, therefore, that if the first term a=3%,
and the ratio be £, that is to say, b=2, and ¢=5, we shall
find the sam of the progression $ + fc + L2 + 24 +,
&c. =1 since, by subtracting the ratio from 1, there
remains 4, and by dividing the first term by that
remainder, the quotient is 1.
It is also evident, if the terms be alternately positive
and negative, and the progression assume this form :

$— 5%+ A% — &5+, &e.
that the sum will be
a

1+-b-
(4

oot
I
«ajes

523. Again: letthere be proposed the infinite progression,

o + 185 + 1o%0 + Todvo + 1evos + &e.
The first term is here 4%;, and the ratio is 4 ; therefore
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subtracting this last from 1, there remains %, and, if we
divide the first term by this fraction, we have % for the
sum of the given progression. So that taking only one
term of the progression, namely, 4%, the error would
be ;-

And taking two terms, % + 134, = %%, there would
still be wanting 11, to make the sum, which we have
seen is 1.

524. Let there now be given the infinite progression,

9 + % + 185 + 10 + Todoo +5 &e.
The first term is 9, and the ratio is ¢. So that 1 minus

the ratio is % ; and —?’: = 10, the sum required : which

seriesis expressed byaggcima] fraction, thus,9-9998999, &c.

QUESTIONS FOR PRACTICE.

1. A servant agreed with a master to serve him eleven
years without any other reward for his service than the
produce of one grain of wheat for the first year; and that
product to be sown the second year, and so on from year
to year till the end of the time, allowing the increase to
be ‘only in a tenfold proportion. What was the sum of
the whole produce? Ans. 111111111110 grains.

V. B. Itis farther required, to reduce this number of
grains to the proper measures of capacity, and then by
supposing an average price of wheat to compute the value
of the corns in money.

2. A servant agreed with a gentleman to serve him
twelve months, provided he would give him a farthing
for his first month’s service, a penny for the second, and
4d, for the third, &c. What did his wages amount to?

Ans. 58251 8s. 51d.

3. One Sessa, an Indian, having first invented the game
of chess, shewed it to his prince, who was so delighted
with it, that he promised him any reward he should ask;
upon which Sessa requested that he might be allowed one
grain of wheat for the first square on the chess board, two
for the second, and so on, doubling continually, to 64,
the whole number of squares. Now, supposing a pint to
contain 7680 of those grains, and one quarter to be worth
1. 7s. 6d., it is required to compute the value of the
whole sum of grains. Ans. 64481488296/.
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CHAPTER XII.
Of Infinite Decimal Fractions.

525. We have already seen, in logarithmic calculations,
that Decimal Fractions are employed instead of Vulgar
Fractions: the same are also advantageously employed in
other calculations. It will therefore be very necessary to
shew how a vulgar fraction may be transformed into a
decimal fraction; and, conversely, how we may express
the value of a decimal, by a vulgar fraction.

526. Let it be required, in general, to change the fraction

2, into a decimal. As this fraction expresses the quotient
b p q

of the division of the numerator a by the denominator 5,
let us write, instead of @, the quantity 0000000, whose
value does not at all differ from that of «, since it contains
neither tenth parts, hundredth parts, nor any other parts
whatever. If we now divide the quantity by the number
b, according to the common rules of division, observing
to put the point in the proper place, which separates the
decimal and the integers, we shall obtain the decimal
sought. This is the whole of the operation, which we
shall illustrate by some examples.

Let there be given first the fraction 4, and the division
in decimals will assume this form :

2)1-0000000
0-5000000

Hence it appears, that 1 is equal to 0-5000000 or to
0-5; which is sufficiently evident, since this decimal
fraction represents -%;, which is equivalent to 4.

527. Let now 4 be the given fraction, and we shall have,

3)1-0000000 _
03333333 — 3’

This shews, that the decimal fraction, whose value is 1,
cannot, strictly, ever be discontinued, but that it goes on,
ad infinitum, repeating always the number 3; which
agrees with what has been already shewn, Art. 523;
namely, that the fractions '

7o + 1is + 19%0 + oo &¢. ad infinitum, = 1.

=1
r
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The decimal fraction which expresses the value of £, is
also continued ad infinitum ; for we have

)2:0000000 _

0-6666666 —
Which is also evident from what we have just said, because
2 is the double of 1.
528. If 1 be the fraction proposed, we have
4)1-0000000 |
0-2500000 — *
So that 1 is equal to 0 2oOOOOO or to 0-25: which is

evidently true, since %, or %%, + 37 = &y = L.
In like manner, we should have for the fraction 4,
4)3:0000000 _ |
0-7500000 — ¢
So that 2 =0-75: and in fact
176’ or 1% +‘100 =1 =

The fraction % is changed into a decmnal fraction, by
making

D,

4)5:0000000
1-2500000 — *

Now, 1 42 =4,

529. In the same manner, + will be found equal to 0-2 ;
2=04; 3=06; $¢=08; i=1; £=1-2, &c.

When the denommator is 6, we find 1=0-1666666, &c.
which is equal to 0-666666—0-5: but 0-666666=%, and
0-5=1, wherefore 0:'1666666=%-—1; or £—3=1,

We' ﬁnd also, 2=0333333, &c.=1; but 3 *becomes
0-5000000= 1; also, £=0-833333=0" 333333 4.0- 5, that
is to say, $+4; or l+3—i

530. When the denommator is 7, the decimal fractions
become more complicated. For example, we find 1=
0-142857 ; however, it must be observed that these six
figures are continually repeated. To be convinced, there-
fore, that this decimal fraction precisely expresses the value
of 1, we may transform it into a geometrical progression,

whose first term is %2837, the ratio being 1554550 5 and
142

consequently, the sum = ———Q—Q-"-"-‘)—g = 443857 (by mul-

B0
tiplying both terms by 1000000) = 1. [See Art. 520.]
531. We may prove, in a manner still more easy, that
the decimal fraction, which we have found, is exactly equal
to 1; for, by substituting for its value the letter s, we have
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s =0-142857142857142857, &c.

10s =1- 42857142857142857, &e.

100s = 14- 2857142857142857, &ec.
1000s =142 857142857142857, &c.
10000s = 1428 57142857142857, &c.
100000s = 14285+ 7142857142857, &c.
1000000s = 142857 142857142857, &c.
Subtract s = 0- 142857142857, &c.

9999995 = 142857

And, dividing by 999999, we have s = }$%44] = 1.
Wherefore the decimal fraction, which was represented by
s, is = 1.

532. In the same manner, £ may be transformed into a
decimal fraction, which will be 0-28571428, &c. and this
enables us to find more easily the value of the decimal
fraction which we have represented by s; because
0-28571428, &c. must be the double of it, and, conse-
quently, = 2s. Now we have seen that

100s = 14-28571428571, &e.
So that subtracting 2s= 028571428571, &c.

there remains 98s =14
wherefore s=4%=1.
We also find 2 = 0-42857142857, &c. which, according
to our supposition, must be equal to 3s; and we have
found that

10s = 1:42857142857, &ec.
So that subtracting 3s =0-42857142857, &c.

we have 7s=1, wherefore s =1.

533. When a proposed fraction, therefore, has the de-
nominator 7, the decimal fraction is infinite, and 6 figures
are continually repeated ; the reason of which is easy to
perceive, namely, that when we continue the division, a
remainder must return, sooner or later, which we have
had already. Now, in this division, 6 different numbers
only can form the remainder, namely, 1, 2, 3, 4, 5, 6; so
that, at least, after the sixth division, the same figures
must return; but when the denominator is such as to
lead to a division without remainder, these cases do not
happen.

534. Suppose now that 8 is the denominator of the
fraction proposed; we shall find the following decimal
fractions:
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2=025; 375; 4=05;
625 ﬁ—O 75, -875, &c
535 If the denominator be 9, we have
$=0-111, &e. $=0-222, &e. 3 =0333, &ec.

And if the denominator be ]O we have =01, 2 =
0-2, 3, =0-3. This is evident from the nature of decimals,
as also that 135 =001; 375=037; 255 =0:256;
T&tse = 010024, &e.

536. If 11 be the denominator of the given fraction, we
shall have 1. =0-0909090, &c. Now, suppose it were re-
qulred to find the value of this decimal fraction : let us
call it s, and we shall have

s = 0-090909,
10s = 0909090,
100s = 9-09090.
If, therefore, we subtract from the last the value of s, we
shall have 99s = 9, and consequently s = 4% = {1 : thus,
also,

.o
col~x Sofi0

K=

2. =0181818, &e.
TT = 0272727, &e.
£ =0 545454 &e.

537. There are a great number of decimal fractions,
therefore, in which one, two, or more figures constantly
recur, and which continue thus to infinity. Such fractions
are curious, and we shall shew how their values may be
easily found.*

»-\

* These recurring decimals furnish many interesting re-
searches ; I had entered upon them before I saw the present
Algebra, and should perhaps have prosecuted my inquiry, had
I not likewise found a Memoir in the Philosophical Transactions
for 1769, entitled The Theory of Circulating Fractions. I shall
content myself with stating here the reasoning with which I
began.

n ‘ B . A
Let a be any real fraction irreducible to lower terms, And

suppose it were required to find how many decimal places we
must reduce it to, before the same terms will return again.
In order to determine this, I begin by supposing that 107
is greater than d; if that were not the case, and only 1007 or
1000z >d, it would be necessary to begin with trymg to reduce
10n  100n
P Bt &ec. to less terms, or to a fraction —— -

This being established, I say that the same period can return
only when the same remainder » returns in the continual division,
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Let us first suppose that a single figure is constantly re-
peated, and let us represent it by a, so that s=0'aaaaaaa.
We have

10s=a"aaaaaaa
and subtracting  s=0-aaaaaaa

a
we have 9s=a ; wherefore s= 9

538. When two figures are repeated, as ab, we have

s = 0ababab. Therefore 100s = ab-ababab; and if we

subtract s from it, there remains 99s=ab; consequently
ab
$=gg"

When three figures, as abe, are found repeated, we have

s = O-abcabcabc ; consequently, 1000s = abc-abcabe ; and

subtracting s from it, there remains 999s=abc; where-

abe
fore s = 599’ and so on.
Whenever, therefore, a decimal fraction of this kind

Suppose that when thishappens we have added s ciphers, and that
q is the integral part of the quotient; then abstracting from the
n

point, we shall haven——XI£=q+%; wherefore ¢ = g % (1o

d
—1). Now, as ¢ must be an integer number, it is required to
determine the least integer number for s, such that —3 X (10—
10°—
d
This problem requires several cases to be distinguished : the
first is that in which dis a divisor of 10, or of 100, or of 1000,
&c. and it is evident that in this case there can be no circulating
fraction. For the second case, we shall take that in which d is
an odd number, and not a factor of any power of 10; in this
case, the value of s may rise to d—1, but frequently it is less.
A third case is that in which d is even, and, consequently, with-
out heing a factor of any power of 10, has nevertheless a com-
mon divisor with one of those powers: this common divisor can

1
may be an integer number.

1) or only that

d
only be a number of the form 2°; so thatif, 5 =6 I say, the pe-

riods will be the same as for the fraction g, but they will not

commence before the figure represented by ¢. This case comes to
the same therefore with the second case; on which it is evident
the theory depends.—F. T.
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occurs, it is easy to find its value. Let there be given, for
example, 0-296296 : its value will be $3§=-8;, by dividing
both its terms by 37.

This fraction ought to give again the decimal fraction
proposed ; and we may easily be convinced that this is the
real result, by dividing 8 by 9, and then that quotient by
3, because 27=3 x 9 : thus, we have

9) 8-000000

3) 0-888888

0-296296, &c.
which is the decimal fraction that was proposed.
539. Suppose it were required to reduce the fraction
1

to a decimal. The

I x2x3x4xbx6x7x8x9x10
operation would be as follows:

2) 1-00000000000000
3) 0-50000000000000
4) 0-16666666666666
5) 0-04166666666666
6) 0-00833333333333
7) 0-00138883888888
8) 0-00019841269841
9) 0-00002480158730

10) 0-00000275573192
0-00000027557319
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CHAPTER XIII.

Of the Calculation of Interest.*

540. We are accustomed to express the interest of any
principal by per cents, signifying how much interest is an-
nually paid for the sum of 100 pounds. And it is very
usual to put out the principal sum at 5 per cent ; that is,
on such terms, that we receive 5 pounds interest for every
100 pounds principal. Nothing therefore is more easy
than to calculate the interest for any sum; for we have
only to say, according to the Rule of Three:

As 100 is to 5, the rate per cent proposed, so is the prin-
cipal of any other sum to the interest required.

Let the principal, for example, be 860/., its annual
interest, at 5 per cent, is found by this proportion: As
100 : 5:: 860 : 43, the interest.

541. We shall not dwell any longer on examples of
Simple Interest, but pass on immediately to the calculation
of Compound Interest; in which the chief subject of in-
quiry is, to what sum does a given principal amount, after
a certain number of years, the interest being annually
added to the principal. In order to resolve this question,
we begin with the consideration, that 100/, placed out at
5 per cent, becomes, at the end of a year, a principal of
105/. : therefore, let the principal be @ ; its amount, at the
end ofthe year, will be found, by saying; As 100 is to 105,
s0 is a to the amount required.

That is 1052 _ 21a

,W’:—_—QO—:%%XQ, ora—{—?%.a.

* The theory of the calculation of interest owes its first im-
provements to Leibnitz, who delivered the principal elements of
it in the Acta Eruditorum of Leipsic for 1683. It was after-
wards the subject of several detached dissertations written in
a very interesting manner. It has been most indebted to those
mathematicians who have cultivated political arithmetic; in
which are combined, in a manner truly useful, the calculation of
interest, and of probabilities, founded on the data furnished by
the bills of mortality. We are still in want of a good elemen-
tary treatise of political arithmetic, though this extensive branch
of science has been much attended to in England, France, and
Holland.—F. T.

N
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542. So that, when we add to the original principal its
twentieth part, we obtain the amount of the principal at
the end of the first year: and adding to this its twentieth
part, we know the amount of the given principal at the end
of two years, and soon. It is easy, therefore, to compute
the successive and annual increases of the principal, and
to continue this calculation to any extent.

543. Suppose, for example, that a principal, which is at
present 1000/., is put out at five per cent ; that the interest
1s added every year to the principal; and that it were re-
quired to find its amount at any time. As this calculation
must lead to fractions, we shall employ decimals, but with-
out carrying them farther than the thousandth parts of a
pound, since smaller parts do not at present enter into
consideration.

The given principal of 1000/. will be worth

after 1 year.......... 10501,
52-5,
after 2 years.......... 1102-5
55125,
after 3 years.......... 1157-625
57-881,
after 4 years.......... 1215-506
60-775,
after 5 years.......... 1276-281, &e.

which sums are formed by always adding %; of the pre-
ceding principal.

544, We may continue the same method, for any num-
ber of years; but when this number is very great, the cal-
culation becomes long and tedious; but it may always be
abridged, in the following manner:

Let the present principal be a, and since a principal of
20/. amounts to 21/. at the end of a year, the principal a

will amount to 24 . a at the end of a year: and the same
. . . 12
principal will amount, the following year, to 507 4=

(£4)2. a.* Also, this principal of two years will amount to
(£4)® . a, the year after: which will therefore be the princi-
pal of three years ; and still increasing in the same manner,

* Thus, if » represent the amount of one pound at the end of
a year, then 1 :7::7:72 will be the amount at the end of the
next year; and 7 : 72 :: 7%: 73 at the end of three years, and so on.
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the given principal will amount to (24)t. a at the end of
four years ; to (£4)°. a, at the end of five years; and after
a century, it will amount to (21)'°. a; so that, in general,
(%43)" . a will be the amount of this principal, after n years;
and this formula will serve to determine the amount of the
principal, after any number of years.

545. The fraction 24, which is used in this calculation,
depends on the interest having been reckoned at 5 per
cent, and on £} being equal to 135. But if the interest
were estimated at 6 per cent, the principal @ would amount
to 198 . a, at the end of a year; to (14§)?. a, at the end
of two years; and to 196" . a, at the end of n years.

If the interest is only at 4 per cent, the principal a will
amount only to (184)*. a after n years.

546. When the principal a, as well as the number of
years, is given, it is easy to resolve these formula by loga-
rithms.  For if the question be according to our first sup-
position, we shall take the logarithm of (21)* . a, which is
= log. (43)*+1log. a; hecause the given formula is the
product of (2)* and a. Also, as (4£1)" is a power, we shall
have log. (33)*=n log. %% : so that the logarithm of the
amount required is n log. 1 + log.a; and farther, the
logarithm of the fraction 24 = log. 21 — log. 20.

547. Let now the principal be 1000/. and let it be re-
quired to find how much this principal will amount to at
the end of 100 years, reckoning the interest at 5 per cent.

Here we have =100 ; and, consequently, the logarithm
of the amount required will be 100 log. %4 + log. 1000,
which is calculated thus:

log. 21 =1-3222193
subtracting log. 20 =1-3010300

log. 21 =0-0211893
multiplying by .......... 100

100 log. 23 =2-1189300
add log. 1000 = 3-0000000

which gives 5-1189300, the logarithm of
the principal required.

We perceive, from the characteristic of this logarithm,
that the principal required will be a number consisting of
six figures, and it is found to be 1315011

548. Again, suppose a principal of 3452(. were put out
at 6 per cent, what would it amount to at the end of 64
years ?
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We have here a=3452, and n=64. Wherefore the
logarithm of the amount sought is
64 log. £3 +log. 3452, which is calculated thus :
log. 53 = 1-7242759
subtracting log. 50 = 1-6989700

log. 33 = 0-0253059
multiplying by ............ 64

64 log. 33 = 1-6195776
add log. 3452 = 3-5380708

which gives 51576484
And taking the number of this logarithm, we find the
amount required equal to 143763/.

549. When the number of years is very great, as it is
required to multiply this number by the logarithm of a
fraction, a considerable error might arise from the loga-
rithms in the Tables not being calculated beyond 7 figures
of decimals; for which reason it will be necessary to em-
ploy logarithms carried to a greater number of figures, as
in the following example.

A principal of 14 being placed at 5 per cent, compound
interest, for 500 years, it is required to find to what sum
this principal will amount at the end of that period.

We have here a=1 and »=500; consequently, the
logarithm of the amount sought is equal to 500 log. 5+
log. 1, which produces this calculation :

log. 21 = 1-322219294733919

subtracting log. 20 = 1-301029995663981

log. 3= 0-021189299069938
multiply by........iiiiaia, 500

500 log. 41 =10-594649534969000, the logarithm
of the amount required ;* which will be found equal to
39323200000/.

550. If we not only add the interest annually to the
principal, but also increase it every year by a new sum b,
the original principal, which we call @, would increase
each year in the following manner:

after 1 year, 21a+b,
after 2 years, (334)%a+4%34b+b,
after 3 years, (34)°a+ (430 +%4b+b,

* Here, the principal being 1, the log. of which is 0, there is
no addition.
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after 4 years, (33)'a+ (2370 + (35D +%5b+ D,
after n years, (33)"a + (35)" 710 + (33" %+ ... .35b+b.

This amount evidently consists of two parts, of which
the first is (43)"a; and the other, taken inversely, forms
the series b+21b+($3)%0 + (310 + .. ..(45)*~*b; which
series is evidently a geometrical progression, the ratio of
which is equal to £1; and we shall therefore find its sum,
by first multiplying the last term (21)*~'b by the exponent
21 which gives (24)"b. Then, subtracting the first term
b, there remains (31)'6—b; and, lastly, dividing by the
exponent minus 1, that is to say by -%;, we shall find the
sum required to be 20(34)"6—20b; therefore the amount
sought 1s, (33)"a+20(33)"b—20b=(3%)" x (a+205)—205.

551. The resolution of this formula requires us to calcu-
late, separately, its first term (%3)" x (a+20b), which is
n log. 3% + log. (a+208); for the number which answers
to this logarithm in the Tables will be the first term ; and
if from this we subtract 205, we shall have the amount
sought.

552. A person has a principal of 1000/, placed out at
five per cent, compound interest, to which he adds annually
100 beside the interest : what will be the amount of this
principal at the end of twenty-five years?

We have here a=1000; 5=100; 2=25; the operation
is therefore as follows :

log. 31 =0-021189299 ; multiplying by 25,

we have 25 log. 4% = 05297324750
log. (a+20b)=3-4771213135

And the sum =4-0068537885.

So that the first part, or the number which answers to
this logarithm, is 10159-1, and if we subtract 206=2000,
we find that the principal in question, after twenty-five
years, will amount to 81591, 2s.

553. Since, then, this principal of 1000/ is always in-
creasing, and after twenty-five years amounts to 81591
we may require, in how many years it will amount to
10000001,

Let = be the number of years required : and, since a=
1000, 5=100, the principal will be, at the end of n years,
(21) . (3000)—2000, which sum must make 1000000 ;
from it therefore results this equation ;

3000 . (31)*—2000 = 1000000 ;
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And adding 2000 to both sides, we have
3000 . (£2)"=1002000.
Then dividing both sides by 3000, we have (3})*=334.
By the Table of logarithms, n log. $3=log. 334; and

dividing by log. 1, we obtain n = log. 334. Now, log. 334
log- %%
= 2:5237465, and log. %} =00211893; therefore n =

?)—gg:%gg ; and, lastly, if we multiply the two terms of this

fraction by 1000000, we shall have n=%§%31484, =119
years, 1 month, 7 days; and this is the time in which the
principal of 1000/. will be increased to 10000001.

554. But if we supposed that a person, instead of an-
nually increasing his principal by a certain fixed sum,
diminished it, by spending a certain sum every year, we
should have the following gradations, as the values of that
principal a, year after year, supposing it put out at 5 per
cent, compound interest, and representing the sum which
is annually taken from it by &:
after 1 year, it would be £3a—b,
after 2 years, (3})°a—%5b—0,
after 3 years, (43)%a—(%3)%0—43b—b,
after n years, (25)a—(%3)" "0 —(£4)" "% —....(%5)b—b.

555. This principal consists of two parts, one of which
is ($3)". a, and the other, which must be subtracted from
it, taking the terms inversely, forms the following geo-
metrical progression :

b+ (EDb+EDDB+EDD+ ... .. (3418

Now we have already found (Art. 550.) that the sum
of this progression is 20(%1)"6—20b; if therefore, we
subtract this quantity from (%41)". a, we shall have for the
principal required, after n years=(24)". (a—206) + 20b.

556. We might have deduced this formula immediately
from that of Art. 550. For, in the same manner as we an-
nually added the sum b, in the former supposition ; so, in
the present, we subtract the same sum b every year. We
have therefore only to put in the former formula, —b every
where, instead of +54. But it must here be particularly re-
marked, that if 205 is greater than a, the first part becomes
negative, and, consequently, the principal will continually
diminish. This will be easily perceived ; forif we annually
take away from the principal more than is added to it by
the interest, it is evident that this principal must continually
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become less, and at last it will be absolutely reduced to
nothing ; as will appear from the following example.

557. A person puts out a principal of 1000001. at 5 per
cent interest; but he spends annually 6000L; which is
more than the interest of his principal, the latter being
only 5000/.; consequently, the principal will continually
diminish ; and it is required to determine, in what time 1t
will be all spent.

Let us suppose the number of years to be », and since
a=100000, and 5=6000, we know that after n years the
amount of the principal will be —20000(%4)" + 120000,
or 120000—20000(£%)*, where the factor, —20000, is the
result of a—206; or 100000— 120000.

So that the principal will become nothing, when
20000(%%)" amounts to 120000; or when 20000(34)"=
120000. Now, dividing both sides by 20000, we have
(%3 =6; and taking the logarithm, we have =z log.

(1) =log. 6; then dividing by log. 4%, n = log. ?1, or
N log. 41

07781513 .
"= 50911803 - and, consequently, n=36 years, 8 months,

22 days ; at the end of which time, no part of the principal
will remain.

558. It will here be proper also to shew how, from
the same principles, we may calculate interest for times
shorter than whole years. For this purpose, we make
use of the formula ($4)". a already found, which expresses
the amount of a principal, at 5 per cent, compound
interest, at the end of n years; for if the time be less than
a year, the exponent n becomes a fraction, and the calcu-
lation is performed by logarithms as before. If, for
example, the amount of a principal at the end of one day
were required, we should make n=-+1+; if after two days,
n=+%5, and so on,

559. Suppose the amount of 100000/ for 8 days were
required, the interest being at 5 per cent.

Here @ = 100000, and » = 48z, consequently, the

amount sought is (%%)3_%5 x 100000; the logarithm of

which quantity is log. (33)7%5 + log. 100000 = 52 log. 31
+ log. 100000. Now, log. %} = 0-0211893, which, multi-
plied by 525, gives 0-0004644, to which adding

log. 100000=>50000000, the sum is 5:0004644.

The natural number of this logarithm is found to be
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100107. So that, subtracting the principal, 100000 from
this amount, the interest, for eight days, is 1071.

560. To this subject belongs also the calculation of the
present value of a sum of money, which is payable only
after a term of years. For as 20/, in ready money,
amounts to 21/, in a year ; so, reciprocally, a sum of 21/.,
which cannot be received till the end of one year, is
really worth only 20/. If, therefore, we express, by a,
a sum whose payment is due at the end of a year, the
present value of this sum is 29a; and therefore to find the
present worth of a principal @, payable a year hence, we
must multiply it by 2¢; to find its value two years before
the time of payment, we multiply it by (39)?; and in
general, its value, n years before the time of payment,
will be expressed by (49)"a.

561. Suppose, for example, a man has to receive for
five successive years, an annual rent of 100/. and that he
wishes to give it up for ready money, the interest being at
5 per cent ; it is required to find how much he is to receive.

Here the calculations may be made in the following
manner :

For 100/. due after 1 year, he receives 95:239

after 2 years .......... 90-704
after 3 years .......... 86-385
after 4 years.......... 82:272
after 5 years .......... 78-355

Sum of the 5 terms = 432:955

So that the possessor of the rent can claim, in ready
money, only 432-955/.

562. If such a rent were to last a greater number of
years, the calculation, in the manner we have performed
it, would become very tedious; but in that case it may be
facilitated as follows:

Let the annual rent be a, which commencing at present,
and lasting » years, will be actually worth

a+(FPe+EDa+(EPle+EDa+.. ... (39)ra.

This is a geometrical progression, and the whole is reduced
to finding its sum. We therefore multiply the last term
by the exponent, the product of which 1s (¢)*+'a; then,
subtracting the first term, there remains (39)"*'a—a ; and,
lastly, dividing by the exponent minus 1, that is, by —-4,
or, which amounts to the same, multiplying by —21, we
shall have the sum required,

—21.EP . a+21a, or, 21a—21. (29"t . a;
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and the value of the second term, which it is required to
subtract, is easily calculated by logarithms,

QUESTIONS FOR PRACTICE.

1. What will 375/, 10s. amount to in 9 years at 6 per
cent, compound interest ? Ans. 6341, 8s.
2. What is the interest of 1/. for one day, at the rate of
5 per cent? Ans. 0-00012369863 parts of a pound.
3. What will 256/. 10s. amount to in 7 years, at the
rate of 6 per cent, compound interest? Ans. 3851. 13s. 71d.
4. What will 563/. amount to in 7 years and 99 days,
at the rate of 6 per cent, compound interest?  Ans. 860/
5. What is the amount of 400/. at the end of 31 years,
at 6 per cent, compound interest? Ans. 4904, 11s. 71d.
6. What will 320/. 10s. amount to in 4 years, at 5 per

cent, compound interest? Ans. 3891, 11s. 44d.
7. What will 650/. amount to in 5 years, at 5 per cent,
compound interest ? Ans. 8291. 11s. 71d.

8. What will 550/. 10s. amount to in 3 years and 6
months, at 6 per cent, compound interest? Ans.675/. 6s. 5d.
9. What will 15/. 10s. amount to in 9 years, at 3% per
cent, compound interest? Ans. 214, 2s. 41d.
10. What is the amount of 550.. at 4 per cent, in 7
months? Ans. 5621. 16s. 8d.
11. What is the amount of 100L. at 7-37 per cent, in

9 years and 9 months? Ans. 2001,
12. If a principal x be put out at compound interest
for z years, at x per cent, required the time in which it
will gain z. . Ans. 8:49824 years.
13. What sum, in ready money, is equivalent to 600/
due 9 months hence, reckoning the interest at 5 per cent ?
Ans. 578(. 6s. 31d.

14. What sum, in ready money, is equivalent to an
annuity of 70/. to commence 6 years hence, and then to
continue for 21 years at 5 per cent? Ans. 669/. 14s. 03d.
15. A man puts out a sum of money, at 6 per cent, to
continue 40 years; and then both principal and interest
are to sink. What is that per cent, to continue for ever?
Ans. 52 per cent.
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SECTION 1IV.

OF ALGEBRAIC EQUATIONS, AND THE RESOLUTION OF THEM.

CHAPTER 1.
Of the Solution of Problems in general.

563. The principal object of Algebra, as well as of all
the other branches of Mathematics, is to determine the
value of quantities that were before unknown ; and this is
obtained by considering attentively the conditions given,
which are always expressed in known numbers. For this
reason, Algebra has been defined, The science which
teaches how to determine unknown quantities by means of
those that are known.

564. The above definition agrees with all that has been
hitherto laid down: for we have always seen that the
knowledge of certain quantities leads to that of other
quantities, which before might have been considered as
unknown.

Of this, Addition will readily furnish an example; for,
in order to find the sum of two or more given numbers,
we have to seek for an unknown number, which shall be
equal to those known numbers taken together. In Sub-
traction we seek for a number which shall be equal to
the difference of two known numbers. A multitude of
other examples are presented by Multiplication, Division,
the Involution of powers, and the Extraction of roots ; the
question being always reduced to finding, by means of
known quantities, other quantities which are unknown.

565. In the last section, also, different questions were
resolved, in which it was required to determine a number
that could not be deduced from the knowledge of other
given numbers, except under certain conditions. All
those questions were reduced to finding, by the aid of
some given numbers, a new number, which should have
a certain connexion with them; and this connexion was
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determined by certain conditions, or properties, which
were to agree with the quantity sought.

566. In Algebra, when we have a question to resolve,
we represent the number sought by one of the last letters
of the alphabet, and then consider in what manner the
given conditions can form an equality between two
quantities. This equality is represented by a kind of
formula, called an equation, which enables us finally to
determine the value of the number sought, and conse-
quently to resolve the question. Sometimes several
numbers are sought; but they are found in the same
manner by equations.

567. Let us endeavour to explain this farther by an
example. Suppose the following question, or problem,
was proposed:

Twenty persons, men and women, dine at a tavern ; the
share of the reckoning for one man is 8 shillings, for one
woman 7 shillings, and the whole reckoning amounts to
71. 5s. Required the number of men and women
separately ?

In order to resolve this question, let us suppose that the
number of men is =z ; and, considering this number as
known, we shall proceed in the same manner as if we
wished to try whether it corresponded with the conditions
of the question. Now, the number of men being = z,
and the men and women making together twenty persons,
it is easy to determine the number of the women, having
only to subtract that of the men from 20, that is to say,
the number of women must be 20—ux.

But each man spends 8 shillings; therefore 2 number
of men must spend 8z shillings. And since each woman
spends 7 shillings, 20—z women must spend 140—7x
shillings. So that adding together 8z and 140—7x, we see
that the whole 20 persons must spend 140+ x shillings.
Now, we know already how much they have spent;
namely, 7/. 5s. or 145s. ; there must be an equality, there-
fore, between 140+2 and 145; that is to say, we have
the equation 140+x=145, and thence we easily deduce
z=>5, and consequently 20—2=20—5=15; so that the
company consisted of 5 men and 15 women.

568. Again, Suppose twenty persons, men and women,
go to a tavern ; the men spend 24 shillings, and the women
as much : but it is found that the men have spent 1 shil-
ling each more than the women. Required the number
of men and women separately ?
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Let the number of men be represented by z.
Then the women will be 20—z.
Now, the z men having spent 24 shillings, the share of

each man is % The 20—z women having also spent 24
24

20—z

But we know that the share of each woman is oneshilling
less than that of each man ; if, therefore, we subtract 1 from
the share of a man, we must obtain that of a woman ; and

consequently ?;— 1= 2—02%0 This, therefore, is the

shillings, the share of each woman is

equation, from which we are to deduce the value of z. This
valae is not found with the same ease as in the preceding
question ; but we shall afterwards see that x=8, which
value answers to the equation; for ¢ —1, or 1f =24 in-
cludes the equality 2=2.

569. It is evident, therefore, how essential it is, in all
problems, to consider the circumstances of the question at-
tentively, in order to deduce from it an equation that shall
express by letters the numbers sought, or unknown. After
that, the whole art consists in resolving those equations,
or deriving from them the values of the unknown num-
bers; and this shall be the subject of the present section.

570. We must remark, in the first place, the diversity
which subsists among the questions themselves. Insome,
we seek only for one unknown quantity; in others, we
have to find two, or more; and, it is to be observed, with
regard to this last case, that, in order to determine them
all, we must deduce from the circumstances, or the con-
ditions of the problem, as many equations as there are
unknown quantities.

571. Tt must have already been perceived, that an equa-
tion consists of two parts separated by the sign of equality,
=, to shew that those two quantities are equal to one an-
other; and we are often obliged to perform a great number
of transformations on those two parts, in order to deduce
from them the value of the unknown quantity : but these
transformations must be all founded on the following prin-
ciples; namely, That two equal quantities remain equal,
whether we add to them, or subtract from them, equal
quantities ; whether we multiply them, or divide them, by
the same number ; whether we raise them both to the same
power, or extract their roots of the same degree; orlastly,
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whether we take the logarithms of those quantities, as we
have already done in the preceding section.

572. The equations which are most easily resolved, are
those in which the unknown quantity does not exceed the
first power, after the terms of the equation have been pro-
perly arranged ; and these are called simple equations, or
equations of the first degree. But if, after having reduced
an equation, we find in it the square, or the second power,
of the unknown quantity, it is called an equation of the
second degree, which is more difficult to resolve. Equations
of the third degree are those which contain the cube of the
unknown quantity, and so on. We shall treat of all these
in the present section.

CHAPTER 1I.

Of the Resolution of Simple Equations, or Equations of the
First Degree.

573. When the number sought, or the unknown quantity,
is represented by the letter x, and the equation we have
obtained is such, that one side contains only that z, and the
other simply a known number, as, for example, =25, the
value of z is already known. We must always endeavour,
therefore, to arrive at such a form, however complicated
the equation may be when first obtained: and, in the
course of this section, the rules shall be given, and ex-
plained, which serve to facilitate these reductions.

574. Let us begin with the simplest cases, and suppose,
first, that we have arrived at the equation z +9=16.
Here we see immediately that x="7: and, in general, if
we have found z + a=256, where a and b express any
known numbers, we have only to subtract a from both
sides, to obtain the equation £=b—a, which indicates the
value of z.

575. If we have the equation x—a=>, we must add
a to both sides, and shall obtain the value of x=58+a.
We must proceed in the same manner, if the equation
have this form, z—a=a?+1: for we shall immediately
find z=a*+a+1.

In the equation z—84=20—6a, we find

£=20—6¢ +8a, or t=20+2a.
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And in this, z+6a=20+ 3a, we have
x=20+3a—6a, or r=20—3a.

576. If the original equation have this form, » —a +
b=c¢, we may begin by adding a to both sides, which will
give x +b=c+a; and then subtracting & from both
sides, we shall find z=c+a—b5. But we might also
add +a —b at once to both sides; and thus obtain im-
mediately x=c+a—>.

So likewise in the following examples :

If z—2a+4+3b=0, we have x=2a—3b.

If z—3a+2b=25+a+2b, we have =25 +4a.

If 2—9+4+6a=25+2a, we have r=34—4aq.

577. When the given equation has the form ax=5, we

only divide the two sides by «, to obtain z = %‘ But if the
equation have the form ax +b—c=d, we must first make
the terms that accompany ax vanish, by adding to both
sides— b+c¢; and then, dividing the new equation ax=
d—b+c
—

The same value of x would have been found by sub-
tracting +b —c from the given equation: that 1s, we
should have had, in the same form,
d—b+ec

—

d—b + ¢ by a, we shall have z =

ar=d—b+c,and x = Hence,

If 22 4+5=17, we have 2r=12, and z=6.

If 3z —8=7, we have 3x=15, and z=5.

If 42—~5—3a=15+9a, we have 4z = 20 + 12a,
and consequently z=5 + 3a.

578. When the first equation has the form §=b’ we
multiply both sides by a, in order to have x = ab.
But if it is z +b—c=d, we must first make g:d

—b+c; after which we find
z=(d—b+c)a=ad—ab +ac.
Let 1x—3=4, then Jz=7, and z=14.
Let 1z —1 +2a=3+a, then lza=4—a, and z=
12—3a.

x

Let;f——1=a, then =a+1, and v =a® — 1.

a—1
579. When we have arrived at such an equation as
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qb_:v=c, we first multiply by b, in order to have ax =bc,
and then dividing by a, we find z = %6:.

If%—c:d, we begin by giving the equation this

form,%: d + c; after which, we obtain the value of
ax = bd + bc, and then that of x = bd:—bc.

Let ¢ —4 =1, then %4x =5, and 22 =15; whence
r=15 =T71.

If Six+4—— 5, we have 32 =5 —1 =¢; whence 3z==18,
and r=6.

580. Let us now consider a case, which may frequently
occur ; that is, when two or more terms contain the letter
z, either on one side of the equation, or on both.

If those terms are all on the same side, as in the equa-
tion z +1x+5=11, we have t+12=6; or 3z=12; and
lastly, z=4.

Let z + iz + 1x =44, be an equation, in which the
value of z is required. If we first multiply by 3, we have
4z 4+ 3x=132; then multiplying by 2, we have llz=
264 ; wherefore x=24. We might have proceeded in a
more concise manner, by beginning with the reduction of
the three terms which contain x to the single term 1z ;
and then dividing the equation }x=44 by 1l. This
would have given lx=4, and x=24, as before.

Let gz — 3z +l.r —1. We shall have, by reduction,

Lx_l or 5.7:-12 and r=2%.

And, generally, let az — bz + cx =d; which is the

same as (e—b+c)r=d, and, by division, we derive 2=
d
a—b+c’

581. When there are terms containing z on both sides
of the equation, we begin by making such terms vanish
from that side from which it 1s most easily expunged ; that
is to say, in which there are the fewest terms so involved.

If we have, for example, the equation 3x+2=x+ 10,
we must first subtract z from both sides, which gives 2z 4+
2=10; wherefore 2z=8, and x=4.

Let x+4 =20 — x; here it 1is ‘evident that 2z + 4=
20; and consequently 2.2:—-16 and z=8.
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Let z+8=32—3z, this gives us 4r+8=32; or 4=
24, whence z=6.

Let 15—2=20—2z, here we shall have

15+.Z'=20, and z=5.

Let 14x=5—1x; this becomes 1+4x=>5, or z=4;
therefore 3x=8; and lastly, z=8=2%.

If t—lz=1—1z, we must add }z, which gives =
1 +-5%; subtracting i, and transposing the terms, there
remains {,o=1; then multiplying by 12, we obtain z=2.

If 14—%z=1+1x, we add %z, which gives 11=4+
Iz ; then subtracting 1, and transposing, we have fx=14,
whence, by multiplying by 6 and dividing by 7, we de-
duce z=11=13.

582. If we have an equation in which the unknown num-
ber z is a denominator, we must make the fraction vanish
by multiplying the whole equation by that denominator.

Suppose that we have found l‘? —8=12, then, adding

8, we have ]% = 20; and multiplying by z, it becomes

100=20z ; lastly, dividing by 20, we find x=5.

Let now —Ziilg = 7; here, multiplying by » — 1, we
have 52 +3=7xr—7 ; and subtracting 5z, there remains
3=2z—7; then adding 7, we have 22z=10; whence
‘r=5.

583. Sometimes, also, radical signs are found in equations
of the first degree. For example: A number z, below 100,
is required, such, that the square root of 100—z may be
equal to 8 ; or /(100—z)=8. The square of both sides
will give 100—z=64, and adding z, we have 100=64
+x: whence we obtain z=100—64=36.

Or, since 100—x=64, we might have subtracted 100
from both sides : which would have given—z=—36; or,
multiplying by—1, =36.

584. Lastly, the unknown number z is sometimes found
as an exponent, of which we have already seen some
examples; and, in this case, we must have recourse to
logarithms.

Thus, when we have 2°=512, we take the logarithms of
both sides; whence we obtain z log. 2=1log. 512 ; and

log. 512

Tog 3 The Tables then

dividing by lug. 2, we find x =
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_2:7092700

give, T = (5510300

Let 5 x 3 —100=2305; we add 100, which gives 5 x
3% =405; dividing by 5 we have 32’ =81; and taking
the logarlthms 2z log. 3_log 81, and dividing by 2 log

709 —_
= 4P, orz=9.

_ log.81 loq
3, we have z = 3 log Dlog 3 T T = l_ﬁ ; whence
1 9084850

oy

T 09542425 = 9sezez
QUESTIONS FOR PRACTICE.

1. If t—4 + 6 =8, then will x =6.

2. If 42 — 8 =3x + 20, then will z=28.
3. Ifar=ab—a, then will x =56 —1.
4. If 2z + 4 =16, then will £ =86.

5. If az + 2ba = 3¢?, then will z = 3702- 2b.
6. If g =543, then will 2=16.

7. 1% — 2644, then will 2 = 18.
b

a—c¢

8. Ifa — g=c, then will z =

9. If 54—~ 15=2z + 6, then will z=7.
10. If 40 — 6z — 16 = 120 — 14z, then will x =12,

x x .l‘

12. Ifx—Q— +2—20— “19

2
13. If &/ %2+ 5=17, then will z=6.
2a? g
T then will z =av/%.
6—3a

15. If 3ax +%—3=bx-—-u, then w1llx=m.

16. If »/(12 + 2) =2 + /z, then will 2 =4.

17. 1 YL L VE2 16 Y33 ihen will y = 13.

, then will z =231,

14. Ifz + V(@ +2*) =

o
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2a . a
18. If VA \/(a + .Z‘)— m, then will z = §.
19. If &/ (aa + zz) = &/ (b* + z*), then will
bt
T==/ o

2. If x+a=na®+z/ (b2 +22), then will z= %—a.

128 216
3x—4 = bx—
42z 35z .
m = m, theﬂ Wlll x=8-

46 57
Ww+3~ 4z-—5
22—=12 2*—4 .

5=~ then will z =6.

25. If 61562 — 72° =48z, then will z =9,

21. If

5 then will z =12.
22. If
23. If then will z =6.

24. If

CHAPTER III.

Of the Solution of Questions relating to the preceding
Chapter.

585. Question 1. To divide 7 into two such parts that
the greater may exceed the less by 3.

Let the greater part be z, then the less will be 7 —ua;
sothat r=7—2 + 3, or r=10—2. Adding «, we have
2z =10; and dividing by 2, x=35.

The two parts therefore are 5 and 2.

Question 2. It is required to divide a into two parts, so
that the greater may exceed the less by b.

Let the greater part be z, then the other will be a—ux;
so that x=a—x +b. Adding 2, we have 2z =a +b;
a+b

5

Another method of solution. Let the greater part =x;
which asit exceeds the less by b, itisevident that this is less
than the other by b, and therefore must be =z —b. Now,

and dividing by 2, z =
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these two parts, taken together, ought to makea; so that
22z —b=a; adding b, we have 2z = a + b, wherefore
= (ij_—b, which is the value of the greater part; and that

2
of the less will be a-;b — b,or a;—b — %ﬁ, or a-;b_

586. Question 3. A father leaves 1600 pounds to be
divided among his three sons in the following manner :
viz. the eldest is to have 200 pounds more than the
second, and the second 100 pounds more than the
youngest. Required the share of each.

Let the share of the third son be x
Then the second’s will be ...... z+100; and
The first son’s share .......... x +300.

Now, these three suns together make 1600/.; we have,
therefore,

3x +400=1600

3x=1200

and z= 400
The share of the youngest is 4001,
That of the second is ...... 5004.
That of the eldestis ...... 700¢.

587. Question 4. A father leaves to his four sons 8600/,
and, according to the will, the share of the eldest is to be
double that of the second, minus 100!, ; the second is to
receive three times as much as the third, minus 200/, ;
and the third is to receive four times as much as the
fourth, minus 300/, What are the respective portions of
these four sons ?

Call the youngest son’s share z

Then the third son’s is.... 4z— 300
The second son’sis ...... 122—1100
And the eldest’s.......... 242 —2300

Now, the sum of these four shares must make 8600/,
We have, therefore, 412—3700=8600, or
412x=12300, and z=300.

Therefore the youngest’s share is 300/.

The third son’™s veveveenenenns 900/.
Thesecond™s vovvvrenvennnn. 25001,
The eldest’s vevvenvnnnn.. .. .49004.

588. Question 5. A man leaves 11000 crowns to be
divided between his widow, two sons, and three daughters,
He intends that the mother should receive twice the share
of a son, and that each son should receive twice as much
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as a daughter. Required how much each of them is to
receive.

Suppose the share of each daughter to be x

Then each son’s is consequently........ 2

And the widow’s ....cciivriieneennn. 4x
The whole inheritance, therefore, is 3z +4x +4x; or 1lx
=11000, and, consequently, 2=1000.

Each daughter, therefore, is to receive 1000 crowns;

So that the three receive in all........ 3000
Each son receives 2000 ;

So that the two sons receive.......... 4000
And the mother receives ........e.... 4000

Sum 11000 erowns.

589. Question 6. A father intends by his will, that his
three sons should share his property in the following
manner: the eldest is to receive 1000 crowns less than
half the whole fortune; the second is to receive 800
crowns less than the third of the whole; and the third is
to have 600 crowns less than the fourth of the whole.
Required the sum of the whole fortune, and the portion
of each son.

Let the fortune be expressed by z:
The share of the first son is 1z—1000
That of the second ......... 1r— 800
That of the third .......... 1z— 600

So that the three sons receive in all Jx+iz+da—
2400, and this sum must be equal to xz. We have, there-
fore, the equation 132 — 2400 =z; and subtracting =z,
there remains ;v —2400=0; then adding 2400, we have
17x=2400; and, lastly, multiplying by 12, we obtain
.Z'=28800.

The fortune, therefore, consists of 28800 crowns ; of which
The eldest son receives 13400 crowns
The second .......... 8800
And the youngest .. ... 6600

28800 crowns.

590. Question 7. A father leaves four sons, who share
his property in the following manner: the first takes the
half of the fortnue, minus 3000/ ; the second takes the
third, minus 1000/. ; the third takes exactly the fourth of
the property ; and the fourth takes 600Z and the fifth part
of the property. What was the whole fortune, and how
much did each son receive ? ‘
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Let the whole fortune be represented by x:
Then the eldest son will have 1x—3000

The second................ 12 —1000
The third .....c...c...... 1z
The youngest.............. 1o+ 600

And the four will have received in all 1z + 1z + 1z +
1z — 3400, which must be equal to z.

‘Whence results the equation 21z —3400=x ; then sub-
tracting x, we have 172 —3400=0; adding 3400, we obtain
1Tx=3400; then dividing by 17, we have 4,2=200; and
multiplying by 60, gives =12000.

The fortune therefore consisted of 12000/.

The first son received 3000

The second ........3000
The third .......... 3000
And the fourth...... 3000

591. Question 8. To find a number such, that if we
add to it its half, the sum exceeds 60 by as much as the
number itself is less than 65.

Let the number be represented by z :

Then # + Lz —60=65—xz, or 42—60=65—2. Now,
by adding z, we have 52 — 60 =65; adding 60, we have
42 =125 dividing by 5, gives L2 =25; and multiplying
by 2, we have x=>50,

Consequently, the number sought is 50.

592. Question 9. To divide 32into two such parts, that
if the less be divided by 6, and the greater by 5, the two
quotients taken together may make 6.

Let the less of the two parts sought be z; then the

greater will be 32 —x. The first, divided by 6, gives zs

and the second, divided by 5, gives 325 L Now % +
32—z
5
x =30, or —}tx +32=30; adding 1z, we have 32=
30 + 1z ; subtracting 30, there remains 2=1x; and lastly,

multiplying by 6, we have z = 12.

So that the less part is 12, and the greater part is 20.

593. Question 10. To find such a number, that if mal-
tiplied by 5, the product shall be as much less than 40 as
the number itself is less than 12.

Let the number be x; which is less than 12 by 12—z
then taking the number z five times, we have 5z, which is

=6: so that multiplying by 5, we have $x+32—
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less than 40 by 40 -5z, and this quantity must be equal
to 12—z.

We have, therefore, 40 —52x =12 —2. Adding 5z,
we have 40=12+4x; and subtracting 12, we obtain
28=4x; lastly, dividing by 4, we have z=7, the number
sought.

594. Question 11. To divide 25 into two such parts,
that the greater may be equal to 49 times the less.

Let the less part be z, then the greater will be 25—z ;
and the latter divided by the former ought to give the

25—z

quotient 49 : we have therefore =49. Multiplying
by x, we have 25—x=49z; adding x, we have 25=>50z;
and dividing by 50, gives z=1.

The less of the two numbers is 1, and the greater is 241;
dividing therefore the latter by 1, or multiplying by 2, we
obtain 49.

595. Question 12. To divide 48 into nine parts, so
that every part may be always 1 greater than the part
which precedes it.

Let the first, or least part be z, then the second will be
x +1, the third z+1, &ec.

Now, these parts form an arithmetical progression,
whose first term is x; therefore the ninth and last term
will be z+4. Adding those two terms together, we have
2z +4; multiplying this quantity by the number of terms,
or by 9, we have 182+ 36; and dividing this product by 2,
we obtain the sum of all the nine parts =9z +18; which
ought to be equal to 48. We have, therefore, 92+ 18=
48; subtracting 18, there remains 9x=30; and dividing
by 9, we have x=31.

The first part, therefore, is 34, and the nine parts will
succeed in the following order :

1 2 3 4 5 6 7 8
31 +32+414+45+51 4+ 55+ 61 +65+ 71,

Which together make 48.

596. Question 13. To find an arithmetical progression,
whose first term is 5, the last term 10, and the entire
sum 60.

Here we know neither the difference nor the number of
terms ; but we know that the first and the last term would
enable us to express the sum of the progression, provided
only the number of terms were given. We shall therefore
suppose this number to be z, and express the sum of the

whs ©
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progression by lg}: We know also, that this sum is 60 ;

152
2
Now, since the number of terms is 8, if we suppose the
difference to be z, we have only to seek for the eighth term
upon this supposition, and to make it equal to 10. The
second term is 54z, the third is 542z, and the eighth is
547z ; so that

so that =60; or tx =4, and x=8.

54+72=10
7z2= 5
and z= £

The difference of the progression, therefore, is 2, and
the number of terms is 8 ; consequently, the progression is

1 2 3 4 5 6 7 8
5+55+63+74+75+8%+93+10,

the sum of which is 60.

597. Question 14. To find such a number, that if 1 be
subtracted from its double, and the remainder be doubled,
from which if 2 be subtracted, and the remainder divided
by 4, the number resulting from these operations shall be
1 less than the number sought.

Suppose this number to be z; the double is 2x; sub-
tracting 1, there remains 2z—1; doubling this, we have
4x—2; subtracting 2, there remains 4z—4; dividing by
4, we have x—1; and this must be 1 less than z; so
that

x—1=r-—l.

But this is what is called an identical equation; and
shews that z is indeterminate ; or that any number what-
ever may be substituted for it.

598. Question 15. 1 bought some ells of cloth at the
rate of 7 crowns for 5 ells, which I sold again at the rate
of 11 crowns for 7 ells, and I gained 100 crowns by the
transaction. How much cloth was there?

Supposing the number of ells to be z, we must first see
how much the cloth cost by the following proportion:

Asb:x2::7: z; the price of the ells.

This being the expenditure ; let us now see the receipt :
in order to which, we must make the following proportion :
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E. C. E
As7:11::2: Yz crowns;
and this receipt ought to exceed the expenditure by 100
crowns. We have, therefore, this equation :
Ly =1x+100.
Subtracting 1z, there remains %z =100; therefore 6r=
3500, and z = 5831.

There were, therefore, 5831 ells bought for 816% crowns,
and sold again for 916¢ crowns ; by which means the pro-
fit was 100 crowns.

599. Question 16. A person buys 12 pieces of cloth for
140/. ; of which two are white, three are black, and seven
are blue: also, a piece of the black cloth costs two pounds
more than a piece of the white, and a piece of the blue
cloth costs three pounds more than a piece of the black.
Required the price of each kind.

Let the price of a white piece be x pounds; then the
two pieces of this kind will cost 2z; also, a black piece
costing x +2, the three pieces of this colour will cost 3x +6;
and lastly, as a blue piece costs « +5, the seven blue pieces
will cost 72 +35: so that the twelve pieces amount in all
to 122 +41.

Now, the known price of these twelve pieces is 140
pounds; we have, therefore, 122 +41 =140, and 12r =
99; wherefore 2 =81. So that

A piece of white cloth costs 81l.
A piece of black cloth costs 101/.
A piece of blue cloth costs 1311,

600. Question 17. A man having bought some nutmegs,
says that three of them cost as much more than one penny,
as four cost him more than two pence halfpenny. Re-
quired the price of the nutmegs.

Let x be the excess of the price of three nutmegs above
one penny, or four farthings. Now, if three nutmegs cost
z+4 farthings, four will cost, by the condition of the
question, « + 10 farthings; but the price of three nutmegs
gives that of four in another way, namely, by the Rule of
Three. Thus,

4r+16

S:x2+4::4: 3

So that 4x—;}_16=x—i-10; or, 4+ 16=3z+30; there-

fore 416 =230, and z = 14,
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Three nutmegs, therefore, cost 41d., and four cost 6d. :
wherefore each costs 11d.

601. Question 18. A certain person has two silver cups,
and only one cover for both. The first cup weighs 12
ounces ; and if the cover be put on it, it weighs twice as
much as the other cup : but when the other cup has the
cover, it weighs three times as much as the first. Required
the weight of the second cup, and that of the cover.

Suppose the weight of the cover to be z ounces; then
the first cup being covered, it will weigh z+12; this
weight being double that of the second, the second cup
must weigh 1z +6; and, with the cover, it will weigh
z+1r+6, or 3x+6; which weight ought to be the triple
of 12; that is, three times the weight of the first cup.
We shall therefore have the equation $z+6=36, or
32=30; so that lz=10 and x=20.

The cover, therefore, weighs 20 ounces, and the second
cup weighs 16 ounces.

602. Question 19. A banker has two kinds of change :
there must be a pieces of the first to make a crown; and b
pieces of the second to make the same. Now, a person
wishes to have ¢ pieces for a crown. How many pieces of
each kind must the banker give him?

Suppose the banker gives z pieces of the first kind ; it
is evident that he will give c—ux pieces of the other kind ;

but the x pieces of the first are worth = crown, by the pro-
P - y the p

portiona:x:: 1 :2; and the c¢—ax pieces of the second

¢c—x

b
So that X +
a

crown, because wehave b:c—x::1:

kind are worth

c—x
b

c—r _

5 =l

or%+c—x=b; orbx +ac—ar=ab;

or, rather bz — ax = ab —ac;

ab—ac a(b—c)
whence we have r=———, orz = ;
b—a b—a

consequently, c—z, the pieces of the second kind,
bec—ab _ b(c—a)

b—a =~ b—a

must be =



202 ELEMENTS SECT. 1V.

z b_—ac) pieces ofthe first

The banker must therefore give

kind, and béc::)
Remark.—These two numbers are easily found by the
Rule of Three, when it is required to apply the results
which we have obtained. Thus, to find the first we say,
a(b—c)
b—a:a::b—c:—
b—a
b(c—a)

thus; b—a:b::c—a: .
b—a

It ought to be observed also, that a is less than 4, and
that c is less than &; but at the same time greater than q,
as the nature of the case requires.

603. Question 20. A banker has two kinds of change ;
10 pieces of one make a crown, and 20 pieces of the
other make a crown; and a person wishes to change a
crown into 17 pieces of money: how many of each sort
must he have?

We have here a=10, =20, and ¢=17, which furnishes
the following proportions :

First, 10:10::3: 3, so that the number of pieces of the
first kind is 3.

Secondly, 10:20::7: 14, and the number of the second
kind is 14.

604. Question 21. A father leaves at his death several
children, who share his property in the following manner :
namely, the first receives a hundred pounds, and the tenth
part of the remainder; the second receives two hundred
pounds, and the tenth part of the remainder; the third
takes three hundred pounds, and the tenth part of what
remains; and the fourth takes four hundred pounds, and
the tenth part of what then remains; and so on. And it
is found that the property has thus been divided equally
among all the children. Required how much it was, how
many children there were, and how much each received ?

This question is rather of a singular nature, and there-
fore deserves particular attention. In order to resolve it
more easily, we shall suppose the whole fortune to be z
pounds; and since all the children receive the same sum,
let the share of each be z, by which means the number of

pieces of second kind.

; and the second number is found

children will be expressed by % Now, this being laid

down, we may proceed to the solution of the question, as
follows :
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Sum or | Order of
property to the Portion of each. Differences.
be divided. | children.
z— 100
z Ist =100+ 0
Z2—2~—~200 r—100
z— 2d .’L‘——200+——1~0~—— }00__.1_0_20
_ z~—2x—300 x— 100
2-—2x 3d =300+ S Y 100 — o= 0
_ z2~—3x—400 x— 100
z—3z 4th |x=400+ 0 100 — T =0
z—4x—500 x — 100
z2—4x 5th  |2=500+ 10 100 — 10 =0
—Br—
z—52 6th |[x=600+ f———f—oqgg and so on,

We have inserted, in the last column, the differences
which we obtain by subtracting each portion from that
which follows ; but all the portions being equal, each of the
differences must be = 0. As it happens also, that all these
differences are expressed exactly alike, it will be sufficient
to make one of them equal to nothing, and we shall have the

equation 100 — ﬁ_l—(l)(—)9= 0. Here, multiplying by 10 we
have 1000 —z —100=0, or 900 —z=0; and, conse-
quently, 2=900.

We know now, therefore, that the share of each child
was 900 : so that taking any one of the equations of the
third column, the first for example, it becomes, by substi-
tuting the value of z, 900 =100 + z—llé)O,
immediately obtain the value of z; for we have

9000 = 1000 + z —100, or 9000=900+ = ;

therefore z=8100; and consequently §=9.

So that the number of children was 9; the fortune left
by the father was 8100 pounds; and the share of each
child was 900 pounds.

whence we

QUESTIONS FOR PRACTICE.

1. To find a number, to which if there be added a half, a
third, and a fourth of itself, the sum will be 50. Ans. 24.
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2. A person being asked what his age was, replied that
4 of his age multiplied by 4% of his age gives a product
equal to his age. What was his age? Ans. 16.
3. The sum of 660/. was raised for a particular purpose
by four persons, A, B, C, and D; B advanced twice as
much as A; C as much as A and B together; and D as
much as B and C. What did each contribute?
Ans. 601., 1204., 1801., and 300..
4. To find that number whose 4 part exceeds its 1 part
by 12. Ans. 144.
5. What sum of money is that whose 1 part, % part,
and } part, added together, shall amount to 94 pounds?
Ans. 1201,
6. Ina mixture of copper, tin, and lead, one half of the
whole minus 16/bs. was copper; one-third of the whole
minus 12{bs. tin; and one-fourth of the whole plus 4/bs.
lead : what quantity of each was there in the composition ?
Ans. 128(bs. of copper, 841bs. of tin, and 76/bs. of lead.
7. A bill of 120/. was paid in guineas and moidores, and
the number of pieces of both sorts was just 100; to find
how many there were of each. Ans. 50.
8. To find two numbers in the proportion of 2 to 1, so
that if 4 be added to each, the two sums shall be in the
proportion of 3 to 2. Ans. 4 and 8.
9. A trader allows 100/ per annum for the expenses of
his family, and yearly augments that part of his stock, which
is not so expended, by a third part of it ; at the end of three
years, his original stock was doubled : what had he at first?
Ans. 1480/,
10. A fish was caught whose tail weighed 9/6s. His
head weighed as much as his tail and 1 his body ; and his
body weighed as much as his head and tail : what did the
whole fish weigh ? Ans, 72bs.
11. One has a lease for 99 years; and being asked
how much of it was already expired, answered, that two-
thirds of the time past was equal to four-fifths of the time
to come : required the time past. Ans. 54 years.
12. It is required to divide the number 48 into two such
parts, that the one part may be three times as much above
20, as the other wants of 20. Ans. 32 and 16,
13. One rents 25 acres of land at 7 pounds 12 shillings
per annum : this land consisting of two sorts, he rents the
better sort at 8 shillings per acre, and the worse at 5: re-
quired the number of acres of the better sort.
Ans. 9 of the better.
14. A certain cistern, which would be filled in 12
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minutes by two pipes running into it, would be filled in
20 minutes by one alone. Required in what time it

would be filled by the other alone. Ans. 30 minutes.
15. Required two numbers, whose sum may be s, and
. . as bs

their proportion as a to b. Ans. P and P

16. A privateer, running at the rate of 20 miles an hour,
discovers a ship 18 miles off making way at the rate of 8
miles an hour: it is demanded how many miles the ship
can run before she will be overtaken? Ans. 72.

17. A gentleman distributing money among some poor
people, found that he wanted 10s. to be able to give 5s. to
each ; therefore he gives 4s. only, and finds that he has 5s.
left : required the number of shillings and of poor people.

Ans. 15 poor, and 65 shillings.

18. There are two numbers whose sum is the 6th part
of their product, and the greater is to the less as 3 to 2.
Required those numbers. Ans. 15 and 10,

M. B. This question may be solved by means of one
unknown letter.

19. To find three numbers, so that the first, with half
the other two, the second with one-third of the other two,
and the third with one-fourth of the other two, may be
equal to 34, Ans. 26,22, and 10.

20. To find a number consisting of three places, whose
digits are in arithmetical progression: if this number be
divided by the sum of its digits, the quotients will be 48 ;
and if from the number 198 be subtracted, the digits will
be inverted. Ans. 432.

21. To find three numbers, so that % the first, % of the
second, and 1 of the third, shall be equal to 62: % of the
first, 1 of the second, and 1 of the third, equal to 47; and
1 of the first, 1 of the second, and % of the third, equal to
38. Ans. 24, 60, 120.

22. If A and B, together, can perform a piece of work
in 8 days; A and C together in 9 days; and B and C in
10 days ; how many days will it take each person, alone,
to perform the same work ? Ans. 1434, 1722, 237,

23. What is that fraction which will become equal to 4, if
an unit be added to the numerator ; but on the contrary, if
an unit be added to the denominator, it will be equal to 1 ?

Ans. %.

24. The dimensions of a certain rectangular floor are
such, that if it had been 2 feet broader, and 3 feet longer,
it would have been 64 square feet larger; butif it had been
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3 feet broader and 2 feet longer, it would then have been
68 square feet larger : required the length and breadth of
the floor. Ans. Length 14 feet, and breadth 10 feet.

25. A hareis 50 leaps before a greyhound, and takes
4 leaps to the greyhound’s 3 ; but two of the greyhound’s
leaps are as much as three of the hare’s: how many leaps
must the greyhound take to catch the hare?  Ans. 300.

CHAPTER 1V.

Of the Resolution of two or more Equations of the First
Degree.

605. It frequently happens that we are obliged to intro-
duce into algebraic calculations two or more unknown
quantities, represented by the letters z, y, z: and if the
question is determinate, we are brought to the same num-
ber of equations as there are unknown quantities; from
which it is then required to deduce those quantities. As
we shall consider, at present, those equations only which
contain no powers of an unknown quantity higher than
the first, and no products of two or more unknown quan-
tities, it is evident that all those equations have the form

az+by + cx=d.

606. Beginning therefore with two equations, we shall
endeavour to find from them the value of z and y: and,
in order that we may consider this case in a general
manner, let the two equations be,

ar+by=c; and fx+gy=rh;
in which, a, b, ¢, and f, g, %, are known numbers. It is
required, therefore, to obtain, from these two equations,
the two unknown quantities 2 and y.

607. The most natural method of proceeding will readily
presentitselfto the mind ; which is, to determine, from both
equations, the value of one of the unknown quantities, as
for example 2, and to consider the equality of those two
values ; for then we shall have an equation, in which the
unknown quantity y will be found by itself, and may be
determined by the rules already given. Then, knowing
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y, we shall have only to substitute its value in one of the
quantities that express z.
608. According to this rule, we obtain from the first

h—gy .

7
then putting these values equal to each other, we have this
new equation :

c-;by , and from the second, 2 =

equation, z =

c—by _t—gy

e 7

multiplying by a, the product is ¢ — by =

ah—agy
J
then by f, the product is fc—fby=ak—agy ; adding agy,
we have fc—fby+agy=ak ; subtracting fc, gives—fby +
agy=ah—fc; or (ag — bf)y = ak—fc; lastly, dividing by
ag—bf, we have
__ah—fc

Y= ag—=bf

In order now to substitute this value of y in one of the
two values which we have found of z, as in the first, where

and

z =c—by’ we shall first have — by = — M;

4 ag —bf
whence c—by=c—azz:2;j; ___acg—b;‘;:athﬁ-bcf
__acg —abh PTINN _c—=by cqg—bh
_w, and, dividing by e, z= a “ag—if

609. Question 1. To illustrate this method by examples,
let it be proposed to find two numbers, whose sum may be
15, and difference 7.

Let us call the greater number z, and the less y: then
we shall have

zx+y=15, and r—y="7.
The first equation gives
z=15—~y,
and the second, z= 7+y;
whence results this equation, 15—y ="7+y. So that
15=7+2y; 2y=8, and y=4; by which means we find
z=11.
So that the less number is 4, and the greater is 11.
610. Question 2. We may also generalise the preceding
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question, by requiring two numbers, whose sum may be a,
and the difference b.

Let the greater of the two numbers be expressed by z,
and the less by y; we shall then bave z+4y=a, and
X—Yy=

Here the first equation gives x=a—y, and the second

z=b+y.
Therefore, a —y=0b+y; a=b+2y; 2y =a—b;
lastly, y = agb’ and, consequently,
s=a—y=a a—b _a+bd
=a—y=a——5—=—5—.
Thus, we find the greater number, or z, is a—;———, and

a—b
2
la+1b, and y = {a —1b. Hence we derive the following
theorem : When thesum of any two numbers is @, and their
difference is b, the greater of the two numbers will be
equal to half the sum plus half the difference ; and the
less of the two numbers will be equal to half the sum

minus half the difference.

611. We may resolve the same question in the following
manner :

Since the two equations are,

; or, which comes to the same, z =

the less, or y, is

Z +y=a, and
z—y=b;
if we add the one to the other, we have 2v=a + 5.
a+b

Therefore x = 5

Lastly, subtracting the same equations from each other,
we have 2y=a—b; and therefore

a—b
y= 9

612. Question 3. A mule and an ass were carrying
burdens amounting to several hundred weight. The ass
complained of his, and said to the mule, I need only one
hundred weight of your load, to make mine twice as
heavy as yours; to which the mule answered, But if you
give me a hundred weight of yours, ] shall be loaded three
times as much as you will be. How many hundred
weight did each carry ?
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Suppose the mule’s load to be z hundred weight, and
that of the ass to be y hundred weight. If the mule gives
one hundred weight to the ass, the one will have y+1,
and there will remain for the other x—1; and since, in
this case, the ass is loaded twice as much as the mule, we
have y + 1=2z—2.

Farther, if the ass gives a hundred weight to the mule,
the latter has x4 1, and the ass retains y—1; but the
burden of the former being now three times that of the
latter, we have z +1=3y—3.

Consequently our two equations will be,

y+1=2z—2, and 2 +1=3y—3.

From the first, z= y—;—3, and the second gives z=3y—

y+3

2
gives y="11: this also determines the value of z, which
becomes 2%.

The mule therefore carried 2 hundred weight, and the
ass 21 hundred weight.

613. When there are three unknown numbers, and as
many equations ; as, for example,

4 ; whence we have the new equation =3y —4, which

r+y—z= 8,
z+z—y= 9,
y+z—r=10;

we begin, as before, by deducing a value of x from each,
and have, from the

Ist t=8+2—y;
2d z=9+y—=z;
3d z=y+2z—10:

Comparing the first of these values with the second,
and after that with the third, we have the following
equations :

8+2z—y=9+4+y—z,
8+z—y=y+2z—10.

Now, the first gives 22—2y=1, and, by the second,
2y=18, or y=9 ; 1if therefore we substitute this value of
y in 2z—2y=1, we have 22—18=1, or 2z=19, so that
2=91; it remains, therefore, only to determine x, which
is easily found =8%.

Here it happens, that the letter z vanishes in the last
equation, aud that the value of y is found immediately ;
but if this had not been the case, we should have had

P
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two equations between z and y, to be resolved by the pre-
ceding rule.
614. Suppose we had found the three following equa-
tions :
3z +5y—4z2=25,
bx—2y + 3z=46,
3y+5z— r=62.
If we deduce from each the value of z, we shall have
from the

lst 2 25—5_z/+4z’
3

3d z=3y+52+62.

Comparing these three values together, and first the
third with the first,
26—by +4z
—
multiplying by 3, gives 9y + 15z — 186 =25 — 5y + 4z ;
so that 9y + 1562=211—5y + 4z,
and 14y +112=211.

Comparing also the third with the second,

46 +2y—3z
5 b

we have 3y +5z—62=

we have 3y +52—62=

or 46 +2y—3z=15y + 2562—310,
which, when reduced, becomes 356 =13y +282.
We shall now deduce, from these two new equations,

the value of 3 :
Ist 14y +112=211; or 14y =211—112,

andy=211_”z
14 -
2d 13y +282=356; or 13y=356—28z,
and y= 356—28z.
13

These two values form the new equation
211—-11z _ 356—28z
14 = 13
2743 —1432=4984 — 392z, or 2492=2241, and z=9.
This value being substituted in one of the two equations
of y and z, we find y=8; and, lastly, a similar substitu-
tion in one of the three values of x will give 2=7.

, whence,
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615. If there were more than three unknown quantities
to determine, and as many equations to resolve, we should
proceed in the same manner; but the calculations would
often prove very tedious.

Itis proper, therefore, to remark, that, in each particular
case, means may always be discovered of greatly facilitating
the solution ; which consist in introducing into the cal-
culation, beside the principal unknown quantities, a new
unknown quantity arbitrarily assumed, such as, for ex-
ample, the sum of all the rest; and when a person is a
little accustomed to such calculations, he easily perceives
what is most proper to be done.* The following examples
may serve to facilitate the application of these artifices.

616. Question 4. Three persons, a, B, and ¢, play to-
gether; and, in the first game, a loses to each of the other
two, as much money as each of them has. In the next
game, B loses to each of the other two, as much money as
they then had. Lastly, in the third game, A and B gain
each, from c, as much money as they had before. On
leaving off, they find that each has an equal sum, namely,
24 guineas. Required, with how much money each sat
down to play ?

Suppose that the stake of the first person was z, that of
the second ¥, and that of the third z: also, let us make
the sum of all the stakes, or x+y+2=s. Now, a losing
in the first game as much money as the other two have,
he loses s—z (for he himself having had z, the two others
must have had s—z); therefore there will remain to him
2x—s; also B will have 2y, and ¢ will have 2z.

So that, after the first game, each will have as follows:
A=2x—s, B=2y, and c=2z.

In the second game, B, who has now 2y, loses as much
money as the other two have, that is to say, s—2y; so
that he has left 4y—s. With regard to the other two,
they will each have double what they had; so that after
the second game, the three persons have as follows : A=
4x—2s, B=4y—s, and c=4z.

In the third game, ¢, who has now 4z, is the loser; he
loses to A, 4r—2s, and to B, 4y—s; consequently, after
this game, they will have :

* M. Cramer has given, at the end of his Introduction to the
Analysis of Curve Lines, a very excellent rule for determining
immediately, and without the necessity of passing through the
ordinary operations, the value of the unknown quantities of such
equations, to any number.—F. T.
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A=8r—4s, B=8y—2s, and c=8z—s.

Now, each having at the end of this game 24 guineas,
we have three equations, the first of which immediately
gives x, the second y, and the third z ; farther, s is known
to be 72, since the three persons have in all 72 guineas at
the end of the last game ; but it is not necessary to attend
to this at first ; since we have

Ist 8r—45=24, or 8x=24 +4s, or =3 +1s;
2d By —2s=24, or 8y=24+2s, or y=3 +1s;
3d 82— s=24, or 82=24+ s,or 2=3+1s;
and adding these three values, we have
z+y+z=941s.

So that, since x+y+2z=s, we have s=9+%s; and,
consequently, 1s=9, and s=72.

If we now substitute this value of s in the expressions
which we have found for z, y, and z, we shall find that
before they began to play, o had 39 guineas, B 21, and
cl2.

This solution shews, that, by means of an expression for
the sum of the three unknown quantities, we may over-
come the difficulties which occur in the ordinary method.

617. Although the preceding question appears difficult
at first, it may be resolved even without algebra, by pro-
ceeding inversely. For since the players, when they left
off, had each 24 guineas, and, in the third game, 4 and B
doubled their money, they must have had before that last
game, as follows :

A=12, B=12, and ¢=48.

In the second game, a and ¢ doubled their money ; so
that before that game they had,

A=0, =42, and ¢=24.

Lastly, in the first game, 4 and ¢ gained each as much
money as they began with ; so that at first the three per-
sons had :

A4=39, =21, c=12.
The same result as we obtained by the former solution.

618. Question 5. Two persons owe conjointly 29 pis-
toles; they have both money, but neither of them enough
to enable him, singly, to discharge this common debt : the
first debtor says therefore to the second, If you give me %
of your money, I can immediately pay the debt; and the
second answers, that he also could discharge the debt, if
the other would give him % of his money. Required, how
many pistoles each had ?
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Suppose that the first has « pistoles, and that the second
has y pistoles,
Then we shall first have, o +%y=29;
and also, y +3z=29.
The first equation gives x=29—1%y,

and the second z = 1@,
so that 20 — 2y = %ﬂ

From which equation, we obtain y=141;
Therefore z=191.

Hence the first person had 193 pistoles, and the second
had 141 pistoles.

619. Question 6. Three brothers bought a vineyard
for a hundred guineas. The youngest says, that he could
pay for it alone, if the second gave him half the money
which he had; the second says, that if the eldest would
give him only the third of his money, he could pay for the
vineyard singly; lastly, the eldest asks only a fourth part
of the money of the youngest, to pay for the vineyard
himself. How much money had each ?

Suppose the first had x guineas ; the second, y guineas;
the third, z guineas; we shall then have the three follow-
ing equations :

z4+1y=100;
y+32=100;
z2+41x=100;

two of which only give the value of z, namely,

Ist z=100—1y,
3d z=400—4z.

So that we have the equation,

100 — 1y =400 —4z, or 4z —3y =300, which must be
combined with the second, in order to determine y and z.
Now, the second equation was, y+42=100: we there-
fore deduce from it y=100—%z; and the equation found
last being 4z—1y=300, we have y=82—600. The final
equation, therefore, becomes

100—1z=82—600; so that 852=700, or 252="700, and
2z=84. Consequently,

y=100—28=72, and z=04.

The youngest therefore had 64 guineas, the second had
72 guineas, and the eldest had 84 guineas.
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620. As, in this example, each equation contains only
two unknown quantities, we may obtain the solution re-
quired in an easier way.

The first equation gives y=200—2z, so that y is de-
termined by x; and if we substitute this value in the
second eqnation, we have

200—2x+12=100; therefore +tz=2xr—100,
and z=6x—300.

So that 2 is also determined by z; and if we introduce
this value into the third equation, we obtain 62—300+
12=100, in which z stands alone, and which, when re-
duced to 250 —1600=0, gives r=64. Consequently,

y=200—-128=72, and 2=384—300=284.

621. We may follow the same method, when we have
a greater number of equations. Suppose, for example,
that we have in general ;

_ , -
l.u+a_n, 2.x+b n,
z u
3-y+E=n, 4.z+c—z—n;
or, destroying the fractions, these equations become,
l. au+zx=an, 2. bx +y="bn,
3. ¢y + z=cn, 4. dz+u=dn.

Here, the first gives immediately z=an—au, and, this
value being substituted in the second, we have abn—abu
+y=>bn; so that y=bn—abn+abu; and the substitution
of this value, in the third equation, gives bcn— aben + abeu
+z=cn; therefore

z=cn—bcn + abcn—abeu.
Substituting this in the fourth equation, we have
cdn— bedn + abedn —abedu +w=dn.
So that dn—cdn + bedn—abedn=abedu—u,
or (abed—1) . u=abcdn—bedn + cdn—dr; whence we have
__abcdn—bedn+cdn—dn _ n . (abcd—bed+cd—d)

- abed—1 - abed—1 ’
And, consequently, by substituting this value of u in the
equation, x=an—au, we have

abcdn—acdn + adn —an . (@bed— acd + ad —a
= abed—1 = abed—1
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abcdn — abdn + abn—bn n.(abcd — abd + ab — b)

abed — = abed—1
g = abedn — aben + bt‘n —cn _n. (abed — abe + bec — c)
- abed—1 abed—1
__abedn — bedn + cdn — dn _n. (abed — bed + cd — d)
- abed—1 abed—1

622. Question 7. A captain has three companies, one
of Swiss, another of Swabians, and a third of Saxons. He
wishes to storm with part of these troops, and he promises
a reward of 901 crowns, on the following condition;
namely, that each soldier of the company, which assaults,
shall receive 1 crown, and that the rest of the money shall
be equally distributed among the two other companies.
Now, it is found, that if the Swiss make the assault, each
soldier of the other companies will receive half-a-crown;
that if the Swabians assault, each of the others will
receive 1 of a crown ; and, lastly, if the Saxons make the
assault, each of the others will receive 1 of a crown.
Required the number of men in each company?

Let us suppose the number of Swiss to be z, that of
Swabians y, and that of Saxons z. And let us also make
z +y + z=s, because it is easy to see, that, by this, we
abridge the caleulation considerably. If, therefore, the
Swiss make the assault, their number being z, that of the
other will be s—x: now, the former receive 1 crown, and
the latter half-a-crown ; so that we shall have,

z+1s—1x=901.

In the same manner, if the Swabians make the assault,
we have

¥+ 1s— 4y =901
And, lastly, if the Saxons make the assault, we have
z 4+ 1s—1z2=901.

Each of these three equations will enable us to deter-

mine one of the unknown quantities, x, y, and z;
For the first gives x = 1802 — s,
the second 2y = 2703 — s,
the third 3z = 3604 — s.

And if we now take the values of 6z, 6y, and 6z, and

write those values one above the other, we shall have
62 = 10812 — 6s,
6y = 8109 — 3s,
6z = 7208 — 2s,

and, by addition, 6s =26129 —11s; or 17s = 26129;
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so that s = 1537 ; which is the whole number of soldiers.
By these means we find,
x = 1802 — 1537 =265
2y = 2703 — 1537 = 1166, or y = 583 ;
3z = 3604 — 1537 = 2067, or z = 689.
The company of Swiss therefore was 265 men ; that of
Swabians, 583 ; and that of Saxons, 689.

CHAPTER V.

Of the Resolution of Pure Quadratic Equations.

623. An equation is said to be of the second degree,
when it contains the square, or the second power, of the
unknown quantity, without any of its higher powers; and
an equation, containing likewise the third power of the
unknown quantity, belongs to cubic equations, and its
resolution requires particular rules.

624. There are, therefore, only three kinds of terms in
an equation of the second degree:

1. The terms in which the unknown quantity is not
found atall, or which is composed only of known numbers.

2. The terms in which we find only the first power of
the unknown quantity.

3. The terms which contain the square, or the second
power, of the unknown quantity.

So that « representing an unknown quantity, and the
letters a, b, ¢, d, &c. the known quantities, the terms of
the first kind will have the form «, the terms of the second
kind will have the form bz, and the terms of the third
kind will have the form cz®.

625. We have already seen, how two or more terms of
the same kind may be united together, and considered as
a single term.

For example, we may consider the formula
ax® — bz® + ca® as a single term, representing it thus,
(a—b + c¢)z*; since, in fact, (a — b + ¢) is a known
quantity.

And also, when such terms are found on both sides of
the sign =, we have seen how they may be brought to
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one side, and then reduced to a single term. Let us take,
for example, the equation,
202~ 3z +4=522—8zx + 11;
we first subtract 222, and there remains
—3z4+4=32*—8x +11;

then adding 8z, we obtain,

S5r 4+ 4 =322 4+ 11;
lastly, subtracting 11, there remains 322 = 5z — 7.

626. We may also bring all the terms to one side of the
sign =, so as to leave zero, or 0, on the other; but it must
be remembered, that when terms are transposed from one
side to the other, their signs must be changed.

Thus, the above equation may assume this form, 32° —
bx + 7=0; and, for this reason also, the following
general formula represents all equations of the second
degree ;

art +=br+c=0.
in which the sign + is read plus or minus, and indicates,
that such terms as it stands before may be sometimes
positive, and sometimes negative.

627. Whatever, therefore, be the original form of a
quadratic equation, it may always be reduced to this
formula of three terms. If we have, for example, the
equation,

ar+b __ex+f

cx+d  gz+h
we may, first, destroy the fractions; multiplying, for this
purpose, by ¢z + d, which gives

2
ax + b=2 +ofe+eds +fd, and then by gz + %, we have
gx+h

agx® + bgx + ahx + bk = cex® + cfx + edx + fd,
which is an equation of the second degree, reducible to
the three following terms, which we shall transpose by
arranging them in the usual manner:

+b% bl

ag + a + o | _

—ce :v2+{_cf}x+{_fd = 0.
—ed

We may exhibit this equation also in the following
form, which is still more clear :
(ag — ce)a® + (bg + ah — ¢f — ed)x + bk — fd = 0.
628. Equations of the second degree, in which all the
three kinds of terms are found, are called complete, and the
resolution of them is attended with greater difficulties; for
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which reason we shall first consider those in which one of
the terms is wanting.

Now, if the term 22 were not found in the equation, it
would not be a quadratic, but would belong to those of
which we have already treated; and if the term, which
contains only known numbers, were wanting, the equation
would have this form, az® & bz =0, which, being divisible
by z, may be reduced to axr & b =0, which is likewise a
simple equation, and belongs not to the present class.

629. But when the middle term, which contains the
first power of z, is wanting, the equation assumes this
form, ax?+ c=0, or ax?= Fc; as the sign of ¢ may be
either positive or negative.

We shall call such an equation a pure equation of the
second degree, and the resolution of it is attended with
no difficulty; for we have ouly to divide by a, which

gives 22 =£; and taking the square root of both sides,

= E; by which means the equation is resolved.
a
630. But there are three cases to be considered here.

In the first, when isa square number (of which we can
a

therefore really assign the root) we obtain for the value
of z a rational number, which may be either integral, or
fractional. For example, the equation 2% = 144, gives
z=12. And 2?=2%, gives x=4.

. c. . .
The second case is, when - 18 not a square, in which

case we must therefore be contented with the sign /.
If, for example, 22 =12, we have x = /12, the value of
which may be determined by approximation, as we have
already shewn.

. . . .y C .
The third case is that in which P becomes a negative

number : the value of = is then altogether impossible and
imaginary ; and this result proves that the question, which
leads to such an equation, is in itself impossible.

631. We shall also observe, before proceeding farther,
that whenever it is required to extract the square root
of a number, that root, as we have already remarked,
has always two values, the one positive and the other
negative. Suppose, for example, we have the equation
22 =49, the value of z will be not only +7, but also — 7,
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which is expressed by x=+7. So that all those ques-
tions admit of a double answer; but it will be easily
perceived that in several cases, as those which relate to a
certain number of men, the negative value cannot exist.

632. In such equations, also, as az?=bx, where the
known quantity ¢ is wanting, there may be two values
of z, though we find only one if we divide by z. In the
equation z° =3z, for example, in which it is required to
assign such a value of z, that z° may become equal to 3z.
This is done by supposing =3, a value which is found
by dividing the equation by z; but, beside this value,
there is also another, which is equally satisfactory, namely,
x=10; for then 2°=0, and 3x =0. Equations therefore
of the second degree, in general, admit of two solutious,
whilst simple equations admit only of one.

We shall now illustrate what we have said with regard
to pure equations of the second degree by some examples.

633. Question 1. Required a number, the half of which
multiplied by the third, may produce 24.

Let this number be a; then by the question 1z, mul-
tiplied by 1z, must give 24; we shall therefore have the
equation 1x?=24.

Multiplying by 6, we have 2° =144 ; and the extraction
of the root gives x=+x12. We put +; for if v= 412,
we have lzx=6, and lox=4: now, the product of these
two numbers is 24; and if x=—12, we have lz=—6,
and 1x= —4, the product of which is likewise 24.

634. Question 2. Required a number such, that being
increased by 5, and diminished by 5, the product of the
sum by the difference may be 96.

Let this number be z, then £+5, multiplied by z—5,
must give 96 ; whence results the equation,

22 —25=96.

Adding 25, we have 22=121; and extracting the root,
we have x=11. Thus z +5=16, also r —5=6; and,
lastly, 6 x 16 =96.

635. Question 3. Required a number such, that by
adding it to 10, and subtracting it from 10, the sum, mul-
tiplied by the difference, will give 51.

Let z be this number ; then 10 + 2, multiplied by 10—z,
must make 51, so that 100—z?=51. Adding 22, and
subtracting 51, we have 22=49, the square root of which
gives x==7.

636. Question 4. Three persons, who had been playing,
leave off; the first, with as many times 7 crowns, as the
second has 3 crowns; and the second, with as many
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times 17 crowns, as the third has 5 crowns. Farther, if
we multiply the money of the first by the money of the
second, and the money of the second by the money of the
third, and, lastly, the money of the third by that of the
first, the sum of these three products will be 38302. How
much money has each ?

Suppose that the first player has x crowns; and since
he has as many times 7 crowns as the second has 3 crowns,
we know that his money is to that of the second in the
ratio of 7: 3.

We shall therefore have 7: 3 :: x : 3z, the money of the
second player.

Also, as the money of the second player is to that of the
third in the ratio of 17 : 5, we shall have 17 : 5: : 3z : 5z,
the money of the third player.

Multiplying z, or the money of the first player, by iz,
the money of the second, we have the product $22: then,
3z, the money of the second, multiplied by the money of
the third, or by 4%, gives 24:2?; and, lastly, the money
of the third, or {452, multiplied by z, or the money of the
first, gives {4%z% Now, the sum of these three products
is 32° + A&a° + 155a%; and reducing these fractions to the
same denominator, we find their sum $4%2%, which must
be equal to the number 3830%.

We have therefore, $4Ia2= 3830%.

So that, multiplying by 3, L232%= 11492, and 15212°
being equal to 9572836, dividing by 1521, we have z?=
9512836 ; and taking its root, we find x=3334. This
fraction is reducible to lower terms, if we divide by 13 ; so
that z= 248 =79%; and hence we conclude, that 2z =34,
and —1J~T5'9—x = 10.

The first player therefore has 791 crowns, the second has
34 crowns, and the third 10 crowns.

Remark. This calculation may be performed in an easier
manner; namely, by taking the factors of the numbers
which present themselves, and attending chiefly to the
squares of those factors.

It is evident, that 507 =3 x 169, and that 169 is the
square of 13; then, that 833 =7 x 119,and 119 =7 x

17: therefore 3% 16?.@9: 3830%, and if we multiply by 3,

17 x 49
we have Ix 169:::‘1:11492. Let us resolve this num-
17 x 49

ber also into its factors; and we readily perceive, that
the first is 4; that is to say, that 11492 =4 x 2873.
Farther, 2873 is divisible by 17, so that 2873 =17 x 169.
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Consequently, our equation will assume the following form,
?;;23;,;2 =4x17x 169, which, divided by 169, is re-

duced to L.2:2=4 x 17; multiplying also by 17 x 49,

17 x 49
and dividing by 9, we have z? =41_x_%8_99>_<19_’ in which all
the factors are squares; whence we have, without any
further calculation, the root x = g_x_%z =248=701 as

before.

637. Question 5. A company of merchants appoint a
factor at Archangel. Each of them contributes for the
trade, which they have in view, ten times as many crowns
as there are partners; and the profit of the factor is fixed
at twice as many crowns, per cent, as there are partners,
Also, if 11 part of his total gain be multiplied by 2%, it
will give the number of partners. That number is required.

Let it be x; and since each partner has contributed 10z,
the whole capital is 1022. Now, for every hundred crowns,
the factor gains 2z, so that with the capital of 1022 his
profit will be 1xz3. The 1i; part of his gain is s1;2°;
multiplying by 2%, or by 2P, we have 1%§52% or 1523
and this must be equal to the number of partners, or x.

We have, therefore, the equation i;2°=uz, or 2°=
225x ; which appears, at first, to be of the third degree;
but as we may divide by z, it is reduced to the quadratic
2?=225; whence z=15. .

So that there are fifteen partners, and each contributed
150 crowns.

QUESTIONS FOR PRACTICE.

1. To find a number, to which 20 being added, and
from which 10 being subtracted, the square of the sum,
added to twice the square of the remainder, shall be 17475.

Ans. 75.

2. What two numbers are those, which are to one an-
other in the ratio of 3 to 5, and whose squares, added
together, make 1666? Ans. 21 and 25.

3. The sum 2a, and the sum of the squares 25, of two
numbers being given; to find the numbers.

Ans. a— o/ (b—a?), and a+ «/ (b=a?).
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4. To divide the number 100 into two such parts, that
the sum of their square roots may be 14. Ans. 64 and 36.
5. To find three such numbers, that the sum of the first
and second, multiplied into the third, may be equal to 63 ;
and the sum of the second and third, multiplied into the
first, may be equal to 28; also, that the sum of the first
and third, multiplied into the second, may be equal to 55.
Ans. 2,5,9.

6. What two numbers are those, whose sum is to the
greater as 11 to 7; the difference of their squares being
1327 Ans. 14 and 8.

CHAPTER VI.

Of the Resolution of Mixed Equations of the Second
Degree.

638. An equation of the second degree is said to be
mized, or complete, when three terms are found in it;
namely, that which contains the square of the unknown
quantity, as ax?; that, in which the unknown quantity is
found only in the first power, as bz ; and, lastly, the term
which is composed of only known quantities. And since
we may unite two or more terms of the same kind into one,
and bring all the terms to one side of the sign =, the
general form of amixed equationof the second degree will be

ar?=+ bxr+c=0.

In this chapter, we shall shew how the value of x may
be derived from such equations: and it will be seen, that
there are two methods of obtaining it.

639. An equation of the kind that we are now consider-
ing may be reduced, by division, to such a form, that the
first term will contain only the square, 22, of the unknown
quantity z. We shall leave the second term on the same
side with z, and transpose the known term to the other
side of the sign =. By these means our equation will
assume the form of 22+ pz=+g4, in which p and ¢ repre-
sent any known numbers, positive or negative; and the
whole is at present reduced to determining the true value
of z. We shall begin by remarking, that if x%+px were
a real square, the resolution would be attended with no
difficulty, because it would only be required to take the
square root of both sides.
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640. But it is evident that 2%+ pz cannot be a square ;
since we have already seen, (Art. 307.) that if a root con-
sists of two terms, for example, z+n, its square always
contains three terms, namely, twice the product of the two
parts, beside the square of each part; that is to say, the
square of z+n is 2?+2nx+n? Now, we have already on
one side 2% +px ; we may, therefore, consider z? as the
square of the first part of the root, and in this case px
must represent twice the product of z, the first part of the
root, by the second part: consequently, this second part
must be 1p, and in fact the square of z +1p, is found to be

z* +px +-Lp.

641. Now, 2%+ px +1p? being a real square, which has
for its root z +1p, if we resume our equation 22+ pzr=gq,
we have only to add 1p® to both sides, which gives us
Z* + px 4+ 1p*=¢q +1p? the first side being actually a
square, and the other containing only known quantities.
If, therefore, we take the square root of both sides, we
find z+ {p=~(4p?+¢); subtracting 1p, we obtain
x=—1p+ ~(1p*+q); and, as every square root may
be taken either affirmatively or negatively, we shall have
for 2 two values expressed thus :

z=—3p+ /(P + 9.

642. This formula contains the rule by which ail quad-
ratic equations may be resolved ; and it will be proper to
commit it to memory, that it may not be necessary, every
time, to repeat the whole operation which we have gone
through. We may always arrange the equation in such a
manner, that the pure square z* may be found on one side,
and the above equation have the form 22 = — px + ¢, where
we see immediately that 1= — Lp £ /($p?+ ¢).

643. The general rule, therefore, which we deduce from
that, in order to resolve the equation z°= — pz + ¢, is
founded on this consideration ;

That the unknown quantity z is equal to half the coeffi-
cient, or multiplier of z on the other side of the equation,
plus or minus the square root of the square of this number,
and the known quantity which forms the third term of the
equation.

Thus, if we had the equation z*=6x + 7, we should
immediately say, that z=3+ /(9 +7)=3+4, whence
we have these two values of z, namely,z =7, and z = — 1.
In the same manner, the equation z?=10z—9, would
give x — 5+ /(26 —9)=5=+4, that is to say, the two
values of x are 9 and 1. '

644. This rule will be still better understood, by distin-
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guishing the following cases : 1. When p is an even num-
ber; 2. When p is an odd number; and 3. When p is a
fractional number.

Ist, Let p be an even number, and the equation such,
that 22=2pa + ¢ ; we shall, in this case, have

z=p=+ (p*+9)-

2d, Let p be an odd number, and the equation 2*=

px +q; we shall here have z=14p* ~/(3p*+ ¢); and

2
since 1p?+q= L -24(7, we may extract the square root of

the denominator, and write
V(pP+4) _pV(pP+49)
2 - 2 )

r=%p*

3d, Lastly, if p be a fraction, the equation may be re-
solved in the following manner. Letthe equation be az?=

bz +c, or 2*= %{ + g, and we shall have, by the rule,

b ¥ ¢ b* ¢ b+4ac
.17-——'2—ai N (Zé—t? +-(;>. 1\IOW,-4—.GT2 +E— W—,the de-
nominator of which is a square; so that
b+ /(B +4ac)
re=-——— "
2a

645. The other method of resolving mixed quadratic
equations is, to transform them into pure equations ; which
is done by substitution : for example, in the equation 2*=
px +¢q, instead of the unknown quantity =, we may write
another unknown quantity y, such that x=y + 1p; by
which means, when we have determined y, we may imme-
diately find the value of z.

If we make this substitution of y + % p instead of z, we
have 22 = y? + py + 1p?,and pz = py + 4 p?; consequently,
our equation will become

Y +py+ipt=py +ip°+¢;
which is first reduced, by subtracting py, to
Yy It =i+

and then, by subtracting 1p?, to y*=2%p%+-q. Thisis a pure
quadratic equation, which immediately gives

y=*vGp*+9-
Now, since z=y + 1p, we have
=3pE N (Gp* D)
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as before. It only remains, therefore, to illustrate this
rule by some examples.

646. Question 1. There are two numbers; the oune
exceeds the other by 6, and their product is 91 : what are
those numbers?

If the less be x, the other will be x +6, and their pro-
duct 2?+6x=91. Subtracting 6x, there remains z?=
91—6z, and the rule gives

z2=—3+ /(9 +9)=—3 £10; so thatz =7, or
r=—13.

The guestion therefore admits of two solutions ;

By the one, the less number x=7, and the greater x +
6=13.

By the other, the less number x=—13, and the greater
z+6=—17.

647. Question 2. To find a number such, that if 9 be
taken from its square, the remainder may be a number,
as much greater than 100, as the number itself is less
than 23.

Let the number sought be xz. We know that £2—9
exceeds 100 by 2°—109: and since x is less than 23 by
23—z, we have this equation

22—109=23—ux.

Therefore 2?= —xz +132; and, by the rule,
r=—1xv(G+13)=—1x /(34%)=—L*+%. So that
z=11, orz=—12.

Hence, when only a positive number is required, that
number will be 11, the square of which minus 9 is 112,
and consequently greater than 100 by 12, in the same
manner as 11 is less than 23 by 12.

648. Question 3. To find a number such, that if we
multiply its half by its third, and to the product add half
the number required, the result will be 30.

Supposing the number to be z, its half, multiplied by its
third, will give 122 ; so that 4z?+1x=30; and multiply-
ing by 6, we have 22+ 3z=180, or 22= —3z+ 180 ; which
gives r=—3+ /($+180)=—5+27.

Consequently, either =12, or z=—15.

649. Question 4. To find two numbers, the one being
double the other, and such, that if we add their sum to
their product, we may obtain 90.

Let one of the numbers be x, then the other will be 2z;
their product also will be 212, and if we add to this 3z,
or their sum, the new sum ought to make 90. So that
222 4+ 32=90; or 22?2=90—3z; whevce z?=—ix + 45,
and thus we obtain

Q
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=gk (45 =—1£ Y.
Consequently, z=6, or z=—"74.
650. Question 5. A horse-dealer bought a horse for a
certain number of crowns, and sold it again for 119

crowns, by which means his profit was as much per cent
as the horse cost him ; what was his first purchase ?

Suppose the horse cost z crowns; then, as the dealer
gains z per cent, we have this proportion :

xQ
AleO.z..x.m,
xQ

100

2
cost him z crowns, he must have sold it for 2+ ]%6;

since therefore he has gained ~—=, and the horse originally

2
therefore 2+ %ﬁ = 119; and subtracting z, we have

2
%: —z+ 119; then multiplying by 100, we obtain
22=—100z + 11900. Whence, by the rule, we find
z=—50+ /(2500 + 11900) = —50 = /14400 = —50 =
120="70.

The horse therefore cost 70 crowns, and since the horse-
dealer gained 70 per cent when he sold it again, the profit
must have been 49 crowns. So that the horse must have
been sold again for 70 4-49, that is to say, for 119 crowns.

651. Question 6. A person buys a certain number of
pieces of cloth: he pays for the first 2 crowns, for the
second 4 crowns, for the third 6 crowns, and in the same
manner always 2 crowns more for each following piece.
Now, all the pieces together cost him 110 crowns: how
many pieces had he?

Let the number sought be z ; then, by the question, the
purchaser paid for the different pieces of cloth in the
following manner :

forthe 1,2,3,4, 5...... z pieces
he pays 2, 4, 6, 8, 10......2z crowns.
Itis therefore required to find the sum of the arithmetical
progression2+4+6+4+8+10+........ 2z, which consists

of & terms, that we may deduce from it the price of all the
pieces of cloth taken together. The rule which we have
already given for this operation requires us to add the last
term to the first; and the sum is 2x+2; which must be
multiplied by the number of terms z, and the product will
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be 2z%+2x; lastly, if we divide by the difference 2, the
quotient will be 22+, which is the sum of the pro-
gression; so that we have 2?4+ 2=110; therefore 2?=—
z+110, and z=—1+ V(1 +110)=—1+ 5 =10.

Hence, the number of pieces of cloth is 10.

652. Question 7. A person bought several pieces of
cloth for 180 crowns; and if he had received for the sams
sum 3 pieces more, he would have paid 3 crowns less for
each piece. How many pieces did he buy?

Let us represent the number sought by z; then each

piece will have cost him 1—3—— crowns. Now, if the pur-

chaser had z+3 pieces for 180 crowns, each piece would

+% crowns; and since this price is less than
the real price by three crowns, we have this equation,

have cost
x

180z
r+3
60z . sy
by 3, we have 713" 60—z ; and again, multiplying by

Multiplying by z, we obtain

=180—3x; dividing

z+3, gives 602=180 +57x—z?; therefore adding z%, we
shall have z%2+460x=180+57x; and subtracting 60z, we
shall have 2?= —3z + 180.
The rule consequently gives,
r=—3++/($+180), or z=—3+ 27 =12,

He therefore bought, for 180 crowns, 12 pieces of cloth
at 15 crowns the piece; and if he had got 3 pieces more,
namely, 15 pieces for 180 crowns, each piece would have
cost only 12 crowns; that is to say, 3 crowns less.

653. Question 8. Two merchants enter into partnership
with a stock of 100 pounds; one leaves his money in the
partnership for three months, the other leaves his for two
months, and each takes out 99 pounds of capital and
profit. What proportion of the stock did they separately
furnish ?

Suppose the first partner contributed x pounds, the
other will have contributed 100—z. Now, the former
receiving 99/., his profit is 99—z, which he has gained in
three months with the principal z; and since the second
receives also 99/., his profit is 2—1, which he has gained
in two months with the principal 100—x; it is evident
also, that the profit of this second partner would have been
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3z—3
2
and as the profits gained in the same time are in propor-
tion to the principals, we have the following proportion,
3r—3
7

And the equality of the product of the extremes to that
of the means, gives the equation,

2
3z 3 3% 0900~199z +27;
then multiplying this by 2, we have
3z? — 3x =19800—398z + 2% ; and subtracting 2z?, we
obtain #°—3x=19800 — 398x. Adding 3z, gives 2?=
19800 —395z ; then by the rule,
T= — 345 4 (156025 4 T9200) = __ 395 4 485 — 20

The first partver therefore contributed 45. and the
other 55/. The first having gained 54/. in three months,
would have gained in one month 18/.; and the second
having gained 44/. in two months, would have gained 221
in one month: now these profits agree; for if, with 457,
181. are gained in one month, 22/. will be gained in the
same time with 551.

, if he had remained three months in the partnership :

2:99—2:: 100—2z:

654. Question 9. Two girls carry 100 eggs to market ;
the one had more than the other, and yet the sum which
they both received for them was the same. The first says
to the second, if I had had your eggs, I should have
received 15 pence. The other answers, if 1 had had
yours, I should have received 6% pence. How many eggs
did each carry to market?

Suppose the first had = eggs; then the second must
have had 100—z.

Since, therefore, the former would have sold 100—x
eggs for 15 pence, we have the following proportion :

. 15z
*100—-2’
Also, since the second would have sold x eggs for 62

pence, we readily find how much she got for 100—z eggs,
thus:

(100—x) : 15 :: x

. 2000 —20z
Y
Now, both the girls received the same money ; we have

As z: (100—x) :: 20



CHAP. VI, OF ALGEBRA. 229

162z 2000—20x
> 100—z 3z
reduced, becomes 2522 = 200000—-4000z ; and, lastly,
2?2 =—160x 48000 ;

consequently the equation , which,

whence we obtain
2 =—80 + /(6400 +8000) == — 80 + 120 = 40.

So that the first girl had 40 eggs, the second had 60,
and each received 10 pence.

655. Question 10. Two merchants sell each a certain
quantity of silk; the second sells 3 ells more than the
first, and they received together 35 crowns. Now, the
first says to the second, I should have got 24 crowns for
your silk : the other answers, And [ should have got for
yours 12 crowns and a half. How many ells had each?

Suppose the first had z ells; then the second must have
had z+3 ells; also, since the first would have sold z +3
24«
z+3
his z ells. And, with regard to the second, since he would
have sold z ells for 121 crowns, he must have sold his

z+3 ells for g’_“;::j’ so that the whole sum they re-

ells for 24 crowns, he must have received crowns for

ceived was
24x  25x+75
z+3 * 2z
This equation becomes z?=20x—75; whence we have
=10+ v (100—-75) =10 % 5.

This question admits of two solutions: according to
the first, the first merchant had 15 ells, and the second
had 18; and since the former would have sold 18 ells for
24 crowns, he must have sold his 15 ells for 20 crowns.
The second, who would have sold 15 ells for 12 crowns
and a half, must have sold his 18 ells for 15 crowns; so
that they actually received 35 crowns for their commodity.

According to the second solution, the first merchant
had five ells, and the other 8 ells; and since the first
would have sold 8 ells for 24 crowns, he must have
received 15 crowns for his 5 ells; also since the second
would have sold 5 ells for 12 crowns and a half, his 8 ells
must have produced him 20 crowns; the sum being, as
before, 35 crowns.

=35 crowns.
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CHAPTER VII.
Of the Extraction of the Roots of Polygonal Numbers.

656. We have shewn, in a preceding chapter,* how
polygonal numbers are to be found; and what we then
called a side, is also called a root. If, therefore, we
represent the root by z, we shall find the following
expressions for all polygonal numbers :

. . 24
the 111-gon, or triangle, is 5

the 1v-gon, or square,....2%

the v-gon........... ve 3x2;- z

the vi-gon ............. 2—z,

the vir-gon «......... , .5x9-2—3x ,

the vir-gon...,........32°—2z,

the ix-gon . ............ 7_9:_255_.75,

the x-gon.............. 42°—3z,

the n-gon.............. (n-—'2)x22—(n—4)1‘.

657. We have already shewn, that it is easy, by means
of these formule, to find, for any given root, any polygonal
number required : but when it is required reciprocally to
find the side, or the root of a polygon, the number of
whose sides is known, the operation is more difficult, and
always requires the solution of a quadratic equation ; on
which account the subject deserves, in this place, to be
separately considered. ~In doing this, we shall proceed
regularly, beginning with the triangular numbers, and
passing from them to those of a greater number of angles.

658." Let therefore 91 be the given triangular number,
the side or root of which is required.

If we make this root =z, we must have

2
fT;-;T=91; orz? + x = 182, and 2*= —z + 182;
consequently,

* Chap. 5, Sect. III.
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r=—1+ /G +18)=—1+ /(1§ ==} + 3 =13;

from which we conclude, that the triangular root required

2 +x
2

659. But, in general, let @ be the given triangular num-
ber, and let its root be required.

is 13 ; for the triangle of 13, orZ ,18 91.

x2

. x
Here, if we make the root =z, we have =a, or z*

+x=2a; therefore, 2°= — x + 2a, and, by the rule for
solving Quadratic Equations [Art. 64]1.] o= —1+/
—1+4/@Ba+1)
—

This result gives the following rule: To find a triangular
root, Multiply the given triangular number by 8, add 1
to the product, extract the root of the sum, subtract 1 from
that root, and lastly, divide the remainder by 2.

€3 +2a)7 or r=

660. So that all triangular numbers have this property ;
namely, if we multiply them by 8, and add unity to the
product, the sum is always a square ; of which the follow-
ing small Table furnishes some examples :

Triangles 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, &e.
8 times + 1 =9, 25, 49, 81, 121, 169, 225, 289, 361, 441, &c.

If the given number a does not answer this condition,
we conclude, that it is not a real triangular number, or
that no rational root of it can be assigned.

661. According to this rule, let the triangular root of
210 be required. We shall have =210, and 8a+1=
1681, the square root of which is 41 ; whence we see, that
the number 210 is really triangular, and that its root is

411

2
ber, and its root were required, we should find it =

/33

~—5 — 1, and consequently irrational. However, the tri-

2
angles of this root, KB% — 1, may be found in the follow-

=20. But if 4 were given as the triangular num-

ing manner :

Since 2 = ﬁ%—-—l, we have 2% = 17-4/33

5 and adding
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x=l/—?-§——]to it, the sum is #?+ 2 =16 =8, Conse-

. . 2+
quently, the triangle, or the triangular number, 3 =4,

662. The quadrangular numbers being the same as
squares, they occasion no difficulty. For, supposing the
given quadrangular number to be a, and its required
root z, we shall have z%=a, and consequently, x=./a;
so that the square root and the quadrangular root are the
same thing.

663. Let us now proceed to pentagonal numbers.

Let 22 be a number of this kind, and z its root ; then, by

. 322 —2
the third formula, we have 5 =22, or 32t —x=44;

or =1z + ¢ ; from which we obtain,

1 529
r=¢+ \/(il’g‘l"*f‘): or = __r‘%‘_z

consequently 4 is the pentagonal root of the number 22.
664. Let the following question be now proposed ; the
pentagon a being given, to find its root.
Let this root be z, and we have the equation,

=1+23=4; and

32%—z 2a
=a, or 3z*—x=2a, or 2*=1z+ —-; by means of

2 3

which we find 2=1+ v/ (35 + %), that is,

1+ (24a41)

T=————
24a+1 must be a square.

Let 330, for example, be the given pentagon, the root

will be x= 1+ \/é7921\ = 1 -289 = 15.

. Therefore, when a is a real pentagon,

665. Again, let @ be a given hexagonal number, the
root of which is required.

If we suppose it =x, we shall have 22* —x=ua, or
z*=1r+1a; and this gives

1+ 8a+1
=it v (et o= PR

So that, in order that a may be really a hexagon, 8a+1
must become a square; whence we see, that all hexagonal
numbers are contained in triangular numbers ; but it is
not the same with the roots.
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For example, let the hexagonal number be 1225, its

root will be r= 1+ “{19801 = 1 :99 =25.

666. Suppose a an heptagonal number, of which the
root is required.

2__
Let this root be z, then we shall have 5z 5 3z =a, or
2?=41x + %a, which gives,
3 40a 49
=5+ (Fstta)= —-tk/—(m“ﬁ—);

therefore the heptagonal numbers have this property, that
if they be multiplied by 40, and 9 be added to the pro-
duct, the sum will always be a square.

Let the heptagon, for example, be 2059; its root will

be found =z = 3+ ~/1(32369) = 3 -*1387 =29.

667. Let us suppose ¢ an octagonal number, of which
the root z is required.
We shall here have 322—2zx=a, or #*=%z +1a, whence

results =1+ v+ ’3‘“)=—-———1 + Jé3a+ l).

Consequently, all octagonal numbers are such, that if
multiplied by 3, and unity be added to the product, the
sum is constantly a square.

For example, let 3816 be an octagon ; its root will be
= 1+ \{11449 =1+‘107=36.

3 3

668. Lastly, let a be a given n-gonal number, the root
of which it is required to assign; we shall then, by the
last formula, have this equation :

(n —2).7:”—(71—4):5:

a, or (n—2)*—(n—4)x=2a;

2
_(n—x 2a
consequently, x? =- —5 + popa 1 whence,
. n—4 (n—4)? 2a
r= 2(n-—-‘2)+ “/(4(,1_2)2 + n—Q)’ or

_n—4 (n—4)* 8(n—2)a
*=50a—2t ¥ G2t dm=2p”
_n—4+ /(B(n—2)a+(r—4)")
= 2(n—2) :
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This formula contains a general rule for finding all the
possible polygonal roots of given numbers.

For example, let there be given the xxi1v-gonal num-
ber, 3009 : since a is here =3009 and n=24, we have
n—2=22, and n—4=20; wherefore the root, or

v — 20+ /(529584 +400) 204728

) a4 == =17.

CHAPTER VIIIL
Of the Extraction of the Square Roots of Binomials.

669. By a binomial* we mean a quantity composed of
two parts, which are either both affected by the sign of the
square root, or of which one, at least, contains that sign.

For this reason 3+ /5 is a binomial, and likewise
8+ +/3; and it is indifferent whether the two terms be
joined by the sign+or by the sign —. So that 3—v/5,
and 3+ /5 are both binomials.

670. The reason that these binomials deserve particular
attention is, that in the resolution of quadratic equations
we are always brought to quantities of this form, when
the resolution cannot be performed. For example, the
equation 2?°=6x—4 gives t=3+ /5.

It is evident, therefore, that such quantities must often
occur in algebraic calculations ; for which reason, we have
already carefully shewn how they are to be treated in the
ordinary operations of addition, subtraction, mnltiplication,
and division : but we have not been able till now to shew
how their square roots are to be extracted ; that is, so far
as that extraction is possible ; for when it is not, we must
be satisfied with affixing to the quantity another radical
sign. Thus, the square root of 3+ v 2 is written
V3FV2; or v (B4 v2).

671. 1t must here be observed, in the first place, that the

* In Algebra we generally give the name binomial to any
quantity composed of two terms ; but Euler has thought proper
to confine this appellation to those expressions which the French
analysts call quantities partly commensurable, and partly in-
commensurable.—F. T.
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squares of such binomials are also binomials of the same
kind ; in which also one of the terms is always rational.

For, if we take the square of a-+ /b, we shall obtain
(a®4b)+2av/b. If therefore it were required reciprocally
to take the root of the quantity (a®+b6) +2a+/ b, we should
find it to be ¢+ v/ b; and it is undoubtedly much easier to
form an idea of it in this manner, than if we had only put
the sign / before that quantity. In the same manner, if
we take the square of a ++/ b, we find it (a + ) +
2/ ab ; therefore, reciprocally, the square rootof (a+b) +
2./ ab will be /a+ v b, which is likewise more easily un-
derstood, than if we had been satisfied with putting the
sign / before the quantity.

672. 1t is chiefly required, therefore, to assign a cha-
racter, which may, in all cases, point out whether such a
square root exists or not; for which purpose we shall
begin with an easy quantity, requiring whether we can
assign, in the sense that we bave explained, the square
root of the binomial 542./6.

Suppose, therefore, that this root is v/ # + +/y; the
square of it is (z+¥)+2+ zy, which must be equal to
the quantity 5+2/6. Consequently, the rational part
r +y must be equal to 5, and the irrational part 2 »/zy
must be equal to 2./6 ; which last equality gives v/ 2y=
»~/6. Now, since z + y =05, we have y =5 — z, and
this value substituted in the equation zy=6, produces
br —2°=06, or a2=5x—6; therefore, z =5+ /(% —
4)=45+1=3. So that =3, and y=2; whence we
conelude, that the square root of 54+2./6 is A/3+ /2.

673. As we have here found the two equations, x +y=5,
and xy=~6, we shall give a particular method for obtain-
ing the values of x and y.

Since z+y=>5, by squaring, z%+2xy +y?=25; and
as we know that z* — 2xy+y? is the square of z —y, let
us subtract from 2?4 2xy+y*=25, the equation zy=6,
taken four times, or 4xy=24, in order to have 22—2zy +
y?=1; whence by extraction we have x—y=1; and as
z+y=>5, we shall easily find =3, and y=2: where-
fore, the square root of 5+2.4/6 is v/ 3+ /2.

674. Let us now consider the general binomial a+ v/,
and supposing its square root to be «/z+ +/y, we shall
have the equation (z+y) +2+vay=a+/b; so that
z+y=ga, and 2y zy = b, or 4xy =b; subtracting
this square from the square of the equation z+y=a, that
is, from 2 + 2zy + y? = a®, there remains z°—2zy+
y?=a*—b, the square root of which is r—y=./(a?—b).
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a+ N/ (a?—Db)
2 ’

; consequently, the square root re-

Now, x+y=a; we have therefore x=

a— / (a?—b)
2

quired ofa+ / bis &/

and y=

(w4 v(E=h) | (=),

675. We admit that this expression is more complicated
than if we had simply put the radical sign »/ before the
given binomial a4 4/b, and written it /(a+ »/b): but
the above expression may be greatly simplified when the
numbers ¢ and b are such, that a?—b5 is a square; since
then the sign /, which is under the radical, disappears.
We see also, at the same time, that the square root of the
binomial ¢+ +/ b cannot be conveniently extracted, except
when a*—b=c?; in this case, the square root required

is ,\/(a;c)+\/(%): but if «*—b be not a perfect

square, we cannot express the square root of a4 1/ b more
simply, than by putting the radical sign ./ before it.

676. The condition, therefore, which is requisite, in order
that we may express the square root of a binomial a4 /b
in a more convenient form, is, that a?—¥5 be a square ; and
if we represent that square. by ¢, we shall have for the

a+c
2
farther remark, that the square root of ¢ — /b will be

«/(a;c)— ~/(a_—2£) ; for, by squaring this formula, we get

square root in question a/( )+ J(CL—_Q—C). We must

a’—c?

4

); now, since ¢*=a’—b, or a*—c*="b, the

same square is found =a—2\/2= a— %“2/—b=a— v b

a—2.3/(

677. When it is required, therefore, to extract the
square root of a binomial, as a+ /b, the rule is, Subtract
from the square (a?) of the rational part the square (d) of
the irrational part, take the square root of the remainder,
and calling that root ¢, write for the root required,

@39+ vESD.

VA b)

678. If the square root of 2+ ./3 were required, we
should have a=2 and b= v3; wherefore a?— b=
c2=4—3=1; so that, by the formula just given, the
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root sought will be J—z—;_—l F Jg_%l =vit+ /i

Let it be required to find the square root of the binomial
11+6.2. Here we shall have a=11, and/b=6.2;
consequently, =36 x 2=72, and a?*—b=49, which gives
¢=7; and hence we conclude, that the square root of
114+6/2is vI+ /2, or 34+ /2.

Required the square root of 11+2.:/30. Here a=11,
and b =2 .30; consequently, b=4 x 30 = 120,
a*—b=1, and c¢=1; therefore the root required is
v 6+ V5.

679. This rule also applies, even when the binomial
contains imaginary, or impossible quantities.

Let there be proposed, for example, the binomial 1+
4./ —3. First, we shall have a=1 and b=4./—3,
that is to say, b= —48, and a*—b=49; therefore
¢=17, and consequently the square root required is 4+

Again, let there be given —1 + 1./ —3. First, we
have a= —1; Vb=1v~3, and b=ix —3=—3%;
whence a®—b=1+4+3=1, and c=1; and the result
v —3

2

Another remarkable example is that in which it is re-
quired to find the square root of 2./ —1. As there is here
no rational part, we shall have a=0. Now, v =2y —1,
and b=—4; wherefore a?*—b=4, and c¢=2; conse-
quently, the square root required is 14/ —1=I1+
» —1; and the square of this quantity is found to be
1+2y—~1—-1=2y—1.

680. Suppose now we have such an equation as 2?=
ax b, and that a®*—b=c?; we conclude from this, that
a-+ a—c¢

5} C)i V( 5 ), which may be useful

,ort + 1y —3.

required is 1+~ —3=1+

the value of z= ./ (

in many cases.

For example, if x°=17 +12./2, we shall have z=3+
VB8=34+2v2.

681. This case occurs most frequently in the resolution
of equations of the fourth degree, such as r*=2ax%+d.
For, if we suppose a*=y, we have z*=y?%, which reduces
the given equation to y?=2ay+d, and from this we find
y=a=® /(a®+d), therefore, 2?=a=+ v/ (a*+d), and con-
sequently we have another evolution to perform. Now,
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since / b=/ (a®+d), we haveb=a?+d, and a*—b=—d;
if, therefore, — d is a square, as ¢?, that is to say, d=-—c?,

we may assign the root required.
Suppose, in reality, that d= —c?; or that the proposed
equation of the fourth degree is *=2ax?~ ¢?, we shall then
a+c a—

find that 2 = v (23 x v (559,

682. We shall illustrate what we have just said by some
examples.
1. Required two numbers, whose product may be 105,
and whose squares may together make 274.
Let us represent those two numbers by « and y ; we shall
then have the two equations,
zy=105
2t 4 y?=274.

The first gives y= %5, and this value of y being sub-

stituted in the second equation, we have

2
% 4 1500—25 =274.

Wherefore z* + 1052=2742, or 2*=27422—105%.

If we now compare this equation with that in the pre-
ceding article, we have 2a =274, and —c¢?= — 105%;
consequently, ¢=105, and a=137. We therefore find

1374105, 137—105
g (P (T =114,

Whence =15, or z=7. In the first case, y=7, and in
the second case, y=15; whence the two numbers sought
are 15 and 7.

683. It is proper, however, to observe, that this calcula-
tion may be performed much more easily in another way.
For, since 2% +2zxy +y* and 2°—2xy +y* are squares, and
since the values of 2%+ y?and of zy are given, we have
only to take the double of this last quantity, and then to add
and subtract it from the first, as follows: 22+ y?=274;
to which if we add 2zy=210, we have

22 4 2zy + y*=484, which gives x +y=22.

But subtracting 2zy, there remains 2*—2zxy +y*=64,
whence we find z—y=8.

So that 22=30, and 2y=14; consequently, z=15, and
y="1.

The following general question js resolved by the same
method.
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2. Required two numbers, whose product may be m,
and the sum of the squares ».
If those numbers are presented by x and y, we have the
two following equations :
Ty =m
% +yt=n.
Now, 2zy=2m being added to 2°+y°*—n, we have
2% +2zy + y*=n+2m, and consequently,

z+y=+/(n+2m).

But subtracting 2zy, there remains 2%?=2zy+y*=n-—
2m, whence we get x—y=./(n—=2m); we have, there-
fore, z= 13/ (n+2m)+ L/ (n—2m); and

y=1s (n+2m)— %/ (n—2m).

684. 3. Required two numbers, such, that their produet
may bhe 35, and the difference of their squares 24.

Let the greater of the two numbers be x, and the less
y: then we shall have the two equations,

zy=35,

2t —y? =24;
and as we have not the same advantages here, we shall
proceed in the usual manner. The first equation gives
y= —;—, and, substituting this value of y in the second, we
have 2% — ]—i%E =24, Multiplying by 2%, we have
xt—1225=242%; or x*=242°+1225. Now, the second
member of this equation being affected by the sign +, we
cannot make use of the formula already given, because
having ¢?= —1225, ¢ would become imaginary.

Let us therefore make 22=z; we shall then have
22=242+ 1225, whence we obtain

2=12+ /(144 + 1225) or z=12+4+37 ;
consequently, z%= 1237 ; that is to say, either =49, or
= —25.
If we adopt the first value, we have =7, and y=5.
The second value gives r=/ —25; and, since xy=35,
35 1225
we have g{: \/_25=~/ T v —49.

685. We shall conclude this chapter with the following
question,

4. Required two numbers, such, that their sum, thieir
product, and the difference of their squares, may be all
equal.
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Let x be the greater of the two numbers, and y the less;
then the three following expressions must be equal to one
another: namely, the sum, z+y; the product, zy; and
the difference of the squares, 22—y°. If we compare the
first with the second, we have z+y=xy; which will give

K

y—T’

a value of z: fory=ay—az=z(y—1),and 2=

A s =¥ .
consequently, z + y = 7—T +y= =T and zy= =1
that is to say, the sum is equal to the product; and to this
also the difference of the squares ought to be equal. Now,

2 3
2 y 2 — =y +2°
we have 2?—y?= 72y ¥l Y _y_—2—2y+l’ so that
2

making this equal to the quantity found, yy 1 we have
¥ =2 L I
T v dividing by y% we have =1
-y +2 c .
yT_—_y—‘zy—_*_%; and multiplying by *—2y+1, or (y—1)7,
we have y—1=—y2+2y; consequently, y>=y+1;

N 1+ v5
which givesy =1 VG +1D) =1+ V5;0ory= 5>
and since z = %1, we shall have, by substitution, and
using the sign +, z= %g—i—%

In order to remove the surd quantity from the denomi-
nator, multiply both terms by ./5+1, and we obtain
s 0+2VE_3+V5

- 4 T 2

Therefore the greater of the numbers sought, or z,

3
= +2“/5; and the less, y, = 1-'-2"/5.

Hence their sum z+y=2+ v/5; their product zy =
2+ /5 and since 22 =%\/—5, and y®= 3"_‘—%5, we
ha.ve also the difference of the squares 22—y*=2+ /5,
being all the same quantity.

686. As this solution is very long, it is proper to remark
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that it may be abridged. In order to which, let us begin
with making the sum z 4y equal to the difference of the
squares 2%—y%; we shall then have z+y=a?—y%; and
dividing by x4y, because 2°—y?=(z+y)x (x—y), we
find 1=2—y, and x=y+1. Consequently, x+y=2y
+1, and 2°—y*=2y+1; farther, as the product zy, or
¥*+y, must be equal to the same quantity, we have y?+y
=2y+ 1, or y*=y + 1, which gives, as before, y=
145

5 —

687. The preceding question leads also to the solution
of the following.

5. To find two numbers, such, that their sum, their
product, and the sum of their squares, may be all equal.

Let the numbers sought be represented by = and y;
then there must be an equality between z+y, zy, and
2+t

Comparing the first and second quantities, we have

z + y=uxy, whence z = y-—Ll; consequently, zy, and
2
g/z T Now, the same quantity is equal to 2% +%;

so that we have

x4ty =

y e ¥
y*—2y+1 Ty Ty—=T1
Multiplying by y*—2y + 1, the product is
Y =23+ 2y =y>—y?, or y*=3y3—3y?;
and dividing by %, we have y?=3y — 3; which gives

y=3+ vE-3)= §—+~2/——3; consequently,
y—1= -1-—%7—:-3, whence results z = ?——}_—:ﬁ—:%; and
multiplying both terms by 1— ./ —3, the result is
_6—-2y-3 3—v-3
z= 3 , Or 5
Therefore the numbers sought are z = :L—%—TE, and
y= 3—+-"é—':§, the sum of which is z +y =3, their
product zy=3; and lastly, since 2% = é—:?%/—_—:;, and

R
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Y= 34—#3/_;3, the sum of the squares a2+ y?=3, all

the same quantity as required.

688. We may greatly abridge this calculation by a
particular artifice, which is applicable likewise to other
cases; and which consists in expressing the numbers
sought by the sum and the difference of two letters,
instead of representing them by distinet letters.

In our last question, let us suppose one of the numbers
sought to be p+¢g, and the other p—g, then their sum
will be 2p, their product will be p?—¢? and the sum of
their squares will be 2p?+2¢?, which three quantities
must be equal to each other; therefore making the first
equal to the second, we have 2p = p®—¢°, which gives
q° = p*—2p.

Substituting this value of ¢? in the third quantity
(2p*+2¢?), and comparing the result 4p?—4p with the
first, we have 2p =4p*— 4p, whence p = 4.

Consequently, ¢ =p* — 2p =— 4, and ¢ = “/%3’
so that the numbers sought are p+¢g= ._.___3+*2/ —3, and
P—q= i——g—_i as before.

QUESTIONS FOR PRACTICE.

1. What two numbers are those, whose difference is 15,

and half of their product equal to the cube of the less?
Ans. 3 and 18.

2. To find two numbers whose sum is 100, and product
2059. Ans. 71 and 29.
3. There are three numbers in geometrical progression :
the sum of the first and second is 10, and the difference of

the second and third is 24. What are they?
Ans. 2, 8, and 32.

4. A merchant having laid out a certain sum of money
in goods, sells them again for 24/. gaining as much per

cent as the goods cost him : required what they cost him.
Ans. 204

5. The sum of two numbers is @, their product . Re-
quired the numbers.

Ans. gi V{(—b+ %2), and
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6. The sum of two numbers is ¢, and the sum of their
squares b. Required the numbers.
Ans. 2+ o (21)_‘12
2 4
2h— gt
%T‘ '\/( b 4a )'

7. To divide 36 into three such parts, that the second
may exceed the first by 4, and that the sum of all their
squares may be 464. Ans. 8, 12, 16.

8. A person buying 120 pounds of pepper, and as many
of ginger, finds that for a crown he has one pound more
of ginger than of pepper. Now, the whole price of the
pepper exceeded that of the ginger by six crowns: how
many pounds of each had he for a crown?

Ans. 4 of pepper, and 5 of ginger.

9. Required three numbers in continual proportion, 60
being the middle term, and the sum of the extremes being
equal to 125. Ans. 45, 60, 80.

10. A person bought a certain number of oxen for 80
guineas: 1f he had received 4 more for the same money,
he would have paid one guinea less for each. What was
the number of oxen? Ans. 16.

11. To divide the number 10 into two such parts, that
their product being added to the sum of their squares,
may make 76. Ans. 4 and 6.

12. Two travellers, A and B, set out from two places,
I'and A, and at the same time; A from I with a design to
pass through A, and B from A to travel the same way ;
after A had overtaken B, they found on computing their
travels, that they had both together travelled 30 miles;
that A had passed through A four days before, and that B,
at his rate of travelling, was a journey of nine days
distant from r. Required the distance between the places
I and A, Ans. 6 miles.

), and
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CHAPTER IX.
Of the Nature of Equations of the Second Degree.

689. What we have already said sufficiently shews,
that equations of the second degree admit of two solu-
tions; and this property ought to be examined in every
point of view, because the nature of equations of a higher
degree will be very much illustrated by such an examina-
tion. We shall therefore retrace, with more attention,
the reasons which render an equation of the second degree
capable of a double solution; since they undoubtedly will
exhibit an essential property of those equations.

690. We have already seen, indeed, that this double
solution arises from the circumstance that the square root
of any number may be taken either positively, or nega-
tively; but, as this principle will not easily apply to
equations of higher degrees, it may be proper to illustrate
it by a distinct analysis. Taking, therefore, for an
example, the quadratic equation, 22=12x—35, we shall
give a new reason for this equation being resolvible in
two ways, by admitting for x the values 5 and 7, both of
which will satisfy the terms of the equation.

691. For this purpose it is most convenient to begin
with transposing the terms of the equation, so that one of
the sides may become 0 ; the above equation consequently
takes the form

22—122+35=0;
and it is now required to find a number such, that, if we
substitute it for z, the quantity 2°— 12z + 35 may be really
equal to nothing ; after which, we shall have to shew how
this may be done in two different ways,

692. Now, the whole of this consists in clearly shewing,
that a quantity of the form 22— 12x + 35 may be considered
as the product of two factors. Thus, in reality, the
quantity of which we speak is composed of the two factors
(z — b5) x (x — 7); and since the above quantity must
become 0, we must also have the product (x—5) x (z—7)
=0; but a product, of whatever number of factors it is
composed, becomes equal to 0, only when one of those
factors is reduced to 0. This is a fundamental principle,
to which we must pay particular attention, especially
when equations of higher degrees are treated of.

693, It is therefore easily understood, that the product
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(x —5) x (x—7) may become 0 in two ways: first, when
the first factor x—5==0; and also, when the second factor
2—7=0. In the first case, r =25, in the second z=7.
The reason is therefore very evident, why such an equa-
tion 22—12x 435 = 0, admits of two solutions; that is to
say, why we can assign two values of x, both of which
equally satisfy the terms of the equation; for it depends
upon this fundamental principle, that the quantity z*—
12z 4+ 35 may be represented by the product of two
factors.

694. The same circumstances are found in all equations
of the second degree : for, after having brought the terms
to one side, we find an equation of the following form
2*—ax+b=0, and this formula may be always considered
as the product of two factors, which we shall represent by
(z—p) x (x—¢q), without considering what numbers the
letters p and ¢ represent, or whether they be negative or
positive. Now, as this product must be = 0, from the
nature of our equation, it is evident that this may happen
in two cases ; in the first place, when z=p; and in the
second place, when x=¢ ; and these are the two values of
x which satisfy the terms of the equation.

695. Let us here consider the nature of these two
factors, in order that the wultiplication of the one by
the other may exactly produce 2?—ax+b. By actually
multiplying them, we obtain 2°—(p + ¢)z + pg; which
quantity must be the same as «*—ax + b, therefore we have
evidently p+g=a, and pg=6. Hence is deduced this
very remarkable property; that in every equation of the
form 2°—ax+b=0, the two values of x are such, that
their sum is equal to ¢, and their product equal to b: it
therefore necessarily follows, that, if we know one of the
values, the other also is easily found.

696. We have at present considered the case, in which
the two values of « are positive, and which requires the
second term of the equation to have the sign —, and the
third term to have the sign +. Let us also consider
the cases, in which either one or both values of x become
negative. The first takes place, when the two factors of
the equation give a product of this form, (z—p) x (z+9);
for then the two values of z are z=p, and 2=—¢; and
the equation itself becomes

i+ (q—=p)a—py=0;
the second term having the sign + when ¢ is greater
than p, and the sign — when ¢ 1s less than p; lastly, the
third term is always negative.
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The second case, in which both values of z are negative,
occurs when the two factors are

(@+p) X (x+9);
for we shall then have r=—p, and z=—g¢; the equation
itself therefore becomes
2+ (p+q)x+pg=0.
in which both the second and third terms are affected by
the sign +.

697. The signs of the second and the third terms con-
sequently shew us the nature of the roots of any equation
of the second degree. For let the equation be 2°....ax
.+..b=0. If the second and third terms have the sign +,
the two values of x are both negative ; if the second term
have the sign —, and the third term +, both values are
positive : lastly, if the third term also have the sign —,
one of the values in question is positive. But, in all cases
whatever, the second term contains the sum of the two
values, and the third term contains their product.

698. After what has been said, it will be easy to form
equations of the second degree containing any two given
values. Let there be required, for example, an equation
such, that one of the values of 2 may be 7, and the other
—3. We first form the simple equations z=7, and
z==—3; whence, z—7=0, and 2+3=0; these give us
the factors of the equation required, which consequently
becomes 22—4x—21=0. Applying here, also, the above
rule, we find the two given values of z; forif 2°=42 421,
we have, by completing the square, &c. z=24 ,/25=2
+5; that is to say, =7, or z= —3.

699. The values of  may also happen to be equal. Sup-
pose, for example, that an equation is required, in which
both values may be 5. Here the two factors will be (x—5)
x (z—5), and the equation sought will be 22— 10x +25=0.
In this equation, z appears to have only one value; but it
is because x is twice found =5, as the common method of
resolution shews; for we have 22=10x—25; wherefore
=5+ s/ 0=5+0, that is to say, x is in two ways = 5.

700. A very remarkable case sometimes occurs, in which
both values of x become imaginary, or impossible ; and it is
then wholly impossible to assign any value for z, that would
satisfy the terms of the equation. Let it be proposed, for
example, to divide the number 10 into two parts, such
that their product may be 30. If we call one of those
parts z, the other will be 10—z, and their product will be



CHAP. IX. OF ALGEBRA. 247

102 —22=30; wherefore 22=10x—30, and z=5+ / =5,
which, being an imaginary number, shews that the ques-
tion is impossible.

701. It is very important, therefore, to discover some
sign, by means of which we may immediately know whether
an equation of the second degree be possible or not.

Let us resume the general equation 2?—ax+b6=0. We
shall have z*=azx —b, and z=1ax v/ (4a®—b). This
shews, that if & be greater than 1a?, or 4b greater than a?,
the two values of = are always imaginary, since it would be
required to extract the square root of a negative quantlty ;
on the contrary, if b be less than La?, or even less than 0,
that is to say, if it be a negative number, both values will
be possible or real. But, whether they be real or imaginary,
it is no less true, that they are still expressible, and always
have this property, that their sum is equal to ¢, and their
product equal to 6. Thus, in the equation 22—6x - 10=0,
the sum of the two values of x must be 6, and the product
of these two values must be 10; now, we find, 1. z=
3+ —1,and 2. z=3— 4/ —1, quantities whose sum is
6, and the product 10.

702. The expression which we have just found may like-
wise be represented in a manner more general, and so as
to be applied to equations of this form, fr*+gx+4=0;
for this equation gives

o 9% _ R == 9 _h
z ——+—~—]7, and x_+2f:_|-~/ ( Ve f)’ or «o....

_FIEN(=YD)

xr =

2f ’
values are imaginary, and consequently, the equation im-
possible, when 4f% 1s greater than ¢2; that is to say, when,
in the equation fz®—gx +h=0, four times the product of
the first and the last term exceeds the square of the second
term : for the product of the first and the last term, taken
four times, is 4fAx%, and the square of the middle term is
g%x%; now, if 4fhx?® be greater than g%z, 4f% isalso greater
than ¢%, and, in that case, the equation is evidently im-
possible ; but in all other cases, the equation is possible,
and two real values of # may be assigned. It is true, they
are often irrational; but we have already seen, that, in
such cases, we may always find them by approximation :
whereas no approximations can take place with regard to
imaginary expressions, such as ./ —5; for 100 is as far
from being the value of that root, as 1, or any other number.

703. We have farther to observe, that any quantity of

whence we conclude, that the two
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the second degree, 2?+ax+b, must always be resolvible
into two factors, such as (r£p)x (xxq). For, if we
took three factors, such as these, we should come to a
quantity of the third degree; and taking only ome such
factor, we should not exceed the first degree. It is there-
fore certain, that every equation of the second degree
necessarily contains two values of x, and that it can neither
have more nor less.

704. We have already seen, that when the two factors
are found, the two values of x are also known, since each
factbr gives one of those values, by making it equal to 0.
The converse also is true, viz. that when we have found
one value of x, we know also one of the factors of the
equation ; for if z=p represents one of the values of z,
in any equation of the second degree, z—p is one of the
factors of that equation ; that is to say, all the terms hav-
ing been brought to one side, the equation is divisible by
z—p; and farther, the quotient expresses the other factor.

705. In order to illustrate what we have now said, let
there be given the equation 2°+4z—21=0, in which
we know that x=3 is one of the values of z, because
(3% 3)+(4x3)~21=0; this shews, that z—3 is one of
the factors of the equation, or that z°+4x—21 is divisible
by #~—3, which the actual division proves. Thus,

z=—3) 2 +4z—21 (x+7

*—3z

Tzx-21
Tx—=21

0.

So that the other factor is # 47, and our equation is re-
presented by the produet (z—3) x (£+7)=0; whence the
two values of z immediately follow, the first factor giving
z==3, and the other x= —7.

CHAPTER X.
Of Pure Equations of the Third Degree.

706. An equation of the third degree is said to be pure,
when the cube of the unknown quantity is equal te a known
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quantity, and when neither the square of the unknown
quantity, nor the unknown quantity itself, is found in the
equation ; so that

=125 ; or, more generally, z°=a, 23= %, &e.
are equations of this kind.

707. It is evident how we are to deduce the value of
z from such an equation, since we have only to extract the
cube root of both sides. Thus, the equation 2*=125
gives x=>5, the equation 2°=a gives r=}/a, and the

— % gives =2, or 2=¥% To be abl
= 7 gives =Y/, or z=733 To e able,
therefore, to resolve such equations, it is sufficient that
we know how to extract the cube root of a given number.

708. But in this manner, we obtain only one value for
x: and since every equation of the second degree has two
values, there is reason to suppose that an equation of the
third degree has also more than one value. It will be de-
serving our attention to investigate this; and, if we find
that in such equations,  must have several values, it will
be necessary to determine those values.

709. Let us consider, for example, the equation 23=8,
with a view of deducing from it all the numbers, whose
cubes are, respectively, 8. Asx=2 is undoubtedly such a
number, what has been said in the last chapter shews that
the quantity 2> —8=0, must be divisible by x—2: let us
therefore perform this division.

z—2) *—8 (2*+2x+4+4

equation a3

23 —2x2%
2228
222 —4x
4x-—-8
4x 8

0.

Hence it follows, that our equation, z3~8=0, may be
represented by these factors ;

(x=~=2) x (2% +2z +4)=0.

710. Now, the question is, to know what number we are
to substitute instead of z, in order that 2°=8, or that
23—~8=0; and it is evident that this condition is an-
swered, by supposing the product which we have just now
found equal to O : but this happens, not only when the first
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factor z—2=0, which gives us =2, but also when the
second factor

22+2x+4=0. Let us, therefore, make

22 +2x+4=0; then we shall have z?= —2xr—4, and
thence r=—1+ ./ —3.

711. So that beside the case, in which x=2, which cor-
responds to the equation 23=8, we have two other values
of z, the cubes of which are also 8; and these are,

r=—14 . —=3,andx= —1— y/ —3, as will be evident,
by actually cubing these expressions ;

—14+v-=3 —1—yv -3
—1+v-3 —1—v-3

l—v -3 1+v =3
—_ —3—=3 + v —3=3
—2—2y —3 square —242y =3
—14+ =3 —1— v-=3
242 -3 2—2v —3

+2v —3+6 +2v—3+6
8. cube. 8.

It is true, that these values of x are imaginary, or im-
possible ; but yet they deserve attention.

712. What we have said applies in general to every
cubic equation, such as a*=a; namely, that beside the
value z=3/a, we shall always find two other values.
To abridge the calculation, let us suppose ¥/ a=c, so
that a=c? our equation will then assume this form,
23— ¢*=0, which will be divisible by x—c, as the actual
division shews:

r—c) x23—c® (@?+cx+c?

23 —cx?
cx?—c?
cx?—cr
ctr—c?
&% —c3
0.

Consequently, the equation in question may be repre-
sented by the product (z—c¢) x (2% +cx+¢?)=0, which
is in fact =0, not only when 2~—¢=0, or x=c, but also
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when 22 +cx+c?=0. Now, this expression contains two
other values of z; for it gives

c c?
2= —cx—c% and x = — §i \/(I — ), 0T crtnnennnn
—c+ ./ —3¢ —c*c/ —3
= “2/ ; that is to say, == ;d
_—lxv-3
= 5 .

713. Now, as ¢ was substituted for 3/a, we conclude,
that every equation of the third degree, of the form z*=a,
furnishes three values of z expressed in the following
manuer:

1. z=¥/a,
2. x= %Xi/a’
3. x=:1;2~/;3xg/a_

This shews, that every cube root has three different
values ; but that one only is real, or possible, the two others
being impossible. This is the more remarkable, since every
square root has two values, and since we shall afterwards
see, that a biquadratic root has four different values, that a
fifth root has five values, and so on.

In ordinary calculations, indeed, we employ only the
first of those values, because the other two are imaginary ;
as we shall shew by some examples.

714. Question 1. To find a number, whose square,
multiplied by its fourth part, may produce 432.

Let 2 be that number ; the product of z? multiplied by
1z must be equal to the number 432, that is to say, 42°=
432, and 23=1728 ; whence, by extracting the cube root,
we have z=12.

The number sought therefore is 12; for its square 144,
multiplied by its fourth part, or by 3, gives 432.

715. Question 2. Required a number such, that if we
divide its fourth power by its half, and add 14% to the
product, the sum may be 100.

Calling that number z, its fourth power will be a*;
dividing by the half, or 1z, we have 22°; and adding to
that 141, the sum must be 100. We have therefore 2z°
+141=100; subtracting 14%, there remains 2z3=343;
dividing by 2, givesa?=%4%, and extracting the cube
root, we find r=1. ’

716. Question 3. Some officers being quartered in a
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country, each commands three times as many horsemen,
and twenty times as many foot-soldiers, as there are
officers. Also a_ horseman’s monthly pay amounts to as
many florins as there are officers, and each foot-soldier
receives balf that pay; the whole monthly expense is
13000 florins. Required the number of officers.

If x be the number required, each officer will have
under him 3z horsemen and 20z foot-soldiers. So that the
whole number of horsemen is 3z?, and that of foot-
soldiers is 20x2.

Now, each horseman receiving = florins per month, and
each foot-soldier receiving 1« florins, the pay of the horse-
men, each month, amounts to 323, and that of the foot-
soldiers, to 10z°; consequently, they all together receive
1322 florins, and this sum must be equal to 13000 florins :
we have therefore 13x°=13000, or 2°=1000, and 2 =10,
the number of officers required.

717. Question 4. Several merchants enter into part-
nership, and each contributes a hundred times as many
sequins as there are partners : they send a factor to Venice,
to manage their capital, who gains, for every hundred
sequins, twice as many sequins as there are partners, and
he returns with 2662 sequins profit. Required the num-
ber of partners.

If this number be supposed =z, each of the partners
will have furnished 100z sequins, and the whole capital
must have been 1002? ; now, the profit being 2x for 100,
the capital must have produced 2x%; so that 22°=2662,
or z°=1331; this gives x=11, which is the number of
partners.

718. Question 5. A country girl exchanges cheeses for
hens, at the rate of two cheeses for three hens ; which hens
lay each 1 as many eggs as there are cheeses. Farther,
the girl sells at market nine eggs for as many sous as each
hen had laid eggs, receiving in all 72 sous; how many
cheeses did she exchange ?

Let the number of cheeses =z, then the number of
hens, which the girl received in exchange, will be 3z, and
each hen laying Lx eggs, the number of eggs will be=3z.
Now, as nine eggs sell for 1z sous, the money which $x?
eggs produce 1s L3, and #a*=72. Consequently,
P =24x72=8x3x8x9=8x8x27=1728; whence
x=12; that is to say, the girl exchanged twelve cheeses
for eighteen hens.
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CHAPTER XI.

Of the Resolution of Complete Equations of ke Third
Degree.

719. An equation of the third degree is called complete,
when, beside the cube of the unknown quantity, it con-
tains that unknown quantity itself, and its square : so that
the general formula for these equations, bringing all the
terms to one side, is

ard bt cx £ d=0.

And the purpose of this chapter is to shew how we are
to derive from such equations the values of z, which are
also called the roots of the equation. We suppose, in the
first place, that every such equation has three roots ; since
it has been seen, in the last chapter, that thisis true even
with regard to pure equations of the same degree.

720. We shall first consider the equation z*— 6z° 4
11x—6=0; and, since an equation of the second degree
may be considered as the product of two factors, we may
also represent an equation of the third degree by the pro-
duct of three factors, which are in the present instance,

(z—1) x (z—2) x (#—3)=0;

since, by actually multiplying them, we obtain the given
equation ; for (z—1) x (z —2) gives 2°—3z +2, and
multiplying this by z —3, we obtain 23 —62° +1lz—6,
which are the given quantities, and which must be = 0.
Now, this happens when the product (z—1) x (z—2) x
(z—3)=0; and, as it is sufficient for this purpose, that
one of the factors become = 0, three different cases may
give this result, namely, when 2—1=0, or z=1; secondly,
when z—%=0, or x=2; and thirdly, when x—3=0, or
r=3.

We see immediately also, that if we substituted for z,
any number whatever beside one of the above three,
noue of the three factors would become equal to 0; and,
consequently, the product would no longer be O: which
proves that our equation can have no other root than these
three.

721. If it were possible, in every other case, to assign
the three factors of such an equatien in the same manner,
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we should immediately have its three roots. Let us, there-
fore, consider, in a more general manner, these three
factors, x—p, x—gq, x—r. Now, if we seek their product,
the first, multiplied by the second, gives 22— (p +¢)x + pg,
and this product, multiplied by x—r, makes

22— (p+q+r)at+(pg+pr+qriz—pgr.

Here, if this formula must become =0, it may happen in
three cases: the first is that, in which z—p=0, or 2=p;
the second is, when # — ¢ =0, or # = ¢; the third 1s,
when x—r=0, or z=r.

722. Let us now represent the quantity found, by the
equation z°—aa?+br—c=0. It is evident, in order
that its three roots may be z=p, z=gq, z=r, that we
must have,

l.a=p+q+r,
2. b=pq +pr+gqr, and
3. c=pqr.

We perceive, from this, that the second term of the
equation contains the sum of the three roots; that the
third term contains the sum of the products of the roots
taken two by two; and lastly, that the fourth term consists
of the product of all the three roots multiplied together.

From this last property we may deduce an important
truth, which is, that an equation of the third degree can
have no other rational roots than the divisors of the last
term; for, since that term is the product of the three
roots, it must be divisible by each of them : so that when
we wish to find a root by trial, we immediately see what
numbers we are to use.*

For example, let us consider the equation, z*=xz+6,
or #*—x—6=0. Now, as this equation can have no
other rational roots than numbers which are factors of the
last term 6, we have only 1, 2, 3, 6, to try with, and the
result of these trials will be as follows :

If z=1, we have 1—1—6=—6.
If =2, we have 8-—2—6=0.
If z=3, we have 27-3—6=18,
If 2=6, we have 216 —6—6=204.

Hence we see, that =2 is one of the roots of the given
equation ; and, knowing this, it is easy to find the other

* We shall find in the sequel, that this is a general property
of equations of any dimensions ; and as this trial requires us to
know all the divisors of the last term of the equation, we may for
this purpose have recourse to the Table, Art. 66.
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two ; for x=2 being one of the roots, r—2 is a factor of
the equation, and we have only to seek the other factor by
means of division as follows :

2e2) 23 —2—6 (22 +2x+3
x3—22°

22%—2—6
22 —4x

3r—6
3z—6

0.

Since, therefore, the formula is represented by the pro-
duct (x—2) x (z*+2x+3), it will become =0, not only
when 2—2=0, but also when 22+2x+4+3=0: and, this
last factor gives 22+ 2r=—3; consequently,

r=-14+ v —2;

and these are the other two roots of our equation, which
are evidently impossible, or imaginary.

723. The method which we have explained, is applicable
only when the first term z° is multiplied by 1, and the
other terms of the equation have integer coefficients;
therefore, when this is not the case, we must begin by a
preparation, which consists in transforming the equation
into another form having the condition required ; after
which, we make the trial that has been already mentioned.

Let there be given, for example, the equation

=32+ LYax—3=0.

As this contains fourth parts, let us make x =g, which

will give

y_3w, Ny .

g2 T =0
and, multiplying by 8, we shall obtain the equation

y*—6y?+11y—6=0,

the roots of which are, as we have already seen, y =1,
y=2,y=3; whence it follows, that in the given equation,
we have r=1, r=1, z=4.

724. Let there be an equation, where the coefficient of
the first term is a whole number but not 1, and whose last
term is 1; for example, ’

62°— 1122+ 62—1=0.
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Here, if we divide by 6, we shall have 2*— W22+ 2—1=0;
which equation we may clear of fractions, by the method
just explained.

First, by making z = %, we shall have

¥ Uy vy, o,
216216 T6 ¢ =0

and multiplying by 216, the equation will become

y*—1ly? + 36y — 36 = 0. But as it would be tedious

to make trial of all the divisors of the number 36, and

as the last term of the original equation is 1, it is better

. . . 1
to suppose, in this equation, 2 = o for we shall then

6 11 6 . -
have Rl 1 = 0, which, multiplied by 23,

gives 6 — 11z 4 622 — 2° = 0, and transposing all the
terms, 23 — 622 + 11z — 6 =0 : where the rootsare z=1,
z =2, 2=3; whence it follows that in our equation
r=l,z=4% 2 =41

725. It has been observed in the preceding articles, that
in order to have all the roots in positive numbers, the signs
plus and minus must succeed each other alternately ; by
means of which the equation takes this form,

2’ —ax®+bxr—c=0,

the signs changing as many times as there are positive
roots. If all the three roots had been negative, and we had
multiplied together the three factors z+p, z+¢, z+7, all
the terms would have had the sign plus, and the form of
the equation would have been z* + ax? + bz + ¢ =0,
in which the same signs follow each other ¢hree times;
that is, the number of negative roots.

We may conclude, therefore, that as often as the signs
change, the equation has positive roots; and that as often
as the same signs follow each other, the equation has
negative roots. This remark is very important, because
it teaches us whether the divisors of the last term are to
be -taken affirmatively or negatively, when we wish to
make the trial which has been mentioned.

726. In order to illustrate what has been said by an ex-
ample, let us consider the equation 23+ 2?—34x+56=0,
in which the signs are changed twice, and in which the same
sign returns but once. Here we conelude that the equation
has two positive roots, and one negative root ; and as these
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roots must be divisors of the last term 56, they must be
included in the numbers + 1, 2, 4, 7, 8, 14, 28, 56.

Let us, therefore, make x =2, and we shall have 8 +
4—68+56=0; whence we conclude that t =2 is a
positive root, and that therefore x —2 is a divisor of the
equation ; by means of which we easily find the two other
roots: for, actually dividing by x—2, we have

2 —2) 2% 4 22— 34z + 56 (2% + 3z — 28

3 — 222
3x?—34z
32°— 6z
— 28z + 56
— 28z + 56
0.

And making the quotient £* + 3z —28=0, we find the
two other roots ; which will be
r=—=3+v@+28)=—2% 1, that is, x =4; or
x=—7; and taking into account the root found before,
namely, =2, we clearly perceive that the equation has
two positive, and one negative root. We shall give some
examples to render this still more evident.

727. Question 1. There are two numbers, whose dif-
ference is 12, and whose product multiplied by their sum
makes 14560. What are those numbers?

Let x be the less of the two numbers, then the greater
will be #+12, and their product will be x%+ 12z, which
multiplied by the sum 2z + 12, gives

22% +362% + 1442=14560 ;
and dividing by 2, we have
23+ 1822 + 722="7280.

Now, the last term 7280 is too great for us to make
trial of all its divisors; but as it is divisible by 8, we shall
make =2y, because the new equation, 8y°+72y* 4 144y
=7280, after the substitution, being divided by 8, will be-
come y°+9y*+ 18y=910; to solve which, we need only
try the divisors 1, 2, 5, 7, 10, 13, &c. of the number 910
where it is evident, that the first three, 1, 2, 5, are too
small ; beginning therefore with supposing y=7, we im-
mediately find that number to be one of the roots ; for the
substitution gives 343 + 441 + 126 =910. It follows,
therefore, that x=14; and the two other roots will be
found by dividing z* 4 9y* + 18y ~910 by y—7, thus:

]
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y—7) y*+9y2 +18y—910 (y*+ 16y +130

Y =Ty
1642+ 18y
16y2—112y
130y—910
130y—-910
0.

Supposing now this quotient y° + 16y +130=0, we shall
have y*+16y= —130, and thence
y=—8=4 ./ —66; a proof that the other two roots are
1mpossible.

The two numbers sought are therefore 14, and (14+
12)==26; the product of which, 364, multiplied by their
sum, 40, gives 14560.

728. Question 2. To find two numbers whose difference
is 18, and such, that their sum multiplied by the difference
of their cubes, may produce 275184.

Let x be the less of the two numbers, then z+ 18 will
be the greater; the cube of the first will be 22, and the
cube of the second

2%+ 5422+ 9722 + 5832 ;

the difference of the cubes

542° +972x + 5832 =54(x? + 18z + 108),
which multiplied by the sum 2x+18, or 2(z+9), gives
the product

108(a3 + 2722 +270x +972)=275184.

And, dividing by 108, we have

28 +2722 + 2702 +972=2548, or

23+ 2722 +27020=1576.

Now, the divisors of 1576 are 1, 2, 4, 8, &c. the first
two of which are too small ; but if we try x =4, that
number is found to satisfy the terms of the equation.

It remains, therefore, to divide by x—4, in order to
find the two other roots; which division gives the quotient
22+31x+394 ; making therefore

22+ 3lx= — 394, we shall find
r=— sty (04 —159);
that is, two imaginary roots.

Hence the numbers sought are 4, and (4 +18)=22.

729. Question 3. Required two numbers whose dif-
ference is 720, and such, that if the less be multiplied by
the square root of the greater, the product may be 20736.
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If the less be represented by z, the greater will evidently
be z+720; and, by the question,
zy/ (z+720) =20736=8.8.4.8I.
Squaring both sides, we have
2%(x+720) = 2® +7202° =82 . 82.42.81%,
Let us now make =8y ; this supposition gives
8%7 4720 . 8%2=82.82.4%.81%;
and dividing by 8%, we have y® + 90y°> =8.42, 812
Farther, let us suppose y==2z, and we shall have
82%+4.9022=8.4%.81%; or, dividing by 8,
2 +4562°=4*. 812,

Again, make 2=9u, in order to have, in this last equa-
tion, 9%® + 45 .9%* =42, 94, because dividing now by 93,
the equation becomes »®+5u?=4%.9, or
u?(u+5)=16.9=144; where it is obvious, that u=4;
for in this case u?=16, and #+4+5=9: since, therefore,
u=4, we have z=36, y="72, and =576, which is the
less of the two numbers sought: so that the greater is
1296, and the square root of this last, or 36, multiplied
by the other number 576, give 20736.

730. Remark. This question admits of a simple solu-
tion ; for since the square root of the greater number, mul-
tiplied by the less, must give a product equal to a given
number, the greater of the two numbers must be a square.
If, therefore, from this consideration, we suppose it to be
2%, the other number will be 22—720, which being mul-
tiplied by the square root of the greater, or by #, we have
23 —T20x=20736=64.27.12.

If we make x=4y, we shall have

64y>—720 . 4y=64.27 .12, or

Y3 —4by =27.12.
Supposing, farther, y=3z, we find
272 — 1352 =27 .12; or, dividing by 27, 23 —52=12,
or 22—5z—12=0. The divisors of 12 are 1, 2, 3, 4, 6,
12: the first two are too small ; but the supposition of
z =3 gives exactly 27 — 15 — 12 = 0. Consequently,
z=3, y=9Y, and 2 =36 ; whence we conclude, that the
greater of the two numbers sought, or 22, =1296, and that
the less, or 22—720, = 576, as before.

731. Question 4. There are two numbers, whose dif-
ference is 12; and the product of this difference by the
sum of their cubes is 102144, 'What are the numbers ?

Calling the less of the two numbers x, the greater will
be x+12: also the cube of the first is z*, and of the second
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23+ 362244322 4+ 1728 ; the prodnct also of the sum of
these cubes by the difference 12, is
12(2a°% 4 3622 + 432z + 1728)=102144 ;
and, dividing successively by 12 and by 2, we have
2%+ 1822 + 216z + 864=4256, or
28+ 1822 +2162=3392=8 . 8. 53.

If now we substitute =2y, and divide by 8, we shall
have y*+9y%+54y=8 . 53=424.

Now, the divisors of 424 are 1, 2, 4, 8, 53, &c. 1 and 2
are evidently too small; but if we make y=4, we find
64 + 144 + 216 = 424. So that y = 4, and z = 8;
whence we conclude that the two numbers sought are 8,
and (8 4+12)=20.

732. Question 5. Several persons form a partnership,
and establish a certain capital, to which each partner adds
ten times as many pounds as there are persons in the
company : they gain 6 plus the number of partners per
cent; and the whole profit is 392 pounds. Required how
many partners there are?

Let 2 be the number required ; then each partner will
have furnished 10z pounds, and conjointly 102? pounds ;
and since they gain z+6 per cent, they will have gained

3 2
with the whole capital ”f;f_oﬁx., which is equal to 392
pounds.

We have, therefore, 3 + 622 =3920; consequently,
making z=2y, and dividing by 8, we have

y*+3y?=490.
Now, the divisors of 490 are 1, 2, 5, 7, 10, &c. the first
three of which are too small; but if we suppose y=7, we
have 343+ 147=490; so that y=7, and z=14.

There are therefore fourteen partners, and each of them
put 140 pounds into the common stock.

733. Question 6. A company of merchants have a com-
mon stock of 8240 pounds; and each contributes to it
forty times as many pounds as there are partners; with
which they gain as much per cent as there are partners.
Now, on dividing the profit, it is found, after each has
received ten times as many pounds as there are persons in
the company, that there still remains 224/. Required the
number of merchants?

If x be made to represent the number, each will have
contributed 40z to the stock ; consequently, all together
will have contributed 4022, which makes the whole stock
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=402°+8240. Now, with this sum they gain x per cent;
so that the whole gain is

402° 8240z

100 * 7100
From which sum each receives 10z, and consequently they
all together receive 1022, leaving a remainder of 224 ; the

profit must therefore have been 10224224, and we have
the equation

—_ 3 8 — 3 412
= 1952 + Yr =’ + ‘1%z

3
2 1200 0o,

Multiplying by 5 and dividing by 2, we have 3+ 206z
=252+ 560, or 23 —2522 +206x—560=0 : the first form
of the equation, however, will be more convenient for
trial. Here the divisors of the last term are 1, 2, 4, 5, 7,
8, 10, 14, 16, &c., and they must be taken positively ;
because in the second form of the equation the signs vary
three times, which shews that all the three roots are
positive.

Here, if we first try =1, and z=2, it is evident that
the first side will become less than the second. We shall
therefore make trial of other divisors.

When =4, we have 64 4824=400+ 560, which does
not satisfy the terms of the equation.

If =5, we have 125+ 1030=6254560, which like-
wise does not succeed.

But if =7, we have 343 +1442=1225+560, which
answers to the equation; so that =7 is a root of it.
Let us now seek for the other two, by dividing the second
form of our equation by z—7.

x—7) 23 —25z% + 206z — 560 (2?— 182+ 80

r’— Tx
— 18224206z
— 18224 1262
80z — 560
80x—560
0.

Now, making this quotient equal to nothing, we have
22— 182 + 80 =0, or «?— 18x = —80; which gives
z=9=+1, so that the two other roots are x =8, or
z=10.

This question therefore admits of three answers. Accord-
ing to the first, the number of merchants is 7; according
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to the second, it is 8; and, according to the third, it is
10. The following statement shews, that all these will
answer the conditions of the question:

Number of merchants ............ 7 8 10

Each contributes 4022 .. oevvennnne 280 320/ 400

In all they contribute 4022 ........ 1960| 2560/ 4000
The original stock was ......... .| 8240/ 8240/ 8240

The whole stock is 4022 +8240 ....| 10200/ 10800, 12240

With this capital they gain as much
per cent as there are partners.. 714 864 1224

Each takes fromit ......... . 70 80/ 100

So that they all together take 10z¢ 490/ 640/ 1000

There remains therefore .......... 224| 224 224

CHAPTER XII.
Of the Rule of Cardan, or of Scipio Ferreo.

734. When we have removed fractions from an equation
of the third degree, according to the manner which has
been explained, and none of the divisors of the last term
are found to be a root of the equation, it is a certain proof,
not only that the equation has no root in integer numbers,
but also that a fractional root cannot exist ; which may be
proved as follows.

Let there be given the equation 2*—ax®+4bx—c=0,
in which, a, b, ¢, express integer numbers. If we suppose,
for example, =14, we shall have % —$a+3b—c=0.
Now here, the first term alone has 8 for the denominator ;
the others being either integer numbers, or numbers di-
vided by 4, or by 2, and therefore cannot make 0 with the
first term. The same thing happens with every other

fraction.
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735. As in those fractions the roots of the equation are
neither integer numbers nor fractions, they are irrational,
and, as it often happens, imaginary. The manner, there-
fore, of expressing them, and of determining the radical
signs which affect them, forms a very important point, and
deserves to be carefully explained. This method, called
Cardan’s Rule, is ascribed to Cardan, or more properly to
Scipio Ferreo, both of whom lived some centuries since.*

736. In order to understand this rule, we must first
attentively consider the nature of a cube, whose root is a
binomial.

Let a+b be that root; then the cube of it will be
a®+3a?b 4 3ab? + b3, and we see that it is composed of the
cubes of the two terms of the binomial, and beside that, of
the two middle terms, 3a%b +3ab?, which have the com-
mon factor 3ab, multiplying the other factor, a+b; thatis
to say, the two terms contain thrice the product of the two
terms of the binomial, multiplied by the sum of those terms.
© 737. Let us now suppose x=a+b; taking the cube of
each side, we have z3=a34-03+3ab (a+b): and, since
a+b=xz, we shall have the equation, 2*=a’+b*+ 3abz,
or 23=3abx + u® + b®, one of the roots of which we know
to be x=a+b. Whenever, therefore, such an equation
occurs, we may assign one of its roots.

For example, let a=2, and b=3; we shall then have
the equation 2*=18x + 35, which we know with certainty
to have x=>5 for one of its roots.

738. Farther, let us now suppose a®*=p, and b*=q; we
shall then have a+3%/p and b=3/¢, consequently, ab=3/pq ;
therefore, whenever we meet with an equation of the form
z3=3z {/pq+p+q, we know that one of the roots is
VPFVY : :

Now, we can determine p and 4, in such a manner, that
both 33/pg and p+ ¢ may be quantities equal to determin-
ate numbers ; so that we can always resolve an equation
of the third degree, of the kind which we speak of.

739. Let, in general, the equation z*=fr+g be pro-
posed. Here, it will be necessary to compare f'with 33/pq,
and g with p+g¢; that is, we must determine p and ¢ in

* This rule when first discovered by Scipio Ferreo was only
for particular forms of cubics ; but it was afterwards generalised
by Tartalea and Cardan. See Montucla’s Hist. Math.; also
Dr. Hutton’s Dictionary, article Algebra ;-and Professor Bonny-
castle’s Introduction to his Treatise on Algebra, Vol. 1. pp.
XIL—XV. )
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such a manner, that 3Y/pg may become equal to f, and
P+q=g; for we then know that one of the roots of our
equation will be x=3%/p +3/¢q.

740. We have therefore to resolve these two equations,

3¥pg =/,
ptg=yg.
; S VAP
The first gives 2/pg=§; or pg == =3%f% and

4pg = #,f*. The second equation, being squared, gives
PP+2pg+q*=g?%; if we subtract from it 4pg =213, we
have p?—2pq + ¢*=g%2— 54 13, and taking the square root
of both sides, we have

P—g=N (g =S
Now, since p+ g=g, we have, by adding p + ¢ to one side
of the equation, and its equal, g, to the other, 2p=g+ v/
(9°—+%/*); and, by subtracting p—gq from p + ¢, we have
29=g— v (9°— - f?); consequently,
g+ N (g =S 9=~ (g~ S
2 2 )

p= ,and ¢ =

741. In a cubic equation, therefore, of the form x3=
Jx+g, whatever be the numbers f and g, we have always
for one of the roots

x{/(w_f—ifﬁ)+2/((y—~/§;—_‘%f3))

that is, an irrational quantity, containing not only the sign
of the square root, but also the sign of the cube root; and
this is the formula which is called ¢the Rule of Cardan.
742. Let us apply it to some examples, in order that its
use may be better understood.
Let 2*=6x+9. First, we shall have f =6, and g=9;
so that g?=81, f?=216, £ f*=32; then
G — #-12=49, and v/ (¢*— 4 f*)="7. Therefore, one of
the roots of the given equation is

x=3/(9+_2__7.) +3¥ (9_2 7)=§/L2f» +¥e=y8+Yyl=....
24+1=3.

743. Let there be proposed the equation z3=3z+2.
Here, we shall have f=3 and ¢g=2; and consequently,
g =4, f3=27, and ;;; f3=4; which gives
N (§°— #f*)=0; whence it follows, that one of the roots

is x=i/(2;0)+f/(250)=1+1=2.

b
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744. 1t often happens, however, that though such an
equation has a rational root, that root cannot be found by
the rule which we are now considering.

Let there be given the equation 2*=6z+40, in which
xz=4 is one of the roots. We have here f =6 and g=40;
farther, ¢2=1600, and % f3=32; so that
g*— 22 2=1668, and (¢?— & )= 1568=........
V(4. 4.49.2)=28,2; consequently one of the roots
will be

_5,(40+28./2 40—28,2

o=y () (T Jer

z=3(20+14v2) +3/ (20—144/2);
which quantity is really =4, although, upon inspection, we
should not suppose it. In fact, the cube of 2 + »/2 being
20+ 14./2, we have, reciprocally, the cube root of 20+
14./2 equal to 2+ +/2; in the same manner, 3/(20—
14 /2)=2—~ v2; wherefore our root z=2+ /2 +
2— v/2=4% ,

745. To this rule it might be objected, that it does not
extend to all equations of the third degree, because the
square of z does not occur in it; that is to say, the second
term of the equation is wanting. But we may remark,
that every complete equation may be transformed into
another, in which the second term is wanting, which will
therefore enable us to apply the rule.

To prove this, let us take the complete equation 2°—
6224+11x—6=0: where, if we take the third of the
coefficient 6 of the second term, and make z—2=y, we
shall have 2=y +2, and 2?= y? +-4y +4.

Consequently, z°=y®+6y2+12y+ 8
2

lz= 11y+22
— 6= -

or, 23—622+1lx—6=9y> * — ¢y *
We have, therefore, the equation y®—y=0, the resolu-

* We have no general rules for extracting the cube root of
these binomials, as we have for the square root ; those that have
been given by various authors all lead to a mixed equation of the
third degree similar to the one proposed. However, when the
extraction of the cube root is possible, the sum of the two radi-
cals which represent the root of the equation, always becomes
rational ; so that we may find it immediately by the method
explained, Art. 722.—F.T.
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tion of which is evident; since we immediately perceive
that it is the product of the factors

y@y*—D=y (y+1)x (y—1)=0.
If we now make each of these factors =0, we have
y=+0, y=—1, y=1,
Ne=2, 2= 1, 3&=3
that is to say, the three roots which we have already found.

746. Let there now be given the general equation of the
third degree, 1°+ax?+ bx 4+ ¢=0, of which it is required
to destroy the second term.

For this purpose, we must add to x the third of the co-
efficient of the second term, preserving the same sign,
and then write for this sum a new letter, as for example y,
so that we shall have x + La=y, and x=y — 1a; whence
results the following calculation :

T=y—ja, 2*=y'—jay + %,
and 2= y® —ay® + La®y— JLa’;

Consequently,
3=y —ay® + taty— £a’
ar?= ay?— a’y + jad
br= by—Lab
c= ¢

or, ¥*—(1a*—b) y+ Fa3— tab+c=0,
an equation in which the second term is wanting.

747. We are enabled, by means of this transformation,
to find the roots of all equations of the third degree,
as the following example will shew.

Let it be proposed to resolve the equation

3—62%+132—12=0.

Here it is first necessary to destroy the second term ; for
which purpose, let us make x—2=y, and then we shall
have x=y+2, a?=y*+4y+4, and 2*=y> +6y°+ 12y +8;
therefore,

=y} +6y2+12y+ 8

—62r= —6y?—24y—24
13z = 13y +26
—12 = —12

which gives y3+y:-2=0; or y=—y+2,

And if we compare this equation with the formula (Art.
741) x*=fr+g, we have f= —1, and g=2; wherefore,
g'=4, and rfr=— 3 also, gl PPty =2,

and v/ (9°— s f)=v ¥ = 4“321 ; consequently,
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2+44/21 2—4.4/21
y=¥ ( )+2/( 5} ) or
(10242 ),
10242 sy 5242
y=i/(27+267~/21)*ﬁ/(27—-267~/21) or

y=13/(27 +6 v21) + 13/(27 — 6 ,/21); and it remains
to substitute this value in 2=y +2.

748. In the solution of this example, we have been
brought to a quantity doubly irrational ; but we must not
immediately conclude that the root is irrational : because
the binomials 27+6,/21 might happen to be real cubes;
and this is the case here; for the cube of

3452 peing 219821971621, it follows that

2
the cube root of 27 +6./21 is 3 +£/21, and that the cube

root of 27—6./21 is 3—;/21. Hence the value which

we found for y becomes
21 3-—- 21

Now, since y—l we have =3 for one of the roots of the
equation proposed, and the other two will be found by
dividing the equation by x—3.

z—3) #°—062°413z—12 (2*—3x+4
23 —3a°

—32%+ 132

—32%+ 9z
4r—12
4z—12

0.

Also making the quotient 2°—3z+4=0, we have
2*=3x—4; and
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3+ =7
2 2

which are the other two roots, but they are imaginary.

749. 1t was, however, by chance, as we have remarked,
that we were able, in the preceding example, to extract the
cube root of the binomials that we obtained, which is the
case only when the equation has a rational root; conse-
quently, the rules of the preceding chapter are more easily
employed for finding that root. But when there is no
rational root, it is, on the other hand, impossible to express
the root which we obtain in any other way, than according
to the rule of Cardan ; so that it is then impossible to apply
reductions. For example, in the equation =6z 44, we
have f=6 and g=4; so that x=¥(2+2v —1)+¥(R—
2+ —1), which cannot be otherwise expressed.*

s=g G =)=ty —i=

* In this example, we have % f3 less than g2, which is the
well-known irreducible case ; a case which is so much the more
remarkable, as the three roots are then alwaysreal. We cannot
here make use of Cardan’s formula, except by applying the
methods of approximation, such as transforming it into an
infinite series. In the work spoken of in the Note, Art. 40,
Lambert has given particular Tables, by which we may easily
find the numerical values of the roots of cubic equations, in the
irreducible as well as the other cases. For this purpose we may
also employ the ordinary Tables of Sines. See the Spherical
Astronomy of Mauduit, printed at Paris in 1765.

In the present work of EULER, we are not to look for all that
might have been said on the direct and approximate resolutions
of equations. He had too many curious and important objects,
to dwell long upon this; but by consulting I'Histoire des Ma-
thématiques, I’ Algebre de M Clairaut, le Cours de Mathéma-
tiques de M. Bezout, and the latter volumes of the Academical
Memoirs of Paris and Berlin, the reader will obtain all that is
known at present concerning the resolution of Equations.—F. T.

For a clear and explicit investigation of the method of solving
Cubic Equations by the Tables of Sines, &c. the reader is also
referred to Bonnycastle’s Trigonometry ; from which the follow-
ing formule for the solution of the different cases of cubic equa-
tions are extracted.

1.23 + pxr — q=0.

3
Put %(g)z = tan. z, and 3, (tan. (45° — } 2)) = tan. u;
Then z =2 .\/g x cot. 2u. Or, putting

Log. % +10—3 log.% = log. tan. z, and
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QUESTIONS FOR PRACTICE.

1. Given y*+30y=117, to determine y.  Ans. y=3.
2. Given y*—36y=91, to find the value of y.

Ans. y=T7.
3. Given y*+24y=250, to find the value of y.
Ans. y=505.

1 (log. tan. (45°—1z)+20)=log. tan. u,
Then log. x =} log.l%p + log. cot. 2 u — 10.
2. 23 + pxr + ¢=0.

3
Put %(1%) ? =tan. z, and %/ (tan. (45°—12) ) = tan. u,

Then 2 = — 2 N/P3" X cot. 2u. Or, putting
Log. % + 10 — %log.‘g = log. tan. 2, and
1 (log. tan. (45° — 12) + 20) = log. tan. «,
Then log. x = 10 — 1 log. —,3’? — log. cot. 2 u.
3. 23— pxr —g=20.
This form has 2 cases, according as —;—(%) 7 s less, or greater
than 1.
2(p\3
In the 1st case, put 5<§ = cos. Z.
And 3/ (tan. (45° — 12) = tan. u;
Then z =2 J% X cosec. 2u. Or, putting
10 + 2 log. % — log. % = log. cos. z, and
1 (log. tan. (45° — 1z) + 20) = log. tan. u;
Then log. z = 10 + log. ‘-132 — log. sin. 2 .
3\3
In the 2d case, put g(§)2 = cos. z,and z will have the
3 following values :
=49 uP z
=+ 2 3 X cos.3
—_o P °o_ E)
T = 2J3xcos. (60 3
(600 +3
3

x=—-2~/%xcos. 60° + - )or,
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4. Given y0—3y*—2y*—8=0, to find y.  Ans. y=2.
5. Given y®+3y° +9y——13 to determine y.

Ans. y=1.
6. Given x*—6x=—9, to find the value of z.
Ans. x=—3.
Log. x= —log + log. cos. g— 10,
Log. z = % log. 3— + log. cos. (60"-—- §) — 10,

Log. :c—.Llog +log cos. (60°+z§>_10

Taking the value of x, answering to log. x, positively in the
first equatlon and negatively in the two latter.

4. 23 —pr 4+ g=0.
This form, like the former, has also two cases, according as

3
%(E)’ is less, or greater than 1.

3
) 3
In the 1st case, put g(%)z = cos. z,

And ?\/ (tan (450 %z) ) = tan, u, as before ;
Then z = — 2 \/ % cosec. 2 . Or, putting

10 + 3 log. 3- — log. g = log. cos. z, and
1{log. (tan. 45° — 12) + 202 = log. tan. u;
Then, — log. 2 = 10 + log. —; — log. sin. 2 .
3
In the 2d case, put %<}%)2 = cos. 2z, and x will have the
3 following values :
= P d
r=—2 J3 X cos. 3
= p o __ f)
x_+2.J3xcos.(60 3
r= 4+ 2 ~/‘§ X cos.(60°+£). Or,
Log. x—llog + log. cosg—lo
Log. z =-2110g. 5+ log. cos. (60° — 5) — 10,

Log.z =1log. %’- + log. cos. (60o + %) — 10,
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7. Given z3— 622+ 10x=38, to find =. Ans. =4,
8. Given p?—143p=1150_to find p. Ans. p=8%.

9. Given #*—13x=12, to find z. Ans. z=21.
10. Given y*—19y=30, what is the value of y?
Ans. y=5.

Taking the value of x, answering to log. , negatively in the
first equation, and positively in the two latter.

As an example of this mode of solution, in what is usually
called the Irreducible Case of Cubic Equations,

Let 3 — 3x =1, to find its 3 roots.

3\2 3
Here g(;)z =41 (®?°

2 =2 ¢§ X cos. 5 = 2 cos. 20° = 18793852

z=—2 J%x cos. (60°—z§) = — 2cos. 40°=—1-5320888

z=—2 ¢?31 X cos. (60°+ %):-2 cos. 80°= — 0°3472964.

Also, let 23 — 3z = — 1, to find its 3 roots.

=1 = .5 = cos. 60° = 2, hence

3\3
Here, as before,% (;})2 = .5 = cos. 60° = z, hence

z=—2 yE x cos. 5 = — 2.c0s.20° = — 1-8793852

z=—2yE x cos. (60° - %) = 2 cos. 40° = 15320888

z=—2y x cos ( 60° + g) = 2 cos. 80° = 0-3472964.

Where the roots are the negatives of those of the first case.

For the mode of investigating these kinds of formule, see,
in addition to the references already given, Caguoli, Traité de
Trigon. and Article Irreducible Case, in the Supplement to Dr.
Hutton’s Mathematical Dictionary.
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CHAPTER XIIIL
Of the Resolution of Equations of the Fourth Degree.

750. When the highest power of the quantity z rises to
the fourth degree, we have equations of the fourth degree;
the general form of which is

2+ ax® + ba? + cx + d=0.

We shall, in the first place, consider pure equations of
the fourth degree; the expression for which is simply
z*=f; the root of which is immediately found by
extracting the biquadrate root of both sides, since we
obtain z =1/ f.

751. As z* is the square of 2%, the calculation is greatly
facilitated by beginning with the extraction of the square
root: for we shall then have 2?=./f; and, taking the
square root again, we have z=1/ f; so that/ f is nothing
but the square root of the square root of f.

For example, if we had the equation z*=2401, we
should immediately have 2?=49, and then z=7.

752. It is true this is only one root; and as there are
always three roots in an equation of the third degree, so
there are four roots in an equation of the fourth degree:
but the methods which we have explained will not enable
us to assign those four roots. For, in the above example,
we have not only z°=49, but also 22=—49; now, the
first value gives the two roots =7, and x=—7, and the
second value gives v= .,/ —49=7y ~1, and 2= — v/
—49 = —7,/ —1; which are the four biquadrate roots
of 2401. The same also is true with respect to other
numbers.

753. Next to these pure equations, we shall consider
others, in which the second and fourth terms are wanting,
and which have the form z*+ f2?4+¢=0. These may be
resolved by the rule for equations of the second degree;
for if we make 2?=y, we have y?+ fy +¢=0, or
y*=— fy—g, whence we deduce

—f+ 2_4
y=—tfr G fimg) = (LEVLZWN,
Now, 2=y ; so that a==+ ./ (”-fi «/2(f2—4g)’ in

which the double signs + indicate all the four roots.
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754. But whenever the equation contains all the terms, it
may be considered as the product of four factors. In fact,
if we multiply these four factors together, (z — p) x
(x—¢q) x (x—r) x (x—s), we get the product z*—
p+qg+r+ 88+ (pg + pr+ ps+ qgr + gs + rs)at
— (pgr + pgs + prs + qrs)x + pqrs; and this quantity
cannot be equal to 0, except when one of these four factors
is =0. Now, that may happen in four ways ;

1. when 2=p; 2. when z=¢;
3. when z=r; and 4. when z=s.
Consequently, these are the four roots of the equation.

755. If we consider the above formula with attention, we
observe, in the second term, the sum of the four roots
multiplied by—2*; in the third term, the sum of all the
possible products of two roots, multiplied by 2?; in the
fourth term, the sum of the products of the roots combined
three by three, multiplied by — & ; lastly, in the fifth term,
the product of all the four roots multiplied together.

756. As the last term contains the product of all the roots,
it is evident that such an equation of the fourth degree can
have no rational root, which is not a divisorof the lastterm.
This principle, therefore, furnishes an easy method of de-
termining all the rational roots, when there are any ; since
we have only to substitute successively for z all the divisors
of the last term, till we find one which satisfies the terms of
the equation; and having found such a root (for example,
z=p), we have only to divide the equation by x—p, after
having brought all the terms to one side, and then suppose
the quotient=0. We thus obtain an equation of the third
degree, which may be resolved by the rulesalready given.

757. Now, for this purpose, it is absolutely necessary
that all the terms should consist of integers, and that the
first should have only unity for the coeflicient ; whenever,
therefore, any terms contain fractions, we must begin by
destroying those fractions ; and this may always be done by
substituting, instead of z, the quantity y, divided by a num-
ber which contains all the denominators of those fractions.

For example, if we have the equation

=40+ 3ot — 4z + 75 =0,
as we find here fractions which have for denominators 2, 3,
and multiples of these numbers, let us suppose r= %, and
we shall then have

4 19,3 ;2 3.
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an equation, which, multiplied by 6+, becomes
y*—3y3 + 122 — 162y + 72=0.

If we now wish to know whether this equation has
rational roots, we must write, instead of y, the divisors of
72 successively, in order to see in what cases the formula
would really be reduced to O.

758. But as the rcots may as well be positive as nega-
tive, we must make two trials with each divisor: one,
supposing that divisor positive ; the other, considering it
as negative. However, the following Rule will frequently
enable us to dispense with this.

Whenever the signs + and — succeed each other re-
gularly, the equation has as many positive roots as there
are changes in the signs; and as many times as the same
sign recurs without the other intervening, so many nega-
tive roots belong to the equation.*

Now, our example contains four changes of the signs, and
no succession; so that all the roots are positive : and wehave
no need totake any of the divisorsof the last termnegatively.

759. Let there be given the equation

x4+ 223 —T2*—8r+12=0.
‘We see here two changes of signs, and also two successions;
whence we conclude, with certainty, that this equation
contains two positive, and as many negative roots, which
must all be divisors of the number 12. Now, its divisors
being 1, 2, 3, 4, 6, 12, let us first try z= + 1, which
actually produces 0; therefore one of the roots is z=1.

If we next make x=—1,wefind +1—-2—-7 + 8 +
12=21 —9=12: so that z = — 1 is not one of the roots
of the equation. Let us now make x=2, and we again
find the quantity=0 ; consequently, another of the roots is
2=2; but 2= —2, on the contrary, is found not to be a
root. 1f we suppose z=3, we have 81 +54 — 63 —24
+12=60, so that the supposition does not answer ; but
2= — 3, giving 81 — 54 — 63 + 24 + 12=0, this is
evidently one of the roots sought. Lastly, when we try
z=—4, we likewise see the equation reduced to nothing ;
so that all the four roots are rational, and have the fol-
lowing values: z =1, x =2, z = — 3, andx = —4; and

* This Rule is general for equations of all dimensions, provided
there are no imaginary roots. The French ascribe it to Des-
cartes, the English to Harriot; but the general demonstration
of it was first given by M. I’Abbé de Gua. See the Mémoires
de U' Académie des Sciences de Paris, for 1741.—F. T.



CHAP. XIII. OF ALGEBRA. 275

according to the Rule given above, two of these roots are
positive, and the two others are negative.

760. But as no root could be determined by this method,
when the roots are all irrational, it was necessary to devise
other expedients for expressing the roots whenever this
case occurs; and two different methods have been dis-
covered for finding such roots, whatever be the nature of
the equation of the fourth degree.

But before we explain those general methods, it will be
Pproper to give the solution of some particular cases, which
may frequently be applied with great advantage.

761. When the equation is such, that the coefficients of
the terms succeed in the same manner, both in the direct
and in the inverse order of the terms, as happens in the
following equation ;*

4+ mrd+nat+mr+1=0;
or in this other equation, which is more general :
z* 4+ maxd + naz? +matzr 4+ a*=0;
we may always consider such a formula as the product of
two factors, which are of the second degree, and are easily
resolved. In fact, if we represent this last equation by
the product
(x4 pax+a®) x (@*+qax+a?)=0,
in which it is required to determine p and ¢ in such a
manner, that the above equation may be obtained, we
shall find, by performing the multiplication,
24+ (p + @)ax® + (pg +2)a%r? 4 (p + 9)a’xr +a*=0;
and, in order that this equation may be the same as the
former, we must have,
1. p+g=m,
2. pg +2=n,
and, consequently, pg=n—2.

* These equations may be called reciprocal, for they are not

at all changed by substitutingxlfor z. From this property it

. . 1 .
follows, that if a, for instance, be one of the roots, - will be one

likewise ; for which reason such equations may be reduced to
others of a dimension one-half less. De Moivre has given, in
his Miscellanea Analytica,page 71, general formulee for the re-
duction of such equations, whatever be their dimension.—F.T.
See also Wood’s Algebra ; the Complément des Elémens
d’Algébra, by Lacroix ; and Waring's Medit. Algeb. chap. iii.
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Now, squaring the first of those equations, we have
PP+ 2pq + ¢ =m?; and if from this we subtract the
second, taken four times, or 4pg=4n—8, there remains
P*—2pq +¢*=m* —4n+8; and taking the square root,
we find p— g =+ (m* —4n + 8); also, p +g=m; we
shall therefore have, by addition, 2p=m + / (m*—4n +8),

m+ N/ (m*—4n+8)

orp= 5 ; and by subtraction,
2g=m— v/ (m*—4n+8), or g= "— ~/<m'2-4n+8).

Having therefore found p and ¢, we have only to suppose
each factor=0, in order to determine the value of x. The

first gives 2% + pax+a®=0, or 2°= — par — a’, whence
. _ __pa pta’® e
we obtain z= ) + v ( 1 a),
orx=— % +Lay (p*—4).
The second factor, 2%+ gax + a?, gives z=— %‘f =+ la/

(g°—4); and these are the four roots of the given equation,

762. To render this more clear, let there be given the
equation z* — 42°® — 322 —4x + 1 = 0. We have here
a=1,m=—4,n=— 3; consequently, m?* —4n+8=36,
and the square root of this quantity is = 6; therefore

= — 5; whence re-

sult the four roots,
Ist and 2d, 2= —1+1 —3= =1+ ;/('—3); and
_5xy21

3d and 4th, xr=4+1y21 )

; that is, the

four roots of the given equation are :
—-l+v-=3 ,  _—-l-v-3

2 T 2 ’
_5+wv2 _5—wv21
=—g 4. z = 5

The first two of these roots are imaginary, or impos-
sible; but the last two are possible; since we may ex-
pressy/ 21 to any degree of exactness, by means of de-
cimal fractions. In fact, 21 being the same with
21-00000000, we have only to extract the square root,

which gives./ 21=4-5825.

1..Z'=

3. x
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Since, therefore, »/ 21=4-5825, the third root is very
nearly #=4-7912, and the fourth, z=0-2087. It would
have been easy to have determined these roots with still
more precision : for we observe that the fourth root is very
nearly 2, or £, which value will answer the equation with
sufficient exactness. In fact, if we make z=1, we find
Iy 1ss—ss—4+1=3%. We ought however to have
obtained 0, but the difference is evidently not great.

763. The second case in which such a resolution takes
place, is the same as the first with regard to the coefficients,
but differs from it in the signs; for we shall suppose that
the second and the fourth terms have different signs;
such, for example, as the equation

z* +max® +na*x? —madzs + at=0,
which may be represented by the product,
(z'+par—a®) x (2*+qgar—a?)=0.

For the actual multiplication of these factors gives

z* + (p + @)ar’® + (pg — 2)a*z* — (p + ¢)a’x + at,

a quantity equal to that which was given, if we suppose,
in the first place, p +¢g=m, and in the second place,
Pg—2=mn, or pg =n + 2; because in this manner the
fourth terms become equal of themselves. If now we
square the first equation, as before (Art. 761), we shall
have p®+2pg+¢*=m?; and if from this we subtract the
second, taken four times, or 4pg=4n+8, there will re-
main p? — 2pq + ¢% = m? — 4n—8; the square root of
which is p—g=./(m? —4n—8), and thence, by adding
P +g=m, we obtain

p= m ,\/(m;—‘}?’l—s) ; and, by subtracting rP+q,

m— / (m*—4n—8)

q = 2 *
we shall obtain from the. first factor (as in Art. 761) the
two roots x=—1patla/(p*+4), and from the second
factor the two roots z=—1ga*tias/ (¢?+4); that is, we
have the four roots of the proposed equation.

764. Let there be given the equation

xt*—3 .223+3.8x+16=0.

Here we have a=2, m= —3, and n=0; so that
v (m?—4n—8)=1, =p—yg; and, consequently,
—3+1 —3—1__

) = —1,and ¢ = = 2.

Therefore the first two roots are x=1=+ /5, and the

Having therefore found p and ¢,
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last two are 2=2+/8; so that the four roots sought
will be,

1. 2=1+ 5, 2. z=1—\5,

3. z=2+ V8, 4, =2~ 8.
Consequently, the four factors of our equation will be
(—=1—-vd) X @=~14+v5) x (x—2—8) x
(x—2+ 4/ 8), and their actual multiplication produces
the given equation ; for the first two being multiplied to-
gether, give 2° —2z—4, and the other two give 22—4z
—4; now, these products, multiplied together, make z*
—62° 4 242 + 16, which is the same equation that was
proposed.

CHAPTER -X1V.

Of the Rule of Bombelli for reducing the Resolution of
Equations of the Fourth Degree to that of Equations of
the Third Degree.

765. We have already shewn how equations of the
third degree are resolved by the rule of Cardan; so that
the principal object, with regard to equations of the fourth
degree, is to reduce them to equations of the third degree.
For it is impossible to resolve, generally, equations of the
fourth degree, without the aid of those of the third ; since,
when we have determined one of the roots, the others
always depend on an equation of the third degree. And
hence we may conclude, that the resolution of equations
of higher dimensions presupposes the resolution of all
equations of lower degrees.

76G. It is now some centuries since Bombelli, an
Italian, gave a rule for this purpose, which we shall
explain in this chapter.*

Let there be given the general equation of the fourth
degree, a*+ az® + bz + cx+d=0, in which the letters
a, b, ¢, d, represent any possible numbers; and let us
suppose that this equation is the same as

(2% +Lax +p)*—(qr+71)?=0;
in which it is required to determine the letters p, g, and 7,

* This rule rather belongs to Louis Ferrari. It is improperly
called the Rule of Bombelli, in the same manner as the rule
discovered by Scipio Ferreo has been ascribed to Cardan.—F. T.
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in order that we may obtain the equation proposed. By
squaring, and ordering this new equation, we shall have
2+ ax® + Lata +apx +p?
2pat —2qrx—1r*
—q%2%,

Now, the first two terms are already the same here as
in the given equation ; the third term requires us to make
1a*+2p—q*=b, which gives ¢* =1a*+2p—b; the fourth
term shews that we must make ap—2¢r=c, or 2gr =ap
—c; and, lastly, we have for the last term p?—r?=d, or
r*=p*—d. We have therefore three equations which
will give the values of p, ¢, and 7.

767. The casiest method of deriving those values from
them is the following: if we take the first equation four
times, we shall have 4¢*=a?+8p—4b; which equation,
multiplied by the last, 72 = p*—d, gives

4¢%% = 8p® + (a®*—4b) p*—8dp — d(a*—4b).

Farther, if we square the second equation, 2gr = ap—c,
we have 4¢%r?=a’p*—2acp+c¢®. So that we have two
values of 4¢4%%2, which, being made equal, will furnish the
equation

8p® + (a*—4b) p*— 8dp —d (a*—4b) = a*p*—~2acp +c*;
or, bringing all the terms to one side, and arranging,

8p*—4bp* + (Rac—8d)p—(a*d +4bd—c*?) =0,
an equation of the third degree, which will always give
the value of p by the rules already explained.

768. Having therefore determined three values of p by
the given quantities a, b, ¢, d, when it was required to find
only one of those values, we shall also have the values of
the two other letters g and r; for the first equation will
ap—c

2 7
Now, these three values being determined for each given
case, the four roots of the proposed equation may be found
in the following manner.

This equation having been reduced to the form
(2% +Lax +p)2—(qzr+7)* =0, we shall have

(22 +jax +p)? = (qx +7)°,
and, extracting the root, 22+ Lax +p =gz +r, or 22+ Lax
+p=—gx—r. The first equation gives 2° = (¢—ia)r—
p+r, from which we may find two roots; and the second
equation, to which we may give the form z°= —(¢+%a)z
—p—r, will furnish the two other roots.

give g = »/ (3a®+2p—10), and the second gives r =
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769. Let us illustrate this rule by an example, and
suppose that the equation
x*—102% + 3522 —50x +24 =0
was given. If we compare it with our general formula
(at the end of Art. 767), we have a= —10, b=35,
c=—50, d =24 ; and, consequently, the equation which
must give the value of p is
8p3 — 140p? + 808p — 1540 =0, or
2p® — 35p? +202p — 385=0.

The divisors of the last term are 1, 5, 7, 11, &e.; the
first of which does not answer ; but making p =5, we get
250 —875 + 1010 —385 =0, so that p =5; and if we
farther suppose p =7, we get 686—1715+1414—385 =0,
a proof that p = 7 is the second root. It remains now to
find the third root; let us therefore divide the equation by
2, in order to have p3—35p?4-101p—385 =0, and let us
consider that the coefficient of the second term, or %5,
being the sum of all the three roots, and the first two
making together 12, or %%, the third must necessarily
be 1.

We consequently know the three roots required. But
it may be observed that one would have been sufficient;
because each gives the same four roots for our equation
of the fourth degree.

770. To prove this, let p=25; we shall then have, by
the formula, v (4a?+2p—0), ¢= v (25+10—35)=0,
-——5—%+—50 = 9. Now, nothing being determined
by this, let us take the third equation,

r=p*—d=25—-24=1,
so that r=1; our two equations of the second degree will

and r =

then be, 1. z*=5xr—4, 2. 2 =5x—6.
The first gives the two roots r =4+ 4/, or = —;—3,
thatis to say, z=4, and z = 1.
The second equation gives r =4+ /1= %—1,
that is to say, x =3, and z =2.
But suppose now p = 7, we shall have
g=x(256+14—35)=2,and r= :—7(:*_50 =5,
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whence result the two equations of the second degree,

1. 22=72—12, 2, 1*=3z—-2;
the first gives x =%+ /L, or a = 7—_5—1,
so that z=4, and x = 3; the second furnishes the root
T=4*yi= 3—’5—1

and, consequently, z=2, and z=1; therefore, by this
second supposition, the same four roots are found as by
the first.

Lastly, the same roots are found, by the third value
of p, = 4 ; for, in this case, we have
7= v(25+11-39)=1, and r= Tt = AL
— 43 so that the two equations of the second degree
become,

1. 2*=6x—8, 2. 22=4x-3.

Whence we obtain from the first, z=3+ /1 ; that is to
say, z=4, and x=2; and from the second, z=2+./1;
that is to say, =3, and z=1, which are the same roots
that we originally obtained.

771. Let there now be proposed the equation

z'—16x—12=0,
in which a=0, =0, c=—16, d=—12; and our equa-
tion of the third degree will be
8p*+96p—256=0, or p*+12p—32=0,
and we may make this equation still more simple, by
writing p=2t¢; for we have then
83 4+24t—32=0, or #+4+3t—4=0.
The divisors of the last term are 1, 2, 4; whence one of
the roots is found to be ¢=1; therefore p=2, =+ 4=2,
and r = 15 = 4. Consequently, the two equations of the
second degree are
22=2x+2, and 2?2=—2z—6;
which give the roots
z=14+ .3, and z=—1+ / —5.
772. We shall endeavour to render this resolution still

more familiar, by a repetition of it in the following
example. Suppose there were given the equnation
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2t —62° +1227— 122 +4 =0,
which must be contained in the formula
(2*—3x+p)t—(qx+7r)=0,
in the former part of which we have put —3z, because
—3 is half the coefficient, —6, of the given equation.
This formula being expanded, gives
2*—62°+(2p+9—¢*)a?—(6p +2g7)x + p*—712=0;
which, compared with our equation, there will result from
that comparison the following equations :
L. 2p+9 —¢2=12,
2. 6p+2qr=12,
3. pt— 1= 4,
The first gives ¢*=2p~3;
the second, 2gr=12—6p, or gr=6—3p;
the third, r*=p?—4.
Multiplying 72 by ¢%, and p*—4 by 2p—3, we have
¢r*=2p°—3p*—8p+12;
and if we square ¢r, and its value, 6—3p, we have
¢*r?=36—36p + 9p?;
so that we have the equation,
2p*— 3p*— 8p+12=9p*—36p + 36, or
2p*—12p2 +28p—24=0, or
pP— 6p*+14p—12=0,
one of the roots of which is p=2; and it follows that
g°=1, ¢=1, and gr—r=0. Therefore our equation will
be (z*—3x+2)*=a?, and its square root will be 22—3x
+2==ux. If we take the upper sign, we have 2?=4x
—2; and taking the lower sign, we obtain 2?=2x—2,
whence we derive the four roots =24 /2, and z=1
*v -1

CHAPTER XV.

Of a new Method of resolving Equations of the Fourth
Degree.

773. The rule of Bombelli, as we have seen, resolves
equations of the fourth degree by means of an eqnation of
the third degree; but since the invention of that Rule,
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another method has been discovered of performing the
same resolution: and, as it is altogether different from the
first, it deserves to be separately explained.*

774. We will suppose that the root of an equation of
the fourth degree has the form, z=./p+ g+ /7, in
which the letters p, ¢, , express the roots of an equation
of the third degree, such as, 2°— f2?2+gz—Ah=0; so that
prg+r=f; pg+pr+qr=g; and pgr=h. [Art. 722.]
This being laid down, we square the assumed formula,
=P+ g+ +/7, and we obtain

BP=p+qg+7+2/pg+27pr+2:/4qr;
and, since p+¢+r=f, we have

2~ f=23pg+2/pr+2:/qr.
We again take the squares, and find
=2 fax?+ fP=A4pq+4pr+4qr+8./pqr+8 N pgPr 48/ pgrt.
Now, 4pq +4pr+4gr=4g ; so that the equation becomes
t—=2frt + f*—4dg =8/ pgr x (Vp+ g+ N7); but
Vp+Ng+ r=z,and pgr=~h, or /pgr=./h; where-
fore we arrive at this equation of the fourth degree,
xt—2fx* — 8z /b + f°+ f2—49 =0, one of the roots of
which is z=./p+ v/ g+ +/7; and in which p, ¢, and r,
are the roots of the equation of the third degree,
2 —f2+ gz—h=0.

775. The equation of the fourth degree, at which we
have arrived, may be considered as general, although the
second term %y is wanting ; for we shall afterwards shew,
that every complete equation may be transformed into
another, from which the second term has been taken
away.

Let there be proposed the equation #*— az®—bz—c=0,
in order to determine one of its roots. We will first com-
pare it with the formula, #*—22?—8x v/ A +f?—49=0, in
order to obtain the values of f, g, and £ ; and we shall
have,

1. 2f =a, and, consequently f = %;
bQ
2. 84/ h=0b, so thatb:az,
, ) _a\ @ _
3. f*—49=—c, or (as_]"_ﬁ),4 49+c=0,

or fa®+c=4g; consequently, g=.a%+ 1c.

#* This method was the invention of Euler himself. He has
explained it in the sixteenth volume of the Ancient Commen-
taries of Petersburg.—F.T. ‘
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776. Since, therefore, the equation
a*—az?—bzx—c =0,
gives the values of the letters f, g, and 4, so that
=1la, g=-%a"+ ¢, and b= ;0% or Vh=1D,
we form from these values the equation of the third degree
23 —fzf+gz—h=0, in order to obtain its roots by the
known rule. And if we suppose those roots, 1. z=p,
2. z=q, 3. z=r, one of the roots of our equation of the
fourth degree must be, by the supposition, Art. 774,
r=Np+Nqg+tNT

777. This method appears at first to furnish only one
root of the given equation ; but if we consider that every
sign »/ may be taken negatively, as well as positively, we
immediately perceive that this formula contains all the
four roots.

Farther, if we chose to admit all the possible changes
of the signs, we should have eight different values of «,
and yet four only can exist. But it is to be observed, that
the product of those three terms, or »/pgqr, must be equal
to »/ k= 1b, and that if 15 be positive, the product of the
terms /p, +/ ¢, ~/7, must likewise be positive ; so that all
the variations that can be admitted are reduced to the
four following :
= NPp+NgE+NT,
r= NPp—=NGg—NT,
z= —Np+Ng—NT
= = p—Ng+AT.

In the same manner, when 1b is negative, we have only
the four following values of x:

l.za= WVp+g—NT)
2. x= NMp—NgF+ T,
3. x= —~/]1+~/q+«/7”:
4, 2= — N/ p—Gg—NT.
This circumstance enables us to determine the four roots
in all cases; as may be seen in the following example.
778. Let there be proposed the equation of the fourth
degree, a*—2522-4602x—36=0, in which the second
term is wanting. Now, if we compare this with the
general formula, we have a=25, b= —60, and ¢=36;
and after that,

—_— 2 —_— 25 — 9 I 2 225
f=%,9y=% +9="15, and h=Fb*=2§5;

by which means our equation of the third degree becomes,

Lo 20—
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3 5 -2 j—
25— 2522 1697 — 225 =0,
. . u
First, to remove the fractions, let us make z = - ; and we

4
u®  2bu? | 769w 225 oy
shall have i~ 3 Tt e T 4 = 0, and multiplying
by the greatest denominator, we obtain
u?—50u? 4+ 769u — 3600 = 0.

We have now to determine the three roots of this equa-
tion ; which are all three found to be positive ; one of them
being =9 : then dividing the equation by «—9, we find
the new equation w?—4lu+400=0, or w*=4lu—400,
which gives

41+9
2 b
so0 that the three roots are u=9, u=16, and «=25.

u=4 (61— 100)=

Consequently, as z = ¥ the roots are
q y 1

1. z=4, 2. z=4, 3. z=1%7.

These, therefore, are the values of the letters p, ¢, and r ;
that is to say, p=1%, ¢=4, and r=125. Now, if we con-
sider that J/pgr=a/kh=— 15, and that therefore this
value = 1b is negative, we must, agreeably to what has
been said with regard to the signs of the roots »/p, v/ ¢,
and /7, take all those three roots negatively, or take
only one of them negatively; and consequently, as
vp=4%, vV q=2, and v/ r=14, the four roots of the given
equation are found to be:

l. o= $42—-45=1,
2. 2= 3—-24+4=2,
3. = —34+24 3 =3,
4. z=—3—2—5= —6.
From these roots are formed the four factors,
(=) x(2—2)x (x—3) x (x+6)=0.

The first two, multiplied together, give 22—3z+2; the
product of the last two is 22 +3z—18; again multiplying
these two products together, we obtain exactly the equa-
tion proposed, z*—25x%+ 60z —36.

779. It remains now to shew how an equation of the
fourth degree, in which the second term is found, may be
transformed into another, in which that term is wanting :
for which we shall give the following Rule.*

* Au investigation of this rule may be seen in Maclaurin’s
Algebra, Part 11, chap. 1ii.
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Let there be proposed the general equation y*+ay®+
by?+cy+d=0. If we add to y the fourth part of the
coefficient of the second term, or 1a, and write, instead of
the sum, a new letter x, so that y+ie=x, and conse-
quently y=x— ta: we shall have

y2=x2—%ax+%ga2, y3=$3—%a$2+7%a2$—3%a3,
and, lastly, as follows :
y* = ot —aa’® + a2t — 0% + yisat

3 3 202 3 3 A 4
a]/2 = ar’— 4a 392 + Tlga x 514“9
byt = bat — labz+ 5a%b
cy = cx — tac
d = d
2 3
Or, z*4+0 ~3a xz+ ]%a x—?gilga:
bx -_ Eﬂlbx+ Tgab =0.
cx — ac
d

We have now an equation from which the second term
is taken away, and to which nothing prevents us from ap-
plying the rule before given for determining its four roots.
After the values of » are found, those of y will easily be
determined, since y=z— 1a.

780. This is the greatest length to which we have yet
arrived in the resolution of algebraic equations. All the
pains that have been taken in order to resolve equations
of the fifth degree, and those of higher dimensions, in the
same manner, or, at least, to reduce them to inferior
degrees, have been unsuccessful: so that we cannot give
any general rules for finding the roots of equations, which
exceed the fourth degree.

The only success that has attended these attempts has
been the resolution of some particular cases; the chief of
which is that, in which a rational root takes place; for
this is easily found by the method of divisors, because we
know that such a root must be always a factor of the last
term. The operation, in other respects, is the same as that
we have explained for equations of the third and fourth
degree.

781. It will be necessary, however, to apply the rule of
Bombelli to an equation which has no rational roots.

Let there be given the equation y*—8y®+14y°+
4y—8=0. Here we must begin with destroying the
second term, by adding the fourth of its coefficient to y,
supposing y—2=uz,and substituting in the equation, instead
of y, its new value 2 +2, and, instead of 2, its value x° 44z
+4. Doing thesame withregard to y* and y*,weshall have,
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—8y’= —823—4822—96xr—64
1442 = 1422 + 562 + 56
—8 = — 8

z*+0 —~1022— 4x+4+ 8=0.

This equation being compared with our general formula,
gives a=10, b=4, c= —8; whence we conclude, that
JS=5,9g=Y, h=1% and v h=1; that the product »/ pgr
will be positive; and that it is from the equation of the
third degree, 23—522+ 17z— 1 =0, that we are to seek
for the three roots p, ¢, r.—(Art. 774, 775.)

782. Let us first remove the fractions from this equation,

by making z= %, and we shall thus have, after multiply-

ing by 8, the equation u®—10u?+174—2=0, in which
all the roots are positive. Now, the divisors of the last
term are 1 and 2; if we try u=1, we find 1—10+17—
2=6; so that the equation is not reduced to nothing; but
trying u=2, we find 8—40+34—2=0, which answers to
the equation, and shews that u=2 is one of the roots. The
two others will be found by dividing by »—2, as usual ;
then the quotient #*—8u+1=0 will give «*=8«—1, and
u=44,/15. And since z=1u, the three roots of the
equation of the third degree are,
], Z=p= l’
4415
%r=g=—p—

3, z.__,=il:g/_l5,

783. Having therefore determined p, ¢, r, we have also
their square roots; namely, «p=1,

v (8+24/15)* v (8—2y15)

Vg=—""75"—— s

,and /7= 5

* This expression for the square root of ¢ is obtained by mul-

1 . 4 15
tiplying the numerator and denominator of +;/ 2 by 2, and

extracting the root of the latter, in order to remove the surd:

4+ V15 . 84215 V(8+215)
Thus, D) X2= 1 ; and Vi e e e
_ J(8+2415)

2
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But we have already seen (Art. 675, 676), that the
square root of a% /b, when (a*—bd)=c, is expressed

by /(a+ Jb)=~/(a'2'"c) + . (“gc) : so that, as in
the present case, a=8, and /b=2./15; consequently,
as =060, and c= v/ (a*—b)=2, we have

vE+218) =y (1E2)=y5+v3,and v (250) =

v(8—24y15)=,5— /3. Hence, we have /p=1,

N =——"/5;“/3, and ,,/r=-—___."/5;“/3

we also know that the product of these quantities is posi-
tive, the four values of z will be:

v+ 3+ b—u/3

; wherefore, since

l. z=v/p+ g+ vr=1+ g e
=145,

2 x=p—ng—r=1+ —“/5—“/32_“/5'*'“/3
=1+v5,

3. x=—Wp+vg—Nr=—1+ ~/5+"/3_2-~/5+“/3 .
=—14+v3,

4, z=—=1p—yq+yr=—1+ =5 “/32_*- V5 =3
=-—1—y3

Lastly, as we have y=a +2, the four roots of the given
equation are :

1. y=3+./5, 2. y=3 —./5,
3. y=1+4+y3, 4.y=1—/3.

QUESTIONS FOR PRACTICE.

1. Given 2*—423—8z+432=0, to find the values of z.
Ans. 4,2, —1+4,/—3, —1—,/—3.

2. Given y*—4y®—3y*—4y+1=0, to find the values

— — =4
of y. Ans. 112.\/ 3, and oié/m.
3. Given z*—32°—4x=3, to find the values of z.
1+ 13 —1+,/-3
Ans. 5 and 5 .
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CHAPTER XVI.
Of the Resolution of Equations by Approximation.

784. When the roots of an equation are not rational, and
can only be expressed by radical quantities, or when we
have not even that resource, as is the case with equations
which exceed the fourth degree, we must be satisfied with
determining their values by approximation; that is to
say, by methods which are continunally bringing us nearer
to the true value, till at last the error being very small, it
may be neglected. Different methods of this kind have
been proposed, the chief of which we shall explain.

785. The first method which we shall mention supposes
that we have already determined, with tolerable exactness,
the value of one root; that we know, for example, that
such a value exceeds 4, and that it is less than 5. In this
case, if we suppose this value=4-+p, we are certain that
p expresses a fraction. Now, as p is a fraction, and con-
sequently less than unity, the square of p, its cube, and, in
general, all the higher powers of p, will be much less with
respect to unity; and, for this reason, since we require
only an approximation, they may be neglected in the cal-
culation. When we have, therefore, nearly determined
the fraction p, we shall know more exactly the root4+p;
from that we proceed to determine a new value still more
exact, and continue the same process till we come as near
the truth as we desire.*

786. We shall illustrate this method first by an easy
example, requiring by approximation the root of the
equation x?=20.

Here we perceive, that x is greater than 4, and less than
5 ; making, therefore, r=4+p, we shall have 2*=16+
8p+p*=20; but as p? must be very small, we shall neg-
lect it, in order that we may have only the equation 16 +

* Thisis the method given by Sir Is. Newton at the beginning
of his ¢ Method of Fluxions.” When investigated, 1t is found sub-
ject to different imperfections; for which reason we may with
advantage substitute the method given by M. de la Grange, in
the Memoirs of Berlin for 1768 and 1767.—F. T.

This method has since been published by De la Grange, in a
separate Treatise, where the suhject is discussed in the usual
masterly style of this author.

U
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8p =20, or 8p =4. This gives p =14, and z =44,
which already approaches nearer the true root. If, there-
fore, we now suppose £=4}+p’; we are sure that p’ ex-
presses a fraction much smaller than before, and that we
may neglect p’? with great propriety. We have, there-
fore, 2?=20% +9p’ =20, or 9p’=—1%; and consequently,
p'=—-%; therefore r=41—F;=47%.

And if we wished to approximate still nearer to the true
value, we must make x=41% +p’/, and should thus have

@t = 205755 + 834" =20; so that 834p” = — s,
or 322p"' = — 138+5= —, and
1
= —_— = — L
P="36xsR " T T2
therefore 2 =411 — 11 =451 a value which is so

near the truth, that we may consider the error as of no
importance.

787. Now, in order to generalise what we have here laid
down, let us suppose the given equation to be z*=a, and
that we previously know z to be greater than =, but less
than n + 1. If we now make x == + p, p must be a
fraction, and p® may be neglected as a very small quantity,
so that we shall have #*=n?+2np=a; or 2np=a—n?

a—n?, consequently, r =n +a—n2_n2+a
2n q Y, &= 2n ~  2n

Now, if » approximated towards the true value, this new
n*ta
2n
stituting it for », we shall find the result much nearer the
truth; that is, we shall obtain a new value, which may again
be substituted, in order to approach still nearer; and the

same operation may be continued as long as we please.
For example, let 22=2; that is to say, let the square
root of 2 be required ; and as we already know a value suf-
ficiently near, which is expressed by n, we shall have a still
2
nearer value of the root expressed by %-—;—% Let, therefore,
1. n=1, and we shall have =4
2. n=2, and we shall have z =1,
3. =211, and we shall have z = 3%.1.

and p =

value will approximate much nearer; and, by sub-

o

This last value approaches so near /2, that its square
434444 differs from the number 2 only by the small
quantity +s457, by which it exceeds it.

788. We may proceed in the same manner, when it is
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required to find by approximation cube roots, biquadrate
roots, &c.
Let there be given the equation of the third degree,
x¥=a; or let it be proposed to find the value of }/a.
Knowing that it is nearly », we shall suppose z=n+p;
neglecting p? and p*, we shall have 2°=n%+3n%=a; so
3

e whence

2n3
x=(n +p)= ———3%1“'

that 3n%p =a—n»?, and p= z

If, therefore, n is nearly =3/a, the quantity which we have
now found will be much nearer it. ~But for still greater
exactness, we may again substitute this new value for =,
and so on.

For example, let 2>=a=2; and let it be required to
determine 3/2. Here, if nis nearly the value of the num-
2n3 42

3n?
still more nearly; let us therefore make
1. n= 1, and we shall have z =4,
2. n= 4, and we shall have =21,
3. n=4%%, and we shall have x =1§213983¢6.

789. This method of approximation may be employed,
with the same success, in finding the roots of all equations.

To shew this, suppose we have the general equation of
the third degree, 2>+ az*+bx+¢ =0, in which = is very
nearly the value of one of the roots. Let us make
r=n—p; and, since p will be a fraction, neglecting the
powers of this letter, which are higher than the first de-
gree, we shall have 22=n?—2np, and 2*=n3—3n%; whence
we have the equation #3 — 3n% + an? — 2anp + bn —
bp + ¢=0, or »3 + an? + bn + ¢ = 3n%p + 2anp + bp
nd+an®+bn+c d

Sne+2an+b * "
n3+a712+bn+c>__ 2n3 4+ ant—c

3nt4+2an+b /7 3n:+2an+b’
which is more exact than the first, being substituted for =,
will furnish a new value still more accurate.

790. In order to apply this operation to an example, let
23 + 222+ 3x— 50 =0, in which ¢ =2, =3, and
c= —50. Ifn is supposed to be nearly the value of one
2n3 +2n2 4+ 50

3nt+4n+3°

ber sought, the formula will express that number

= (3n% + 2an + b)p; so that p=

This value,

N

of the roots, x =
the truth.

will be a value still nearer
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Now, the assumed value of x=3 not being far from the
true one, we shall suppose n=3, which gives us x=¢1;
and if we were to substitute this new value instead of =,
we should find another still more exact.

791. Weshall give only the following example, for equa-
tions of higher dimensions than the third.

Let 2°=6x +10, or 2°—62—10=0, where we readily
perceive that 1 is too small, and that2is too great. Now,
if £=n be a value not far from the true one, and we
make x=n+p, we shall have z3=n%+5n* ; and, conse-
quently,

n°+5ntp=06n+6p+10; or Sn*p—6p=06n+10—n°
And p(5n* —6)=06n+10—nS.

6n+10—n® 4410
sui—g  and @(=n+p) =5

If we suppose n=1, we shall have z = % = — 14 ; this

Wherefore p =

value is altogether inapplicable, a circumstance which
arises from the approximated value of » having been taken
much too small. We shall therefore make n=2, and
shall thus obtain z =138 = £2, a value which is much
nearer the truth. And if we were now to substitute for z,
the fraction £2, we should obtain a still more exact value
of the root z.

792. Such is the most usual method of finding the roots
of an equation by approximation, and it applies success-
fully to all cases.

We shall however explain another method,* which de-
serves attention, on account of the facility of the calculation.
The foundation of this method consists in determining for
each equation a series of numbers, as a, b, ¢, &c. such, that
each term of the series, divided by the preceding, may
express the value of the root with so much the more ex-
actness, according as this series of numbers is carried to a
greater length.

* The theory of approximation here given is founded on the
theory of what are called recurring series, invented by M. de
Moivre. This method was given by Daniel Bernoulli, in vol. iii.
of the Ancient Commentaries of Petersburg. But Euler has
here presented it in rather a different point of view. Those
who wish to investigate these matters may consult chapters 13
and 17 of vol. i. of our author’s Inérod. in Anal. Infin. ; an ex-
cellent work, in which several subjects treated of in this first
Part, beside others equally connected with pure mathematics,
are profoundly analysed and clearly explained.—F. T.
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Suppose we have already got the terms p, ¢, , s, ¢, &e.

4 must express the root z with tolerable exactness ; that is
to say, we have%=x nearly. We shall have also
2=x,* and the multiplication of the two values will

give :—9 = 2% Farther, as ; =z, we shall also have

s . t
— = z%; then, since - = z, we shall have;—) = z*, and
S0 on.

793. For the better explanation of this method, we shall
begin with an equation of the second degree, 2?2 =z + 1,
and shall suppose that in the above series we have found

r
the terms p, ¢, 7, s, ¢, &c. Now, as %: z, and ]—)=x2,

we shall have the equation i =1;7 +l,org+p=r. And

as we find, in the same manner, that s=r+g¢, and ¢=s
+7; we conclude that each term of our series is the sum
of the two preceding terms; so that having the first two
terms, we can easily continue the series to any length.
With regard to the first two terms, they may be taken at
pleasure: if we therefore suppose them to be 0, 1, our
series willbe 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, &c.
and such, that if we divide any term by that which imme-
diately precedes it, we shall have a value of # so much
nearer the true one, according as we have chosen a term
more distant. The error, indeed, is very great at first,
but it diminishes as we advance. The series of those
values of z, in the order in which they are always approxi-
mating towards the true one, is as follows :

=54 5555 Y i 5 58 W &e
If, for example, we make r=3%1, we have z?=4%],
and 21 + 1 = 442, in which the error is only 1345. Any
of the succeeding terms will render it still less.
794, Let us also consider the equation 2? =2z + 1;

. . r
and since, in all cases, z = l%’ and z? = —, we shall have
p

* It must only be understood here that Zis nearly equal to x.
q
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T = 2 + 1, or 7 =29 + p; whence we infer that the

ﬁouble of each term, added to the preceding, will give the
following. If, therefore, we begin again with 0, 1, we
shall have the series,
0, 1, 2, 5, 12, 29, 70, 169, 408, &c.
Whence it follows, that the value of  will be expressed
still more accurately by the following fractions :

=1 2 12 169 40
x"U:T;%’ 3“1%%' %%’ 70"1"6_8" &e.

which, consequently, will always approximate nearer and
nearer the true value of x =1+ ,/2; so that if we
take unity from these fractions, the value of /2 will be
expressed more and more exactly by the succeeding
fractions :
bbb b 3 4 99, H, e

For example, 29 has for its square 4§94, which differs
only by 4%+ from the number 2.

795. This method is no less applicable to equations,
which have a greater number of dimensions. If, for

example, we have the equation of the third degree z* =x*
+2x 4+ 1, we must make z = g, z° =£, and z3 =-s-; we

p
shall then have s=7r+2¢ +p; vzv)hich shzéws how, by means
of the three terms p, ¢, and r, we are to determine the
succeeding term, s: and, as the beginning is always
arbitrary, we may form the series,

0,0,1,1, 3,6, 13, 28, 60, 129,* &c.
from which result the following fractions for the approxi-
mate values of 2 :

— 0 1
T = 8, 89, 129, &e.

URZE TR TR T A 5 1

The first of these values would be very far from the
truth ; but if we substitute in the equation £¢, or 17,
instead of z, we obtain

20 =355, and 45 + 9 + 1= 3P,
in which the error is only 3.

796. It must be observed, however, that all equations
are not of such a nature as to admit the application of
this method ; and particularly, when the second term is
wanting, it cannot be made use of. For example, let

Vi

x2=2; if we wished to make r = ;, and 22 =%, we should

* So that, taking »==60 in the series, s, the succeeding term,
= (r) 60 + (2¢) 56 + (p) 13 = 129.
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have - = 2, or r=2p, that is to say, r = 0g+2p, whence

would result the series

1,1,2,2,4,4,8, 8, 16, 16, 32, 32, &c.
from which we can draw no conclusion, because each
term, divided by the preceding, gives always z=1, or
z=2. But we may obviate this inconvenience by
making x =y—1; for by these means we have y*—2y

+1=2; and if we now make y = Z, and y? = 1, we shall
obtain the same approximation that has been already
given,

797. It would be the same with the equation 2°= 2.
This method would not furnish such a series of numbers
as would express the value of 3/2. But we have only to
suppose r =y—1, in order to have the equation y3—3y?
+ 3y —1=2,0ry’=3y* —3y + 3; and then making
Y =Z, y2=;7, and y° =%, we have s =3r — 3¢ + 3p, by
means of which we see how three given terms determine
the succeeding term.

Assuming then any three terms for the first, for example
0, 0, 1, we have the following series :

0,0, 1, 3, 6, 12, 27, 63, 144, 324, &e.

The last two terms of this series give y=3%4, and z=4.
This fraction approaches sufficiently near the cube root
of 2; for the cube of § is 125, and that of 2= 128 ; the
difference, therefore, is only -#;.

798. We must farther observe, with regard to this
method, that when the equation has a rational root, and
the beginning of the period is chosen such, that this root
may result from it, each term of the series, divided by
the preceding term, will give the root with equal accuracy.

To shew this, let there be given the equation z2=z 42,
one of the roots of which is ¥ =2; as we have here, for
the series, the formula r = g +2p, if we take 1, 2, for the
first two terms, we have the series 1, 2, 4, 8, 16, 32, 64, &c.
a geometrical progression, whose exponent =2. The
same property is proved by the equation of the third
degree, z3 = 22 + 3z + 9, which has z = 3 for one of the
roots. If we suppose the leading terms to be 1, 3, 9, we
shall find, by the formula, s =7+3¢+9p, and the series
1, 3,9, 27, 81, 243, &c. which is likewise a geometrical
progression.
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799. But if the beginning of the series exceed the root,
we shall not approximate towards that root at all; for
when the equation has more than one root, the series
gives by approximation only the greatest: and we do not
find one of the less roots, unless the first terms have been
properly chosen for that purpose. This will be illustrated
by the following example.

Let there be given the equation 22=4x—3, whose two
roots are x == 1, and x=3. The formula for the series is
r==4qg—3p, and if we take 1, 1, for the first two terms of
the series, which consequently expresses the least root, we
have for the whole series, 1,1, 1,1,1,1, 1, 1, &c. but
assuming for the leading terms the numbers 1, 3, which
contain the greatest root, we have the series, 1, 3, 9, 27,
81, 243, 729, &c. in which all the terms express precisely
the root 3. Lastly, if we assume any other beginning,
provided it be such that the least term is not comprised
in it, the series will continually approximate towards the
greatest root 3; which may be seen by the following
series:

Beginning,
, 1, 4, 13, 40, 121, 364, &c.
2, 5, 14, 41, 122, 365, &c.
3, 6, 15, 42, 123, 366, 1095, &c.
, 1,—2,—~11,—38,~118,—362,~1091,—3278, &e.

in which the quotients of the division of the last terms by
the preceding always approximate towards the greater root
3, and never towards the less.

800. We may even apply this method to equations
which go on to infinity. The following will furnish an
example :

2P =x® 1y ® 2t ® 4, &e.

-

b

DO W~ O

The series for this equation must be such, that each term
may be equal to the sum of all the preceding ; that is, we
must have

1,1,2,4,8, 16, 32, 64, 128, &c.
whence we see that the greater root of the given equation
is exactly z=2; and this may be shewn in the following
manner. If we divide the equation by 2*, we shall have

1 1 1 1
1=;+—55+?+F +, &e.

a geometrical pro sion, wh is f nd——L- S0
g al progression, whose sum s found = —;
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that ]=—'lT; multiplying therefore by z—1, we have
z—1=1, and 2=2.

801. Beside these methods of determining the roots of
an equation by approximation, some others have been
invented, but they are all either too tedious, or not suffi-
ciently general.* The method which deserves the preference

* This remark does not apply to the method of finding the
roots of equations of all degrees, and however affected, by The
Rule of Double Position. In order, therefore, that the present
chapter might be more complete, we shall explain this method as
briefly as possible.

Substitute in the given equation two numbers, as near the
true root as possible, and observe the separate results. Then, as
the difference of these results is to the difference of the two num-
bers ; so is the difference between the true result, and either of
the former, to the respective correction of each. This being
added to the number when too small, or subtracted from it
when too great, will give the true root nearly.

The number thus found, with any other that may be sup-
posed to approach still nearer to the true root, may be assumed
for another operation, which may be repeated, till the root shall
be determined to any degree of exactness that may be re-
quired.

Ezxample. Given 3+ a2+ 2=100.

Having ascertained by a few trials, or by inspecting a Table
of roots and powers, that z is more than 4, and less than 5, let
us substitute these two numbers in the given equation, and cal-
culate the results.

By the first { —_ 16 By the second fx — 25

supposition |5 __ 64 supposition I s 125
84...... Results ......... 155
155 5 100 true result.
84 4 84
Differences 71 1 16
Then, As71 : 1 E 16 : 2253 +

Therefore 4+ 2253, or 4:2253 approximates nearly to the
true root.

If now 42, and 4-3, be taken as the assumed numbers, and
substituted in the given equation, we shall obtain the value of
x=4-264 very nearly, the error being only -027552256.
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to all others, is that which we explained first ; for it applies
successfully to all kinds of equations : whereas the others
often require the equation to be prepared in a certain
manner, without which it cannot be employed ; and of this
we have seen a proof in different examples.

QUESTIONS FOR PRACTICE.

1. Given 23 +222—232—70=0, to find z.
Ans, x=>5"13450.
. Given 23—1522463x—50=0, to find x.
Ans. z=1-028039.
. Given 2*—32?—75x=10000, to find =.
Ans. x=10-20615.
Given 2°+42x* 4 323 +4a? + 5x=54321, to find z. .
Ans. x =84144,
. Let 120x® 4+ 365722 — 38059z = 8007115, to find z.
Ans, z=34-6532.

T S U R X

END OF PART I.



ELEMENTS

OF
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PART 1L

CONTAINING THE ANALYSIS OF INDETERMINATE
QUANTITIES.

CHAPTER 1.
Of the Resolution of Equations of the First Degree whick

contain more than one unknown Quantity.

ARTICLE I.

It has been shewn, in the First Part of these Elements,
how one unknown quantity is determined by a single equa-
tion, and how we may determine two unknown quantities
by means of two equations, three unknown quantities by
three equations, and so on ; so that there must always be
as many equations as there are unknown quantities to
determine, at least when the question itself is determinable.

When a question, therefore, does not furnish as many
equations as there are unknown quantities to be deter-
mined, some of these must remain undetermined, and
depend on our will; for which reason, such questions are
said to be indeterminate ; forming the subject of a parti-
cular branch of Algebra, which is called Indeterminate
Analysis.

2. As in those cases we may assume any numbers for
one, or more unknown quantities, they also admit of
several solutions: but, on the other hand, as there is
usually annexed the condition, that the numbers sought
are to be integer and positive, or at least rational, the
number of all the possible solutions of those questions is
greatly limited : so that often there are very few of them
possible ; at other times, there may be an infinite number,
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but such as are not readily obtained; and sometimes
also, none of them are possible. Hence it happeuns,
that this part of analysis frequently requires artifices
entirely appropriate to it, which are of great service in
exercising the judgment of beginuers, and giving them
dexterity in calculation.

3. To begin with one of the easiest questions. Let it
be required to find two positive, integer numbers, the sum
of which shall be equal to 10.

Let us represent those numbers by = and y; then we
have z + y = 10; and & = 10 — y, where y is so far only
determined, that this letter must represent an integer
and positive number. We may therefore substitute for
it all integer numbers from 1 to 10: but since z must
likewise be a positive number, it follows, that y cannot be
taken greater than 10, for otherwise x would become
negative; and if we also reject the value of z=0, we
cannot make y greater than 9; so that only the following
solutions can take place:

Ify=1,2,3,4,5,6,7,8,9,
then =9, 8,7, 6, 5, 4, 3,2, 1.

But, the last four of these nine solutions being the same
as the first four, it is evident, that the question really
admits only of five different solutions.

If three numbers were required, the sum of which
might make 10, we should have only to divide one of the
numbers already found into two parts, by which means
we should obtain a greater number of solutions.

4. As we have found no difficulty in this question, we
will proceed to others, which require different con-
siderations.

Question 1. Let it be required to divide 25 into two
parts, the one of which may be divisible by 2, and the
other by 3.

Let one of the parts sought be 2z, and the other
3y; we shall then have 2z + 3y=25; consequently,
2z =25—3y; and, dividing by 2, we obtain

25—3y
T=—7p
3y must be less than 25, and consequently, that y is less
than 8. Also, if from this value of x, we take out as
many integers as we possibly can, that is to say, if we
divide by the denominator 2, we shall havexr=12—y+
1—

—22; whence it follows, that 1—y, or rather y—1, must

; whence we conclude, in the first place, that
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be divisible by 2. Let us, therefore, make y—1 =-2z;
and we shall have y=2z+1, so that
. z=12-2z2—1—2=11-3z.

And, since y cannot be greater than 8, we must substi-
tute any numbers for z which would render 2z +1 greater
than 8; consequently, z must be less than 4, that is to say,
z cannot be taken greater than 3, for which reasons we
have the following answers :

Ifwemakez= 0| z=1]|2=2|2=3,
wehave y= 1|y=3|y=5|y=7,
and r=11 z=8|zxz=56]|xr=2.

Hence, the two parts of 25 sought, are
Rr+3y)=22+3; 1649; 10+15; or 4+421.

5. Question 2. To divide 100 into two such parts, that
the one may be divisible by 7, and the other by 11.

Let 7z be the first part, and 11y the second. Then we
must have 7x+11y=100; and, consequently,

_100—-Tly 98 +2—~Ty —4y o, 2—4y
Tz = 7 = 7 =14—y+ 3
wherefore 2—4y, or 4y—2, must be divisible by 7.

Now, if we can divide 4y—2 by 7, we may also divide
its half, 2y—1, by 7.* Let us therefore make 2y ~1=7z,
or 2y="7z+1, and we shall have z =14—y—2z; but,
since 2y =7z + 1 =6z + 2z + 1, we shall have
z+1

2
z=2u—1; which supposition gives y =3z +u; and, con-
sequently, we may substitute for u every integer number
that does not make z or y negative. Now, as y becomes
=7u—3, and 2= 19—11u, the first of these expressions
shews that 7u must exceed 3; and, according to the
second, 11u must be less than 19, or u less than 19 : so
that » cannot be 2; and since it is impossible for this
number to be 0, we must have u=1: which is the only
value that this letter can have. Hence, we obtain x =8,
and y =4; and the two parts of 100 which were required,
are 56, and 44.

y=3z+ Let us therefore make z+1=2u, or

* For #, or 4y;— Z, being a whole number, and 4 and 2
not being divisible by 7, the numerator, 4y—2, and its half,
2y-1, must necessarily be either 7, or some multiple of 7 :
and it may be observed, that, if any number divides the whole
of another number, and also a part of it, it will likewise divide
the remaining part.
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6. Question 3. To divide 100 into two such parts, that
dividing the first by 5, there may remain 2; and dividing
the second by 7, the remainder may be 4.

Since the first part, divided by 5, leaves the remainder
2, let us suppose it to be 52 + 2; and, for a similar
reason, we may represent the second part by 7y +4: we
thus have 5z 47y +6=100, or b2=94—7y=90+4—5y
—2y; whence we obtain z=18—y+ 4 52y.
follows, that 4—2y, or 2y—4, or the half y—2, must be
divisible by 5. For this reason, let us make y—2 =5z,
or y=>5z+2, and, as 5z +7y =94, we shall have x =16
—7z; whence we conclude, that 72 must be less than 16,
and z less than 1f, that is to say, z cannot exceed 2.
The question proposed, therefore, admits of three answers :

Hence it

1. 2=0 gives x=16, and y =2; whence the two parts
are 82 and 18.

2. z=1 gives =9, and y =7 ; and the two parts are
47 +-53.

3. z=2 gives x =2, and y = 12; and the two parts are
12+-88.

7. Question 4. Two women have together 100 eggs:
one says to the other; When I count my eggs by eights,
there is an overplus of 7. The second remarks, If I count
mine by tens, I find the same overplus of 7. How many
eggs had each ?

As the number of eggs belonging to the first woman,
divided by 8, leaves the remainder 7; and the number of
eggs belonging to the second, divided by 10, gives the
same remainder 7; we may express the first number by
8z+7, and the second by 10y +47; so that 8z + 10y + 14
=100, or 8z =86—10y, or 4x=43—5y=40+3—4y—y.
Consequently, if we make y—3 =4z, sothat y =4z+3,
we shall have x=10—42z—83 —2=7—52; whence it
follows, that 52 must be less than 7, or z less than 2; that
is to say, we have the two following answers :

1. 2=0 gives =7, and y=3; so that the first woman
had 63 eggs, and the second 37,

2. z=1 gives =2, and y=7; therefore the first
woman had 23 eggs, and the second had 77.

8. Question 5. A company of men and women spent
1000 sous at a tavern. The men paid each 19 sous, and
each woman 13. How many men and women were there?



CHAP. I. OF ALGEBRA. 303

Let the number of men be z, and that of the women y,
we shall then have the equation, 19x+13y=1000; or
13y =1000—192 =988 + 12— 13x—6z; and

12—6z

y=76—x+ 3
whence it follows, that 12—6z, or 6z—12, or 2—2, the
sixth part of that number must be divisible by 13. If,
therefore, we make £—2 =13z, we shall have x =132 +2,
and ¥y =76—132—2—62, or y=74—19z;
which shews that z must be less than 14, and, conse-
quently, less than 4; so that the fonr following answers
are possible :

1. 2=0 gives x=2, and y="74; in which case there
were 2 men and 74 women ; the former paid 38 sous, and
the latter 962 sous.

2. z=1 gives the number of men x=15, and that of
women y =55; so that the former spent 285 sous, and
the latter 715 sous.

3. z=2 gives the number of men z=28, and that of
the women y=36; therefore the former spent 532 sous,
and the latter 468 sous.

4. z=3 gives x=41, and y=17; so that the men spent
779 sous, and the women 221 sous.

9. Question 6. A farmer lays out the sum of 1770
crowns in purchasing horses and oxen; he pays 31 crowns
for each horse, and 21 crowns for each ox. How many
horses and oxen did he buy?

Let the number of horses be z, and that of oxen y; we
shall then have 312 +21y=1770, or

2ly=1770—31x=1764 +6—21x—10z ; or

6—10x

a1
half 52—3, must be divisible by 21. If we now suppose
bz—3=2lz, we shall have 52=21z+3, and hence y=84
—xz—2z. But, since

_ 21243 z+3
=73 5
which gives z=5u—3, x=21u—12, and

y=84—21u+12—10u+6=102—31x«;

hence it follows, that # must be greater than 0, and yet
less than 4, which furnishes the following answers :

y=84—z+ Therefore 10x—6, and likewise its

=4z + , we must also make 243 = 5u;
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1. u=1 gives the number of horses =9, and that of
oxen y="71; wherefore the former cost 279 crowns, and
the latter 1491 ; in all, 1770 crowns.

2. u=2 gives =30, and y=40; so that the horses
cost 930 crowns, and the oxen 840 crowns, which together
make 1770 crowns.

3. u=3 gives the number of the horses =51, and that
of the oxen y=9; the former cost 1581 crowus, and the
latter 189 crowns; which together make 1770 crowns.

10. The questions which we have hitherto considered
lead all to an equation of the form ax+by =¢, in which
a, b, and ¢, represent integer and positive numbers, and
in which the values of z and y must likewise be integer
and positive. Now, if b is negative, and the equation has
the form az—by=c, we have questions of quite a different
kind, admitting of an infinite number of answers, which
we shall treat of before we conclude the present chapter.

The simplest questions of this sort are such as the
following. Required two numbers, whose difference may
be 6. If, in this case, we make the less number x, and
the greater y, we must have y—x =6, and y =6 + .
Now, nothing prevents us from substituting, instead of z,
all the integer numbers possible, and whatever number
we assume, y will always be greater by 6. Let us, for
example, make 2 = 100, we have y = 106; it is evident,
therefore, that an infinite number of answers are possible.

11. Next follow questions, in which ¢ =0, that is to
say, in which az must simply be equal to by. Let there
be required, for example, a number divisible both by 5
and by 7. If we write ~ for that number, we shall first
have N = 5z, since N must be divisible by 5; and farther,
we shall have N=7y, because the number must also be
divisible by 7. We shall therefore have 5x=7y, and
7y
5
divisible by 5: let us therefore make y=5z; and we have
x="17z ; so that the number sought () will be =352 ; and
as we may take for z, any integer number whatever, it is
evident that we can assign for N an infinite number of
values; such as

35, 70, 105, 140, 175, 210, &e.

If, beside the above condition, it were also required that the
number N be divisible by 9, we should first have N=35z,
as before, and should farther make ¥ = 9u. In this

Now, since 7 cannot be divided by 5, y must be
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35z e .
manner, 352=9u, and u= 5 where it is evident that z

must be divisible by 9 ; therefore let 2=9s; we shall then
have u=35s, and ~ the number sought =315s.

12. We find more difficulty when ¢ is not = 0. For
example, when 5x=7y 43, the equation to which we are
led, and which requires us to seek a number ~ such, that
it may be divisible by 5, and if divided by 7, may leave the
remainder 3: for we must then have N=>5z, and also
N=7y +3, whence results the equation 52=7y+3; and,
consequently,

Ty+3 bSy+2y+3 2u+3

5
If we make 2y +3=>5z, or z= 2'2/;3, we have z=y+z.
Now, because 2y +3=5z, or 2y=5z—3, we have
52—3 z=3
y=——2—-,ory=2:+ 5

If, therefore, we farther suppose z—3=2u, we have

z=2u+3, and y=5u+6, and

z=y+2= (bu+6) + RQu+3)=7u+49.

Hence, the number sought, x=35u4-45; in which equation
we may substitute for  not only all positive integer num-
bers, but also negative numbers ; for, as it issufficient that
~ be positive, we may make u= —1, which gives x=10;
the other values are obtained by continually adding 35 ;
that is to say, the numbers sought are 10, 45, 80, 115,
150, 185, 220, &c.

13. The solation of questions of this sort depends on the
relation of the two numbers by which we are to divide;
that is, they become more or less tedious, according to the
nature of those divisors. The following question, for
example, admits of a very short solution :

Required a number which, divided by 6, leaves the
remainder 2; and divided by 13, leaves the remainder 3.

Let this number be ~. First, n=6x+2, and then
v~ = 13y + 3; consequently, 6z + 2 =13y + 3, and
6z = 13y + 1; hence,
By+1 ,  y+1

R A
and if we make y+1=6z, or y=62—1, we obtain
xr=2y+2z=132—2; whence we have for the number

X
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sought N=782—10; therefore, the question admits of the
following values of N ; viz.

N=08, 146, 224, 302, 380, &ec.

which numbers form an arithmetical progression, whose
difference is 78=6 x 13. So that if we know one of the
values, we may easily find all the rest; for we have only
to add 78 continually, or to subtract that number, as long
asit is possible, when we seek for small numbers.

14. The following question furnishes an example of a
longer and more tedious solution.

Question 8. To find a number ~, which, when divided
by 39, leaves the remainder 16; and such also, that if it
be divided by 56, the remainder may be 27.

In the first place, we have n=39p+16; and in the
second, N=56¢+27; so that

39p +16=56¢ +27, or 39p=>56¢+11, and

56g+11 179 +11 .
p=——93§——=(] —gég—=q+7', by makmg
r= 1793;11. So that 39r=17¢+11, and

39r—~11 5r—11 .

=0 =2+ 17 =27 +s, by making

= 57‘—1—71-1—, or 17s=5r—11; whence we get
r= 173;11 =3s + 23};]1 = 3s+¢, by making
t= 28-;]1 , or 5t=2s+11; whence we find
s= 5t_211 =2+ t;” =2t +u, by making
u= L ;11 ; whence t=2u+11.

Having now no longer any fractions, we may take u at
pleasure, and then we have only to trace back the follow-
ing values :

= 2u+ 11,
s =2t +u= bu++ 22,
r=3s +t=17u+ 77,
g=2r +s =3% + 1786,
P= g+r=>56u+253,
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and, lastly, =39 x 564 +9883.*% And the least pos-
sible value of v is found by making u= —4; for by this
supposition we have N=1147: and if we make u=zx—4
we find

N=2184x—8736+9883; or n=2184x+1147;

which numbers form an arithmetical progression, whose
first term is 1147, and whose common difference is 2184 ;
the following being some of its leading terms :

1147, 3331, 6515, 7699, 9883, &c.

15. We shall subjoin some other questions by way of
practice.

Question 9. A company of men and women club to-
gether for the payment of a reckoning : each man pays 25
livres, and each woman 16 livres; and it is found that all
the women together have paid 1 livre more than the men.
How many men and women were there?

Let the number of women be p, and that of men ¢ ; then
the women will have expended 16p, and the men 25¢; so
that 16p=25¢+1, and

_25q+1 9g+1

b

6 =¢ +—1—6—=q+7', or 16r=0¢+1,

16r—1 Tr—1
= +

=—g— =T g =r+s, or 9s=T7r—1,
r=93;- 1 =35 +2$_,7’_1 =s§+t, or Tit=2s+1,
Tt —1 ¢t —1

5 =3¢ + 5 =3t +u, or, cancelling 3¢

on both sides of the equation, 2u=¢—1, and t=2u+1.
We shall therefore obtain, by tracing back our substi-

tutions,

t=2u+1,

s=3t+u= Tu+ 3,

r= s+t= Yu+ 4,

qg= r4+s=16u+ 7,

p= g+7‘=25u+11.
So that the number of women was 25z+11, and that of
men was 164 +7; and in these formula we may substitute

* As the numbers 176 and 253 ought, respectively, to be
divisible by 39 and 56 ; and as the former ought, by the question,
to leave the remainder 16, and the latter 27, the sum 9883 is
formed by muliiplying 176 by 56, and adding the remainder 27
to the product: or by muitiplying 253 by 39, and adding the
remainder 16 to the product. Thus,

(176 x 56) +27=9883 ; and (253 x 39) +-16=9883,
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for  any integer numbers whatever. The least results,
therefore, will be as follow :

Number of women, 11, 36, 61, 86, 111, &ec.
of men, 7, 23, 39, 55, 71, &e.

According to the first answer, or that which contains the
least numbers, the women expended 176 livres, and the
men 175 livres ; that is, one livre less than the women.

16. Question 10. A person buys some horses and oxen :
he pays 31 crowns per horse, and 20 crowns for each ox;
and he finds that the oxen cost him 7 crowns more than the
horses. How many oxen and horses did he buy?

If we suppose p to be the number of the oxen, and ¢ the
number of the horses, we shall have the following equation :

3147  1lg+7
p=LH gt

20 =4 50 =q+r, or 20r=11¢+7,
=2071'1_7= 9r1T7=r+ s, or 1ls= 9r—7,
r=“59+7=s+23;7=s+t, or 9t= 2s+7,
=9‘2‘7-_-4t+t > T dttu, or u= 17,
whence £...... = 2u+ 7, and, consequently,

s =4t +u= u-428,

r= s+t=11u+435,

g= r+5=20u+ 63, number of horses,
P= q+r=31u+98, number of oxen.

Whence, the least positive values of p and ¢ are found
by making u= —3 ; those which are greater succeed in the
following arithmetical progressions :

Number of oxen, p=>5, 36, 67, 98, 129, 160, 191, 222,
253, &e.

Number of horses, ¢g=3, 23, 43, 63, 83, 103, 123, 143,
163, &ec.

17. If now we consider how the letters p and ¢, in this
example, are determined by the succeeding letters, we shall
perceive that this determination depends on the ratio of the
numbers 31 and 20, and particularly on the ratio which we
discover by seeking the greatest common divisor of these
two numbers. In fact, if we perform this operation,
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20y 31 (1
20

11) 20 (1
11
9) 11 (1
9
2) 9 (4
8
1) 2 (2
2
0,

it is evident that the quotients are found also in the suc-
cessive values of the letters p, ¢, r, s, &c. and that they are
connected with the first letter to the right, while the last
always remains alone. We see, farther, that the number
7 occurs only in the fifth and last equation, t=2u+7,
and is affected by the sign +, because the number of this
equation is odd; for if that number had been even, we
should have obtained —7. This will be made more evi-
dent by the following Table, in which we may observe the
decomposition of the numbers 31 and 20, and then the
determination of the values of the letters p, ¢, 7, &e.

31=1x20+11 | p=1xgq+r
0=1x11+ 9| g=1x7r+s
1l=1x 94 2| r=1xs +¢
9=4x 2+ 1| s=4xt+u
2=2x 1+ 0| t=2xu+7.

18. In the same manner we may represent the example
in Art. 14.

56=1x39+17 | p=1xg+r
39=2x17+ 5 | g=2xr+s
17=3x 64+ 2 | r=3xs +¢
5=2x %2+ 1| s=2xt+u
2=2x 14+ O =2xu+11.

19. And, in the same manner, we may analyse all ques-
tions of this kind. For, let there be given the equation
bp=ag+n, in which a, b, and n, are known numbers;
then, we have only to proceed as we should do to find the
greatest common divisor of the numbers @ and b, and we
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may immediatély determine p and ¢ by the succeeding
letters, as follows :
a=Ab +c¢ p=Aqg+r
b= Bc +d : g=DBr+s
Let! €= Cd + el and we shall | r =Cs +¢
d= De -}—f find s=Dt+u

e=Ff +g¢ t =Fu+v
f=Fg +o u=Fv +n.

We have only to observe farther, that in the last equation,
the sign + must be prefixed to », when the number of
equations is odd ; and that, on the contrary, we must take
—mn, when the number is even ; by these means, the ques-
tions which form the subject of the present chapter may be
readily answered, of which we shall give some examples.

20. Question 11. Required a number, which, being
divided by 11, leaves the remainder 3 ; but being divided
by 19, leaves the remainder 5.

Call this number x; then, in the first place, we have
N = 11p+3, and in the second, ¥ = 19¢+5; therefore,
we have the equation 11p=19¢+2, which furnishes the
following Table :

19=1x11+8 p= q+r
Ill=1x 843 |¢g= r+s
8=2x 3+2|r=2 +¢
3=1x 24+1|s= t+u
2=2x 140t =2u+2,
where we may assign any value to u, and determine by it
the preceding letters successively. We find,
T veenns = 2u+4+ 2
s= t+u= 3u+t+ 2
r=2%4+t= But 6
g= r+s=1lu+ 8
p= qg+r=1%+14;
whence, taking u = 11, we obtain the number sought
N=1lp+3=11(19u + 14) +3 == 209u + 157 ; therefore 157
is the least number that can express n, or satisfy the terms
of the question.*

21. Question 12. To find a number ~ such, that if we
divide it by 11, there remains 3, and if we divide it by 19,
there remains 5 ; and farther, if we divide it by 29, there
remains 10.

The last consideration requires that n=29p+10; and
as we have already performed the calculation (in the last

* Because, in this case, u=0,
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question) for the two others, we must, in consequence of
that result, have N =209« + 157, instead of which we shall
write N=209¢ + 157; so that

29p + 10 = 209¢ + 157, or 29p = 209¢ + 147;
whence we have the following Table :

209 =7x2946; (p=7g+7‘,
22 z% i gi? ; whereforeizz 4: i‘;”
b=5Hx 1+0; s="5¢t—147.
And, if we now retrace these steps, we have
P = bt— 147,

r=s+¢= 6t— 147,

qg=4r+s= 29t— 735,

p="Tq +r=209¢— 5292.
So that N=6061¢—153458 :¥ and the least number is
found by making =26, which supposition gives N=4128.

22. It is necessary, however, to observe, in order that
an equation of the form bp=aq +n may be resolvible, that
the two numbers ¢ and » must have no common divisor ;
for, otherwise, the question would be impossible, unless
the number n had the same common divisor also.

If it were required, for example, to have 9p =15¢+2;
since 9 and 15 have the common divisor 3, which is not a
divisor of 2,it is impossible to resolve the question; because
9p — 15¢ being always divisible by 3, can never become
=2. But if in this example =3, or n=06, &c. the
question would be possible: for it would be sufficient first
to divide by 3; since we should obtain 3p=5¢ +1, an
equation easily resolvible by the rule already given. Itis
evident, therefore, that the numbers ¢, b, ought to have
no common divisor, and that our rule cannot apply in any
other case.

23. To prove this still more satisfactorily, we shall con-
sider the equation 9p=15¢9+2 according to the usual
method. Here we find
p= -__15q9+2 =q+ 6——95_2 = g+r; so that
9r = 6g+2, or 6g=9r—2; or

9r—2 3r—2

1="F =r + 5 =7 +s; so that 3r — 2 = Gs,

* That is, — 5292 x 29 = — 153468 ; to which if the re-
mainder + 10 required by the question be added, the sum is
—153458.
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or 3r=6s+2: consequently, r= 68;2 =25+ %.

Now, it is evident, that this can never become an integer
number, because s is necessarily an integer ; which shews
the impossibility of such questions.*

CHAPTER II.

Of the Rule which is called Regula Ceci, for determining
by means of two Equations, three or more Unknown
Quantities.

24. In the preceding Chapter, we have seen how, by
means of a single equation, two unknown quantities may
be determined, so far as to express them in integer and
positive numbers. If, therefore, we had two equations, in
order that the question may be indeterminate, those equa-
tions must contain more than two unknown quantities.
Questions of this kind occur in the common books of
arithmetic; and are resolved by the rule called Regula
Ceci, Position, or The Rule of False; the foundation of
which we shall now explain, beginning with the following
example :

25. Question 1. Thirty persons, men, women, and child-
ren, spend 50 crowns in a tavern; the share of a man is
3 crowns, that of a woman 2 crowns, and that of a child is
1 crown : how many persons were there of each class?

If the number of men be p, of women ¢, and of children
r, we shall have the two following equations :

1. p+ ¢q+r=30,and

2. 3p+2g+r=>50,
from which it is required to find the value of the three
letters p, ¢, and r, in integer and positive numbers. The
first equation gives r=30—p—¢; whence we imme-
diately conclude that p+¢ must be less than 30; and,
substituting this value of 7 in the second equation, we have
2p +q+30=>50; so that ¢ =20—2p, and p+qg =

* See the Appendix to this chapter, at Art. 3. of the Additions
by De la Grange.
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20—p, which evidently is also less than 30. Now, as we
may, in this equation, assume all numbers for p which do
not exceed 10, we shall have the following eleven answers :
the number of men p, of women ¢, and of children r,
being as follow :

p= 0, 1, 2, 3, 4, 5, 6, 7, 8 9, 10;

g=20, 18, 16, 14, 12, 10, 8, 6, 4, 2, O;

r=10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20;
and, if we omit the first and the last, there will remain 9.

26. Question 2. A certain person buys hogs, goats,
and sheep, to the number of 100, for 100 crowns; the
hogs cost him 31 crowns a-piece; the goats, 11 crown ; and
the sheep, 1 a crown. How many had he of each ?

Let the number of hogs be p, that of the goats ¢, and
of the sheep r, then we shall have the two following
equations :

1. p+ g+ r=100,
2. Hp+ 139+34r=100;
the latter of which being multiplied by 6, in order to
remove the fractions, becomes, 21p + 8¢ +3r =600. Now,
the first gives r=100—p—gq; and if we substitute this
value of r in the second, we have 18p-+56¢=2300, or

5q = 300 — 18p, and ¢= 60 — %ﬂ; consequently, 18p

must be divisible by 5, and therefore, as 18 is not divisible
by 5, p must contain 5 as a factor. Ifwe therefore make
p="5s, we obtain ¢g=60—18s, and r=13s+40; in which
we may assume for the value of s any integer number
whatever, provided it be such, that ¢ does not become
negative : but this condition limits the value of s to 3; so
that if we also exclude 0, there can only be three answers
to the question ; which are as follow:

When s= 1, 2, 3,

J’ p= 5, 10, 15,
We have|g =42, 24, 6,
L‘ =53, 66, 79.

27. In forming such examples for practice, we must
take particular care that they may be possible ; in order
to which, we must observe the following particulars :

Let us represent the two equations, to which we were
just now brought, by

1. z+ y+ z=a, and
2. fx+gy+hz=b,
in which f, g, %, as well as @ and b, are given numbers.
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Now, if we suppose that among the numbers f; g, and £,
the first, f, is the greatest, and % the least, since we have
Jr+fy+fz, or (x+y+2)f=fa, (because z+y+2=a)
1t is evident, that fr+ fy + fz is greater than fr+gy + 4z ;
consequently, fa must be greater than b, or b must be less
than fa. Farther, since Az + &y + Az, or (v +y+2)h=ra,
and Az + hy+hz is undoubtedly less than fx+ gy + Az,
ha must be less than b, or b must be greater than Za. Hence
it follows, that if & be not less than fa, and also greater than
ha, the question will be impossible : which condition is
also expressed, by saying that b must be contained between
the limits fa and ka; and care must also be taken that it
may not approach either limit too nearly, as that would
render it impossible to determine the other letters.

In the preceding example, in which ¢=100, f=3%, and
k=1, the limits were 350 and 50. Now, if we suppose
b=>51, instead of 100, the equations will become

z+y+2=100, and 3tr+ 11y +Lz=51;
or, removing the fractions, 21z +8y+32z=306; and if
the first be multiplied by 3, we have 3z 43y +32=300.
Now, subtracting this equation from the other, there re-
mains 18z +5y=6 ; which is evidently impossible, because
z and y must be integer and positive numbers.*

28. Goldsmiths and coiners make great use of this rule,
when they propose to make, from three or more kinds
of metal, a mixture of a given value, as the following ex-
ample will shew.

Question 3. A coiner has three kinds of silver, the first
of 7 ounces, the second of 54 ounces, the third of 41
ounces, fine per marc ;+ and he wishes to form a mixture
of the weight of 30 marcs, at 6 ounces: how many marcs
of each sort must he take ?

If he take z mares of the first kind, y mares of the
second, and z marcs of the third, he will have z +y+2=
30, which is the first equation.

Then, since a mare of the first sort contains 7 ounces of
fine silver, the x mares of this sort will contain 7z ounces
of such silver. Also, the y marcs of the second sort will
contain 51y ounces, and the z mares of the third sort will
contain 41z ounces, of fine silver ; so that the whole mass
will contain 72+ 51y +41z ounces of fine silver. As this
mixture is to weigh 30 marcs, and each of these marcs must
contain 6 ounces of fine silver, it follows that the whole mass

* Vide Article 22. + A marc is eight ounces.
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will contain 180 ounces of fine silver; and thence results
the second equation, 7z +53y +412=180, or 142+ 11y +
92=360. If we now subtract from this equation nine
times the first, or 9z +9y +92=270, there remains 5z +
2y=90, an equation which must give the values of z and
y in integer numbers; and with regard to the value of z,
we may derive it from the first equation z=30—z—y.
Now, the former equation gives 2y=90—5z, and

y=45— 5—;; therefore, if z=2u, we shall have y =45

—5u, and z=3u—15; which shews that » must be
greater than 4, and yet less than 10. Consequently, the
question admits of the following solutions :

If «=5, 6, 7, 8§ 9,

z=10, 12, 14, 16, 18,
Then 4y =20, 15, 10, 5, O,
z= 0, 3, 6, 9, 12.

29. Questions sometimes occur, containing more than
three unknown quantities ; but they are also resolvible in
the same manner, as the following example will shew.

Question 4. A person buys 100 head of cattle for 100
pounds; viz. oxen at 10 pounds each, cows at 5 pounds,
calves at 2 pounds, and sheep at 10 shillings each. How
many oxen, cows, calves, and sheep, did he buy?

Let the number of oxen be p, that of the cows ¢, of calves
7, and of sheep s. Then we have the following equations :
1. p+ g+ 7+ s=100;

2. 10p +5g+2r+1s=100;
or, removing the fractions, 20p + 10¢ + 4r+s =200;
then subtracting the first equation from this, there remains
19p +9¢ +3r=100; whence
3r =100—19p—9¢, and

r= 33+ 1 —6p—1ip—3¢; or

r= 33— 6p—39+ -1?1—7;
whence 1 — p, or p — 1, must be divisible by 3 ; therefore
if we make

p—1 =3¢ wehave

p =3t +1

9=9
r=27—19 — 3¢
s=172+ 2q¢ + 16¢;
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whence it follows, that 19¢+ 3¢ must be less than 27, and
that, provided this condition be observed, we may give
any value to z and ¢. 'We have therefore to consider the
following cases :

1. Ift =0 2. Ift= 1
we have p = 1 = 4
79=q g9= 9
s —72+42¢ s =88+2¢.
We cannot make ¢=2, because r would then become
negative.

Now, in the first case, ¢ cannot exceed 9; and, in the
second, it cannot exceed 2; so that these two cases give
the following solutions, the first giving the following ten
answers :

1. 2. 3. 4. 5. 6. 7. 8. 9.10.
p=11 111 111 11
g=0 12 3 4 5 6 7 8 9
r=272 21181512 9 6 3 0

§=7274 76 78 80 82 84 86 83 90
And the second furnishes the three following answers :

1. 2. 3.
g= 0 1 2
r= 8 b5 2
s =88 90 92

There are, therefore, in all, thirteen answers, which are
reduced to ten if we exclude those that contain zero, or 0.
30. The method would still be the same, even if the
letters in the first equation were multiplied by given
numbers, as will be seen from the following example.

Question 5. To find three such integer numbers, that if
the first be multiplied by 3, the second by 5, and the third
by 7, the sum of the products may be 560 ; and if we
multiply the first by 9, the second by 25, and the third
by 49, the sum of the products may be 2920.

If the first number be z, the second y, and the third 2,
we shall have these two equations,

1. 3z+ 5y+ 7z= 560

2. 92 + 25y +492=2920.
And here, if we subtract three times the first, or 9z + 15y +
2lz= 1680, from the second, there remains 10y + 28z
= 1240 ; dividing by 2, we have 5y + 142 =620 ; whence
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we obtain y =124— 12—2- : so that z must be divisible by

5. If therefore we make 2z = bu, we shall have y =
124—14u; which values of y and =z being substituted in
the first equation, we have 3z —35u+620=>560 ; or 3z=
35u — 60, and z= 33ﬂ — 20; therefore we shall make
u =3¢, from which we obtain the following answer,
= 35t — 20, y = 124 — 42¢, and z = 15¢, in which we
must substitute for ¢ an integer number greater than 0
and less than 3: so that we are limited to the two
following answers :

t=1, =15,y =82,z =15.
If{t=2,}wehave{ — 50, y = 40, z = 30.

CHAPTER III.

Of Compound Indeterminate Equations, in whick one
of the Unknown Quantities does not exceed the First
Degree.

31. We shall now proceed to indeterminate equations,
in which it is required to find two unknown quantities,
one of them being multiplied by the other, or raised to a
power higher than the first, whilst the other is found only
in the first degree. It is evident that equations of this
kind may be represented by the following general
expression :
a+bz +cy+da® +exy +f2° + ga'y + ha' + ka®y +, &e. = 0.
As in this equation y does not exceed the first degree, that
letter is easily determined ; but here, as before, the values
both of x and y must be ass1gned in integer numbers.

We shall consider some of those cases, beginning with
the easiest.

32. Question 1. To find two such numbers, that their
product added to their sum may be 79.

Call the numbers sought x and y: then we must have
zy+x+y="79; so that zy +y =79—z, and

9—=zx
Y= r T =
we see that z + 1 must be a divisor of 80. Now, 80 having
several divisors, we shall also have several values of z, as
the following Table will shew :

l+ =T by actual division, from which
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The divisors of 80 are 1 2 4 5 81016 20 40 80

thereforez= 0 1 3 4 7 91519 39 79
and y=79391915 9 7 4 3 1 O
But as the answers in the bottom line are the same as
those in the first, inverted, we have, in reality, only the
five following ; viz.
z= 0, 1, 3, 4, 7,and
y=19, 39,19, 15, 9.
33. In the same manner, we may also resolve the
general equation zy + az + by =c; for we shall have

zy + by=c—ax, and y = ca:_:;, or, dividing ¢—az by
z+b, y=—a+ af:[;: ; that is to say, z+b must be a

divisor of the known number ab+c; so that each divisor
of this number gives a value of z. If we therefore make
ab+c=fyg, we have
y=;v—% —a; and supposing z+b=f, or z=f—b, it is
evident that y=g—a; and, consequently, that we have
also two answers for every method of representing the
number ab+c by a product, such as fg. Of these two
answers, one is = f—b, and y=g—a; and the other
is obtained by making x+b =g, in which case z=g~—0,
and _y=f—a

If, therefore, the equation 2y + 2z + 3y = 42 were
proposed, we should have a =2, =3, and c=42; con-

*

sequently, y = ;1-—_?_3 —2. Now, the number 48 may be
represented in several ways by two factors, as fy: and in
each of those cases we shall always have either z = f —3,
and y=g—2; or else a=¢g—3, and y=f—2. The
analysis of this example is as follows :

Factors | 1 x 48 | 2 x24 | 3 x 16 | 4x 12 |6X%x 8

wymywlymymy

Numbers| —2 | 46| —1| 22 0
or 451 —11 21 0 13

141 103 6
1{9 21514

34. The equation may be expressed still more generally,
by writing mzy = ax + by + ¢; where a, b, ¢, and m, are

* That is ad 4 ¢ =6 J- 42 =48.
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given numbers, and it is required to find integers for x
and y that are not known.

If we first separate y, we shall have y= 7%:‘%__3; and

removing z from the numerator, by multiplying both sides
by m, we have

m __max +mc _ mc + ab by division
V= "ma—b mz—p > ) Grvision.

We have here a fraction whose numerator is a known
number, and whose denominator must be a divisor of that
number; let us therefore represent the numerator by a
product of two factors, as fg (which may often be done in
several ways) and see if one of these factors may be com-
pared with mr—b>, so that mx—b=f. Now, for this

purpose, since z= _f_;;_lg, J+b must be divisible by m;

and hence it follows, that out of the factors of mc +ab, we
can employ only those which are of such a nature, that,
by adding & to them, the sums will be divisible by m.
We shall illustrate this by an example.

Let the equation be zy = 2z + 3y + 18. Here, we

have
27418 _ 102490 _ 9%
Y=gy by =—F—5=2+5—3;

it is therefore required to find those divisors of 96 which,
added to 3, will give sums divisible by 5. Now, if we
consider all the divisors of 96, which are 1, 2, 3, 4, 6, 8,
12, 16, 24, 32, 48, 96, it is evident that only these three
of them, viz. 2, 12, 32, will answer this condition.

Therefore,
1. If 5z — 3 = 2, we obtain 5y = 50, and
consequently z = 1, and y = 10.
2. If52z — 3 = 12, we obtain by = 10, and
consequently z = 3, and y = 2.
3. If52 — 3 = 32, weobtain by = 5, and
consequently z = 7, and y = 1.

35. As in this general solution we have

mc +ab

mz—b’

it will be proper to observe, that if a number, contained in

the formula mc + ab, have a divisor of the form .mz—b, the
quotient in that case must necessarily be contained in the

my—a:
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formula my — a: we may therefore express the number
mc+ab by a product, such as (mx—b) x (my—a). For
example, let m=12,a=5, b=7, and ¢ =15, and we
mc + ab 19y —5 — 215

mi—b’ YT T 19,7

Now, the divisors of 215 are 1, 5, 43, 215; and we
must select from these such as are contained in the
formula 12z — 7; or such as, by adding 7 to them, the
sum may be divisible by 12; but 5 is the only divisor that
satisfies this condition ; so that 122—7 =5, and 12y—5
=43. In the same manner, as the first of these equations
gives z = 1, we also find y, in integer numbers, from the
other, namely, y =4. This property is of the greatest
importance with regard to the theory of numbers, and
therefore deserves particular attention.

have, for my—a=

36. Let us now consider also an equation of this kind,
zy+a* =2 +3y+29. First, it gives us

= w, or, by division, y=—z—1+ x—Q_G—S; and

x263: so that x—3 must be a divisor of 26;

and, in this case, the divisors of 26 being 1, 2, 13, 26, we
obtain the three following answers :

l.x —3 =1, orx =4; go that
y+x+l=y+5=26,and_y=2];

2. x —3=2,0rx =5; so that
_1/+x+1=_y+6=l3,andy=7;

3. z— 3 =13, or z = 16; so that, if
y+2x+ 1=y + 17 =2,y must be = —15.

This last value, being negative, must be omitted ;
and, for the same reason, we cannot include the case,
xz — 3 =26.

37. It would be ununecessary to analyse any more of
these formule, in which we find only the first power of ,
and higher powers of z; for these cases occur but seldom ;
and, besides, they may always be resolved by the method
which we have explained. But when y also is raised to
the second power, or to a degree still higher, and we wish
to determine its value by the above rules, we obtain
radical signs, which contain the second, or higher powers
of z; and it is then necessary to find such values
of z, as will destroy the radical signs, or the irrationality.
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Now, the great art of Indeterminate Analysis consists in
rendering those surd, or incommensurable formule
rational : the methods of performing which will be
explained in the following chapters.*

QUESTIONS FOR PRACTICE.

1. Given 24x=13y+ 16, to find z and y in whole num-
bers. Ans. z=5, and y=8,
2. Given 87z +256y=15410, to find the least value of
z, and the greatest of y, in whole positive numbers.
Ans. =30, and y=12800.
3. What is the number of all the possible values of , y,
and z, in whole numbers, in the equation 5z +7y+
112=2247 Ans, 60,
4. How many old guineas at 21s. 6d.; and pistoles at
17s. will pay 100/. ? and in how many ways can it be done?
Ans. Three different ways; that is,
18, 62, 105 pistoles, and 78, 44, 10 guineas.
5. A man bought 20 birds for 20 pence; consisting of
geese at 4 pence, quails at 1d. and larks at 1d. each ; how
many had he of each?
Ans. 3 geese, 15 quails, and 2 larks.
6. A, B, and C, and their wives P, Q, and R, went to
market to buy hogs ; each man and woman bought as many
hogs, as they gave shillings for each; A bought 25 hogs
more than Q, and B bought 11 more than P. Also each
man laid out three guineas more than his wife. Which
two persons were respectively, man and wife?
Ans. Band Q, C and P, A and R.
7. To determine whether it be possible to pay 100/. in
guineas and moidores only ? Ans. Tt is not possible.
8. I owe my friend a shilling, and have nothing about
me but guineas, and he has nothing but louis d’ors, valued
at 17s. each; how must I acquit myself of the debt?
Ans. T must pay him 13 guineas, and he must give
me 16 louis d’ors.
9. In how many ways is it possible to pay 1000/. with
crowns, guineas, and moidores only ? Ans. 70734.
10. To find the least whole number, which being
divided by the nine whole digits respectively, shall leave
no remainders. Ans. 2620.

* See the Appendix to this chapter, at Art. 4, of the Addi-
tions by De la Grange.
Y
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CHAPTER 1V.

On the Method of rendering Surd Quantities of the form
v (@+ bz +cz*) Rational.

38. It is required in the present case to determine the
values, which are to be adopted for z, in order that the
formula a+bx+cz? may become a real square; and,
consequently, that a rational root of it may be assigned.
Now, the letters a, b, and ¢, represent given numbers ; and
the determination of the unknown quantity depends chiefly
on the nature of these numbers ; there being many cases
in which the solution becomes impossible. Buteven when
it is possible, we must content ourselves at first with being
able to assign rational values for the letter z, without re-
quiring those values also to be integer numbers; as this
latter condition produces researches altogether peculiar.

39. We suppose here that the formula extends no far-
ther than the second power of x; the higher dimensions
require different methods, which will be explained in their
proper places.

We shall observe first, that if the second power were not
in the formula, and ¢ were =0, the problem would be at-
tended with no difliculty ; for if +/(a+ bx) were the given
formula, and it were required to determine x, so that a + bz

might be a square, we should only have to make a +br=y?,
2
whence we should immediately obtain r= g 3 2. Now,

whatever number we substitute here for y, the value of z
would always be such, that @+ bz would be a square, and
consequently, +/(a+ 6x) would be a rational quantity.

40. Weshall therefore begin with the formula ./ (1 +22);
thatis to say, we are to find such values of z, that, by add-
ing unity to their squares, the sums may likewise be
squares; and as it is evident that those values of x cannot
be integers, we must be satisfied with finding the fractions
which express them.

41. If we supposed 1+4a22=y?, since 1+2% must be a
square, we should have 2?=y*—1, and z=v(y*—1); so
that in order to find z we should have to seek numbers for
y, whose squares, diminished by unity, would also leave
squares ; and, consequently, we should be led to a question
as difficult as the former, without advancing a single step.
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It is certain, however, that there are real fractions,
which, being substituted for z, will make 1+ x? a square ;
of which we may be satisfied from the following cases :

1. If =4, we have 1+22=%$; and consequently
v (1+a%)=4.

2. 1+42° becomes a square likewise, if z=4, which
gives A/ (1 +a%)=14.

3. If we make z=$;, we obtain 1 +2°=162 the square
root of which is 13.

But it is required to shew how to find these values of z,
and even all possible numbers of this kind.

42. There are two methods of doing this. The first re-
quires us to make /(1422 =z+p; from which sup-
position we have 1+a?=a%+2pa+p?, where the square
x? destroys itself; so that we may express x without a
radical sign. For, cancelling 22 on both sides of the equa-

tion, we obtain 2pz +p?=1; whence we find z = —p—;
a quantity in which we may substitute for  any number

whatever less than unity. Let us therefore suppose p= % ;

m3
then we have r = 2”2 ; and, if we multiply both terms
m
n
. . n?—m?
of this fraction by n2, we shall find 2= .
2mn

43. In order, therefore, that 1 + 22 may become a square,
we may take for m and # all possible integer numbers, and
in this manner find an infinite number of values for x.

N2 e 12
2mn
nt — 2m*n? + mt
4m?n?

1= %;mﬁ; in the numerator, 1+2%= nt + Z::;Zz + m“;
n? 4 m?
2mn
We shall exhibit, according to this solution, some of the
least values of z.
If n=2, 3,
and m=1, 1

Also, if we make, in general, 2= , we find, by

squaring, 1 4+ 2* =1+ ; or, by putting

fraction which is a square, and gives /(1 +2%)=

“

3, 4, 4, 5, 5, 5, 5
, 2, 1, 3, 1, 2, 3, 4,

2 3
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We have x"%’ ’?s" Ts'z"* 185’ ?727 15 H ‘2“(1)‘: T35
44, We have, therefore, 1n general, [Art. 42 43]
(n*—=m? __ (n®+m*)?

@mn)r ~ 2mny® ’
and, if we multiply this equation by (2mn)?, we find

(Zmn)? 4+ (n?—m?2)2=(n? + m?)*

so that we know, in a general manner, two squares, whose
sum gives a new square. This remark will lead to the
solution of the following question :

To find two square numbers, whose sum is likewise a
square number.

We must have p® +¢?=7%; we have therefore only to
make p=2mn, and ¢=n?—m? then we shall have
r=n?+m?

Farther, as (n* +m?)*—(2mn)*=(n*—m?)?, we may also
resolve the following question :

To find two squares, whose difference may also be a
square number.

Here, since p?—g¢°=r?, we have only to suppose
p=n?+m?, and g=2mn, and we obtain r=nt—m2. We
might also make p=n?+m2, and ¢g=n?—m?, from which
we should find r=2mn.

45. We spoke of two methods of giving the form ofa
square to the formula 1+22% The other is as follows :

14

If we suppose »/ (1 +2)=1+ —n—, we shall have

2
l14+2°=1+ 2—”2 + 2 f ; subtracting 1 from both sides,

22
= 2me . mnf This equation being divided by x, we
2m mzx
have 2= — + , or nfr=2mn +m?z, whence
T= —?ﬂt— Having found this value of z, we have
n —

* Thus, if n==3, and m=2, we have, by the last equation,
32+2" 13 13 132
v+A)=5m =1y orltat= e and #=gg — 1.

132 25 5
Then m:J(W > ; that is, T=N1a= T3 * above,
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4m2n? nt 4+ 2mn? 4 m* .
¥ — Lo j— .
1+.¢1:....1+n4 O T = WSt which is the
2 mZ
square of " —. Now, as we obtain from that, the equa-
nt—m?

(@mn)* _ (n®+m?)?
(nt—m?)? ~ (n? — m?)?
(2mn)? + (nf—meYe=(n + m2Y:;

that is, the same two squares, whose sum is also a square.

46. The case which we have just analysed furnishes two
methods of transforming the general formula a + bz + cx?
into a square. The first of these applies to all cases in
which ¢ is a square; and the second to those in which «
is a square. We shall consider both these suppositions.

First, let us suppose that ¢ is a square, or that the given
formula is a-+bx+f%? Since this must be a square,

tion 1 +

we shall have, as before,

we shall make J(‘ﬁ +bx+f%?)=fr+ %, and shall thus
2mfx

2
have a + bz + f2%2? = f%® + — + %, in which the

terms containing z? destroy each other; so that

2 .
a+ br = 2—'”[—:”:%— If we multiply by »?, we obtain
mt—nla
n%a + n?bxr=2mnfx +m? ; hence we ﬁndx_—_m; and,

substituting this value for z, we shall have
mnb—m*f—n?af

’

m*f—na m
~/‘-“+b"+f"’”*>=mL_~W£f+ = 2w

47. As we have got a fraction for z, namely,

2__ e :
nflly—;n‘rllf’ let us make r = g’ then p =m®— n’a, and

2
g=n%b—2mnf; so that the formula a 4 %E-i-fig];— is a

square; and as it continues a square, though multiplied
by the square g2, it follows, that the formula ag® 4+ bpg +f°p®
is also a square, by making p=m*—n%a, and ¢g=nb—2mnf.
Hence it is evident, that an infinite number of answers,
in integer numbers, may result from this expression, be-
cause the values of the letters m and = are arbitrary.

48, The second case which we have to consider, is that in
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which a, or the first term, is a square. Let there be pro-
posed, for example, the formula f2+ bz +cz?, which it is
required to make a square. Here, let us suppose

N (fi+br+caxt)=f+ "—:;,and we shall have

22
%nﬁ + mn;: , in which equation the

terms f? destroying each other, we may divide the remain-
ing terms by z, so that

[P+ bz + cat=f2+

2
b + cx =E;n—f 7%;, or n% + ncx = 2mnf + m%z, or
2mnf—n2b
z(n?c—m?)=2mnf—n?b; or, lastly, z= e

If we now substitute this value instead of z, we have

V(P +bz +cat)=f+ 2mtf — mnb _ nicf + mif —mnb

n2c—m? n*c—m? ?

and making z=§, we may, in the same manner as before,
transform the expression f2¢%+bpg+cp? into a square,
by making p=2mnf—n?b, and g=n%a—m?2.

49. Here we have chiefly to distinguish the case in
which ¢=0, that is to say, in which it is required to make
a square of the formula bz +ca?; for we have only to

suppose/ (bz +cz?) = %f, from which we have the equa-

tion bz +cx? = 7—7%7—2; which, divided by z, and multiplied

. bn?
by 72, gives bn®+ cn*x=m%z ; and, = oo e 3

If we seek, for example, all the triangular numbers
that are at the same time squares, it will be necessary that

2
z ; x’ which is the form of triangular numbers, must be

a square; and, consequently, 2z°+ 2z must also be a
mx?

square. Let us, therefore, suppose pe;

to be that square,
2 .

m—on "

which value we may substitute, instead of m and =, all pos-

and we shall have 2n%x 4 2n2=m?z, and z=
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sible numbers ; but we shall generally find a fraction for
z, though sometimes we may obtain an integer number.
For example, if m=3, and n=2, we find x=8, the trian-
gular number of which, or 36, is also a square.

We may also make m=7, and »n=>5; in this case,
x=—>50, the triangle of which, 1225, is at the same time
the triangle of + 49, and the square of 35. We should
have obtained the same result by making n=7 and m=10;
for, in that case, we should also have found x=49.

In the same manner, if m=17 and n=12, we obtain
z=288; the triangular number of which is

z(x4+1) 288x289 83232
5 = ) =— = 144 x 289,
which is a square, whose root is 12 x 17=204.

50. We may remark, with regard to this last case, that
we have been able to transform the formula bz + cx? into a
square from its having a known factor, z. This obser-
vation leads to other cases, in which the formula a +bx+
cz® may likewise become a square, even when neither a
nor ¢ is a square.

These cases occur when a+bz+cz? may be resolved
into two factors; and this happens when b%—4ac is a
square : to prove which, we may remark, that the factors
depend always on the roots of an equation; and that,
therefore, we must suppose a-bx+cax?=0. This being
laid down, we have ¢z?= —bxr~a, or
= — b—f —-g, whence, by completing the square, &ec.,
we find

b b2« . b, (b*—4ac)
=gt (za ‘z)’ orT=—gE T
and, it is evident, that if 62—4ac bhe a square, this quantity
becomes rational.

Therefore let 5% — 4ac = d?; then the roots will be

_gcid, that is to say, z = —bxd

5o and, consequently,

the divisors of the formula a+ bz + ca® are x4 ——

2c
z+ [L;_C—d If we multiply these factors together, we shall be

, and

brought to the same formula again, except thatit is divided
. x b d? .
by c¢; for the product is :c2+—c- +4_c’~‘ — i@’ and since

d?*=0%—4ac, we have
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,  bx b b2 dac _ N gz_:{
At T gt )
multiplied by ¢, gives ca®+br+a. We have, therefor.e,
only to multiply one of the factors by ¢, and we obtain

the formula in question expressed by the product,

/ b d b d ) .

(e t5=5)x (s 3+ 5,);
and it is evident that this solution must be applicable
whenever 5?—4ac is a square.

51. From this results the third case, in which the for-
mula @ +bz+c2? may be transformed into a square ;
which we shall add to the other two.

52. This case, as we have already observed, takes place,
when the formula may be represented by a product, such
as (f+gx) x (k+kx). Now, in order to make a square
of this quantity, let us suppose its root, or

+§; which being

N (f+ gx) x (b + k) =7ﬂ%9£); and we shall then

have (f + gz) x (h + kx) = _n}f_(f_%@j ; and dividing

2
this equation by f+ gz, we have b+ kr= 7_n_(_f;t_-;g__x) ; or
hn? + knfx=fm?+ gm*z ;

Jfm®—hn?
kn?—gm?

To illustrate this, let the following questions be pro-
posed.

Question 1. To find all the numbers, z, such, that if 2
be subtracted from twice their square, the remainder may
be a square.

Since 21° —2 is the quantity which is to be a square,
we must observe, that this quantity may be expressed by
the factors, 2(x+1) x (z—1). If, therefore, we suppose

and, consequently, z=

2
its root= zz(anl), we have 2(z+1) x (x—l):w%ll H
dividing by x+1, and multiplying by n2, we obtain
2 2
2n%x —2nt=m2x +m?, and z= M
2nt—m?

If, therefore, we make m=1, and n=1, we find 2=3,
and 222 —2=16=4¢,
If m=3 and n=2, we have x=—17. Now, as z is
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only found in the second power, it is indifferent whether
we take #=-—17, or x=4-17 ; either supposition equally
gives 222 —2=576=242,

53. Question 2. Let the formula 6 + 13z +622 be pro-
posed to be transformed into a square. Here, we have
a=6, b=13, and ¢=6, in which neither a nor ¢ is a
square. If, therefore, we try whether 52>—4ac becomes a
square, we obtain 25; so that we are sure the formula
may be represented by two factors; and those factors are

(24+3x)x (3+2x). If TQ—%@ is their root, we have
2 2
(2+32) x (3+22) = "2 +3D"

n2
which becomes 3n2 4 2n°r=2m? 4 3m2x, whence we find
_ 2mt—3n® _ 3nt—2m*
T 202 —3m? 3m—2n%

rator of this fraction may become positive, 32° must be
greater than 2m?; and, consequently, 2m? less than 3n®:

x Now, in order that the nume-

2
that is to say, 7—7% must be less than 3. With regard to the
n

denominator, if it must be positive, it is evident that 3m?
2

must exceed 2x%; and, consequently, 7%2— must be greater

than 2. If, therefore, we would have the positive values

of z, we must assume such numbers for m and n, that

2
Znn—z may be less than ¢, and yet greater than .

For example, let m=6, and n=>5; we shall then have

2 N
7.7;_2.= 3¢, which is less than £, and evidently greater than

2, whence x = 4.

54. This third case leads us to consider also a fourth,
which occurs whenever the formula a+bx+cz® may be
resolved into two such parts, that the first is a square, and
the second the product of two factors : that is to say, in this
case, the formula must be represented by a quantity of the
form p?+gr, in which the letters p, g, and r express quan-
tities of the form f4gx. It is evident that the rule for

this case will be to make / (p* + gr)=p + %l ; for we shall
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92

2
2mpg

thus obtain p? + ¢r=p? + —= in which the terms

p* vanish ; after which we may divide by ¢, so that we find

r= Qmp + — q , or n%r= 2nmp + m?g, an equation from
whlch z is easily determined. This, therefore, is the
fourth case in which our formula may be transformed into
a square; the application of which 1s easy, and we shall
illustrate it by a few examples.

55. Question 3. Required a number, z, such, that double
its square, shall exceed some other square by unity ; that
is, if we subtract unity from this double square, the re-
mainder may be a square.

For instance, the case applies to the number 5, whose
square 25, taken twice, gives the number 50, which is
greater by | than the square 49.

According to this enunciation, 222—1 must be a square ;
and as we have, by the formula, a=—1, =0, and ¢=2,
it is evident that neither a nor ¢ is a square ; and farther,
that the given quantity cannot be resolved into two factors,
since b2—4ac=8 which is not a square; so that none of
the first three cases will apply. But, according to the
fourth, this formula may be represented by

2+ (= 1)=2+ (@ — 1D x(x+1).

m(xn+l)’ we shall

If, therefore, we suppose its root = =+
have

&+ @+ 1) x (z=1)mge 4 @+ | ma+ 1)

n n?

This equation, after having expunged z¢, and divided the
other terms by z+1, gives

nx —n2=2mnzx + m?z +m? ; whence we find

m? 4+ n? . .
; and, since in our formula, 22— 1, the

1= —
n2—2mn—m?’

square z? alone is found, it is indifferent whether we take
positive or negative values for z. We may at first even
write —im, instead of 4+ m, in order to have

m? 4 n?
T 024+ 2mn—me’

If we make m=1, and n=1, we find z=1, and
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222—1=1; or if we make m=1, and n=2, we find
x =4, and 2z°—1= % ; lastly, if we suppose m=1,
and n=—2, we find z=—5, or x=+5, and 222—1=49,

56. Question 4. To find numbers whose squares doubled
and increased by 2, may likewise be squares.

Such a number, for instance, is 7, since the double of
its square is 98, and if we add 2 to it, we have the square
100.

We must, therefore, have 22* + 2 a square: and as
a=2, b=0, and ¢ =2, so that neither a nor ¢, nor
b*—4ac, (the last being= —16), are squares, we must
have recourse to the fourth rule.

Let us suppose the first part to be 4, then the second
will be 22°—2=2(x + 1) x (z — 1), which presents the
quantity proposed in the form

44+ (@+D)x@=1).
Now, let 2+ 7”—(%-*;1—) be its root, and by squaring, we
shall have the equation
442x4+ D) x(z—1)=4+

the squares 4, are destroyed ; so that after having divided
the other terms by z+1, we have
2n%r —2n*=4mn +m% +m* ; and, consequently,
x_4mn+m2+2n2
T 2mf—mE
If, in this value, we make m=1, and n=1, we find

x=7,and 22+2=100. But if m=0, and n=1, we have
x=1, and 222 4+2=4.

57. 1t frequently happens, also, when none of the first
three rules applies, that we are still able to resolve the
formula into such parts as the fourth rule requires, though
not so readily as in the foregoing examples.

Thus, if the question comprises the formula 7+ 15z
+132%, the resolution we speak of is possible; but the
method of performing it does not readily occur to the
mind. It requires us to suppose the first part to be
(1—=2)%, or 1 —2zx+2%, so that the other may be 6417z
+122°: and we perceive that this part has two factors,
because 172—(4 x 6 x 12), =1, is a square. The two
factors therefore are (2 + 3z) x (3 + 4x); so that the
formula becomes (1—=z)2+(2+43z) x (3+4x), which we
may now resolve by the fourth rule.

,in which

Am(z+1) m¥x+1)
+ 2
n 7
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But, as we have observed, it cannot be said that this
analysis is easily found ; and therefore we shall explain
a general method for discovering, beforehand, whether
the resolution of such formule be possible or not; for
there is an infinite number of them which cannot be
resolved at all : such, for instance, as the formula 32242,
which can in no case whatever become a square. On the
other hand, it is sufficient to know a single case, in which
a formula is possible, to enable us to find all its anwers;
and this we shall explain at some length.

58. From what has been said, it may be observed, that
all the advantage that can be expected on these occasions,
is to determine, or suppose, any case in which such a
formula as a + bz +cz?, may be transformed into a square ;
and the method which naturally occurs for this, is to
substitute small numbers successively for z, until we meet
with a case which gives a square.

Now, as z may be a fraction, let us begin with substi-

tuting for 2 the general fraction %; and, if the formula

14 t° . . o .
a+ % -+ 2—2 which results from it, be a square, it will be
so also after having been multiplied by «?; so that it only
remains to try to find such integer values for ¢ and u, as
will make the formula au? + btu + ct? a square; and it is

. . .0 t .
evident, that after this, the supposition of z = — cannot fail

to Eive the formula a + bx +ca? equal to a square.

ut if, whatever we do, we cannot arrive at any satis-
factory case, we have every reason to suppose that it is
altogether impossible to transform the formula into a
square ; which, as we have already said, very frequently
happens.

59. We shall now shew, on the other hand, that when
one satisfactory case has been determined, it will be easy to
find all the other cases which likewise give a square ; and
it will be perceived, at the same time, that the number of
those solutions is always infinitely great.

Let us first consider the formula 2 + 722, in which a=2,
b=0, and ¢=7. This evidently becomes a square,
if we suppose z=1. Let us therefore make x=1+y;
then, by substitution, we shall have z*=1+2y +y% and
cur formula, 2+ 722, becomes 9 + 14y + 742, in which the
first term is a square; so that we shall suppose, con-
formably to the second rule, the square root of the new
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formula to be 3+’%i/, and we shall thus obtain the

2052
equation 9+ 14y + 7y*=9 + (L:’:‘—y + mn:/ , in which we may
expunge 9 from both sides, and divide by y: which being
done, we shall have 14n? + 7n?y = 6mn + m?%y ; whence
__ 6mn—14n* d i __ 6mn—Tn*—m**
=5 sz and, consequently, z=—p " o—
in which we may substitute any values we please for m
and =,

2

If we make m=1, and n=1, we have r=—1: or, since
the second power of z stands alone, = + 4, wherefore
18 7

2+7x2=—9—+§= 9‘95.

If m=3, and n=1, we have r=—1, or z==+1.

But if m=3, and n=—1, we have x=17; which gives
2 + 722=2025, the square of 45,

If m=8, and n =3, we shall then have, in the same
manner, x=—17, or z=+17.

But, by making m=8, and n=—3, we find x=271:
so that 24 722 = 514089 = 7172,

60. Let us now examine the formula 522 + 3z + 7, which

becomes a square by the supposition of z=—1. Here, if
we make z =y—1, our formula will be changed into this;

52— 10y + 5
4 + 3y—3
+ 7

5yt — Ty + 9,

the square root of which we will suppose to be 3 — ’—”7;1 ; by

202
which means we have 5y*—7y+9=9— Gmy + m—nz—’ or
5n2y —Tnt=—6mn+m?y ; whence,

Tn2—6mn 2n2—6mn 4 m?
y= m; and lastly, T = W

0

* Because x was made =1+ ; and 1 is here added to the

fractional . 6mn—14n®
ractional expression, —z g~ 5.
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If m=2, and n=1, we have z=—6, and, consequently,
522+ 3x4+7 =169 =13

But if m=—2, and » =1, we find £ =18, and 522+ 3z
+7=1681=41%

61. Let us now consider the formula, 72° 415z + 13, in
which we must begin with the supposition of z = 5
Having substituted and multiplied by »?, we obtain
7t2 4 15¢u + 13u2, which must be a square. Let us there-
fore try to adopt some small numbers as the values of ¢
and u.
Ift=1,andu=1

; —_ 3 :23 Z : }_1,} the formula will become{ = 71

t= 3, and u =1,

Now, 121 being a square, it is a proof that the value of
x =23 answers the required condition; let us therefore
suppose & =y +3, and, by substituting this value in the
formula, we shall have
Ty?+42y +63 + 15y +45 413, or
Ty*+57y +121.

Therefore let the root be represented by 11 + 29 and

2

we shall have 7y% 4 57y 4 121 =121 +22my , OF

p 57n9—22mn
Tn'y 4+ 57n% = 22mn +m?%y ; whence y = Tt and
= S7n?—22mn 13— 36n2—22mn + 3m?

T omE—Tn? - m2—7n? )

Suppose, for example, m =3, and n=1; we shall then
find x=~—4, and the formula becomes

Tx2+ 15z + 13 =23 = (§)2

Ifm=1,and n=1, we find 2a=—17; if m=3, and
=—1, we have x % 149, and the formula

T2? +152 +13 = 120400 = (347)2,

62. But frequently it is only lost labor to endeavour to
find a case, in which the proposed formula may become a
square. We have already said that 32242 is one of those
unmanageable formule ; and by givingit, according to this
rule, the form 3¢°+2u?, we shall perceive that, whatever
values we give to ¢ and u, this quantity never becomes
a square number. As formule of this kind are very
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numerous, it will be worth while to fix on some characters,
by which their impossibility may be perceived, in order
that we may be often saved the trouble of useless trials;
which shall form the subject of the following chapter.*

CHAPTER V.

Of the Cases in which the Formula a+ bx +ca® can never
become a Square.

63. As our general formula is composed of three terms,
we shall observe, in the first place, that it may always be
transformed into another, in which the middle term is

wanting. This is done by supposing z =3/2__cé; which
substitution changes the formula into

by—b* | y*—2by+b*  4dac—b+y°
a+ 2 + 4c s or 4c

2
must be a square, let us make it equal to %, we shall then

2
have 4ac—b*+y =4—c£-, = cz?; and, consequently,

; and since this

y? =c22+b?—4ac. Whenever, therefore, our formula is
a square, this last cz?4b2—4ac will be so likewise; and
reciprocally, if this be a square, the proposed formula will
be a square also. If therefore we write ¢, instead of
b* — 4ac, the whole will be reduced to determining
whether a quantity of the form cz?+ ¢ can become a square
or not. And as this formula consists only of two terms,
it is certainly much easier to judge from that whether it
be possible or not; but in any further inquiry, we must
be guided by the nature of the given numbers ¢ and ¢.
64. Itisevident that if £=0, the formula c2z2 can become
a square only when ¢ is a square ; for the quotient arising
from the division of a square by another square being like-
wise a square, the quantity c2? cannot be a square, unless

* See the Appendix, Ch. V. p. 537, of the Additions by De
la Grange.
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2
c;zg_, that is to say, ¢, be one. So that when ¢ is not a

square, the formula cz® can by no means become a square;
and, on the contrary, if ¢ be itself a square, cz? will also be
a square, whatever number be assumed for z.

65. If we wish to consider other cases, we must have
recourse to what has been already said on the subject of
different kinds of numbers, considered with relation to
their division by other numbers.

We have seen, for example, that the divisor 3 produces
three different kinds of numbers. The first comprehends
the numbers which are divisible by 3, and may be ex-
pressed by the formula 3z.

The second kind comprehends the numbers which,
being divided by 3, leave the remainder 1, and are con-
tained in the formula 3z +1.

To the third class belong numbers which, being divided
by 3, leave 2 for the remainder, and which may be repre-
sented by the general expression 3n+ 2.

Now, since all numbers are comprehended in these three
formule, let us therefore consider their squares. First,
if the question relate to a number included in the formula
3n, we see that the square of this quantity being 92, it is
divisible not only by 3, but also by 9.

If the given number be included in the formula 3z +1,
we have the square 9n? 4 6z + 1, which, divided by 3,
gives 3n?+2n, with the remainder 1; and which, conse-
quently, belongs to the second class, 3z+1. Lastly, if
the number in question be included in the formula 3242,
we have to consider the square 9n? + 122 4+ 4; and
if we divide it by 3, we obtain 32° + 4n + 1, and the
remainder 1; so that this square belongs, as well as the
former, to the class 3n+1.

Hence it is obvious, that square numbers are only of
two kinds with relation to the number 3; for they are
either divisible by 3, and in this case are necessarily
divisible also by 9; or they are not divisible by 3, in
which case the remainder is always 1, and never 2; for
which reason, no number contained in the formula 3742
can be a square.

66. Itis easy, from what has just been said, to shew,
that the formula 322+ 2 can never become a square, what-
ever integer, or fractional number, we choose to substitute
for 2. For, if z be an integer number, and we divide the
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formula 32°+2 by 3, there remains 2 ; therefore it eannat
bea square. Next, if x be a fraction, let us express it by 5,

supposing it already reduced to its lowest terms, and that
t and « have no common divisor. In order, therefore, that

3¢ . .
F +2 may be a square, we must obtain, after multiply-

ing by »?, 312+ 2u? also a square. Now, thisis impossible ;
for the number « is either divisible by 3, or it is not: if
it be, ¢ will not be so, for ¢ and » have no common divisor,

. . t. . . . .
since the fraction ~isin its lowest terms. Therefore, if

32
we make u=3f, as the formula ?;2——{-2, becomes 3¢*+ 187,

it is evident that it ean be divided by 3 only once, and not
twice, as it must necessarily be ifit were a square ; in fact,
if we divide by 3, we obtain ¢*+6f2. Now, though one
part, 6/, isdivisible by 3, yet the other, ¢2, being divided
by 3, leaves 1 for a remainder.

Let us now suppose that u is not divisible by 3, and see
what results from that supposition. Since the first term
is divisible by 3, we have only to learn what remainder
the second term, 2u?, gives. Now, u? being divided by 3,
leaves the remainder I, that is to say, it is a number of the
class 3n41; so that 242 is a numbher of the class 6n+2;
and dividing it by 3, the remainder is 2 ; consequently, the
formula 3¢2+24%, if divided by 3, leaves the remainder 2,
and is certainly not a square number.

67. We may in the same manner demonstrate, that the
formula 3#°+54% likewise can never become a square, nor
any one of the following:

32 4842, 32+ 11u?, 312+ 140?, &e.

in which the numbers 5, 8, 11, 14, &c. divided by 3, leave
2 for a remainder. For, if we suppose that « is divisible
by 3, and, consequently, that ¢ is not so, and if we make
u=3n, we shall always be brought to formule divisible by
3, but not divisible by 9: and if  were not divisible by 3,
and, consequently, »* a number of the kind 3z+1, we
should have the first term, 3¢, divisible by 3, while the
second terms, 5u%, 8u?, 11u?, &c. would have the forms
15245, 24n+8, 33n+11, &c. and, when divided by 3,
would constantly leave the remainder 2.

68. It is evident that this remark extends also to the
general formula, 3¢24(3n+42)u?, which can never be-
come a square, even by taking negative numbers for 2, If,

z
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for example, we should make n= —1, I say, it is im-
possible for the formula 3t2—u? to become a square. This
is evident, if u be divisible by 3: and if it be not, then 2
is a number of the kind 3n+1, and our formula becomes
3t?—3n—1, which, being divided by '3, gives the remain-
der —1, or +2; and in general, ifnbe = —m, we obtain
the formula, 3¢2— (3m—2)u2, which can never become a
square.

69. So far, therefore, are we led by considering the divi-
sor 3; if we now consider 4 also as a divisor, we see that
every number may be comprised in one of the four follow-
ing formule :

dn,4n+1,4n+2, 4n+3.

The square of the first of these classes of numbers is
1622; and, consequently, it is divisible by 16.

That of the second class, 4n+1, is 16122 +8n + 1 ; which,
if divided by 8, the remainder is 1; so that it belongs to
the formula 82+ 1.

The square of the third class, 4n+2, is 162%+16n+4 ;
which, if we divide by 16, there remains 4; therefore this
square is included in the formula 16n +4.

Lastly, the square of the fourth class, 4n+3, being
162%+24n+9, it is evident that dividing by 8 there re-
mains 1.

70. This teaches us, in the first place, that all the even
square numbers are either of the form 16, or 16n+4;
and, consequently, that all the other even formulie, namely,

16n 42, 162 +6, 16248, 167410, 16+ 12, 162 + 14,
can never become square numbers.

Secondly, it shews that all the odd squares are contained
in the formula 8z + 1 ; that is to say, if we divide them by
8, they leave a remainder of 1. And henceit follows, that
all the other odd numbers, which have the form either of
8n+3, or of 8z+5, or of 8n+7, can never be squares.

71. These principles furnish a new proof, that the for-
mula 3¢2 4 2u* cannot be a square. For, either the two
numbers ¢ and u are both odd, or the one is even and the
other odd. They cannot be both even, because in that case
they would, at least, have the common divisor 2. In the
first case, therefore, in which both #2 and «? are contained
in the formula 82+ 1, the first term 3¢%, being divided by
8, would leave the remainder 3, and the other term 2u2
would leave the remainder 2; so that the whole remainder
would be 5: consequently, the formula in question cannot
be a square. But, if the second case be supposed, and ¢ be
even, and u odd, the first term 3¢ will be divisible by 4,
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and the second term 2u%, if divided by 4, will leave the
remainder 2 ; so that the two terms together, when divided
by 4, leave a remainder of 2, and therefore cannot form a
square. Lastly, if we were to suppose u an even number,
as 2s, and ¢ odd, so that #2is of the form 8r 41, our formula
would be changed into this, 24743 +8s?; which, divided
by 8, leaves 3, and therefore it cannot be a square.

This demonstration extendsto the formula3#2 + (8n + 2)u?;
also to this, (8m+3)¢2+2u?, and even to this,
(Bm+3)2 4 (8n+2)u?; in which we may substitute for m
and 7 all integer numbers, whether positive or negative,

72. But let us proceed farther, and consider the divisor
5, with respect to which all numbers may be ranged under
the five following classes:

5n, bn+1, bn+2, 5n+3, bHn+4.

We remark, in the first place, that if a number be of the
first class, its square will have the form 257%; and will
consequently be divisible not only by 5, but also by 25.

Every number of the second class will have a square of
the form 25n2+10r+1; and as dividing by 5 gives the
remainder 1, this square will be contained in the formula
S5n41.

The numbers of the third class will have for their square
25n?4-20n +4 ; which, divided by 5, gives 4 for the re-
mainder.

The square of a number of the fourth class is 2522+
30749; and if it be divided by 5, there remains 4.

Lastly, the square of a number of the fifth class is
256n%+40r+16; and if we divide this square by 5, there
will remain 1.

When a square number therefore cannot be divided by
5, the remainder after division will always be 1, or 4, and
never 2, or 3: hence it follows, that no square number can
be contained in the formula 5742, or 5n+ 3.

73. From this it may be proved, that neither the formula
5¢% 4 2u2, nor 5¢24-3u?, can be a square. For, either u is
divisible by 52 or it is not: in the first case, these formula
will be divisible by 5, but not by 25; therefore they cannot
be squares. On the other hand, if » be not divisible by 5,
u? will either be of the form 5n+41, or 5n+4. In the
first of these cases, the formula 5¢2+2u? becomes 52+
10n+2; which, divided by 5, leaves a remainder of 2;
and the formula 5¢2+3u2 becomes 5t2416n+3; which,
being divided by 5, gives a remainder of 3; so that neither
the one nor the other can be a square. With regard to the
case of u?=>5n+4, the first formula becomes 52+ 102+ 8 ;
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which, divided by 5, leaves 3; and the other becomes
5t2+ 152+ 12, which, divided by 5, leaves 2; so that in
this case also, neither of the two formule can be a sqnare.

For a similar reason, we may remark, that neither the
formula 5¢2 + (5n +2)u?, nor 5t2 4 (5n +3)u?, can become a
square, since they leave the same remainders that we have
just found. We might even in the first term write 5mt?,
instead of 5¢2, provided m be not divisible by 5.

74. Since all the even squares are contained in the for-
mula 4n, and all the odd squares in the formula 4n+1;
and, cousequently, since neither 4n+2, nor 4n+3, can
become a square, it follows that the general formula,
(4m + 3)#2 + (4n + 3)u? can never be a square. For if ¢ be
even, ¢2 will be divisible by 4, and the other term, being
divided by4, will give 3 for a remainder ; and, if we suppose
the two numbers ¢ and u odd, the remainders of ¢* and of
%2 will be 1; consequently, the remainder of the whole for-
mula will be 2: now, there is no square number, which,
when divided by 4, leaves a remainder of 2,

We shall remark, also, that both m and » may be taken
negatively, or =0, and still the formule 324 3«2, and
3t*—u?, cannot be transformed into squares.

75. In the same manner as we have found for a few di-
visors, that some kinds of numbers can never become
squares, we might determine similar kinds of numbers for
all other divisors. .

If we take the divisor 7, we shall have to distinguish
seven different kinds of numbers, the squares of which we
shall also examine.

Kinds of numbers. Their squares are of the kind.

1. n 49n2 Tn

2. Tn+ 1| 49n2+14n+ 1 | Tn41
3. Tn+ 2 | 4902 +4+28n+ 4 | Tn+4
4, Tn+ 3 | 49n2+42n+ 9 | Tn+2
5. Tn+4+ 4 | 4922 4+-56n4+16 | Tn+2
6. n+4+ 5 | 4902 +70n 425 | Tn+4
7. Tn+ 6 | 49n2+84n+36 | Tn+1.

Therefore, since the squares which are not diyisible by 7
are all contained in the three formule, 7n+1, 7Tn+2,
7n+4, it is evident, that the three other formule, 7n+3,
7n+5, and 7n+6, do not agree with the nature of
squares.

76. To make this conclusion still more apparent, we shall
remark, that the last kind, 7z +6, may be also expressed
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by 7n—1; that, in the same manner, the formula 7n+5
is the same as 7n—2, and 7n +4 the same as 7n—3. This
being the case, it is evident, that the squares of the two
classes of numbers 7n +1, and 7n—1, if divided by 7, will
give the same remainder 1 ; and that the squares of the
two classes, 7n+2, and 7n—2, ought to resemble each
other in the same respect, each leaving the remainder 4.
77. In general, therefore, let the divisor be any number
whatever, which we shall represent by the letter d, the dif-
ferent classes of numbers which result from it will be

dn;

dn+1, dn+2, dn+3, &e.

dn—1, dn—2, dn-3, &c.
in which the squares of dn+1, and dn—1, have this in
common, that, when divided by , they leave the remain-
der 1, so that they belong to the same formula, dn+1; in
the same manner, the squares of the two classes, dn+2,
and dn—2, belong to the same formnla, dn+4. So that we
may conclude, generally, that the squares of the two kiuds,
dn+a, and dn—a, when divided by d, give a common
remainder «?, or that which remaiuns in dividing a? by .

78. These observations are sufficient to point out an in-
finite number of formule, such as a#?+ bu?, which cannot
by any means become squares. Thus, by considering the
divisor 7, it is easy to perceive, that none of these three
formule, 7624 3u2, Tt*+5u°, 7(*+6u?, can ever become
a square; because the division of «2 by 7 only gives the
remainders 1, 2, or 4; and, in the first of these formulee,
there remains either 3, 6, or 5 ; in the second, 5, 3, or 6;
and in the third, 6, 5, or 3; which cannot take place in
square numbers. Whenever, therefore, we meet with such
formule, we are certain that it is useless to attempt dis-
covering any case, in which they cau become squares: and,
for this reason, the considerations, into which we have
Just entered, are of some importance.

If, on the other hand, the formula proposed is not of this
nature, we have seen in the last chapter, that it is sufficient
to find a single case, in which it becomes a square, to
enable us to deduce from it an infinite number of similar
cases.

The given formula, Art. 63, was properly az®+5b;
and, as we usually obtain fractions for z, we supposed

t . . .
T=—, 80 that the problem, in reality, is to transform

at? 4 bu? into a square.
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But there is frequently an infinite number of cases, in
which z may be assigned even in integer numbers; and
the determination of those cases shall form the subject of
the following chapter.

CHAPTER VI.

Of the Cases in Integer Numbers, in whick the Formula
az?+b becomes a Square.

79. We have already shewn [Art. 63], how such formule
as ¢ +bxr +cx?, are to be transformed, in order that the
second term may be destroyed; we shall therefore confine
our present inquiries to the formula, ax?®+5, in which it is
required to find for = only integer numbers, which may
transform that formula into a square. Now, first of all,
such a formula must be possible; for, if it be not, we shall
not even obtain fractional values of z, far less integer ones.

80. Let us suppose then az?+b=y%; a and b being
integer numbers, as well as x and y.

Now, here it is absolutely necessary for us to know, or
to have already found, a case in integer numbers; otherwise
it would be lost labor to seek for other similar cases, as
the formula might happen to be impossible.

We shall, therefore, suppose that this formula becomes
8 square, by making z = f, and we shall represent that
square by g2, so that af? +b=g?, where f and g are known
numbers. Then we have only to deduce from this case
other similar cases; and this inquiry is so much the more
important, as it is subject to considerable difficulties;
which, however, we shall be able to surmount by parti-
cular artifices.

81. Since we have already found af?+b=g?, and like-
wise, by hypothesis, aa?+ b= y?, let us subtract the first
equation from the second, and we shall obtain a new one,
az*—af *=y*—g?, which may be represented by factors
in the following manner; a(z+ f) x (z—f) = (y+g) X
(y—9g), and which, by multiplying both sides by pg, becomes
apq(x +f) x (z—f)=pe(y +9) x (y—g). 1f wenow decom-
pound this equation, by making ap(z+ f) =¢(y+9), and
¢(x—f)=p(y—g), we may derive from these two equations
values of the two letters « and y. [See Art. 92]. The
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first, divided by g, gives y + g="”_’”—$“—ﬁ ; and the

second, divided by p, gives y—g =z'-x——;—(”c Subtracting
(ap*—q)x + (ap2+f12)f or

this from the former, 2¢g =
2g9pq = (ap*—qg*)x +(ap* +f12)f therefore
= Qgpq :— (ap® 2+q 3f’ from which (by substituting this
ap*—q* ap*—q
gx—qf )
p

value of z, in the equation, y~—g = we obtain

y=g+ Qéqqg G +(/°3f9 (I—f In this latter value,
ap*—g°®  (ap*—q*)p
as the first two terms, both contammg the letter g, may

be put into the form y([)—-l-q)_’ and as the other two,
ap®—q*

_2afpg
ap* — g%
all the terms will be reduced to the same denomination,
9lap® +4°)—2afpq

ap?—gq*

82. This operation seems not, at first, to answer our
purpose ; since having to find integer values of z and Y, we
are brought to fractional results ; and it would be required
to solve this new question,—What numbers are we to
substitute for p and ¢, in order that the fraction may
disappear? A question apparently still more difficult
than our original one: but here we may employ a parti-
cular artifice, which will readily bring us to our object,
and which is as follows:

As every thing must be expressed in integer numbers,

containing the letter f, may be expressed by —

and we shall have y =

2
let us make 2 +¢ =m, and 2pg =n; so that in the
ap*—¢ an®—a?
24 o2
equation, z = 29p9__ (ap*+q )f, we may have

apZ_gQ apQ__qQ
x=ng—mf, and y=mg—naf.
Now, we cannot here assume m and z at pleasure, since
these letters must be such as will answer to what has been

glap®—q®) _ gup®—g4*® 299* | gap®*—gq*
* Forg= ap’—q¢®  ap*—q? ; and ap*— ¢ " apt—g?
_ 299*+gap*—gq® __ g(ap®+g?)
- ap"’—q"’ - apQ_qQ
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already determined ; therefore, for this purpose, let us
consider their squares, and we shall find
e CVH200°¢ + ¢ _ 4p°q? .

- a"p*—-Zap"gQ +g4 - azp“——‘Za]ﬂq“’ +q4 ’
a2p4+2“p292+q4_4ap292—a2p4_2ap292+q4_1

a“’p‘*—QapggQ + (14 _a"p“-—QupggZ +94— ’

83. We see, therefore, that the two numbers m and n
must be such, that m?=an?+1. So that, as « is a known
number, we must begin by considering the means of deter-
mining such an integer number for #, as will make an?+1
a square ; for then m will be the root of that square; and
when we have likewise determined the number f so, that
af* + b may become a square, namely g%, we shall obtain
for x and y the following values in integer numbers ;
x =ng—mf, y=mg—naf; and thence, lastly, aa?+ b=y

84. It is evident, that having once determined m and =,
we may write instead of them —m and —n, because the
square n? still remains the same.

But we have already shewn that, in order to find 2 and
y in integer numbers, so that az? + b =y?, we must first
know a case, such that af?+5b may be equal to g?; when
we have therefore found such a case, we must also endea-
vour to know, beside the number a, the values of m and =,
which will give an?+1=m?: the method for which shall
be described in the sequel, and when this is done, we shall
have a new case ; namely, = ng + mf, and y = mg + naf’;
also, az?+b =y

Putting this new case, instead of the preceding, which
was considered as known ; that is to say, writing ng +mf
for f, and mg+naf for g, we shall have new values of z
and y, from which, if they be again substituted for z and y,
we may find as many other new values as we please: so
that, by means of a single case known at first, we may
afterwards determine an infinite number of others.

85. The manner in which we have arrived at this
solution has been very embarrassed, and seemed at first
to lead us from our object, since it brought us to compli-
cated fractions, which an accidental circumstance only
enabled us to reduce: it will be proper, therefore, to
explain a shorter method, which leads to the same
solution.

86. Since we must have az? + b =y, and have already
found af?+b =g?, the first equation gives us b = y*—az?,
and the second gives b = g* — af’?; consequently, also,

, and n? hence,

MmE—ani=
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32 —ax®=g?—af?, and the whole is reduced to deter-
mining the unknown quantities x and y, by means of the
known quantities f and g. It is evident, that for this
purpose we need only make z=f, and y=g; but it is also
evident, that thissupposition would not furnish a new case
in addition to that already known. We shall, therefore,
suppose that we have already found such a number for =,
that an?+ 1 is a square, or that an®+ 1 =m?; which being
laid down, we have m?— an?=1; and multiplying by
this equation the one we had last, we find also y?-az?® =
(92 — af?) x (m? — an?)= g°m® — af 'm? — ag*n?® + a2fn?.
Let us now suppose y=gm +afn, and we shall have
gom? + 2afgmn + a® f *n® — ax? =
gimt—af?m? —ag*nt +a*f?n?,

in which the terms ¢g?m? and a?f?n? are destroyed ; so that
there remains ax?=af*m® + ag®n® +2afgmn, or x? = f2m?
+2fgmn+ g°n?. Now, this formula is evidently a square,
and gives z=fm+gn. Hencewe have obtained the same
formule for x and y as before,

87. It will be necessary to render this solution more
evident, by applying it to some examples.

Question 1. To find all the integer values of x, that
will make 222—1, a square, or give 22— 1 =32

Here we have a =2 and b =—1; and a satisfactory
case immediately presents itself; namely, that in which
z=1,and y=1: which givesus f=1,and g=1. Now, it
is farther required to determine such a value of 2, as will
give 2n? + 1 =m?; and we see immediately, that this obtains
when n =2, and consequently m =3 ; so that every case,
which is known for f and g, giving us these new cases
z =3f + 2¢, and y = 3g + 4f, we derive from the first
solution (=1, and g=1,) the following new solutions:

=1, " z =25, 29, 169
1r{ 5: 1, Then { y =1, 41, 239, &e.

88. Question 2. To find all the triangular numbers,
that are at the same time squares.
224z

2
which is to be also a square; and if we call = the root of
4z

2
have 422+42:=8z%; and also adding 1 to each side, we
have

Let z be the triangular root; then

is the triangle,

this square, we have

= z?: multiplying by 8, we

422+ 424+ 1=(224+1)2=8x*+1.
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Hence the question is to make 822+ 1 become a square;
for if, we find 822+ 1 =y?, we shall havey =22+1, and
consequently, the triangular root required will be

y—1

2o e

Now, we have a=8, and b =1, and a satisfactory case
immediately occurs ; namely, f=0, and g=1. Itisfarther
evident, that 8n2+4+1=m?, if we maken=1,and m=3;
therefore z =3f + ¢, and y=3¢ +8f; and since

= ‘Z—;—, we shall have the following solutions :

g=f=0 1] 6352041189
y=g=1 311799577 | 3363
2 =Z%l =0|1] 849288 1681, &e.

89. Question 3. To find all the pentagonal numbers,
which are at the same time squares.
322 — =z .

5 which
we shall make equal to 2% so that 322—z=2a%; then
multiplying by 12, and adding unity, we have
3622— 122+ 1=(62—1)*=242?+1; also making 242°+1
y+1

6

Since a = 24, and b=1, we know the case f=0, and
g=1; and as we must have 24n%+1=m2, we shall make
n=1, which gives m=>5 ; so that we shall have z=5f +¢,

If the root be z, the pentagon will be =
=12, we have y =62—1, and z=

and y = 5g + 24f; and not only z='—y——g—1, but also

z =—6£, because we may write y =1-—6z: whence we

find the following results :

c=f=0| 1| 10 99 980
y=g=1| 5| 49| 485 | 4801
z__.l%_lz% Y 81 | 2401
1—y 2
orr=-T¥o0| —2 | 8| —2g | — 800, &

90. Question 4. To find all the integer square numbers,
which, if multiplied by 7 and increased by 2, become
squares. e
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It is here required to have 722+2=34% or a="7, and
b=2; and the known case immediately occurs, that is to
say, t=1; so that z=f=1, and y=¢=3. If we
next consider the equation 7n%+1=m?, we easily find
also that n =3, and m = 8; whence z = 8f +3¢, and
y =289 +21f. We shall therefore have the following

results :
z=f=11]17]271
91. Question 5. To find all the triangular numbers, that
are at the same time pentagons.
Let the root of the triangle be p, and that of the pen-

2 2
tagon ¢ : then we must have 2—;—7) = ?9—2—7-, or 3g*—q

=p?+ p; and, in endeavouring to find ¢, we shall first have

2
p;p,and

112024 12p 4 1)
5 .

Consequently, it is required to make 12p% 4+ 12p + 1 be-
come a square, and that in integer numbers. Now, as
there is here a middle term 12p, we shall begin with

making p= ?—;—-—l-,by which means we shall have 12p?=23z2

—6z+3, and 12p=6x-6; consequently, 12p2+12p+1
= 3x°—2; and it is this last quantity, which at present
we are required to transform into a square.

If, therefore, we make 322 — 2 =42, we shall have

p= z_'gl’ and q=—1—2;—z; so that all depends on the formula
3a?—2=y?; and here we have a=3, and b= —2. Farther,
we have a known case, x =f=1, and y = g = 1; lastly,
in the equation m?==3n2+41, we have n=1, and m=2;
therefore we find the following values both for z and y,
and for p and ¢:

First, z =2f+g¢, and y =29 +3f; then,
41

z=f=1 3 11
y=g=1 5 19 71
p=0 1 5 20
g=1 1 10 12
or g=0| =% -3 | =3
-y

because we have also ¢ =

g
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92. Hitherto, when the given formula contained a
second term, we were obliged to expunge it, but the
method we have just now given cannot be applied, with-
out taking away that second term; the manner of doing
which we shall farther explain.

Let az? +bx + ¢ be the given formula, which must be a
square, y?% and let us suppose that we already know the
case af?+bf +c=g*

Now, if we subtract this equation from the first, we
shall have a(z®—f?) +b(x —f) = y*—g? which may be ex-
pressed by factors in this manner:

(x—f) x (azx+af +b) =(y—g) X (¥ +9) ;
and if we multiply both sides by pg, we shall have
pg(x=f) x (ax+af +b) =pq (y—g) X (y+9) ;
which equation may be resolved into these two,
L. p(z—f)=q(y—9),
2. glax +af +b) =p(y +9).
Now, multiplying the first by p, and the second by ¢, and
subtracting the first product from the second, we obtain
(ag*—p*)2 +(ag® +p*) [+ 6¢° = 2pq,
29pq __(ag*+p°)f  _b¢*
ag‘l —p? aqz_Pz agz_,Pz'
But the first equation is p(z —f)=¢q(y —g)=(by substitut-
29pq _ 2af¢* __bg ) .
‘ ag*—p® aq'—p* ag*—p*/’
so that, multiplying by p, and dividing by ¢,
2g9p° _ 2afpq _ bpq
ag*—p* ag*—p* ag’—p

_rag*+p*\  2afpg  bpg
¥y=9 ( agg—pz) aqg—pz aqz__pz'

Now, in order to remove the fractions, let us make, as

which gives x =

ing the above value of z), p

Yy—g= 5; consequently,

2 2 ¢
before, Zgzi;lgzm, a;{}_qu = n; and we shall have
2aq? : m+l
m+1l= ag:ng’ or aq;/—q2 = m;‘; ; therefore
r=ng-=mf— b(m +1) ; and y =mg— naf — Lbn; in

2a

which the letters m and n must be such, that, as before,
me=an?+1.

93. The formule which we have obtained for x and y,
are still mixed with fractions, since some of their terms con-
tain the letter 5; for which reason they do notanswer our
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purpose. Butif from those values we pass to the succeeding
ones, we constantly obtain integer numbers; which,indeed,
we should have obtained much more easily by means of the
numbers p and g, that were introduced at the beginning.
In fact, if we take p and g, so that p?=aq?+1, we shall
have ag?—p?=—1, and the fractions will disappear. For
then o= —2gpq+f (ag®+p*) +bg*, and y = —g(ag® +p?)
+2afpg+bpg; but as in the known case, af?+bf+c
=g?, we find only the second power of g, it is of no con-
sequence what sign we give that letter ; if, therefore, we
write — g, instead of + g, we shall have the formule
z =2gpq +flag® +g9) +ZZ))92, and
=g(ag®+ p*) +2afpgbpq,

and we shaﬁl t‘}qlusq be lt):ertain,jgt)tq the Zame time, that
azx’ + bz +c=y2.

Let it be required, as an example, to find the hexagonal
numbers that are also squares.

We must have 22—z =y? or a=2, b= —1, and
¢=0, and the known case will evidently be z=f=1, and
y=g=1.

Firther, in order that we may have p?*=2¢%+1, we
must have ¢=2, and p=3; so that we shall have
z=129+17f—4, and y=17g+24f~6; whence result
the following values :

z=f=1]|25]| 841
y=g=1| 35| 1189, &c.

94. Let us also consider our first formula, in which the
second term was wanting, and examine the cases which
make a2?4b a square in integer numbers,*

Let az*+b=y?, and it will be required to fulfil two
conditions :

1. We must know a case in which this equation exists;
and we shall suppose that case to be expressed by the
equation af?+b=g%

2. We must know such values of m and =, that
m?*=an®+1; the method of finding which will be taught
in the next chapter.

From this results a new case; namely, z=ng + mf,
and y=mg +anf’; this, also, will lead us to other similar
cases, which we shall represent in the following manner :

z=f|la|B|Cc|D|E

y=g | P ’ Q| R | s|T,&c Inwhich,
B=nP +MA | C=NQ +MB | D=NnR +MC
Q=MP + anA| R=mQ+ans| S=mR+anc

E=ns +mbD

A=ng +mf
T=ms +ano, &c.

P=mg + anf

* See the beginning of this Chapter.
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and these two series of numbers may be easily continued
to any length.

95. It will be observed, however, that here we cannot
continue the upper series for x, without having the under
one in view ; but it is easy to remove this inconvenience,
and to give a rule, not only for finding the upper series,
without knowing the other, but also for determining the
latter without the former.

The numbers which may be substituted for z succeed
each other in a certain progression, such that each term
(as, for example, E,) may be determined by the two pre-
ceding terms ¢ and p, without having recourse to the
terms of the second series ®» and s. In fact, since

E = 18 4+ mD = n(mR + anc) + m(nR +mc) =

2mnR + an?c +m2c, and nR = D~mc,
we therefore find

E = 2mD—m?c +an’c, or

E =2mp—(m*—an?)c; or lastly,

E=2mp—c, because m?* =an?+1,
and m?—an?=1; from which it is evident, how each term
is determined by the two which precede it.

Itis the same with respect to the second series ; for, since
T =ms +anD, and D = nR +mcC, we have
T =ms + an’R + amnc. Farther, s =mr + anc, so that
anc =s—me ; and if we substitute this value of anc, we
have T = 2ms — R, which proves that the second progres-
sion follows the same law, or the same rule, as the first.

Let it be required, as an example, to find all the integer
numbers, z, such, that 2z%—1=y2

We shall first have f=1, and g=1. Then m*=2s2+1,
if =2, and m=3; therefore, since A=ng +mf=5, the
first two terms will be 1 and 5; and all the succeeding
ones will be found by the formula, E=2mp—c, or 6p—c:
that is to say, each term taken six times and diminished
by the preceding term, gives the next. So that the num-
bers which we require for z, will form the following
series :

1, 5, 29, 169, 985, 5741, &e.

This progression we may continue to any length ; and
if we choose to admit fractional terms also, we might find
an infinite number of them by the method which has been
already explained.*

* See the Appendix to this Chapter in the Additions by De
la Grange, p. 550, et seq.
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CHAPTER VII.

Of a particular Method, by which the Formula, an? + 1,
becomes a Square in Integers.

96. That which has been taught in the last chapter,
cannot be completely performed, unless we are able to
assign for any number a, a number z, such, that an®+1
may become a square ; or that we may have m?=an?+ 1.

This equation wounld be easy to resolve, if we were
satisfied with fractional numbers, since we should have

only to make m=1+ 2. for, by this supposition, we have
m?=1+ -2—31—’ + %,2,_2 = an?+ 1; in which equation, we
may expunge 1 from both sides, and divide the other terms
by z: then multiplying by g%, we obtain 2pq +np*=ang?®;

and this equation, giving n= P 3{’? 5, would furnish an

infinite number of values for »: but as » must be an in-
teger number, this method will be of no use; and there-
fore very different means must be employed in order to
accomplish our object.

97. We must begin by observing, that, if we wished
to have an®+1 a square, in integer numbers (whatever
be the value of a), the thing required would not be possible.

For, in the first place, it is necessary to exclude all the
cases, in which a would be negative; next, we must exclude
those also, in which a would be itself a square ; because
then an® would be a square, and no square can become a
square, in integer numbers, by being increased by unity.
We are obliged, therefore, to restrict our formula to the
condition, that @ be neither negative, nor a square; but
whenever a is a positive number, without being a square, it
is possible to assign such an integer value of 2, that an®+1
may become a square: and when one such value has
been found, it will be easy to deduce from it an infinite
number of others, as was taught in the last chapter : bat,
for our purpose, it is sufficient to know a single one, even
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the least ; and this, Pell, an English writer, has taught
us to find by an ingenious method, which we shall here
explain.

98. This method is not such as may be employed ge-
nerally, for any number a whatever; it is applicable only
to each particular case.

We shall therefore begin with the easiest cases, and
shall first seek such a value of », that 2r2+ 1 may be a
square; or that »/ (2n%2+1) may become rational.

We immediately see that this square root becomes
greater than n, and less than 2n. If, therefore, we express
this root by n+p, it is obvious that p must be less than n ;
and we shall have /(2n?+1)=n+p; then, by squaring,
2+ 1=n2+2np+ p*; or n*+2pn+p?; therefore, by
completing the sqnare, &c.

A nt=2pn+p?—1, and n=p + ' (2p*—1).

The whole is reduced, therefore, to the condition of 2p?—1
being a square ; now, this is the case if p=1, which gives
n=2, and /(2n%+1)=3.

If this case had not been immediately obvious, we should
have gone farther; and since +/(2p?—1>p),* and, con-
sequently, n>2p, we should have made n=2p+g¢; and
should thus have had

pt+g=p+~2p*=1), or ptq=(2p°—1),
and, squaring, p?+2pqg +¢?=2p*—1, whence
Y=2pg+¢+1,

which would have given p=¢g+ v (2¢°+1); so that it
would have beeu necessary to have 2¢?+1 a square; and
as this is the case, if we make ¢=0, we shall have p=1,
and n=2, as before. This example is sufficient to give an
idea of the method; but it will be rendered more clear
and distinct from what follows.

99. Let a=3; that is to say, let it be required to trans-
form the formula 3r2+1 into a square. Here we shall
make /(3n2+1)= n+p, which gives

3+ 1=n>+2np+p? and 20 =2np+p*—1;

p+v(3Bp*=2)
R

whence we obtain n = Now, since

N (3p? —2) exceeds p, and, consequently, = is greater

* This sign >, placed between two quantities, signifies that
the former is greater than the latter; and when the angular
point is turned the contrary way, as <, it signifies that the
former is less than the latter,
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than %}3, or than p, let us suppose n=p + ¢, and we shall

2— 2,
have, from the equation, n = W’
2p +20=p + V(3p®*—2),0r

p+2= V(8PP — 2);

then, by squaring, p®+ 4pg + 4¢> =3p* —2; so that
2p*=4pq+49°+2, or p*=2pg+2¢°+1, and
= g ++/(3¢° +1).
Now, this formula being similar to the one proposed, we
may make ¢=0, and shall thus obtain p=1, and n=1;
whence v/ (3n2+1)=2.

100. Let a =5, that we may have to make a square of
the formula, 572 + 1, the root of which is greater than 2x.
We shall therefore suppose

N (6r+1)=2n+p, or 5a% + 1=4n%+4np + p*;
whence we obtain
n?=4np +p*—1, and n=2p + / (5p*—1),

Now, / (5p2—1)>2p; whence it follows that 2>4p; for
which reason, we shall make » =4p + ¢, which gives
2p +qg=OGpt—1), 0r 4p* + 4pg + ¢* =5p* — 1, and
pP=4pg+q°+1; so that p=2¢+ +/(5¢*+1) ; and as ¢=0
satisfies the terms of this equation, we shall have p=1,
and n=4; therefore /(5n2+1) =9.

101. Let us now suppose a = 6, that we may have ta
consider the formula, 6r2+ 1, whose root is likewise con-
tained between 2r and 3n. We shall, therefore, make
» (6n%+1)=2n+p, and shall have
6n2 + 1 = 4n® + 4np + p%, or 2n® = 4np + p*—1; and,

N (6p2—2) _ 2p+ M/ (6p*—2)
2 ¢ rrtTTTTe

thence, n=p+ ; SO
that > 2p.

If, therefore, we make n =2p + ¢, we shall have

dp + 29 = 2p + /(6p* — 2), or

%+ 2= v (6p* — 2)3
the squares of which are 4p? + 8pg + 4¢% = 6p*—2; so
that 2p?=8pg+4¢?+2, and p?*==4pg+2¢*+1. Lastly,
p=2g+ /(6g°+1). Now, this formula resembling the
first, we have ¢ = 0; wherefore p =1, n =2, and
v (6r24+1)=5.

102. Let us proceed farther, and take a= 7, and
7n2+1=m?; here we see that m>2n; let us therefore
make m =2n+p, and we shall have

AA
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Tn?+ 1=4n?+4np + p?, or 3nt=4dnp+p*—1;

which givesn= ?-£+—"/g77)2—-§2 At present, since n>4p,

and, consequently, greater than p, let us make n=p+gq,
and we shall have p+3¢g = v/ (7p*—3); then, squaring
both sides, p?+6pg+9¢2=7p?—3, so that

6p® = 6pq + 9¢° + 3, or 2p* = 2pg + 3¢* + 1; whence

we get p = Zﬂ(;—ggi%) Now, we have here p>3—q~;

and, consequently, p>¢; so that making p=g¢ + r, we
shall have ¢+2r=4/(79°+2); the squares of which are
g%+ 4qr + 4r* = 7¢® + 2; then 6¢2 = 4qr + 412 — 2,
r4+ / (7r2—3)
or 3¢ =2gr + 2r* — 1; and, lastly, ¢ = —
Since now ¢>r, let us suppose g=r+s, and we shall
have
2r + 3s =/ (7r2 — 3); then
472 + 12rs + 952 = Tr2 — 3, or
3r2 = 12rs + 952 4+ 3, or
72 4rs + 3s2 + 1, and
r 2s 4+ (72 + 1)

Now, this formula is like the first; so that making
s=0, we shall obtain r=1,¢=1, p=2, and n=3, or
m=_8.

But this calculation may be considerably abridged in
the following manner ; which may be adopted also in other
cases.

Since 7n?+ 1=m?, it follows that m<3n.

If, therefore, we suppose m = 3n — p, we shall have

T+ 1=9n—6np +p?, or 2nt =6up—p*+1;
3p+ v (Tp*+2)
2

whence we obtain n= ; so that n<<3p; for

this reason we shall write n=3p—2¢; and, squaring, we
shall have 9p*—12pg +4¢*=7p*+2; or
2p*=12pg—44g®+2, and p?=6pg—2¢*+1;

whence results p = 3g + ~/(7¢° + 1). Here, we can at
once make ¢g==0, which gives p=1, n=3, and m =8,
as before.

103. Let a=S8, so that 822+ 1=m?, and m<3n. Here,
we must make m=3n—p, and shall have

81+ 1=9n2—6np + p?, or n®=6np—p*+1;
whence n=3p + /(8p? + 1), and this formula being
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already similar to the one proposed, we may make p=0,
which gives n=1, and m=3.

104. We may proceed, in the same manner, for every
other number, a, provided it be positive and not a square;
and we shall always be led, at last, to a radical quantity,
such as +/(at?+1), similar to the first, or given formula,
and then we have only to suppose t=0; for the irra-
tionality will disappear, and by tracing back the steps, we
shall necessarily find such a value of », as will make
an®+1 a square.

Sometimes we quickly obtain our end; but frequently
also, we are obliged to go through a great number of
operations. This depends on the nature of the number
a; and we have no principles, by which we can foresee
the number of operations that it may be necessary to per-
form. The process is not very long for numbers below
13, but when a = 13, the calculation becomes much more
prolix; and, for this reason, it will be proper here to
resolve that case.

105. Let therefore a = 13, and let it be required to
find 1372+ 1=m?. Here, as m?>9n?% and, consequently,
m>3n, let us suppose m=3n+p; we shall then have
1302 + 1 =92% + 6up + p?, or 4n®*=06up + p*— 1, and

3+ vU3p—4)
"= g

, which shews that 2> 4p, and there-

fore much greater than p. If, therefore, we make n=p+g¢,
we shall have p + 4g= +/ (13p*—4); and, taking the squares,
13pt—4=p*+8pg+ 16¢*;

so that 12p?=8pg+ 16¢°+4, or 3p*=2pg+4¢*+1, and
P =_9_‘_*'_L(1T3_§Zi‘i;§_)_ Here, p> ‘H_;Sq, or p>q; we shall
proceed, therefore, by making p = ¢ + r, and shall thus
obtain 2¢ +3r=./(13¢2+3); then

13¢2 +3=4¢%+ 1297+ 9%, or
9¢*=12¢r+9r%—3, ar
3¢*= 4qr+3r2—-1 ;
2r+ /(13r2=3)
——

which gives ¢ =

2r43r

3
g=r+s, and we shall thus have r+3s=/(13r2-3);
or 13r2—3=r246rs+9s?%, or 12r2=6rs+9s*+3, or 47%=
2rs+3s2+1; whence we obtain

Again, since ¢>

, or g >r, we shall make
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2
r= ﬁ!—%ﬂ But here r> S.—ZSS, or r>s; where-
fore let r=s+¢, and we shall have 3s+4¢=./(13s*+4),
and 13s? +4=9s2424st+16¢2;

so that 4s2=24st+ 1612—4, and s=6(s+4¢2—1; there-
fore s=3¢+ +/(13t2—1). Here we have
s>3t+3t, or s>06¢.
Let us therefore make s=6¢+u; whence
3t+u=4(13t:—1), and 13£2—1=9¢2+46¢u+u?; then
412=6tu+u*+1; and, lastly,
_Bu+ v (13u2+4)
- 4
If, therefore, we make #=u4-», we shall have
u+4v=./ (132 +4), and 13u? + 4 =u? + 8uv + 160%; there-
fore 12u*=8uv+16v2—4, or 3u?=2uv+4v*~—1. Lastly,
v+ N (1302=3)
U=
Let us, therefore, make v = v + z, and we shall have

2v +3x=4/(13v*—3), and
1302 =3 =4v*+ 1202 +92%; or

t

, Or t>%, and >u.

, Or u> 11321 or u>v,

9v?=12vx +92°+ 3, or 3v*=4vx+32%+1, and
2z + A/ (1322 +3)
v= 3 H
Let us now suppose v=x +y, and we shall have
z +3y=./(132%+3), and
1322 +3 =x?+ 62y +99° or
122?=06zy +9y*—3, and
da?=2zxy +3y*—1; whence
y+ ~/ (1342 —4)
X =—_T———,

so that v >4z, and >a.

and, consequently, z>y. We shall, therefore, make
z=y +z, which gives

8y +4z=14/(13y2—4), and
13y*—4 =9y* 4242y + 1622, or
4y°=24zy + 1622 +4 ; therefore
y*= 6yz+ 4z°%+1, and
y = 3z+/(132°+1).

This formula being at length similar to the first, we may
take z=0, and go back as follows:
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z =0, u=v +x= 3,|q¢g= r+ s= 71,
y =1, t=u +v= 5, |p= g+ r=109,
r=y+z=1,|s=6+u=33, | n= p+ qg=180,
v=x+y=2, | r=s + t=38, | m=3n+ p = 649.

So that 180 is the least number, after 0, which we can
substitute for n, in order that 132 + 1 may become
a square.

106. This example sufficiently shews how prolix these
calculations may be in particular cases; and when the
numbers in question are greater, we are ‘often obliged to
go through ten times as many operations as we had to
perform for the nuniber 13.

As we cannot foresee the numbers that will require such
tedious calculations, we may with propriety avail ourselves
of the trouble Whlch others have taken; and, for this
purpose, a Table is subjoined to the present chapter, in
which the values of m and = are calculated for all num-
bers, a, between 2 and 100; so that in the cases which
present themselves, we may take from it the values of m
and n, which answer to the given number a.

107. It is proper, however, to remark, that, for certain
numbers, the letters m and n may be determined generally,
This is the case when a is greater, or less than a square,
by 1 or 2; it will be worth while, therefore, to enter into
a particular analysis of these cases.

108. In order to this, let a==e?—2; and since we must
have (e2—2)n?+ 1=m?, it is clear that m<en; therefore
we shall make m=en—p, from which we have

(e2—2)n? 4 1 =e2n®—2enp 4 p?, or
2n2=2enp—p*+1; therefore
ep +  (e2p*—2p?+2)
n= 5
make p =1, this quantity becomes rational, and we have
n=e, and m=e*—

For example, let =23, so that e=5; we shall then have
23nt 4 1=m2, if n=>05, and m=24. The reason of which
is evident from another consideration; for if, in the case
of a=e*—2, we make n==e, we shall have an®+ 1=e*—
2¢2+1; which is the square of e2—1.

109. Let a =¢2 — 1, or less than a square by unity.
First, we must have (¢2—1)n? 4+ 1=m?; then, because, as
before, m<en, we shall make m=en—p ; and this bemg
done, we have

(e*—1)n? + 1 =e2n?—2enp + p*, or n?=2%enp—p*+1;

; and it is evident that if we
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wherefore n=ep + +/ (e?p?—p?+1). Now, theirrationality
disappeared by supposing p =1; so that n = 2e, and
m=2¢*—1. 'This also is evident ; for, since a=e?— 1, and
n=2e¢, we find an?+1=4e*—4e*+1,

or equal to the square of 2¢2—1. For example, let =24,
or e=5, we shall have n=10, and

2452 +1=2401 =(49)2.*

110. Let us now suppose a=e®+1, or a greater than a
square by unity. Here we must have

@+ Dnt+1=m?

and m will evidently be greater than en. Let us, therefore,
write m=en+p, and we shall have

(e?+1)n?+ 1=e*n+ 2enp + p, or n?=2enp +p*—1;

whence n=ep+ /(e%p?+p?—1). Now, we may make
p=1, and shall then have n=2¢; therefore m?=2¢2+1;
which is what ought to be the result from the consideration,
that a=e®+ 1, and n=2e, which gives
an®+1=4e*+4¢?+ 1, the square of 2¢2+1. For example,
let a=17, so that e=4, and we shall have 1722+ 1=m?;
by making n=8, and m=33.

111. Lastly, let a=e?+2, or greater than a square by
2. Here, we have (e24-2)u2+1=m2, and, as before,
m>en; therefore we shall suppose m=en+p, and shall
thus have

en +2n% + 1 =e*n? + 2enp + p%, or
2n% 4 2epn +p*—1, which gives
ep+ o/ (2p?+2p*—2)
5 .

n=

Let p=1, we shall find n=e, and m=e?+1; aund, in fact,
since a=e?+2, and n=e, we have an®+1=e*+2¢2+1,
which is the square of 2+ 1.

For example, let a=11, so that e=3; we shall find
1122+ 1=m? by making n=3, and m=10. If we

* In this case, likewise, the radical sign vanishes, if we make
p==0: and this supposition incontestably gives the least possible
numbers for m and 7, namely, n==1, and m=ce; that is to say,
if e=5, the formula 24n2+1 becomes a square by making
n==1; and the root of this square will be m==e¢=5.—F. T.
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supposed a=83, we should have ¢=9, and
83n2 + 1=m?, where n=9, and m=82.%

* Our author might have added here another very obvious
)
case, which is when a is of the form e2=+ 2 for then by making

n==c, our formula an?41, becomes e%c?**+2ce+1=(ect1)2
I was led to the consideration of the above form, from having
observed that the square roots of all numbers included in this
formula are readily obtained by the method of continued frac-
tions, the quotient figures, from which the fractions are derived,
following a certain determined law, of two terms, readily ob-
served, and that whenever this is the case, the method given above
is also applied with great facility. And as a great many num-
bers are included in the above form, I have been induced to
place it here, as a means of abridging the operations in those
particular cases.

The reader is indebted to Mr. P. Barlow of the Royal Academy,
Woolwich, for the above note; and also for a few more in this
Second Part, which are distinguished by the signature, B.
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TasLE, shewing for each value of @ the least numbers m and #,
that will give m2=an?+1;* or that will render an?+1 a square.

a n m a n m
2 2 3 | 52 90 649
3 1 2 | 53 9100 66249
54 66 485
g > g 55 12 89
0 : 5|56 2 15
; : 5|67 20 151
‘ . 58 9574 19603
10 6 19 | 59 69 530
11 3 10 | 60 4 31
12 2 7 | 61 || 226153980 |1766319049
13| 180 | 649 | 62 8 63
14| 4 15 | 63 1 8
15 1 4 765 16 129
17 8 33 | 66 8 65
18 4 17 | 67 5967 48842
19 39| 170 |68 4 33
20 2 9|69 936 7775
21 | 12 55 | 70 30 251
22 | 42| 19771 413 3480
23 5 24 | 72 2 17
94 1 5|73 267000 | 2281249
% 1o = 74 430 3699
27 5 96 | 75 3 26
76 6630 57799
28 | o4 | 19779 30 o
29 | 1820 | 9801
78 6 53
30 2 1|78 5 o8
31| 273 | 1520 | 29 ) ;
32 3 17
33 4 23 | 82 18 163
34 35 | 83 9 82
35 1 6| 84 6 55
85 30996 285769
871 12 73 1 86 1122 10405
38 6 37
87 3 28
39 4 25 | 37 .
40 3 198 L 197
89 53000 500001
41| 320 | 2049
90 2 19
42 2 13
3191 165 1574
43| 531 | 3482
92 120 1151
44| 30| 199 |92 v !
45| 24| 161|33 oleay | griael
46 | 3588 | 24335 | 2 221064 2143295
95 4 39
47 7 48 | oo e
48 1 7|9 5
48 97 | 6377352 | 62809633
50 | 14 99 | 98 10 99
51 7 50 | 99 1 10

* See Article 8 of the Additions by De la Grange.
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CHAPTER VIII.

Of the Method of rendering the Irrational Formula,
N (a+ bx + cx® + dx?), Rational.

112. We shall now proceed to a formula, in which z
rises to the third power ; after which we shall consider also
the fourth power of z, although these two cases are treated
in the same manner.

Let it be required, therefore, to transform into a square
the formula, a + ba + cz?4-dx?, and to find proper values
of z for this purpose, expressed in rational numbers. As
this investigation is attended with much greater difficulties
than any of the preceding cases, more artifice is requisite
to find even fractional values of z ; and with such we must
be satisfied, without pretending to find values in integer
numbers.

It must here be previously remarked also, that a general
solution cannot be given, as in the preceding cases; and
that, instead of the number here employed leading to an
infinite number of solutions, each operation will exhibit
but one value of x.

118. Asiuo considering the formula, a+ bz + ca?, we ob-
served an infinite number of cases, in which the solution
becomes altogether impossible, we may readily imagine
that this will be much oftener the case with respect to the
present formula ; which, besides, coustantly requires that
we already know, or have found, a solution. So that here
we can only give rules for those cases, in which we set out
from one known solution, in order to find a new one; by
means of which, we may then find a third, and proceed,
successively, in the same manner, to others.

It does not, however, always happen, that by means of a
known solution, we can find another: on the contrary,
there are many cases, in which only one solution can take
place; and this circumstance is the more remarkable, as
in the analyses, which we have before made, a single solu-
tion led to an infinite number of other new ones.

114. We just now observed, that in order to transform
the formula, a + bz + ca?+ dx?, into a square, a case must
be presupposed, in which that solution is possible. Now,
such a case is clearly perceived, when the first term is itself
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a square already, and the formula may be expressed thus,
Si+bx+cat+da®; for it evidently becomes a square, if
z=0.

We shall therefore enter upon the subject, by consider-
ing this formula ; and shall endeavour to see how, by set-
ting out from the known case, z=0, we may arrive at some
other value of z. For this purpose, we shall employ two
different methods, which will be separately explained : in
order to which, it will be proper to begin with particular
cases.

115. Let, therefore, the formula 1+ 22—a2?+2° be pro-
posed, which ought to become a square. Here, as the
first term is a square, we shall adopt for the root required
such a quantity as will make the first two terms vanish.
For which purpose, let 1+ be the root, whose square is
to be equal to our formula; and this will give 1+ 2z—
22+ a23=1+2x+ 2%, of which equation the first two terms
destroy each other; so that we have z?= —a?+a?, or
23=2z?, which, being divided by %, gives x=2; so that
the formula becomes 1 +4—4+8=9.

Likewise, in order to make a square of the formula,
4 4+ 6x—b5x%+32°% we shall first suppose its root to be
2 +nz, and seek such a value of » as will make the first
two terms disappear ; hence,

4 462 —5x2 4323 =4 +4nx + n%?;
therefore we must have 4n=6, and n=4; whence results
the equation —52%4 3z3=n%2?= $2°, or 32°=5x+ Ja*=
2922, which, after dividing by x?, gives z=4%; and thisis
the value which will make a square of the proposed for-
mula, whose root will be
2+ r= ‘%5.*

116. The second method consists in giving the root
three terms as f+ gx + kz?, such, that the first three terms
in the equation may vanish,

Let there be proposed, for example, the formula 1 —4x +
6x% — 52°, the root of which we will suppose to be
1—~2z + Ax?, and we shall thus have

1—42+612—623=1—4x + 422 — 4hx® + h2x* + 2hx2.

The first two terms, as we see, are immediately destroyed
on both sides; and, in order to remove the third, we must
make 24+4=6; consequently, ~=1; by these means,
and transposing 2Ahz?=2z?%, we obtain —bad= —4a3ta*,
or —5= —4 41z, so that r= —1,

117. These two methods, therefore, may be employed,

* Thus, z=4%§, and $ax=$§I; then 2, or $8 + 87 = 135 == 45,
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when the first term a is a square. The first is founded on
expressing the root by two terms, as f+pz, in which fis
the square root of the first term, and p is taken such, that
the second term must likewise disappear; so that there
remains only to compare. p%z? with the third and fourth
term of the formula, namely cz?+dz?; for then that equa-
tion, being divisible by 22, gives a new value of z, which is
pi—c

7

In the second method, three termsare given to the root ;
that is to say, if the first term a=/£%, we express the root
by f4-px + ¢a*; after which, p and ¢ are determined snch,
that the first three terms of the formula may vanish, which
is done in the following manner. Since
S+ ba+ca?+ drd=f*+2fpx + 2fqx® + p%u? + 2pqad + ¢z,
we must have b=2fp; and, consequently, p= éb]—
c=2fq+p?; org= 6—_2—7].)—; after this, there remains the

r==

; farther,

equation dx3=2pqz®+¢%*; and, as it is divisible by 27,

we obtain from it z= —:fﬂ

118. It may frequently happen, however, even when
a=f"?, that neither of these methods will give a new value
of x; as will appear, by considering the formula, f?+ da?,
in which the second and third terms are wanting.

For if, according to the first method, we suppose the
root to be '+ px, that is,

: fr+dad=f2+2fpr+ p%r?,
we shall have 2fp=0, and p=0; so that dz*=0; and
therefore =0, which is not a new value of z.

If, according to the second method, we were to make

the root f+px +ga?, or

S*+det=f*+2px + p°x® + 2fqx* + 2pgx’ + ¢,
we should find 2fp=0, p®+2fg=0, and ¢?=0; whence
dz*=0, and also x=0.

119. In this case, we have no other expedient, than to en-
deavour to find such a value of z, as will make the formula
a square ; if we succeed, this value will then enable us to
find new values, by means of our two methods: and this
will apply even to the cases in which the first term is not a
square.

If, for example, the formula 3 + 2* must become a square;
as this takes place when x=1, let z=1+y, and we shall
thus have 4+ 3y +3y*+ 2%, the first term of which is a
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square. If, therefore, we suppose, according to the first
method, the root to be 2+ py, we shall have
443y +3y° +y° =4 +4py +p°y°.

In order that the second term may disappear, we must
make 4p=3 ; and, consequently, p=4; whence 3 + y=p?,
and y = p? — 3= % — 44 =1 therefore z = —6
which is a new value of .

If, again, according to the second method, we represent
the root by 2+ py + gy?, we shall have

443y +3y° +y° =4 +4py +49y° + %y + 2pqy° + %",
from which the second term will be remnoved, by making
4p =3, or p=43; and the fourth, by making 4¢+p*=3,

3ep?

or g =3—4ﬁ = 39; so that 1=2pg+q% ;* whence we

obtain y = 1-—§p 9 or y =472 ; and, consequently,

z=14y,or x=1813.
120. In general, if we have the formula,
a4+ bx + cx? +da’,

and know also that it becomes a square when 2 =, or
that a +bf +¢f*+df* =g%, we may make z=f+y, and
shall hence obtain the following new formula :

a

bof + by

of? + 2¢fy +cy

af* + 3df*y +3dfy*+dy’*

g2+ (b +2¢f +3df )y + (c+ 3df )y + dy®.

In this formula, the first term is a square ; so that the
two methods above given may be applied with success, as
they will furnish new values of y, and consequently of z
also, since x =f+y.

121. But often, also, it is of no avail even to have found
avalue of x. Thisis the case with the formula, 1 423, which
becomes a square when z=2. For if, in consequence
of this, we make x=2+y, we shall get the formula 9+
12y +6y° + y*, which ought also to become a square.

Now, by the first rule, let the root be 3+ py, and we
shall have 9+ 12y + 6y2 +y% = 9+ 6py 4+ p%?, in which we
must have 6p =12, and p=2; therefore 6+y=p?*=4,
and y=—2, which, since we made x=2+y, this gives
=03 that is to say, a value from which we can derive
nothing more.

* That is, dividing by y3, and cancelling the equal terms on
both sides.
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Let us also try the second method, and represent the
root by 3+py +qy?; this gives

9+ 12y +6y° +y°=9 +6py + 69y* +p°y* + 2pgy* + ¢°%",
in which we must first have 6p=12, and p=2; then
6g +p?*=6¢g+4=06, and ¢g=1; farther,

1=2pg +¢°y=4$+by;
hence y=—3, and, consequently, r=—1, and 1 +23=0;
from which we can draw no further conclusion ; because,
if we wished to make 2=—1+2, we should find the
formula, 3z —32°% + 22, the first term of which vanishes; so
that we cannot make use of either method.

We have therefore sufficient grounds to suppose, after
what has been attempted, that the formula, 1 + 23 can never
become a square, except in these three cases; namely, when

l. 2=0,2. z=~1, and 3. 2=2.

But of this we may satisfy ourselves from other reasons.

122. Let us consider, for the sake of practice, the for-
mula 1+ 323, which becomes a square in the following
cases ; when

1. =0, 2. x=~—1, and 3. 2=2,
and let us see whether we shall arrive at other similar
values.

Since z =1 is one of the satisfactory values, let us sup-
pose x=1+y, and we shall thus have

14323=4+ 9y +9y* + 37>
Now, let the root of this new formula be 2+ py, so that
4+9y + 992+ 3y>=4+4py +p%y*. We must have 9=4p,
and p=%, and the other terms will give 9 +3y=p2=281,

and y=—4%1; consequently, x=—;, and 1432 becomes
a square, namely,—$1%1, the root of which is —¢1; or+

¢1: and, if we chose to proceed, by making r=—-5; 4z,
we should not fail to find new values.

Let us also apply the second method to the same for-
mula, and suppose the root to be 2+py+gy*; which
supposition gives
4+ 9y + 9y +3y* =4 + dpy -+ 4gy* + 2pgy’ + pY° + ¢y
therefore, we must have 4p=9, or p=%, and 4¢+p? =
9=49+4%4, or g=243: and the other terms will give
3=2pq +q*y=48%+q%, or 567 + 128¢°%y=384—567 ; or
1284% = —183; that is to say,

632
128 x (£3)%, or Y= 183.

So that y=—194%, and x=1+y, or —f22% ; and these
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values will furnish new ones, by following the methods
which have been pointed out.

123. It must be remarked, however, that if we gave our-
selves the trouble of deducing new values from the two,
which the known case of z=1 has furnished, we should
arrive at fractions extremely prolix: and we have reason
to be surprised that the case, r=1, has not rather led us
to the other, x=2, which is no less evident. This, indeed,
is an imperfection of the present method, which is the only
mode of proceeding hitherto known.

We may, in the same manner, set out from the case
=2, in order to find other values. Let us, for this pur-
pose, make z=2+y, and it will be required to make a
square of the formula, 25436y +18y°+3y%. Here, if
we suppose its root, according to the first method, to be
5+ py, we shall have

25 + 36y + 18y? + 3y* =25 + 10py + p%*;
and, consequently, 10p=36, or p=18: then expunging
the terms which destroy each other, and dividing the others

by 2%, there results 18 + 3y =p® = 324 ; consequently,

y=—4%%, and xr=-8; whence it follows, that 1+32°isa
square, whose root is 5+ py=—14}, or + 1L,

In the second method, it would be necessary to suppose
the root =5 + py +¢y?, and we should then have

. s_ [ 25 + 10py + 10¢gy° + 2pqy®
25 + 36y + 18y* + 3y —{ +p%° + g%y ;
the second and third terms would disappear by making
10p = 36, or p = %8, and 10g+p? =18, or
10g = 18—324 = 126, or g = %% ; and then the other
terms, divided by y3, would give 2pg+4% =3, or
q%y = 3—2pg = — 333 ; thatis, y = —$2%%, and
= —-029 .

124. This calculation does not become less tedious and
difficult, even in the cases where, setting out differently,
we can give a general solation ; as, for example, when the
formula proposed is 1 — 2z — «? + 23, in which we may
make, geverally, z=n?—1, by giving any value whatever
to n: for, let =2 ; we have then z=3, and the formula
becomes 1 —3—9427 = 16. Let n =3, we have then
=8, and the formula becomes 1—8—64+512 = 441,
and so on.

But it should be observed, that it is to a very peculiar
circumnstance we owe a solution so easy, and this circum-
stance is readily perceived by resolving our formula into
factors ; for we immediately see, that it is divisible by
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1—uz, that the quotient will be 1—az2 that this quotient
is composed of the factors (1+42)x(1—z); and, lastly,
that our formula,

l—z—22+2°=(1—2)x (1 +2) x (1 =2)=(1—2)% x (1 +2).
Now, as it must be a O [square], and as a0, when divisible
by an, gives anfor the quotient,* we must also have
l4+2z=0; and, conversely, if 14+z be ag, it is certain
that (1 —2)?x (1 + ) will be a square ; we have therefore
only to make 1 + 2 ==n?, and we immediately obtain
r=n?—1.

If this circumstance had escaped us, it would have been
difficult even to have determined only five or six values of
z by the preceding methods.

125. Hence we conclude, that it is proper to resolve
every formula proposed into factors, when it can be done ;
and we have already shewn how this is to be done, by
making the given formula equal to 0, and then seeking
the root of this equation ; for each root, as z = f, will give
a factor f—z; and this inquiry is so much the easier, as
here we seek only rational roots, which are always divisors
of the known term, or the term which does not contain x.

126. This circumstance takes place also in our general
formula, ¢4 bx + cx?+ dz3, when the first two terms dis-
appear, and it is consequently the quantity cz®+ da® that
must be a square ; for it is evident, in this case, that by di-
viding by the square 2%, we must also have ¢+ dx a square;
and we have therefore only to make ¢+dz=n?, in order

—C . . s
, a value which contains an infinite num-

d
ber of answers, and even all the possible answers.

127. In the application of the first of the two preceding
methods, if we do not choose to determine the letter p, for
the sake of removing the second term, we shall arrive at
another irrational formula, which it will be required to -
make rational.

For example, let f% + bz + c2? + da® be the formula
proposed, and let its root = f+px. Here we shall have
J2+bx + ca® + dad = f2 + 2f px + p%?, from which the
first terms vanish ; dividing, therefore, by z, we obtain

n2
to have r =

* The mathematical student, who may wish to adquire an
extensive knowledge of the many curious properties of num-
bers, is referred, once for all, to the second edition of Legen-
dre’s celebrated Essai sur la Thécrie des Nombres ; or to Mr,
Barlow’s Elementary Investigation of the same subject.
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b+cx+dx* = 2f p+p%r, an equation of the second de-
gree, which gives
p—c+ o/ (p*—2cp? + 8dfp + c*—4bd)

2d )
So that the question is now reduced to finding such values
of p, as will make the formula p*—2cp?+8bfp+c*—4bd
become a square. But as it is the fourth power of the re-
quired number p which occurs here, this case belongs to
the following chapter.

xr =

CHAPTER IX.

Of the Method of rendering Rational the incommensurable
Formula, / (a + bx + cx®+ dx® + ex*).

128. We are now come to formulz, in which the in-
determinate number, z, rises to the fourth power; and
this must be the limit of our researches on quantities af-
fected by the sign of the square root; since the subject
has not yet been prosecuted far enough to enable us to
transform into squares any formule, in which higher
powers of x are found,

Our new formula furnishes three cases ; the first, when
the first term, @, is a square; the second, when the last
term, ex?, is a square; and the third, when both the first
term and the last are squares. We shall consider each of
these cases separately.

129. 1st. Resolution of the formula,

N (fP+ bz + cx® + dz® + ex?),

As the first term of this is a square, we might, by the first
method, suppose the root to be f+px, and determine p in
such a manner, that the first two terms would disappear,
and the others be divisible by 22; but we should not fail
still to find 22 in the equation, and the determination of
would depend on a new radical sign. We shall therefore
have recourse to the second metbod; and represent the
root by f+ px+¢gz?; and then determine p and ¢, so as to
remove the first three terms, and then dividing by z°, we
shall arrive at a simple equation of the first degree, which
will give  without any radical signs,
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130. If, therefore, the root be f4px+ga?, and for that
reason
Sfitbrtcat+dr’tert=
S Ypr+pat +2qat+2pg’ + gt
the first terms disappear of themselves; with regard to
the second, we shall remove them by making b= 2fp, or

b .
p= Zc; and, for the third, we must make ¢=2fg+p?,

or g = This being done, the other terms will be

c—p*

2f
divisible by 23, and will give the equation d+ezx = 2pg+
q*z, from which we find

— 4= 2pg—d

G*—e e----q2
131. Now, it is easy to see that this method leads to
nothing, when the second and third terms are wanting in
our formula ; that is to say, when =0, and ¢c=0; for

then p =0, and ¢ =0; consequently, x = — C—j, from which

we can commonly draw no conclusion, because this case
evidently gives dz®+ex*=0; and, therefore, our formula
becomes equal to the square /2. But it is chiefly with re-
spect to such formule as f2 4 ex*, that this method is of no
advantage, since in this case we have d =0, which gives
=0, and this leads no farther. It is the same, when
b=0, and d=0; that is to say, the second and fourth
terms are wanting, in which case the formula is
J? + ca? + ex*; for,then p=0,and g = ZLf’ whence =0,
as we may immediately perceive, from which no further
advantage can result.

132. 2d. Resolution of the formula,

N (a+bx + ca® + da + g%,
We might reduce this formula to the preceding case, by

supposing z = %; for, as the formula,

b g~
PR
y oy oy oy
must then be a square, and remain a square if multiplied
by the square y*, we have only to perform this multiplica-
tion, in order to ‘obtain the formula,
BB



370 ELEMENTS PART II.

ay-ir_*_byi; +cy2+dy +g‘.".,
which is quite similar to the former, only inverted.

But it is not necessary to go through this process; we
have only to suppose the root to be ga?+px+g¢, or, in-
versely, ¢ +px +ga?, and we shall thus have

a+bx+ca®+dx® + giat =

9° +2pqx +29q2® + p*a® + 2g9pa® + g°x*.
Now, the fifth and sixth terms destroying each other, we
shall first determine p so, that the fourth terms may also
destroy each other; which happens when d=2gp, or

p= % ; we shall then likewise determine ¢, in order to

remove the third terms, making for this purpose

¢ )2 —_ c—p* .
c=2g9q+p* org= 5y
which done, the first two terms will furnish the equation
a+br=¢*+2pqx ; whence we obtain
a—gq* e
Spg— or x = 5=3pq
133. Here, again, we find the same imperfection that
was before remarked, in the case where the second and

fourth terms are wanting ; that is to say, 5=0, and d =0;

because we then find p=0, and ¢g= 2—} ; therefore

a—q?
0
than the value, =0, in the first case; whence it follows,
that this method cannot be at all employed with respect

to expressions of the form a + ca?+ g%*.

134. 3d. Resolution of the formula,

N (f2+bx + ca® + dad + gxt).

It is evident that we may employ for this formula both
the methods that have been made use of; for, in the first
place, since the first term is a square, we may assume
S+px+qa® for the root, and make the first three terms
vanish ; then, as the last term is likewise a square, we may
also make the root ¢+ pz + g2, and remove the last three
terms ; by which means we shall find even two values of z.

But this formula may be resolved also by two other
methods, which are peculiarly adaptedto it.

In the first, we suppose the root to be f+ pz +ga?, and

Tr =

: now, this value being infinite, leads no farther
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p is determined such, that the second terms destroy each
other; that is to say,

fi+brtca?+dad + gt =

2+ pr+2f92° + pia + 2gpa’ + gzt

Then, making b=2fp, or p=2%.; and since by these

means both the second terms, and the first and last, are
destroyed, we may divide the others by 22, and shall have
the equation ¢ + dzr=2fg + p* + 2¢px, from which we
c—2fg—p* _P+2g—c
Sgp—d T Td—2gp
to be particularly observed, that as g is found in the
formula only in the second power, the root of this square,
or g, may be taken negatively as well as positively ; and, for
this reason, we may obtain also another value of z ; namely,

_etg—p P —Yy—c
T —=2p—d’ " " 2p+d
135. There is, as we observed, another method of re-
solving this formula ; which consists in first supposing the
root, as before, to be f+ pz+g2?, and then determining p
in such a manner, that the fourth terms may destroy each
other; which is done by supposing, in the fundamental

obtain z = . Here, it ought

equation, d = 2¢gp, or p = %; for, since the first and the

last terms disappear likewise, we may divide the other by =,
and there will result the equation b +cx= 2fp + 2fyx + p%z,

which gives z = 3 ;:}?{—‘I_i—c We may farther remark, that
as the square f* is found alone in the formula, we may
suppose its root to be —f, from which we shall have

b+2/p
X= a7
pi=2g—c
new values of x; and, consequently, the methods we have
employed give, in all, six new values.

136. But here again the inconvenient circumstance oc-
curs, that, when the second and the fourth terms are want-
ing, or when =0, and d=0, we cannot find any value of
2 which answers our purpose; so that we are unable to
resolve the formula f°+ ca? +gz*. For, if =0, and

So that this method also furnishes two
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d=0, we have, by both methods, p=0; the former

giving z = C—Oqu, and the other giving z=0; neither of

which are proper for furnishing any further conclusions.

137. These then are the three formule, to which the
methods hitherto explained may be applied ; and if in the
formula proposed neither term be a square, no success
can be expected, until we have found one such value of =
as will make the formula a square.

Let us suppose, therefore, that our formula becomes a
square in the case of z=~, or that
a+bh+ch®+dhd +eht=k?;

if we make z=~%+y, we shall have a new formula, the
first term of which will be %2; that is to say, a square,
which will, consequently, fall under the first case: and
we may also use this transformation, after having deter-
mined by the preceding methods one value of z, for in-
stance, z=7%; for we have then only to make x=~%+y, in
order to obtain a new equation, with which we may pro-
ceed in the same manner. And the values of z, that may
thus be found, will furnish new ones; which will also lead
to others, and so on.

138. But it is to be particularly remarked, that we can
in no way hope to resolve those formule, in which the
second and fourth terms are wanting, until we have found
one solution; and, with regard to the process that must
be followed after that, we shall explain it by applying it to
the formula a + ex*, which is one of those that most fre-
quently occur.

Suppose, therefore, we have found such a value of z=4,
that a +eh*="~%?; then if we would find, from this, other
values of z, we must make x=/~A+y, and the following
formula, a-+eh*+4eh®y+ 6eh%y? + dehy® +ey*, must be a
square. Now, this formula being reducible to &% +4eh3y +
6el%y® +4ehy® + ey*, it therefore belongs to the first of our
three cases ; so that we shall represent its square root by
k+py +qy?; and, consequently, the formula itself will be
equal to the square

ke 2hpy + py® + 2kqy* +2pgy’ + 4"y
from which we must first remove the second term by de-
termining p, and consequently ¢ ; thatis tosay, by making

2eh?
4eh® =2kp, or p= -5 and Geh*=2kq + p?, or
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__Geht—p®  3eh?h?—2e25* ehy(3h2—Reh*)
=9 T /5 = /5 ’

or, lastly, g=gﬂ%2‘cﬁ

which, the remaining terms, 4ehy® + ey*, being divided
by 3, will give 4ek + ey = 2pq + ¢%, whence we find

, because eh*=k?—a; after

= 4—622:—%” : and the numerator of this fraction may be
4 A.2]5(he
thrown into the form dehk 4ekiz (K +2a) »f

or, because eh*=4k2—a, into this,
dehht — 4eh(k2—a) x (k2 +2a)__4eh(—ak®42a%)__4ach(2a—k?)
k4 - k4 I .

With regard to the denominator ¢*—e, since
g= el (k2 4+ 2a)

, and eht=k?*—a, it becomes

k3
e(k2—a) x (k2 +2a)2—ekS _ e(3ak*—4a®) _ea(3k*—4a?)
kS =Tk T k¢

so that the value sought will be
_ 4ach(2a—F) B or
y= B % aeki—da®y O

__4hk(2a—EY) ; and, consequently,

Y= "Sp—da
h(8akt— k' —4a?)
r=yth=——gn gz
_ h(k*—8ak® 444"
T= 4a2—3k*

* By multiplying 6ek2—p® by 42, and substituting for %2p?
its equal, 2eh3.

+ For since k2==a + eh*, therefore 3k2—2eh*=23a+eht; that
is, a -+ eh*(=k?) +2a=k?+2a.

4ehk* __eh?(k242a) 2eh3

T Here deh= e , also g = 75 , and p="0;
5
therefore 2pg = iezh—(:—-j_'_ga—z, and, consequently,

dehkt—4e2h5 (k24 2a) —B

4eh—2pq = 7
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If, therefore, we substitute this value of z in the formula
a+ex, it becomes a square ; and its root, which we have
supposed to be &+ py +qy?, will have this form,

8h(R—a) x (2a—R?) | 16k(R—a) x (A+20) x (2a—k)°

k+ 3kt—4a? (3k4—4a2)?
2eh? el (k% 42a)
because, as we have seen, p= AR e et
2 . 3
_ AhRA(2a—FY) and ehtmht—a*

= Bh_dz

139. Let us continue the investigation of the formula,
a+ex*; and, since the case a+eh*=4k? is known, let
us con51der it as furnishing two different cases; beca.use
2= +h, and = —4k; for which reason we may trans-
form our formula mto another of the third class, in which
the first term and the last are squares. This trans-
formation is made by an artifice, which is often of great

utility, and which consists in making z= ﬁ—(ll_iyl) : by
which means the formula becomes
a(l—y)*+eh*(1 +y)*
a—yr ; or rather
R +4(R2—2a)y +6k%® + 4(k*—2a)y® + RPy*
=y

Now, let us suppose the root of this formula, according to
— 2
the third case, to be }—{ﬂg—yy{}l; so that the numerator

of our formula must be equal to the square,
R +2kpy + py*— 2%y —2hpy® + Ry,
and, removing the second terms, by making

2__
—8a=2kp, or p= 2k ramat

* Thus,
__2eh® 4hk%*(2a~k?) 8eh*k(2a—k%) 8k(k:—a)x (2a—F2)
V=T X T3m4a® T 3ki—4a® | dki—da? ;
__eh%(k*+2a) 16h%*(2a—k?) 1Geh*k(k%42a) x (2a—k%)*
also, gy?= 73 X (Bki—4an)? (3kt—4a%)
lﬁk(k”—a)x(k2+‘2a) x (2a—k2%)? o
3k —daty? , by substituting ekt=~k%—a.

B.
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and, dividing the other terms by y?, we shall have
642 +4y(h* —2a) = —2k% + p*— 2kpy, or
y(4h*—8a +2kp)=p*—8k?; or
Jo—
=2____4_a, and ph =2k*—4a; so that

A
. — 4+ —16ake + 1642
y(8k—16a)= o ,

_ —k—dak®+4a®
TR —4a)
If we now wish to find z, we have, first,
It —8ak? +4a*
R —4da)

and

1+y=

and, in the second place,
3kt —4qg?

1=I= =i
I+y A*—8ak®+4a®
1—y T3k —40®

__ h(k*—8ak?+4a®)
ST 3k S de

but this is just the same value that we found before, with
regard to the even powers of x.

140, In order to apply this result to an example, let it
be required to make the formula, 22*—1 a square. Here,
we have a= —1, and e=2; and the known case, when
the formula becomes a square, is that in which z=1; so
that 2=1, and A?=1; that is, k=1; therefore, we shall
have the new value, z= 1—;—8:4 = —13; and since the
fourth power of z is found alone, we may also write
x= +13, whence 22*—1=57121=(239)2.

If we now consider this as the known case, we have
£=13, and 2=239; and shall obtain a new value of z,
namely,

; so that

; and,consequently,

13 x (239* + 8 x 239~ +4) 42422452969
3 x 239*—4 T 9788425919
141. We shall consider, in the same manner, a formula
rather more general, 2+ cz®+ ex*, and shall take for the
known case, in which it becomes a square, =4%; so that
a+ch®+eht=F2, :
And, in order to find other values from this, let us
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suppose x=/+y, and our formula will assume the follow-
ing form:

a
ch?+2chy +cy®

el + delPy + 6eh%y® + dehy® + ey*

k2 4+ (2ch +4eh®)y+ (c+ 6eh?)y?+ dehy® + ey*.

The first term being a square, we shall suppose the root
of this formula to be 2+py+¢y?; and the formula itself
will necessarily be equal to the square,

e+ 2kpy + p*y* + 2kay* + 2pgy’ + ¢yt 5
then determining p and ¢, in order to expunge the second
and third terms, we shall have for this purpose

3
2ch+4eh3=2kp ; orp=c}l—+k26—k; and

22
c+6eh?=2kg+p*; or g:ﬁ'ﬁfé]lk_ﬂ.

Now, the last two terms of the general equation being
divisible by y?, they are reduced to

deh+ey=2pq+4y;

p—} 4

which gives y= 4—:527—2—792 and, consequently, the value
also of x=~A+y. If we now consider this new case as the
given one, we shall find another new case, and may pro-
ceed, in the same manner, as far as we please.

142. Let us illustrate the preceding article, by applying
it to the formula, 1—a®+2% in which a=1, ¢= —1,
and e=1. The known case is evidently z=1; and, there-
fore, h=1, and k=1. If we make z=1+y, and the
square root of our formula 1+ py + gy?, we must first have

ch ’2@ =1, and then ¢= HG—;~IZ‘—PQ=%=Q' These

=

values give y=0, and z=1. Now, this is the known case,
and we have not arrived at a new one; but it is because
we may prove, from other considerations, that the pro-
posed formula can never become a square, except in the
cases of z=0, and z= =+ 1.

143. Let there be given, also, for an example, the
formula, 2 — 322 4 2z*; in which a=2, ¢ = ~ 3, and
e=2. The known case is readily found ; that is, z=1;
so that =1, and k=1 : if, therefore, we make x=1+y,
and the root =1+py+qy?, we shall have p=1, and
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g=4; whence y=0, and =1 which, as before, leads to
nothing new.

144. Again, let the formula be 1+82%+2*; in which
a=1, ¢c=8, and e=1. Here a slight consideration is suf-
ficient to point out the satisfactory case, namely, 2=2;
for, by supposing A=2, we find k=7; so that making
x=2+y, and representing the root by 7+py+qy?, we
shall have p= 32, and g=4%%%; whence

— 53880 — —_58 -
y= 2880, and = —3§41;

and we may omit the sign minus in these values. But we
must observe, farther, in this example, that since the last
term is already a square, and must therefore remain a
square also in the new formula, we may here apply the
method which has been already taught for cases of the
third class. Therefore, as before, let x=2+y, and we
shall have
1

32+32y+ 8y*

16 + 32y + 242 + 8By® +y

49+ 64y + 32y 483 + ¢4,
an expression which we may now transform into a square
in several ways. For, in the first place, we may suppose
the root to be 7+py +y*; and, consequently, the formula
equal to the square

49+ 1py +p%y°+ 14y*+ 2py° + y*
but then, after destroying 8y%, and 2py®, by supposing
2p=8, or p=4, dividing the other terms by 7, and deriv-
ing from the equation,
64 + 32y =14p + 14y + p?%y =56 4 30y,

the value of y= —4, and of r= —2, or r= 42, we come
only to the case that is already known.

Farther, if we seek to determine such a value for p, that
the second terms may vanish, we shall have 14p=64, and
p=2%2; and the other terms, when divided by %, form
the equation 14 + p?+2py=32+8y, or
1710 + 649y =32+48y, whence we find y= —1I1; and,
consequently, z= — 14, or = + 1§ ; and this value trans-
forms our formula into a square, whose root is 141,
Farther, as —y? is no less the root of the last term than
+?, we may suppose the root of the formula to be
7+ py—y*, or the formula itself equal to
49 + 14py + p2y*—14y*—2py* +y*. And here we shall
destroy the last terms but one, by making —2p=8, or
p= —4; then, dividing the other terms by y, we shall have
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64-+32y=14p—14p + p?y= —56 +2y,
which gives y= —4; that is, the known case again. If
we chose to destroy the second terms, we should have
64=14p, and p=3¢; and, consequently, dividing the
other terms by y?, we should obtain

324+ 8y= — 14+ p*—2py, or
32+ 8y— 338 — 6ty whence
y=—%}, and o=+ 3;
that is to say, the same values that we found before.

145. We may proceed, in the same manner, with respect

to the general formula,

a+ bz + cx? + ds + eat,

when we know one case, as x=1/%, in which it becomes a
square, k%. The constant method is to suppose r=~A+y:
from this, we obtain a formula of as many terms as the
other, the first of them being £2. If, after that, we express
the root by %k+py+qy?; and determine p and ¢ so, that
the second and third terms may disappear; the last two,
being divisible by »°, will be reduced to a simple equation
of the first degree, from which we may easily obtain the
value of y, and, consequently, that of z also.

Still, however, we shall be obliged, as before, to exclude
a great number of cases in the application of this method ;
those, for instance, in which the value found for z is no
other than z=#, which was given, and in which, conse-
quently, we could not advance one step. Such cases
shew either that the formula is impossible in itself, or that
we have yet to find some other case, in which it becomes a
square.

146. And thisis the utmost length to which the mathe-
maticians have yet advanced, in the resolution of formulee,
that are affected by the sign of the square root. No dis-
covery has hitherto been made for those, in which the
quantities under the sign exceed the fourth degree; and
when formule occur which contain the fifth, or a higher
power of x, the artifices which we have explained are not
sufficient to resolve them, even although a case be given.

That the truth of what is now said may be more evident,
we shall consider the formula,

R+ bx + ca® + dx® + ext + fa®,
the first term of which is already a square. If, as before,
we suppose the root of this formula to be &+ px+qz°,
and determine p and ¢, so as to make the second and third
terms disappear, there will still remain ¢/ree terms, which,
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when divided by 2*, form an equation of the second degree ;
and z evidently cannot be expressed, except by a new irra-
tional quantity. But if we were to suppose the root to be
k+pr+qx®+ra’, its square would rise to the sixth
power; and, consequently, though we should even de-
termine p, ¢, and 7, so asto remove the second, third, and
fourth terms, there would still remain the fourth, the fifth,
and the sixth powers; and, dividing by *, we should again
have an equation of the second degree, which we could
not resolve without a radical sign. Thisseems to indicate
that we have really exhausted the subject of transforming
formul into squares: we may now, therefore, proceed to
quantities affected by the sign of the cube root.

CHAPTER X.

Of the Method of rendering rational the irrational Formula,
3/(a +bx + ca® 4 dx®).

147. It is here required to find such values of z, that
the formula a+bx + cx®+ dz® may become a cube, and
that we may be able to extract its cube root. We see
immediately that no such solution could be expected, if
the formula exceeded the third degree ; and we shall add,
that if it were only of the second degree, that is to say, if
the term dz® disappeared, the solution would not be easier.
With regard to the case in which the last two terms
disappear, and in which it would be required to reduce
the formula, ¢+ bz to a cube, it is evidently attended with
no difficulty ; for we have only to make a+bx=p3, to find

3
—a
at once = = P A

148. Before we proceed farther on this subject, we
must again remark, that when neither the first nor the
last term. is a cube, we must not think of resolving the
formula, unless we already know a case in which it
becomes a cube, whether that case readily occurs, or
whether we are obliged to find it out by trial.

So that we have three kinds of formule to consider.
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One is, when the first term is a cube; and as then the
formula is expressed by f3 + bx + ca® + dz°, we imme-
diately perceive the known case to be that of x=0. The
second class comprehends the formula, a+ bz 4 cz?+¢32° ;
that is to say, the case in which the last term is a cube.
The third class is composed of the two former, and com-
prehends the cases in which both the first term and the
last are cubes.

149. Case 1. Let f3+bx+cx*+dx® be the proposed
formula, which is to be transformed into a cube.

Suppose its root to be f + px ; and, consequently, that
the formula itself is equal to the cube,

243 %px+3fp*at +piad;

as the first terms disappear of themselves, we shall de-
termine p, so as to make the second terms disappear also ;

namely, by making b=3f%p, or p= %; then the remain-

ing terms being divided by «2, give c+dzx=3fp*+p’z;
¢ —3fp*
p’—d’

If the last term, dz®, had not been in the formula, we
might have simply supposed the cube root to be f, and
should have then had f3 = f3+bx+cz% or b+cx=0,

and x = —g ; but this value would not have served to find

or r=

others.

150. Case 2. If, in the second place, the proposed
expression have this form, a + bz + c2®+ ¢33, we may
represent its cube root by p+gz, the cube of which is
PP+ 3p2gx +3py*at+g°x®; so that the last terms destroy
each other. Let us now determine p, so that thelast terms
but one may likewise disappear; which will be done by

supposing ¢ =3¢, or p= 5};, and the other terms will

then give a+bx=p®+3gp%x; whence we find
I
Tk
If the first term, a, had been wanting, we should have

contented ourselves with expressing the cube root by gz,
and should have had

gPx3=bx + cx®+ g*z*, or b+cx=0.
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whence r= — g; but this is of no use for finding other

values.
151. Case 3. Lastly, let the formula be,
2+ bx + ca® + g*a®,
in which the first and the last terms are both cubes. It is
evident that we may consider this as belonging to either
of the two preceding cases; and, consequently, that we
may obtain two values of z.

But beside this, we may also represent the root by

S +gz, and then make the formula equal to the cube,

S +3f%gx +3fg%at + g°x%
and likewise, as the first and last terms destroy each
other, the others being divisible by x, we arrive at the
equation, b+ cx=3f"*g + 3fy*xr, which gives
b—3f%y
3fg*—c’

152. On the contrary, when the given formula belongs
not to any of the above three cases, we have no other
resource than to try to find such a value for x as will
change it into a cube ; then, having found such a value,
for example, z = £, so that a + bk + ck® + di® = k?, we
suppose z=~A+y, and find, by substitution,

T =

a

bk + by

ch?® + 2chy + cy?

dh® + 3dk%y + 3dhy® + dy*

kB + (b + 2¢h + 3dh®)y + (¢ + 3dh)y* + dy’.

This new formula belonging to the first case, we know
how to determine y, and therefore shall find a new value
of x, which may then be employed for finding other
values.

153. Let us endeavour to illustrate this method by
some examples.

Suppose it were required to transform into a cube the
formula, 1+2 + 2%, which belongs to the first case. We
might at once make the cube root 1, and should find
z+a%=0, that is z(1 +z)=0, and, consequently, either
x=0, orz=—1; but from this we can draw no con-
clusion. Let us therefore represent the cube root by
1+4px; and as its cube is 1 + 3px + 3p%a® + p°z°, we
shall have 3p=1, or p=1; by which means the other
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terms, being divided by 2%, give 3p* + p%z =1, or
1—3p? %
3 a7
formula becomes 1 4 18 +324 =343, and the cube root
l4+pz="7. If now we proceed, by making z=18+y,
our formula will assume the form 343+37y +2, and by
the first rule we must suppose its cube root to be 7 +py;
comparing it then with the cube,

343+ 147py + 21p%y2 +py3,

3

X = 1

Now, p=1, so that 2= -2 =18, and our

it is evident we must make 147p =37, or p= 3. ; the
other terms give the equation 21p*+p3y =1, whence we
obtain the value of

yol=2p M7 x (47 —21x37) 1948580,

p3 37'5 5
which may lead, in the same manner, to new values.

154. Let it now be required to makethe formula, 2 + x2
equal to a cube. Here, as we easily get the case x=5,
we shall immediately make =54y, and shall have
27 + 10y +7* =2 +a?; supposing now its cube root to be
3 +py, so that the formula itself may be 27 +27py + 9p2y?
+p°y%, we shall have to make 27p=10, or p=12; there-
fore 1 =9p*+p’y, and

_1=-9pr 27 x (27*—9x 109
y=—p =~ 1000
= $8%; therefore our formula becomes 2 + 1= %
the cobe root of which must be 3+py = 123,

155. Let us also see whether the formula, 1+ %, can
become a cube in any other cases beside the evident ones
of =0, and x =—1. We may here remark first, that
though this formula belongs to the third class, yet the
root 1 +x is of no use to us, because its cube, 1 4 3x 4 322
+a3, being equal to the formula, gives 3x 4 3x?=0, or
3z(1 +x)=0, that is, again, =0, or t=—1.

If we made x =—1+y, we should have to transform
into a cube the formula, 3y—3y*+#? which belongs to
the second case; so that, supposing its cube root to be
p+y, or the formula itself equal to the cube,

P° + 3p%y + 3py® + y?, we should have 3p = - 3, or
p=—1, and thence the equation 3y=p®+3p?y=—1+3y,
which gives y =1, or infinity; so that we obtain nothing

= - 4617
— 1%00: and

46 9
56%%61

Ol

0 . -
more from this second supposition. Infact, it is in vain to

seek for other values of x; for it may be demonstrated,
that the sum of two cubes, as ¢*+2a%, can never become
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a cube;* so that, by making ¢=1, it follows that the
formula, 2%+ 1, can never become a cube, except in the
cases already mentioned.

156. In the same manner, we shall find that the
formula, 23 +2, can only become a cube in the case of
z=—1. This formula belongs to the second case; but
the rule there given cannot be applied to it, because the
middle terms are wanting. It is by supposing z=—1+y,
which gives 1+43y—3y®+43, that the formula may be
managed according to all the three cases, and that the
truth of what we have advanced may be demonstrated.
If, in the first case, we make the root =1+y, whose cube
is 14+3y—3y*+7°, we have —3y*=3y?, which can only
be true when y =0: and if, according to the second case,
the root be —1 +y, or the formula equal to —1 4 3y—3y*?
+%, we have 14+3y=—1+3y, and y=%, or an infinite
value; lastly, the third case requires us to suppose the root
to be 1 +y, which has already been done for the first case.

157. Let the formula 32*+3 be also required to be
transformed into a cube. This may be done, in the first
place, if =—1; but from that we can conclude nothing :
then also, when z=2; and if, in this second case, we
suppose z=2 + y, we shall have the formula 27 + 36y
+ 18y2+3y°; and as this belongs to the first case, we
shall represent its root by 3+py, the cube of which is
27 +27py +9p%y* + p°y®; then, by comparison, we find
27p=36, or p=4%; and thence results the equation,

18+3y=9p*+ py=16+44y ;

which gives y = __T7’ and, consequently, z = ——-_ig :
therefore our formula 34 3x2%=—49241, and its cube root

3 + py =%+ ; which solution would furnish new values, if
we chose to proceed.

158. Let us also consider the formula, 4 +22%, which
becomes a cube in two cases that may be considered as
known ; namely, x=2, and z=11. If now we first make
r=2+y, theformula, 8 + 4y + 4* will be required to become
a cube, having for its root 2+1y, and the cube of this
being 8+4y+2y*+4y?, we find 1 =%+ Ly; therefore
y=9, and z=11; which is the second given case.

If we here suppose x=11 + y, we shall have 44 2%=
125422y +4?*; which, being made equal to the cube of

5 + py, or to 125 + Thpy + 15p%2 +py3, gives p=%%;

* See Article 247 of this Part.
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and thence 15p°+ p’y=1, or pPy=1—15p°=—1922; con-
sequently, y=—1£%025, and 2 = — F.
Now, since x may either be negative or positive, z*
being found alone in the given formula, let us suppose
242y 8 + 8y*
r=az 1—y)®
must be a cube ; let us therefore multiply both terms by
I—y, in order that the denominator may become a cube;
8—8y +8y° —8y°
(I =y o
have the pumerator 8 —8y 4-8y2—8y3, or if we divide by
8, only the formula, 1—y+3°—33, to transform into a
cube; which formula belongs to all the three cases. Let
us, according to the first, take for the root 1— 1y; the
cube of which is 1—y +3y*—54y*; so that we have 1—y

=% — Y, or 27— 27y =9 — y; therefore y = ;; also,

)
1+y=2%, and 1—y=-%; whence z ( = ?t*Z) =11, as

, and our formula will become which

and this will give ; then we shall only

before.
We should have obtained the same result, if we had con-
sidered the formula as coming under the second case.
Lastly, if we apply the third, and take 1—y for the
root, the cube of which is 1—3y+3y%2—y3, we shall have
—1+y=—3+3y, and y=1;so that =1, or infinity;
and, consequently, a result which is of no use.

159. But since we already know the two cases, =2,
2411y
14y
means, if y =0, we have x =2 ; and if y = o, or infinity,

we have r=11.

and z =11, we may also make z= ; for by these

2+ 11y

1+
4 + 44y +121y° 8+ 52y + 12542 .
4 + T4+ or —W——— Multiply both
terms by 14y, in order that the denominator may be-
come a cube, and we shall only have the numerator,
8+60y+177y2+]25_y3, to transform into a cube. And
if, for this purpose, we suppose the root to be 2+ 5y, we
shall not only have the first terms disappear, but also
the last. We may, therefore, refer our formula to the se-
cond case, taking p+5y for the root, the cube of which
is p* + 15p% + 75py? + 125y4%; so that we must make
75p =177, or p=232; and there will result 8460y =
P’ +15p%y, or — 9243 y= 90218 and y = #8352, whence
we might obtain a value of z.

Therefore, let z = , and our formula becomes
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2+11y

i ; and, in this case,

But we may also suppose z=

our formula becomes
44 4+44y+121y* 8436y +125y°

1=%y+y* = (=g
so that multiplying both terms by 1—y, we have 8 +28y +
89y2—125y° to transform into a cube. If we therefore
suppose, according to the first case, the root to be 2+ 1y,
the cube of which is 8+28y+98y2+ 34345, we have
89—125y="28 + %43y, or 3118y=189; and, consequently,

=1521=.2.; whence we get x=11; that is, one of the
values already known. '

But let us rather consider our formula with reference to
the third case, and suppose its root to be 2—5y; the cube
of this binomial being 8—60y +150y2—125y3, we shall
have 28 +89y= —60+ 150y ; therefore y= 8%, whence we
get r= —1990; so that our formula becomes 11241816 or
the cube of 146,

160. The toregoing are the methods at present known
for reducing such formule as we have considered, either
to squares, or to cubes, provided the highest power of the
unknown quantity do not exceed the fourth power in the
former case, nor the third in the latter.

We might also add the problem for transforming a given
formula into a biquadrate, in the case of the unknown
quantity not exceeding the second degree. But it will be
perceived, that, if such a formula as a+bz+ca? were
proposed to be transformed into a biquadrate, it must in
the first place be a square ; after which it will only remain
to transform the root of that square into a new square, by
the rules already given.

If 2+ 7, for example, is to be made a biquadrate, we
first make it a square, by supposing

2 2 2 2
=G o 5 L=7P°

2pq 2pg
the formula then becomes equal to the square,

¢'—14gp® +49p* ¢'+14g°p® +49p*

) + 7= 2 >

we oo g
i , must likewise be transformed
2pq
into a square. For this purpose, let us multiply the two
terms by 2pg, in order that the denominator becoming a
square, we may have only to consider the numerator
2pq(7p*+4%). Now, we cannot ‘make a square of this
cc

=

the root of which,
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formula, without having previously found a satisfactory
case; so that supposing ¢=pz, we must have the formula,
2p2(Tp? 4+ p?2?) =2p*2(7 + 22),
and, consequently, if we divide by p¢, the formula 22(7 4-22)
must become a square. The known case is here z=1, for
lvlvhich reason we shall make z=1+y, and we shall thus
ave
(2+2y) x (8+2y +y*)=16 + 20y + 632+ 2y3, )
the root of which we shall suppose to be 4+ £y ; then its
square will be 16 +20y + 2542, which, being made equal
to the formula, gives 6+42y= 25 ; therefore y=14, and

z=4. Also, z= Z; so that ¢=9,and p=8, which makes

=361, and the formula 7 + 22= 272842, If we now ex-
tract the square root of this fraction, we find $%%; and
taking the square root of this also, we find %4 ; conse-
quently, the given formula is the biquadrate of 23.

161. Before we conclude this Chapter, we must observe,
that there are some formule, which may be transformed
into cubes in a general manner; for example, if cx? must

be a cube, we have only to make its root =px, and

. c .
we find ea®=p’s3, or c=piz; that is, x=1?; or, if we

write —1—-, instead of p, r=cq®.

The reason of this evidently is, that the formula contains
a square ; on which account, all such formule, as a(b + ¢z)2,
or ab?® +2abcx + ac®x?, may very easily be transformed into

cubes. In fact, if we suppose its cube root to be b+c.1:’

we shall have the equation a(b+cz)2=(b—_;cxz which di-

3 3

vided by (b + cz)? givesa= b +: “ whencewe getx= aqf*c— b,

a value in which ¢ is arbitrary.

This shews how useful it is to resolve the given formulz
into their factors, whenever it is possible : on this subject,
therefore, we think it will be proper to dwell at some
length in the following Chapter.
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CHAPTER XI.

Of the Resolution of the Formula, az?+bxy + cy*® into its
Factors.

162. The letters z and y shall, in the present formula,
represent only integer numbers; for it is sufficiently evi-
dent, from what has been already said, that, even when
we were confined to fractional results, the question may
always be reduced to integer numbers. Forexample, if the

. . t
number sought, x, be a fraction, by making z= oo We

may always assign ¢ and z in integer numbers; and as
this fraction may be reduced to its lowest terms, we shall
consider the numbers ¢ and « as having no common divisor.

Let us suppose, therefore, in the present formula, that
and y are only integer numbers, and endeavour to deter-
mine what values must be given to these letters, in order
that the formula may have two or more factors. This pre-
liminary inquiry is very necessary, before we can shew
how to transform this formula into a square, a cube, or any
higher power.

163. There are three cases here to be considered. The
first, when the formula is really decomposed into two
rational factors; which happens, as we have already seen,
when b2—4ac becomes a square.

The second case is that in which those two factors are
equal ; and in which, consequently, the formula is a square.

The third case is, when the formula has only irrational
factors, whether they be simply irrational, or at the same
time imaginary. They will be simply irrational, when
b*—4ac is a positive number without being a square ; and
they will be imaginary, if 52—4ac be negative.

164. If, in order to begin with the first case, we suppose
that the formula is resolvible into two rational factors, we
may give it this form, (fx +gy) x (hx +ky), which already
contains two factors. If we then wish it to contain, in a
general manner, a greater number of factors, we have only
to make fx+gy=pq, and kz+ky=rs; our formula will
then become equal to the product pgrs; and will thus neces-
sarily contain four factors, and we may increase this number
at pleasure. Now, from these two equations we obtain a

double value for x, namely x=£g——fﬂ, and z= rs—hy

/l H
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which gives pg—hgy=frs—fky; consequently,
_y='7f%—_ilfq(—], and x=%‘£‘]§]i—727£ :* but if we choose to have
z and y expressed in integer numbers, we must give such
values to the letters, p, ¢, r, and s, that the numerator may
be really divisible by the denominator; which happens
either when p and r, or ¢ and s, are divisible by that
denominator.

165. To render this more clear, let there be given the
formula 2?2 —y° composed of the factors (x+y) x (x—y).
Now, if this must be resolved into a greater number of
factors, we may make z +y=pgq, and x—y=rs; we shall
pgtrs

2
these values may become integer numbers, the two pro-
duets, pq and 7s, must be either both even, or both odd.

For example, let p=7, ¢=5, r=3, and s=1, we
shall have pg=35, and rs=3; therefore, z=19, and
y=16; and thence 22—y*=105, which is composed of the
factors 7x5x 3 x 1; so that this case is attended with no
difficulty.

166. The second is attended with still less ; namely, that
in which the formula, coutaining two equal factors, may
be represented thus: (fr+gy)? that is, by a square,
which can have no other factors than those which arise
from the root fx+gy; for if we make fx+gy=pgr, the
formula becomes p%?%?, and may consequently have as
many factors as we choose. We must farther remark, that
one only of the two numbers x and y is determined, and
Per—3y.

then have z= ,and y= 7_)_q_2—_rs; but, in order that

the other may be taken at pleasure; for 2=

and it is easy to give y such a value as will remove the
fraction.

The easiest formula to manage of this kind, is 22; if we
make z=pqr, the square 2% will contain three square fac-
tors, namely p?, ¢%, and 7%

167. Several difficulties occur in considering the third
case, which is that in which our formula cannot be resolved

* For, since fx+gy=pq, and hr+ky=rs, we have
_pg=tx _rs—hx pg—fr__rs—hx
y= — and y= et then g — & ¢ whence,

kpg—grs
Jha—hgx="kpg—grs; and, consequently, x= Fh—hg
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into two rational factors ; and here particular artifices are
necessary, in order to find such values for x and y, that
the formula may contain two, or more factors.

We shall, however, render this inquiry less difficult by
observing, that our formula may be easily transformed into
another, in which the middle term is wanting ; for we have
~by
2a
22—2byz 4+ b%*  byz—b%? o 22+ (dac—=b%y°,

4a o ty= 4a )
so that, neglecting the middle term, in az?+ bzy +cy?, we
shall consider the formula ax?+cy?, and shall seek what
values we must give to « and y, in order that this formula
may be resolved into factors. Here it will be easily per-
ceived, that this depends on the nature of the numbers
a and c; so that we shall begin with some determinate
formulee of this kind.

168. Let us, therefore, first propose the formula 22+ ¢,
which comprehends all the numbers that are the sum of
two squares, the least of which we shall set down ; namely,
those between 1 and 50:

1,2, 4,5,8,9,10, 13, 16, 17, 18, 20, 25, 26, 29, 32,
34, 36, 37, 40, 41, 45, 49, 50.

Among these numbers there are evidently some prime
numbers, which have no divisors ; namely, the following :
2,5,13, 17,29, 37, 41 : but the rest have divisors, and
illustrate this question ; namely, ¢ What values are we to
adopt for 2 and y, in order that the formula 22+ y? may
have divisors, or factors, and that it may have any number
of factors?” We shall observe, farther, that we may neglect
the cases in which = and y have a common divisor, because
then z? + y* would be divisible by the same divisor, and even
by its square. For example, if z=7p and y=7¢, the sum
of the squares, or

49p? +49¢*>=49(p* + ¢?),
will be divisible not only by 7, but also by 49: for which
reason, we shall extend the question no farther than the
formule, in which z and y are prime to each other.

We now easily see where the difficulty lies: for though
it is evident, when the two numbers z and y are odd, that
the formula 2?4 y? becomes an even number, and, conse-
quently, divisible by 2; yet it is often difficult to discover
whether the formula have divisors or not, when one of the
numbers is even and the other odd, because the formula
itself, in that case, is also odd. We do not mention the

only to suppose z= z ,in orderto have the following for-

mula,
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case in which 2 and y are both even, because we have
already said, that these numbers must not have a common
divisor.

169. The two numbers z and y must therefore be prime
to each other, and yet the formula 22 + * must contain two
or more factors. The preceding method does not apply
here, because the formula is not resolvible into two rational
factors ; but the irrational factors, which compose the for-
mula, and which may be represented by the product,

@+yv —Dx@—yv-=1),
will answer the same purpose. In fact, we are certain, if
the formula 22 +y? have real factors, that these irrational
factors must be composed of other factors ; because, if they
had not divisors, their product could not have any. Now,
as these factors are not only irrational, but imaginary; and,
farther, as the numbers = and y have no common divisor,
and therefore cannot contain rational factors ; the factors of
these quantities must also be irrational,and even imaginary.

170. If, therefore, we wish the formula 2%+ y? to have
two rational factors, we must resolve each of the two irra-
tional factors into two other factors; for which reason, let
us first suppose

e+yy —1=(p+gv —=Dx(+sv—1);
and since »/ —1 may he taken minus, as well as plus, we
shall also have

z—y —l=(p—gv/ —1)x(r—sy —1).

Let us now take the product of these two quantities, and
we shall find our formula 22+y°=(p°+¢?) x (12+52);
that is, it contains the two rational factors p?+¢% and
2452,

It remains, therefore, to determine the values of z and v,
which must likewise be rational. Now, the supposition
we have made gives

x+ys —l=pr—gs+psv/ —1+qgry/—1; and
z—yN —l=pr—gs—psy/ —1—gry/ —1.
If weadd theseformulw together, we shall have z=pr —gs;
if we subtract them from each other, we find
2y —1=2psy —1+2¢ry/ —1, or y=ps+qr.

Hence it follows, if we make z=pr—gs, and y=ps +gr,
that our formula 2°+ y* must have two factors, since we
find 2% +y*=(p*+42) x (r*+s?). If, after this, a greater
number of factors be requived, we have only to as-
sign, in the same manner, such values to p and ¢, that
p*+¢* may have two factors ; we shall then have three
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factors in all, and the number might be augmented by
this method to any extent.

171. As in this solution we have found only the second
powers of p, g, 7, and s, we may also take these letters
minus. If g, for example, be negative, we shall have
z=pr+g¢s, and y=ps—gqr; but the sum of the squares
will be the same as before; which shews, that when a
number is equal to the product, such as (p?+¢?) x (r?+s?),
we may resolve it into two squares in two ways; for we
have first found x=pr—gs, and y=ps+¢r, and then also

z=pr+gqs, and y=ps—qr.

For example, let p=3, ¢=2, r=2, and s=1: then
we shall have the product, 65=(13 x 5)=2% +y*; in
which 2=4, and y=7; or =8, and y=1; since in
both cases 2?2+3?=65. If we multiply several numbers
of this class, we shall also have a product, which may be
the sum of two squares in a greater number of ways. For
example, if we multiply together 2°+412=5, 3242°=13,
and 424+ 12=17, we shall find 1105, which may be re-
solved into two squares in four ways, as follows :

1. 332 + 42, 2. 32° + 92,
3. 3124122, 4. 242 423

172. So that among the numbers that are contained in
the formula, 22+y2, are found, in the first place, those
which are, by multiplication, the product of two or more
numbers, prime to each other ; and, secondly, those of a
different class.. We shall call the latter simple factors of the
formula, 2°+y2, and the former compound factors ; then
the simple factors will be such numbers as the following :

1,2,5,9, 13, 17, 29, 37, 41, 49, &c.
and in this series we shall distinguish two kinds of num-
bers; one are prime numbers, as 2, 5, 13, 17, 29, 37, 41,
which have no divisor, and are all (except the number 2),
such, that if we subtract 1 from them, the remainder will be
divisible by 4; so that all these numbers are contained in
the expression 4n+1. The second kind comprehends the
square numbers 9, 49, &c. and it may be observed, that the
roots of these squares, namely, 3, 7, &c. are not found in
the series, and that their roots are contained in the formula
4n—1. It is also evident, that no number of the form
4n—1 can be the sum of two squares; for since all num-
bers of this form are odd, one of the two squares must be
even, and the other odd. Now, we have already seen, that
all even squares are divisible by 4, and that the odd squares
are contained in the formuala 4n+1 : if we therefore add
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together an even and an odd square, the sum will always
have the form of 4n41, and never 4n--1. Farther,
every prime number which belongs to the formula, 4241,
is the sum of two squares ; this is undoubtedly true, but it
is not easy to demonstrate it.*

173. Let us proceed farther, and consider the formula,
x?+2y?, that we may see what values we must give to
z and y, in order that it may have factors. As this formula
may be expressed by the imaginary factors (z+yv/ —2) x
(x—y~ —2), it is evident, as before, that if it have di-
visors, these imaginary factors must likewise have divisors.
Suppose, therefore,

Tty —2=(p+g/ —2) X (r+s —2),
whence it immediately follows, that

T—y —=2=(p—qv —2) X (r—ss —2),
and we shall have

22+ 2y =(p* +2¢°) x (r*+2s%);
so that this formula has two factors, both of which have the
same form. But it remains to determine the values of z
and y, which produce this transformation. For this pur-
pose, we shall consider that, since
4y —2=pr—2¢qs+qr/ —2+psy/ —2, and
x—yn —2=pr—2qs—qr/ —2—ps/ — 2,
we have the sum 2x=2pr—4gs; and, consequently,
x=pr—2¢gs: also the difference
2 —2=2qr/ —2+2psv/ —2;

so that y=g¢gr+ps. When, therefore, our formula z2? 4+ 2y*
has factors, they will always be numbers of the same kind
as the formula; that is to say, one will have the form
p*+24% and the other the form 7242s%; and, in order
that this may be the case,  and y may also be determined
in two different ways, because ¢ may be either positive
or negative; for we shall first have z=pr—2¢s, and
y=ps+qr; and, in the second place, z=pr+2¢s, and
Y=ps—qr.

174. This formula 2? +2y? comprehends therefore all
the numbers which result from adding together a square
and twice another square. The following i1s an enumera-
tion of these numbers as far as 50 :

1,2,3,4,6,8,9,11, 12, 16, 17, 18, 19, 22, 24, 25,
27, 32, 33, 34, 36, 38, 41, 43, 44, 49, 50.

* The curious reader may see it demonstrated by Gauss, in
his Disquisitiones Avithmetice ; and by De la Grange, in the
Memoirs of Berlin, 1768.
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We shall divide these numbers, as before, into simple
and compound ; the simple, or those which are not com-
pounded of the preceding numbers, are these: 1, 2,3, 11,
17, 19, 25, 41, 43, 49, all which, except the squares 25
and 49, are prime numbers ; and we may remark, in ge-
neral, that, if a number is prime, and is not found in this
series, we are sure to find its square in it. It may be ob-
served, also, that all prime numbers contained in our
formula, either belong to the expression, 8n+1, or 8243 ;
while all the other prime numbers, namely, those which are
contained in the expressions 8z +5, and 8 -7, can never
form the sum of a square and twice the square : it is farther
certain, that all the prime numbers, which are contained in
one of the other formulz, 8n+1, and 8z +3, are always
resolvible into a square added to twice a square.

175. Let us proceed to the examination of the general
formula, 22+ cy?, and consider by what values of z and y
we may transform it into a product of factors.

We shall proceed as before ; that is, we shall represent
the formula by the product

(F+yv —e)x(z—yv —0),
and shall likewise express each of these factors by two fac-
tors of the same kind ; that is, we shall make

z +yv —c=(p+g~ —c)x (r+sa/ —c), and

r —yN —c=(p—g~/ —c) X (r—s+/ —c); whence

2%+ cy?=(p*+cq?) X (r*+cs?).
We see, therefore, that the factors are again of the same
kind with the formula. With regardto the values of x
and y, we shall readily find 2=pr + c¢s, and y=¢r—ps ; or
z=pr—cqs, and y=ps-+gqr; and it is easy to perceive
how the formula may be resolved into a greater number of
factors.

176. It will not now be difficult to obtain factors for
the formula z2—cy?; for, in the first place, we have only
to write — ¢, instead of +c; but, farther, we may find
them immediately in the following manner. As our for-
mula is equal to the product

(@+yv ) x (T—y o),

let us make z+yv/c=(p+gnc)x (rs++/¢c), and
Z—ya/c=(p—gr/c)x(r—ss/c), and we shall
immediately have z? — cy?=(p? — c¢?) x (r* — cs?) ; so that
this formula, as well as the preceding, is equal to a pro-
duct whose factors resemble it in form. With regard to
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the values of z and y, they will likewise be found to be
double ; that is to say, we shall have
x=pr+cqs, and y=gr+ps; we shall also have
Z = pr—cqs, and y = ps—gr. If we chose to make
trial, and see whether we obtain from these values the pro-
duct already found, we should have, by trying the first,
2% =p%r? 4 2cpgrs+ c?g%?, and
Y =p%? 4+ 2pgrs +q*%, or
cy?=cp%*+2cpgrs +cq®r? ; so that
&=y = p*r?—cp%? + c%¢%s®— cq®r?, which is just the pro-
duct already found, (p?—cg?) x (r2—cs?).

177. Hitherto we have considered the first term as with-
out a coeflicient ; but we shall now suppose that term to be
multiplied also by another letter, and shall seek what
factors the formula az?+ cy? may contain.

Here it is evident that our formula is equal to the pro-
duet (xa/ @ +ya/ —c) x (xn/ a—y s/ —c), and, consequently,
that it is required to give factors also to these two factors.
Now, in this a difficulty occurs; for if, according to the
second method, we make
T/ a+ys —c=(pyva+ g —c) X (r/a + s/ —¢) =
apr — cqs + psy/ —ac + qr./ —ac, and
TN e—yS —c=(prva—gs —¢) x (a—sy —c) =
apr—cqs—ps/ —ac—qr ./ —ac, we shall have
2z A/ a=2apr—2cqs, and
2yn/ —c=2ps\/ —ac +2qrr/ — ac; that is to say, we
have found both for z and for y irrational values, which
cannot here be admitted.

178. But this difficulty may be removed thus: let us
make

/e + Yy —c=(pa+ g —¢) X (r + s/ —ac) =
pra/a—cgsn/ a+qr/ —c+aps/ —c, and

r/a—yyvy —c= (pva—qgy —¢) X (r—s/ —ac) =
prv/a—cgsy/a—qra/—c—apsy/ —c. This supposition
will give the following values for # and y; namely,
Z=pr—cgs, and y=gr+aps; and our formula, az?+ cy?,
will have the factors (ap?+cq?) x (r2+acs?), one of which
only is of the same form with the formula, the other being
different.

179. There is still, however, a great affinity between
these two formule, or factors; since all the numbers con-
tained in the first, if multiplied by a number contained in
the second, revert again to the first. We have already
seen, that two numbers of the second form, 2+ acy?, which
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returns to the formula 22+ cy? and which we have already
considered, if multiplied together, will produce a number
of the same form.

It only remains, therefore, to examine to what formula
we are to refer the product of two numbers of the first
kind, or of the form az?+ cy®.

For this purpose, let us multiply the two formule,
(ap®+cg®) X (ar®+cs?), which are of the first kind. It
is easy to see that this product may be represented in the
following manner: (apr+cgs)®+ac(ps—gr)?. 1f, there-
fore, we suppose

apr +cqgs=z, and ps—gqr=y,
we shall have the formula 2%+ acy?, which is of the last
kind. Whence it follows, that if two numbers of the first
kind, a2?+ cy®, be multiplied together, the product will be
a number of the second kind. If we represent the num-
bers of the first kind by 1, and those of the second by 11,
we may represent the conclusion to which we have been
led, abridged as follows :
1X1 gives IT; I II gives I; IIXII gives II.

And this shews much better what the result ought to
be, if we multiply together more than two of these num-
bers ; namely, that 1x1x1 gives 1; that 1xIx 11 gives
ir; that 1 x xxu givesr; and lastly, that nmxixm
gives 11,

180. In order to illustrate the preceding Article, let
a=2, and ¢=3; there will result two kinds of numbers,
one contained in the formula 22° +3y?, the other contained
in the formula 22+ 6y?. Now, the numbers of the first
kind, as far as 50, are

2, 3, 5, 8,11, 12, 14, 18, 20, 21, 27,
29, 30, 32, 35, 44, 45, 48, 50;
and the numbers of the second kind, as far as 50, are
1, 4, 6, 7, 9,10, 15, 16, 22, 24, 25,
28, 31, 33, 36, 40, 42, 49.

If, therefore, we multiply a number of the first kind, for
example, 35, by a number of the second, suppose 31, the
product 1085 will undoubtedly be contained in the formula
22%4-3y*; that is, we may find such a number for y, that
1085 —3y® may be the double of a square, or=2z?: now,
this happens, first, when y=3, in which case =23 ; in
the second place, when y=11, so that z=19; in the
third place, when y=13, which gives z=17; and, in the
fourth place, when y=19, whence z=1.

We may divide these two kinds of numbers, like the
others, into simple and compound numbers: we shall apply



396 ELEMENTS PART 1I.

this latter term to such as are composed of two or more
of the smallest numbers of either kind ; so that the simple
numbers of the first kind will be 2, 3, 5, 11, 29; and the
compound numbers of the same class will be 8, 12, 14,
18, 20, 27, 30, 32, 35, 40, 45, 48, 50, &c.

The simple numbers of the second class will be 1, 7,
31; and all the rest of this class will be compound num-
bers; namely, 4, 6, 9, 10, 15, 16, 22, 24, 25, 28, 33, 36,
40, 42, 49.

CHAPTER XII.

Of the Transformation of the Formula az?+cy® into
Squares, and higher Powers.

181. We have seen that it is frequently impossible to
reduce numbers of the form az®+ cy® to squares; but
whenever it is possible, we may transform this formula
into another, in which a=1.

For example, the formula 2p?—¢* may become a square;
for, as it may be represented by

(2 +9»=2p+9)%

we have only to make 2p+¢9=xz, and p+9=y, and we
shall get the formula £*—2¢%, in which a =1, and ¢=2.
A similar transformation always takes place, whenever
such formule can be made squares. Thus, when it is
required to transform the formula ax?+ cy® into a square,
or into a higher power (provided it be even), we may,
without hesitation, suppose a =1, and consider the other
cases as impossible.

182. Let, therefore, the formula 2%+ cy? be proposed,
and let it be required to make it a square. As it is com-
posed of the factors (z + y»/ —¢) X (x —y«/ —c), these
factors must either be squares, or squares multiplied by
the same number. For, if the product of two numbers,
for example, pg, must be a square, we must have p=7?,
and ¢g=s°; that is to say, each factor is of itself a square ;
or p =mr?, and g =ms*; and therefore these factors are
squares multiplied both by the same number. For which
reason, let us make x+y —c=m(p+qv —c)*; it will
follow that z—ys —c=m(p—qgs/ —c), and
we shall have 2%+ cy®=m¥p®+cq?)?, which is a square.
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Farther, in order to determine z and y, we have the equa-
tions x+y« —c=mp®+2mpq / —c—mcq?, and

x—ya/ —c=mp*—2mpq/ —c—mcqg®; in which x is
necessarily equal to the rational part, and ys/ —c to the
irrational part; so that =mp*—mcq?, and
Yo —c=2mpgs/ —c, or y=2mpq; and these are the
values of z and y that will transform the expression
a2+ cy? into a square, m¥(p?+ cq?)?, the root of which is
mp® +meq?.

183. If the numbers z and y have not a common
divisor, we must make m = 1. Then, in order that
2%+ cy® may become a square, it will be sufficient to make
x=p*—cq?, and y=2pgq, which will render the formula
equal to the square (p?- cg?)?.

Or, instead of making a=p?—cq? we may also suppose
x=cq?~—p?, since the square 22 is still left the same.

Besides, the same formule having been already found
by methods altogether different, there can be no doubt
with regard to the accuracy of the method which we have
now employed. In fact, if we wish to make x°+cy®
a square, we suppose, by the former method, the root to

X 29,2
be « + %"{, and find 2% 4 ¢y®* = 2® + Zpzy + %‘Z—

Expunge the 22, divide the other terms by y, multiply by
¢%, and we shall have

07y =2pqu+p%y; Or cq°y—py=2pgz.
Lastly, dividing by 2pg, and also by y, there results
z_ P Now n as well as p and ¢, are to
7 g ow, as z and y, as well as p A
have no common divisor, we must make z equal to the
numerator, and y equal to the denominator, and hence we
shall obtain the same results as we have already found,
namely, z=cq?—p?, and y=2pq.

184. This solution will hold good, whether the number ¢
be positive or negative; but, farther, if this number itself
had factors, as, for instance, the formula z2+acy?, we
should not only have the preceding solution, which
gives x = acqg®—p?, and y = 2pq, but this also, namely,
x=cq*—ap®, and y=2pq; for, in this last case, we have,
as in the other,

xﬁ + acqﬁ=cﬁq4 + Qacp‘lg‘l + a2p4=(c(12 + apQ)Q 3
which takes place also when we make z=ap®—c¢,
because the square z° remains the same.
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This new solution is also obtained from the last method,
in the following manner :

If we make z + yo —ac=(ps/a+ g« —c)°, and

T—yy—ac=(pJa—q—c) we
shall have 2% + acy® = (ap® + c¢?)?,
and, consequently, equal to a square. Farther, because
24y —ac=ap?+2pq . —ac—cqg? and
=Y —ac=ap®—2pg ./ —ac—cq?,
we find x=ap?—cq?, and y=2pq.

It 1s farther evident, that if the number ac be resolvible
into two factors, in a greater number of ways, we may
also find a greater number of solutions.

185. Let us illustrate this by means of some deter-
minate formule; and, first, if the formula x%+y¢ must
become a square, we have ac=1; so that z=p*—¢?, and
y=2pq; whence it follows that 2®+y2=(p?+ ¢*)%

If we would have z°—y?=0 ; we have ac=—1; so
that we shall take x=p?+ ¢?, and y=2pq, and there will
result 22 —y?=(p*—¢®)2= 0.

If we would have the formula 2?+2y?=n, we have
ac=2; let us therefore take z=p?—2¢?, or x=2p*—q?,
and y=2pg, and we shall have

2+ Qyz___-(pﬂ + g2)2, or z? +2]/2=(2p2 + qg)a.

If, in the fourth place, we would have 2?—2y*=n),
in which ac=—2, we shall have x=p®+ 2¢?, and y=2pq ;
therefore 22— 2y?=( p*—2¢%)%

Lastly, let us make 22+6y*=0. Here we shall have
ac = 6; and, consequently, either a =1, and ¢ =6, or
a=2, and ¢ =3. In the first case, z = p?—6¢?, and
y = 2pq; so that 2° 4+ 6y% = (p? + 6¢%?; in the second,
x=2p*—3¢? and y=2pq; whence

2%+ 6y2=(2p? + 3¢~

186. But let the formula @x?+cy? be proposed to be
transformed into a square. We know beforehand, that
this cannot be done, except we already know a case, in
which this formula really becomes a square; but we shall
find this given case to be, when 2 =f, and y =g ; so that
af?+cg*="h*; and we may observe, that this formula
can be transformed into another of the form ¢ +acu?, by
making
,and ¥ =

t=a____fx -; °ey g____x;fy ; for if

_@f*a* + 2acfgxy + ¢'gy*

t° Ve , and
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— 2,2
=9 Yozy +7y , we have

h?
a2f2x2 + cQngZ + achxQ + aqf‘Z‘l/Q
72

u?

7

L4+ acu?=

ax®(af*+ cg?) + cy¥(af? +cg?) .
he ’
also, since af?+ cg®? = k%, we have #* +acu? = az®+cy®.
Thus, we have given easy rules for transforming the
expression ¢*+acu? into a square, to which we have now
reduced the formula proposed, az?+ cy?.

187. Let us proceed farther, and see how the formula
a2?+ cy?, in which x and y are supposed to have no com-
mon divisor, may be reduced to a cube. The rules already
given are by no means sufficient for this ; but the method
which we have last explained applies here with the
greatest success : and what particularly deserves observa-
tion, is, that the formula may be transformed into a cube,
whatever numbers a and ¢ are; which could not take
place with regard to squares, unless we already knew a
case, and which does not take place with regard to any
of the other even powers; but, on the contrary, the solu-
tion is always possible for the odd powers, such as the
third, the fifth, the seventh, &ec.

188. Whenever, therefore, it is required to reduce the
formula ax?+ cy® to a cube, we may suppose, according to
the method which we have already employed, that

zva+yy —c=(pyva+gv —c), and

zy/a—=yy —c=(pva—qv —c)’;
the product (ap?®+cg?)®, which is a cube, will be equal to
the formula az®+cy?. But it is required, also, to deter-
mine rational values for  and y, and fortunately we suc-
ceed. If we actually take the two cubes that have been
pointed out, we have the two equations,
an/a-+y —c=apya-+3ap'q/ —o—3epgY/a—cqy/ —c;and
xn a—y N —c=ap}/a—3ap*q/ —c—3cpgi/a+cqi/—c;
from which it evidently follows, that

x=ap®—3cpg?, and y=3ap?q—cq®.

For example, let two squares, 2% and y2, be required,
whose sum, 22+ %%, may make a cube. ere, since a=1,
and c=1, we shall have x=p3—3p¢?, and y=3p2¢g—q°,
which gives 22+ y?=(p?+¢%)°. Now, if p=2, and ¢=1,
we find =2, and y=11; wherefore

2+ yt=125=53%,
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189. Let us also consider the formula 22+ 3y2, for the
purpose of making it equal to a cube. As we have, in
this case, a=1, and ¢=3, we find

xz=p*—9pq?, and y=3p%—3¢%
whence 22+ 3y?=(p*+3¢?)%.  This formula occurs very

frequently ; for which reason we shall here give a Table
of the easiest cases.

Plel| *® |y z* + 3y*
111 8| 0 64= 43
2 |1 10| 9| 343= 7
12| 35|18 2197=13°
3|1 0 | 24| 1728 =12
13| 80 [72]21952=28
3|12 8 |30 9261=213
2| 3| 154 | 45 | 29791 =313

190. If the question were not restricted to the condition,
that the numbers 2 and y must have no common divisor,
it would not be attended with any difficulty; for if
ax? + cy* were required to be a cube, we should only
have to make x=¢z, and y=wuz, and the formula would
become ai?z? + cu’z?; which we might make equal to the

3
cube 2273, and should immediately find z=wv3(at?+ cu?).

Consequently, the values sought of x and y would be
z=tv*(at®+ cu?), and y=uv3(at®+ cu?), which, beside the
cube v? have also the quantity a¢®+cu? for a common
divisor ; so that this solution immediately gives

az®+ cy?=1v0(at® + cu?)? x (at®+ cu?) =v8(at? + cu?)?,
which is evidently the cube of v*(at? + cu®).

191. This last method, which we have made use of, is
so much the more remarkable, as we are brought to solu-
tions, which absolutely required numbers rational and
integer, by means of irrational, and even imaginary
quantities ; and, what is still more worthy of attention, our
method cannot be applied to those cases, in which the
irrationality vanishes. For example, when the formula
2?+cy? must become a cube, we can only infer from it,
that its two irrational factors, z+y~/ —c, and z—y ./ —c,
must likewise be cubes; and since x and y have no
common divisor, these factors cannot have any. But if
the radicals were to disappear, as in the case of c=—1,
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this principle would no longer exist; because the two fac-
tors, which would then be z+y, and x—y, might have
common divisors, even when z and y had none; as would
be the case, for example, if both these letters expressed
odd numbers.

Thus, when 22—y? must become a cube, it is not neces-
sary that both x+y, and x—y, should of themselves be
cubes; but we may suppose x+y=2p°, and z—y=4¢3;
and the formula z?—y* will undoubtedly become a cube,
since we shall find it to be 8p3¢®, the cube root of which is
2pq. We shall farther have z=p3+2¢3%, and y=p°—2¢°.
On the contrary, when the formula ax?+cy? is not re-
solvible into two rational factors, we cannot find any other
solutions beside those which have been already given.

192. We shall illustrate the preceding investigations by
some curious examples.

Question 1. Required a square, 2%, in integer numbers,
and such, that, by adding 4 to it, the sum may be a cube.
The condition is answered when 22=121; but we wish to
know if there are other similar cases.

As 4 is a square, we shall first seek the cases in which
2%+ y* becomes a cube. Now, we have found one case,
namely, if =p°—3p¢?, and y=3p?g—¢*: therefore, since
y°=4, we have y=+2, and, consequently, either 3p2q—
@ =+2, or 3p?¢—¢*=—2. In the first case, we have
9(3p*—q?)=2, so that ¢ is a divisor of 2.

This being laid down, let us first suppose ¢=1, and we
shall have 3p*—1=2; therefore p=1; whence x=2,
and z2=4.

If, in the second place, we suppose g=2, we have
6p?—8=2; admitting the sign+, we find 6p*=10,
and p?=34; whence we shall get an irrational value of p,
which could not apply here ; but if we consider the sign —,
we have 6p?=6, and p=1; therefore z=11: and these
are the only possible cases; so that 4, and 121, are the
only two squares, which, added to 4, give cubes.

198. Question 2. Required, in integer numbers, other
squares, beside 25, which, added to 2, give cubes.

Since 2242 must become a cube, and since 2 is the
double of asquare, let us first determine the cases in which
2%+ 2y? becomes a cube ; for which purpose we have, by
Article 188, in which a=1, and ¢=2, z = p*— 6p¢?,
and y=3p?q—2¢%; therefore, since y=+1, we must
have 3p2g—2¢*, or ¢(3p*—2¢?) = £1; and, consequently,
g must be a divisor of 1.

Therefore let g=1, and we shall have 3p?—2=+1.

DD
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If we take the upper sign, we find 3p?=3, and p=1;
whence z=>5; and if we adopt the other sign, we get a
value of p, which being irrational, is of no use : it follows,
therefore, that there is no square, except 25, which has
the property required.

194. Question 3. Required squares, which, muitiplied
by 5, and added to 7, may produce cubes; oritis required
that 522+ 7 should be a cube.

Let us first seek the cases in which 522+ 7y2 becomes a
cube. By Article 188, a being equal to 5, and ¢ equal 7,
we shall find that we must have z = 5p? —2Ipg¢?, and
y=156p%g—T7¢%; so that in our example y being ==+1,
we have 15p%g—7¢°=¢q(15p°—7¢%)= +1; therefore ¢
must be a divisor of 1; that is to say, g==1; conse-
quently, we shall have 15p*—7==+1; from which, in
both cases, we get irrational values for p : but from which
we must not, however, conclude that the question is im-
possible, since p and ¢ might be such fractions, that y=1,
and that = would become an integer; and this is what
really happens; for if p=1, and ¢g=14, we find y=1,
and x=2; but there are no other fractions which render
the solution possible.

195. Question 4. Required squares, in integer numbers,
the double of which, diminished by 5, may be a cube ; or
it is required that 222—5 may be a cube.

If we begin by seeking the satisfactory cases for the
formula 222—5y2, we have, in the 188th Article, a=2,
and ¢=—5; whence z=2p3+ 15pq?, and y=6p%g+5¢°:
so that, in this case, we must have y==+1; consequently,

6p*q +5¢°=q(6p* + 5g)=%1;
and as this cannot be, either in integer numbers, or even
in fractions, the case becomes very remarkable, because
there is, notwithstanding, a satisfactory value of z; namely,
z=4; which gives 222—5=27, or equal to the cube of 3.
It will be of importance to investigate the cause of this
peculiarity.

196. It is not only possible, as we see, for the formula
2z?—5y? to be a cube; but, what is more, the root of this
cube has the form 2p?—5¢°, as we may perceive by mak-
ing =4, y=1, p=2, and g=1; so that we know a case
in which 222 —5y%=(2p?—5¢?)%, although the two factors
of 2x%— 5y% namely, z./2 +yv5, and 22— y5,
which, according to our method, ought to be the cubes of
PN2+qg~5, and of p/2—ga/5, are not cubes; for, in
our.case, T/ 2+yy/d=4./24 /5 ; whereas
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(pV2+9v5P=@2v2+ v5)=461/2+20V5,
which is by no means the same as 42+ V5.

But it must be remarked, that the formula, 72— 10s°, may
become 1, or —1, in an infinite number of cases; for ex-
ample, if 7=3, and s=1, or if r=19, and s=6: and
this formula, multiplied by 2p2—5¢?, reproduces a number
of this last form.

Therefore, let f2—10g2=1; and, instead of supposing,
as we have hitherto done, 222—5y°=(2p*—5¢%)%, we may
suppose, in a more general manner,

2% — by = (f*—10g%) x (2p*—5¢*)?;
so that, taking the factors, we shall have
2V 2y B=(f1gn10) X (Pv/2Eqy5)
Now, (pv/2+qn5)°=(2p*+15pg*) v 2 (6p°q+5¢*) /5 ;
and if, in order to abridge, we write A»/2+B+/5 instead
of this quantity, and multiply by f+ g~ 10, we shall
have afv2 4+ BfW/5 + 24945+ 5Bga/2 to make equal
to za/2 + y/5; whence results z = af +58g, and y=
Bf + 249. Now, since we must have y= £ I, it is
not absolutely necessary that 6p?g+5¢°=1; on the con-
trary, it is sufficient that the formula, Bf+24g, that is to
say, that f(6p%q+5¢°) + 29(2p® + 15pg®) becomes = %1 ;
so that fand g may have several values. For example,
let f=3, and g=1, the formula, 18p%q 4+ 15¢° + 4p* + 30pg?,
must become=+1 ; that is,
4p® +18p%q +30pg®+ 15¢> = £ 1.

197. The difficulty, however, of determining all the pos-
sible cases of this kind, exists only in the formula, a2?+ cy?,
when the number ¢ is negative ; and the reason is, that this
formula, namely, a?—acy?, which depends on it, may then
become 1; which never happens when ¢ is a positive num-
ber, because z?+cy?, or z?+acy?, always gives greater
numbers, the greater the values we assign to z and y.
For which reason, the method we have explained cannot
be successfully employed, except in those cases, in which
the two numbers @ and ¢ have positive values.

198. Let us now proceed to the fourth degree. Here
we shall begin by observing, that if the formula, az® +cy?,
is to be changed into a biquadrate, we must have a=1; for
it would not be possible even to transform the formula into
a square (Art. 181); and, if this were possible, we might
also give it the form #+acu®; for which reason we shall
extend the question only to this last formula, which may be
reduced to the former, #*+ cy?, by supposing a=1. This
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being laid down, we have to consider what must be the
nature of the values of  and y, in order that the formula
2%+ cy® may become a biquadrate. Now, it is composed
of the two factors (x+yv —c)x (x—ya/ —c); and each
of these factors must also be a biquadrate of the same
kind ; therefore we must make z+yv —c=(p+g~/ —c)%,
and z—y+/ —c=(p—g~/ —c)*, whence it follows, that
the formula proposed becomes equal to the biquadrate
(p*+cgd)*. With regard to the values of z and y, they
are easily determined by the following analysis:

z+ynN —c=p*+4p3qg N —c—6cp®q®+ c?q*—4cepg* S —c,

z—y —c=p*—4p’q/ —c—06cp%g®+ c*¢* +4cpg® s/ —c,
whence, 2=p*—6cp?g® +c?¢*; and y=4p’g—4dcpg®.

199. So that when z°+y? becomes a biquadrate, as it
does, when ¢=1, we have

z=p*—6p°¢*+¢*; and y=4p>q—4pg*;
so that 22+ y2=(p?+¢H)*

Suppose, for example, p =2, and g=1; we shall then
find x==7, and y=24; whence 22+ 2=625=>5*

If p=3, and ¢=2, we obtain 2 =119, and y =120,
which gives 22+ y?=13%

200. Whatever be the even power into which it is re-
quired to transform the formula az?+ cy?, it is absolutely
necessary that this formula be always reducible to a
square; and for this purpose, it is sufficient that we
already know one case in which it happens; for we may
then transform the formula, as has been seen, into a
quantity of the form ¢+ acu?, in which the first term ¢2 is
multiplied only by 1; so that we may consider it as con-
tained in the expression 2% +cy?; and in a similar manner,
we may always give to this last expression the form of a
sixth power, or of any higher even power.

201. This condition is not requisite for the odd powers;
and whatever numbers @ and ¢ be, we may always trans-
form the formula az?+ cy? into any odd power. Let the
fifth, for instance, be demanded ; we have only to make

zy/a+yy —c=(pva+qs/ —c)’, and
zy a—yy —c=(pya—qv —c)
and we shall evidently obtain aa? + cy? = (ap® + cg?°.
Farther, as the fifth power of py/a+ ¢ —cis =a?p’/ a+
S5a%pig v/ —c — 10acp®q* v a — 10acp®q® N/ — ¢ +5c*pg* N/ a+
c*q® v/ —c, we shall, with the same facility, find
z= a%® —10acp?q*+5c*pq*, and
y=>ba%p*q—10acp?q®+ c*¢°.
If it is required, therefore, that the sum of two squares,
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such as 22+ %, may be also a fifth power, we shall have

a=1, and c=1; therefore, = p°—10p3%*+5pg*; and

y=05p*q—10p°¢*+¢°; and, farther, making p=2, and

g=1, we shall find x=38, and ¢=41; consequently,
2+ y?=3126=>55,

CHAPTER XIII.

Of some Expressions of the Form ax* + by*, which are
not reductble to Squares.

202. Much labor has been formerly employed by some
mathematicians to find two biquadrates, whose sum or dif-
ference might be a square, but in vain; and at length it
has been demonstrated, that neither the formula, z*+y*,
nor the formula, 2*—y*, can become a square, except in
these evident cases: first, when =0, or y=0, and,
secondly, when y=x. This circumstance is the more
remarkable, because it has been seen, that we can find an
infinite number of answers, when the question involves
only simple squares.

203. We shall give the demonstration to which we
have just alluded ; and, in order to proceed regularly, we
shall previously observe, that the two numbers z and y
may be considered as prime to each other: for, if these
numbers had a common divisor, so that we could make
x=dp, and y=dq, our formule would become d*p*+ dg*,
and d*p*—d*g*: which formule, if they were squares,
would remain squares after being divided by d*; therefore,
the formule p*+¢% and p*—g4, also, in which p and ¢
have no longer any common divisor, would be squares;
consequently, it will be sufficient to prove, that our
formule cannot become squares in the case of z and y
being prime to each other, and our demonstration will,
consequently, extend to all the cases, in which # and y
have common divisors.

204. We shall begin, therefore, with the sum of two
biquadrates; that is, with the formula, 24+ y*, considering
z and y as numbers that are prime to each other: and we
have to prove, that this formula becomes a square only in
the cases above-mentioned ; in order to which, we shall enter
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upon the analysis and deductions, which this demonstra-
tion requires.

If any one denied the proposition, it would be main-
taining that there may be such values of z and y, as will
make x*+y* a square, in great numbers, notwithstanding
there are none in small numbers.

But it will be seen, that if « and y had satisfactory
values, we should be able, however great those values
might be, to deduce from them less values equally satis-
factory, and from these, others still less, and so on.  Since,
therefore, we are acquainted with no value in small num-
bers, except the two cases already mentioned, which do
not carry us any farther, we may conclude, with certainty,
from the following demonstration, that there are no such
values of  and y as we require, not even among the
greatest nnmbers. The proposition shall afterwards be
demonstrated, with respect to the difference of two biqua-
drates, z*—y* on the same principle.

205. The following consideration, however, must be
attended to at present, in order to be convinced that
z*+y* can only become a square in the self-evident cases
which have been mentioned.

1. Since we suppose z and y prime to each other, that
is, having no common divisor, they must either both be
odd, or one must be even, and the other odd.

2. But they cannot both be odd, because the sum of
two odd squares can never be a square ; for an odd square
is always contained in the formula, 4n+1; and, conse-
quently, the sum of two odd squares will have the form
4n+2, which being divisible by 2, but not by 4, cannot
be a square. Now, this must be understood also of two
odd biquadrate numbers.

3. If, therefore, a*+y* must be a square, one of the
terms must be even and the other odd; and we have
already seen, that, in order to have the sum of two squares
a square, the root of one must be expressible by p?—¢?,
and that of the other by 2pg; therefore, 22 =p?—¢?, and
¥*=2pq ; and we should have z*+y*=(p?+¢?)°.

4. Consequently, y would be even, and x odd ; but since
x2=p®—¢?, the numbers p and ¢ must also be the one
even, and the other odd. Now, the first, p, cannot be
even; for if it were, p?—g¢® would be a number of the
form 4r—1, or 4n+3, and could not become a square:
therefore p must be odd, and ¢ even, in which case it is
evident, that these numbers will be prime to each other.

5. In order that p®—¢* may become a square, or
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?—g* = x% we must have, as we have already seen,
p =712+ s% and ¢ = 2rs; for then 2% = (r* — s°)2, and
z=r?—8"

6. Now, y* must likewise be a square ; and since we had
¥*=2pq, we shall now have y?=4rs(r*+s?); so that this
formula must be a square; therefore rs(r?+s?) must also
be a square : and let it be observed, that r and s are num-
bers prime to each other; so that the three factors of this
formula, namely, r, s, and 72 4 %, have no common divisor.,

7. Again, when a product of several factors, that have
no common divisor, must be a square, each factor must
itself be a square; so that making r =, and s = u?, we
must have t*+ut=0.

If, therefore, z*+y* were a 0O, our formula #+u?,
which is, in like manner, the sum of two biquadrates, would
also bea 0. And itis proper to observe here, that since
2?=¢t*—u*, and y?=4¢%%(*+u*) the numbers ¢ and u
will evidently be much smaller than x and y, since z and y
are even determined by the fourth powers of £ and , and
must therefore become much greater than these numbers.

8. It follows, therefore, that if we could assign, in num-
bers however great, two biquadrates, such as a* and 34,
whose sum might be a square, we could deduce from it a
number, formed by the sum of two much less biquadrates,
which would also be a square; and this new sum would
enable us to find another of the same nature, still less,
and so on, till we arrived at very small numbers. Now,
such a sum not being possible in very small numbers,
it evidently follows, that there is not one which we can
express by very great numbers.

9. It might indeed be objected, that such a sum does
exist in very small numbers; namely, in the case which
we have mentioned, when one of the two biquadrates
becomes nothing: but we answer, that we shall never
arrive at this case, by going back from very great num-
bers to the least, according to the method which has been
explained ; for if in the small sum, or the reduced sum,
t*—u*, we had ¢ =0, or u=0, we should necessarily have
»?=0 in the great sum ; but this is a case which does not
here enter into consideration.

206. Let us proceed to the second proposition, and
prove also that the difference of two biquadrates, or
x*—y*, can never become a square, except in the cases of
y=0, and y=uz.

1. We may consider the numbers 2 and y as prime to
each other, and consequently, as being either both odd, or
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the one even, and the other odd : and as in both cases the
difference of two squares may become a square, we must
consider these two cases separately.

2. Let us, therefore, begin by supposing both the
numbers z and y odd, and that x=p+g¢, and y =p—q;
then ome of the two numbers p and ¢ must necessarily be
even, and the other odd. We have also 2?—y2=4pq, and
2% + y*=2p® + 2¢%; therefore our formula 2*—y*=4pq
(2p*+2¢*; and as this must be a square, its fourth part,
PI(2p*+2¢°) =2pq(p*+ ¢%), must also be a square. Also,
since the factors of this formula have no common divisor,
(because if p is even, ¢ must be odd), each of these factors
2p, ¢, and p®+¢% must be a square. In order, there-
fore, that the first two may become squares, let us suppose
2p =492, or p=21%, and ¢ =+%; in which s must be odd,
and the third factor, 47*+s*, must likewise be a square.

3. Now, since s* + 4r* is the sum of two squares, the
tirst of which, s*, is odd, and the other, 4r4, is even, let us
make the root of the first s2==¢2—u?, in which let ¢ be odd,
and u even; and the root of the second, 2r?2=2tu, or
7%= tu, where ¢ and u are prime to each other.

4. Since fu=r? must be a square, both ¢ and » must be
squares also. If, therefore, we suppose ¢=m?, and u=n2,
(representing an odd number by m, and an even number
by n), we shall have s?=m*—n*; so that here also, it is
required to make the difference of two biquadrates, namely,
m*—n*, a square. Now, it is obvious, that these numbers
would be much less than x and y, since they are less than
7 and s, which are themselves evidently less than z and .
If a solution, therefore, were possible in great numbers,
and z*—y* were a square, there must also be one possible
for numbers much less; and this last would lead us to
another solution for numbers still less, and so on.

5. Now, the least numbers for which such a square can
be found, are in the case where one of the biquadrates
is 0, or where it is equal to the other biquadrate. In the
first case, we must have n=0; therefore.u=0, and also
r=0, p=0, and, lastly, 2*—y*=0, ora*=y*; which is a
case that does not belong to the present question; if
n=m, we shall find £ =u, then s =0, ¢ =0, and, lastly,
also z=y, which does not here enter into consideration.

207. 1t might be objected, that since m is odd, and =
even, the last difference is no longer similar to the first; and
that, therefore, we can form no analogous conclusions from
it with respect to smaller numbers. But it is sufficient that
the first difference has led us to the second ; and we shall
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shew, that z*—y* can'no longer become a square, when
one of the biquadrates is even, and the other odd.

1. If the first term, z*, were even, and y* odd, the
impossibility of the thing would be self-evident, since we
should have a number of the form 4n+3; which cannot
be a square: therefore, let z be odd, and y even; then
a?=p?+¢?%, and y=2pg; whence r*—yt=p*—2p%%+q*
=(p*—¢*)% where one of the two numbers p and ¢ must
be even, and the other odd.

2. Now, as p?+ ¢*=a% must be a square, we have
p=r?—s?, and ¢ =2rs; whence z=r?+s5%: but from that
results y?=2(r*—s?) x 2rs, or y?=4rsx (r?—s?; and as
this must be a square, its fourth part, rs(r? —s?), whose
factors are prime to each other, must likewise be a square.

3. Let us, therefore, make r=1¢%, and s = u?, and we
shall have the third factor, »2—s?=1* — %, which must
also be a square. Now, as this factor is equal to the dif-
ference of two biquadrates, which are much less than the
first, the preceding demonstration is fully confirmed ; and
it is evident, that, if the difference of two biquadrates
could become equal to the square of a number, (however
great we may suppose it), we could, by means of this
known case, arrive at ditferences less and less, which
would also be reducible to squares, without our being
led back to the two evident cases mentioned at first. It
is impossible, therefore, for the thing to take place even
with respect to the greatest numbers.

208. The first part of the preceding demonstration,
namely, where x and y are supposed odd, may be abridged
as follows: if z*—y* were a square, we must have z°=
pe+g% and {:pﬂ—gf, representing by p and ¢ numbers,
the one of which is even, and the other odd ; and by these
means we should obtain z%?=p*—q*; and, consequently,
p*—q* must be a square. Now, this is a difference of two
biquadrates, the one of which is even, and the other odd ;
and it has been proved, in the second part of the demon-
stration, that such a difference cannot becowne a square.

209. We have therefore proved these two principal
propositions; that neither the sum, nor the difference, of
two biquadrates, can become a square number, except in
a very few self-evident cases.

Whatever formule, therefore, we wish to transform into
squares, if those formule require us to reduce the sum,
or the difference of two biquadrates to a square, it may
be pronounced, that the given formule are likewise
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impossible; which happens with regard to those that we
shall now point out.

1. Itis not possible for the formula, z*+4y*, to become
a square ; for since this formula is the sum of two squares,
we must have 2?2=p?—¢q? and 2y?=2pq, or y?=pg;
now p and ¢ being numbers prime to each other, each of
them must be a 0. If we therefore make p=1r?, and
g ==s%, we shall have z2=1r*—s*; that is to say, the dif-
ference of two biquadrates must be a square, which is
impossible.

2. Nor is it possible for the formula, z*—4y*, to become
a square ; for in this case we must make 22=p®+¢%, and
2y2=2pq, that we may have z*—4y*=(p*—g¢?)*; but, in
order that -y?=pgq, both p and ¢ must be squares : and if
we therefore make p=r?, and g=s?, we have 22=r¢+s*;
that is to say, the sum of two biquadrates must be
reducible to a square, which is impossible.

3. It is impossible also for the formula, 42*—y*, to be-
come a square ; because in this case y must necessarily be
an even number. Now, if we make y=2z, we conclude
that 42*—162%, and consequently, also, its fourth part,
a*—4z* must be reducible to a square; which we have
Jjust seen is impossible.

4. The formula, 2z*+2y*, cannot be transformed into a
square ; for since that square would necessarily be even, and
consequently, 22* + 2y*=422, we should have z* +y*=222,
or 22°42x%yt=a*+422%*+y*=0 ; or, in like manner,
22°—2a%* = 2*—22%%+y*=0. So that, as both 222+
22%?%, and 22°—2a%?2, would become squares, their pro-
duct, 4z*—4a*y*, as well as the fourth of that product, or
2'—z**, must be asquare. But this last is the difference
of the two biquadrates ; and is therefore impossible.

5. Lastly, I say also that the formula, 2z*—2y*, cannot
be a square ; for the two numbers z and y cannot both be
even, since, if they were, they would have a common
divisor: nor can they be the one even and the other odd,
because then one part of the formula would be divisible
by 4, and the other only by 2; and thus the whole formula
would only be divisible by 2; therefore these numbers z
and y must both be odd. Now, if we make z=p +¢, and
y=p—gq, one of the numbers p and ¢ will be even, and
the other will be odd ; and, since 2z* — 2y* = 2(x%+ %) x
(2°—y?), and 2% +y2=2p% +2¢*=2(p*+¢%), and z*—y’=
4pq, our formula will be expressed by 16pg(p?+ ¢?), the
sixteenth part of which, or pg(p?+¢?), must likewise be a
square. But these factors are prime to each other, so
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that each of them must be a square. Let us, therefore,
make the first two p=7r?, and ¢=s?% and the third will
become r* + s*, which cannot be a square; therefore the
given formula cannot become a square.

210. We may likewise demonstrate, that the formula,
x*+2y* can never become a square: the rationale of this
demonstration being as follows :

1. The number & cannot be even, because in that case
y must be odd; and the formula would only be divisible
by 2, and not by 4 ; so that z must be odd.

2. If,therefore, we suppose the square root of our formula

. . 2py? . .
to be x2 + 7 in order that it may become odd, we

22,2 24 ,%

shall have z*+2y*=a*+ pry” + é—lp—g/—, in which the

terms z* are destroyed; so that if we divide the other

terms by %2, and multiply by ¢, we find 4pga® + 4p%?°

= 2¢%° or 4pqz® = 2¢%* — 4p%°, whence we obtain
2

3 2
% =1 QPZP ; that is, 22=¢?—2p*, and »?=2pq,* which

are the same formule that have been already given.

3. So that ¢*—2p® must be a square, which cannot
happen, unless we make ¢g=r?+2s*, and p=2rs, in order
to have 22=(r*—2s%°%; now, this will give us 4rs(r?+2s?)
=y?; and its fourth part, rs(r?+ 2s%), must also be a square:
consequently, r and s must respectively be each a square.
If, therefore, we suppose r=¢, and s=u?, we shall find
the third factor 72 4 2s?=1¢* + 2u*, which ought to be a
square.

4. Consequently, if z*+2y* were a square, ¢* -+ 2ut
must also be a square ; and as the numbers ¢ and u would
be much less than z and y, we should always come, in
the same manner, to numbers successively less : but as it
is easy from trials to be convinced, that the given formula
is not a square in any small number ; it cannot therefore
be the square of a very great number.

211. On the contrary, with regard to the formula,
x*—2y%, it is impossible to prove that it cannot become a
square ; and, by a process of reasoning similar to the fore-
going, we even find that there are an infinite number of
cases, in which this formula really becomes a square.

In fact, if z*—2y* must become a square, we shall see

* Because x and y are prime to each other.
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that, by making 2?=p?+2¢%, and y*=2pg, we find
=2yt =(p*—2¢*)?. Now, p*+2¢® must in that case
evidently become a square; and this happens when
p=r*—2s?, and ¢=2rs; since we have, in this case,
22=(r24+2s??; and farther, it is to be observed, that, for
the same purpose, we may take p=2s?—r?, and ¢=2rs.
We shall therefore consider each case separately.

1. First, let p=7r°—2s%, and ¢=2rs; we shall then have
x=1242s?; and, since y*=2pq, we shall thus have
y2=4rs(r*—2s%) ; so that r and s must be squares: making,
therefore, r=12, and s=u?, we shall find y2=4¢%(t*— 2u*).
So that y=2tu/ (t*—2u*), and x=t*+2u*; therefore,
when #*—2ut is a square, we shall also find 2¢—2y* = 0 ;
but although ¢ and u are numbers less than z and y, we
cannot conclude that it is impossible for x*—2y* to be-
come a square, from our arriving at a similar formula in
smaller numbers ; since z*—2y* may become a square,
without our being brought to the formula, ¢*—2y*, as will
be seen by considering the second case.

2. For this purpose, let p=2s*—7?, and ¢=2rs. Here,
indeed, as before, we shall have x=7r2+2s%; but then we
shall find y*=2pg=4rs(2s*—7r%): and if we suppose
r=¢2, and s=u?, we obtain y?=4t*u*(2u*—1%); conse-
quently, y=2tu./(2u*—1t*), and x=¢*+2u*, by which
means it is evident that our formula, z*—2y*, may also be-
come a square, when the formula, 2u*— ¢4, becomes a square.
Now, this is evidently the case, when ¢=1, and u=1;
and from that we obtain x=3, y=2, and, lastly,

a*—2yt=81—(2 x 16)=49.

3. We have also seen, Art. 140, that 2u*—¢* becomes a
square, when u=13, and =1 since then v/ (2u*—#*)=239.
If we substitute these values instead of ¢ and u, we find a
new case for our formula; namely,z=1+(2 x 13%)=57123,
and y=2 x 13 x 239=6214.

4. Farther, since we have found values of z and y, we
may substitute them for ¢ and u in the foregoing formulee,
and shall obtain by these means new values of x and y.

Now, we have just found 2=3, and y=2; let us, there-
fore, in the formule, (No. 1.) make {=3, and u=2; so
that v/ (¢*—2u)="7, and we shall have the following new
values; x=81+(2x 16)=113, and y=2x3x2x7=84;
so that 22=12769, and 2*=163047361. Farther, y2=7056,
and y*=49787136; therefore, z*—2y*=63473089 : the
square root of which number is 7967, and it agrees per-
fectly with the formula which was adopted at first, p?—2¢?;
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for since t=3, and u=2, we have r=9, and s=4; where-
fore p=81—32=49, and ¢="72 ; whence p*—2¢?=2401—
10368= —7967.

CHAPTER XIV.

Solution of some Questions that belong to this part of
Algebra.

212. We have hitherto explained such artifices as oceur
in this part of Algebra, and such as are necessary for re-
solving any question belonging to it: it remains to make
them still more clear, by adding here some of those ques-
tions with their solutions.

213. Question 1. To find such a number, that if we add
unity to it, or subtract unity from it, we may obtain, in
both cases, a square number.

Let the number sought be z; then both z+1,and z—1,
must be squares. Let us suppose for the first case z + 1=p?;
we shall have x=p?*—1, and 2—1=p?—2, which must
likewise be a square. Let its root, therefore, be re-
presented by p—g; and we shall have p*—2=p?—

9 ?+2 .

pg +¢?; consequently, p = 37 Hence we obtain
gt+4 . .

T= i in which we may give ¢ any value whatever,

even a fractional one.
744 4s*
4r%s7 Ve

If we therefore make ¢g= g—, so thatx= shall

have the following values for some small numbers :

Ifr=1,12, 1,1 3, 4,
ands=1,|1,| 2,| 1,] 1,
we bave s =4, | £, 44 [ 38 | #4,

214. Question 2. To find such a number z, that if we
add to it any two numbers, for example, 4 and 7, we obtain
in both cases a square.

According to this enunciation, the two formule, z+4
and z+-7, must become squares. Let us therefore suppose
the first z+4=p? which gives us z=p?—4, and the
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second will become z+7=p*+3; and, as this last for-
mula must also be a square, let its root be represented by
P+¢q, and we shall have PP+3=p*+2pqg+4q%; whence
3—¢* 9-22¢°+¢*,

2 4¢® 7

we obtain p= , and, consequently, z =

and if we also take a fraction :l for g, we find

& 202 4
= ?-s—m, in which we may substitute for  and
472s?
s any integer numbers whatever.
If we make r=1, and s=1, we find 2= —3; there-

fore x+4=1, and x +7=4.

If 2 were required to be a positive number, we might
make s=2, and r=1; we should then have z=31,
whence x+4=121, and v+ 7= 1869.

If we make s=3, and r=1, we have 2= 143 ; whence
z+4=14°, and z+ 7= 1436,

In order that the last term of the formula, which
expresses x, may exceed the middle term, let us make
r=>5, and s=1, and we shall have x=%1; consequently,
r+4=1%, and x4 7=125.

215. Question 3. Required such a fractional value of z,
that, if added to 1, or subtracted from 1, it may give in
both cases a square.

Since the two formule, 142 and 1—z, must become
squares, let us suppose the first 1 +2=p? and we shall
have z=p?—1; also, the second formula will then be
l—x=2—p% As this last formula must become a square,
and neither the first nor the last term is a square, we
must endeavour to find a case, in which the formula does
become a 0, and we soon perceive one, namely, when p=1.
If we therefore make p=1—g¢, so that z=¢*—2q, we
have 2—p®=1+2¢—¢*; and supposing its root to be
1—gr, we shall have 1 +2¢9—¢*=1—2¢gr + ¢**; so

2r +2

that 2 — g = —2r + ¢7%, and ¢ = ; whence results

r°+1
4r — 473 . . . . t
r= (—:2;—1—;2-; and since »is a fraction, if we make r= W

dtus—43u _ dtu(u?—1?)
(tz—l-u"')z - (t2+u2)2 ’
evident that » must be greater than ¢

Let therefore =2, and ¢=1, and we shall find z=4%.

where it is

we shall have z=
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Let u=3, and ¢t=2; we shall then have r=1%4; and
the formule, 1+x=3%23, and 1—z=%, will both be
squares.

216. Question 4. To find such numbers z, that whether
they be added to 10, or subtracted from 10, the sum and
the difference may be squares.

It is required, therefore, to transform into squares the
formule, 10+, and 10—z, which might be done by the
method that has just been employed ; but let us explain
another mode of proceeding. It will be immediately per-
ceived, that the product of these two formulz, or 100 —z2,
must likewise become a square. Now, its first term being
already a square, we may suppose its root to be 10—pz,
by which means we shall have 100 —2°=100—20px + p2a?;

thereforep®s +2=20p,andz= p%(ffl' From this it appears,
that it is only the product of the two formulee which becomes

a square, and not each of them separately: but provided
one becomes a square, the other will necessarily be also a

10p2+20p+10 _ 10(p*+2p+1)
pz +1 - pg +1 ’
and since p?+2p+1 is already a square, the whole is re-

2
duced to making the fraction pgl_(: T OF 1((;{; _:_ 1;0 , @ Square

square. Now 10+az=

also. For this purpose we have only to make 10p?+10 a
square, and here it is necessary to find a case in which that
takes place. It will be perceived that p=3 is such a case ;
for which reason we shall make p=3+gq, and shall have
100 +60g+ 109%.  Let the root of this be 10+ ¢¢, and we
shall have the final equation,

100 + 60q + 10g2 =100 + 20g¢ + g°¢2,

which gives g= %—:—?005, by which means we shall deter-
mine p=3-¢, and x = ZE%DT

Let t=3, we shall then find ¢=0, and p=3; therefore
=0, and our formule 104 2x=16, and 10—z=4.

But if 1=1, we have g= — 40, and p= —13, so that
= — %%*; now it is of no consequence if we also make

z= +%%* ; therefore 10 +z = 484, and 10—z=1¢, which
quantities are both squares.
217. Remark. If we wished to generalise this question,
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by demanding such numbers, z, for any number, a, that
both ¢ +2 and a—x may be squares, the solution would
frequently become impossible; namely, in all cases in
which a was not the sum of two squares. Now, we have
already seen, that, between 1 and 50, there are only the
following numbers that are the sums of two squares, or that
are contained in the formula 22 +y*:

1,2,4,5,8,9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32,
34, 36, 37, 40, 41, 45, 49, 50.

So that the other numbers, comprised between 1 and 50,
which are,

3,6,7,11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30,
31, 33, 35, 38, 39, 42, 43, 44, 46, 47, 48, cannot be re-
solved into two squares ; consequently, whenever a is one of
these last numbers, the question will be impossible ; which
may be thus demonstrated. Let ¢ +2=p°, and a—x=¢?,
then the addition of the two formule will give 2a=p?+¢*;
therefore 2a must be the sum of two squares. Now, if 2a
be such a sun, « will be so likewise ;¥ consequently, when
a is not the sum of two squares, it will always be impossible
for a+z, and a—x, to be each squares at the same time,

218. As 3 is not the sum of two squares, it follows,
from what has been said, that, if a=3, the question is im-
possible. It might, however, be objected, that there are,
perhaps, two fractional squares whose sum is 3; but we

2 2
answer that this also is impossible: for if%+1—2=3,

and if we were to multiply by ¢%?2 we should have
3¢%?=p%?+q%r*; and the second side of this equation,
which 1s the sum of two squares, would be divisible by 3 ;
but we have already seen (Art. 170) that the sum of two
squares, that are prime to each other, can have no divisors,
except numbers, which are themselves sums of two
squares.

The numbers 9 and 45, it is true, are divisible by 3, but
they are also divisible by 9, and even each of the two
squares that compose both the one and the other, is divisible
by 9, since 9=3?+0?, and 45=62+3?; which is there-
fore a different case, and does not enter into consider-
ation here. We may rest assured, therefore, of this con-
clusion; that if a number, a, be not the sum of two
squares, in integer numbers, it will not be so in fractions.

* For, let 224+y?=2a; and put x=s+d, and y=s—d; then
(s+d)2+(s—d)?=2s2+2d2%: that is, 2%+ y?=25?42d?=2aq, or
2+ d?=a.—B.
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On the contrary, when the number a is the sum of two
squares in fractional numbers, it is also the sum of two
squares in integer numbers an infinite number of ways:
and this we shall illustrate.

219. Question 5. To resolve, in as many ways as we
please, a number, which is the sum of two squares, into
another number, that shall also be the sum of two squares.

Let f2+g¢? be the given number, and let two other
squares, z* and y?%, be required, whose sum z%4y? may
be equal to the number f2.+4+42 Here it is evident,
that if  be either greater or less than f, y on the other
hand must be either less or greater than ¢ : if, therefore,
we make z=f + pz, and y=g— gz, we shall have

2 +2fpz+p%+9°—299z+ ¢ =f"+g%
where the two terms £ and g% are destroyed ; after which
there remain only terms divisible by z. So that we shall
have 2fp+p%2—299+q°% =0, or p%z+q*z2=299—2fp;

therefore z=2_gg_—_P; whence we get the following

Pty .
values for  and y; namely, x=29—pq}?%:ﬁ—),* and

2
Y =—2f~pq]j;‘_ql_(# ; in which we may substitute all pos-
sible numbers for p and ¢.

If 2, for example, be the number proposed, so that
JS=1, and g=1, we shall have 22+y?=2; and because
g 229+ —p° 2pq + p*—¢*

2 2 2 2

,and y= , if we make p=2,

and g=1, we shall find z=1, and y=1.

220. Question 6. If a be the sum of two squares, to
find such a number, z, that a+x and ¢—z may become
squares.

Let a=13=9+4, and let us make 13 +x=p? and
13— 2 =4¢? Then we shall first have, by addition,
26=p?+ ¢%; and by subtraction, 2z=p?— ¢?; consequently,
the values of p and ¢ must be such, that p?+¢? may be-
come equal to the number 26, which is also the sum of
two squares, namely, of 25+1. Now, since the question
in reality is to resolve 26 into two squares, the greater of

29 —2 2 — 22
b g, < e

or, putting f in the numerator, and abridging,
o 29rg+ /(g —p?)

Pt , as above,
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which may be expressed by p?, and the less by ¢%, we
shall immediately have p=>5, and ¢=1; so that x =12.
But we may resolve the number 26 into two squares in an
infinite number of other ways: for, since p=>5, and ¢=1,
if we write ¢ and u, instead of p and ¢, and p and ¢, instead
of z and y, in the formule of the foregoing example, we
shall find,
_2tu+5(uz—t2) do = 10¢u 4 12 —u?
- 2 + u? » andg = 12 4 u? :
Here we may now substitute any numbers for ¢ and v,
and by these means determine p and ¢, and, consequently,
pe__qe
5
For example, let =2, and «=1; we shall then have
p="1, and g="23; wherefore p?—¢*=428, and z="20".
221. But, in order to resolve this question generally,
let a=c?+d?, and put z for the unknown quantity; that
is to say, the formule, a + z, and a— 2z, must become squares.

Let us therefore make a+z=a?% and a—z=y% and
we shall thus have first 2¢ = 2(¢? + d%) = 2® + 3?, then
2z=2a%—y?. Therefore the squares 2? and y* must be
such, that 22 +y?=2(c?+d?; where 2(c*+d? Is really
the sum of two squares, namely, (c+d)*+(c—d)?; and,
in order to abbreviate, let us suppose ¢ + d = f, and
c—d=g; then we must have 2?+y?=f?+¢%; and this
will happen, according to what has been already said, when

J— — 02
_2pg S G =) gy = WPITIP =D
r+g P +g
from which we obtain a very easy solution, by making

also the value of z =

X

p=1landg=1; for we ﬁnd.z*=%2=g=c-—d, and

y=f=c-+d; consequently, z=2cd; and it is evident that
a+z2=c*+2cd+d?=(c+d)? and

a—z=c*—2cd +d*=(c—d)*.

Let us attempt another solution, by making p=2, and

c—"7d Tc+d

g=1; we shall then have T=—s and y = 5

where ¢ and d, as well as x and y, may be taken minus,

because we have only to consider their squares. Now,

since z must be greater than y, let us make d negative,
c+7d _Te—d

and we shall have z = —> and y = =+ hence
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__24d*+ 14cd—24c?

= %5 ; and this value being added to

¢+ lded +49d2

55 , the square root of which

a=c?+d? gives

is c-}::d. If we now subtract z from a, there remains
2 2 pa—
fl—g—c——%i—fi, which is the square of 7—65—, the former

of these two square roots being z, and the latter y.

222. Question 7. Required such a number, z, that
whether we add unity to itself, or to its square, the result
may be a square.

It is here required to transform the two formule, x4 1,
and 2241, into squares. Let us therefore suppose the
first, # + 1 = p?; and, because z = p?— 1, the second,
x4+ 1 =p* — 2p? + 2, must be a square; which last
formula is of such a nature as not to admit of a solution,
unless we already know a satisfactory case; but such a
case readily occurs, namely, that of p=1: therefore let
p=1+g, and we shall have z°+1=1+4¢*+4¢>+¢"*,
which may become a square in several ways.

1. If we suppose its root to be 1+¢2, we shall have
1+4¢°+4¢°+¢* =1 +2¢° + ¢*; so that 4q + 4¢°=2gq,
or4+4+4¢=2, and g=—1%; therefore p=1, and 2= —3,

2. Let the root be 1 —¢?, and we shall find 1+4¢%+¢*
+¢*=1—2¢°+¢*; consequently, g=—4%, and p=-—4,
which gives x=—3, as before.

3. If we represent the root by 1+2¢+¢?, in order to
destroy the first, and the last two terms, we have

1+49°+4¢° +¢*=1+49+6¢* +4¢° + ¢,
whence we get g=—2, and p=—1; and therefore z=0,
4. We may also adopt 1—2¢g—¢? for the root, and in
this case we shall have
14+4¢°+4¢° +¢*=1—4g+2¢° +4¢* + ¢*;
but we find, as before, g=-—2.

5. We may, if we choose, destroy the first two terms,
by making the root equal to 1+2¢%; for we shall then
have 144¢°+4¢°+¢*=1+ 4¢2+4¢*; also, g=4, and
p=1; consequently, z=4%f ; lastly, 2+ 1=42=(%)?, and

x2+1=1%-§-1=(4;1)2.
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A greater number of values will be found for ¢, by
making use of those which we have already deter-
mined. Thus, having found ¢g=—1%; let g=—1+7, and
we shall have p=1+ r; also, p?=1 + 7 + 7%, and
pPr=% +Ir + 3%+ 20 + 0ty whence the expression

Pr—2p*+2=2%F —dr—1r*4+2r3 + 14,
to which our formula, z? 4+ 1, is reduced, must be a
square, and it must also be so when multiplied by 16;
in which case, we have 25—24r—8r2432r34+16r* to
be a square. For which reason, let us now represent

1. The root by 5+ fr+4r?; so that

25—24r — 8r24-32r34 16rt=
25+ 10fr £ 40r2 + f2r2 = 8frs 4 167,

The first and the last terms destroy each other; and we
may destroy the second also, if we make 10f=—24, and,
consequently, f=— %2 ; then dividing the remaining terms
by 7%, we have — 8 + 32r = + 40 + f* & 8fr; and, ad-

e . 48 4 1%
mitting the upper sign, we find r = 355" Now, be-
cause f=—12, we have r = %} ; therefore p = 4%, and

x=441; so that z+1=(3})%, and 2*+1=(§3§)%
2. If we adopt the lower sign, we have
— 8 4 32r=—40 + f* — 8fr,

whence r—f—z_:?—z—' and since f= — 4, we have
=3218f’ =T

r =— 41 ; therefore p = 4%, which leads to the preceding

equation.

3. Let 4724+ 4r=+5 be the root; so that
1674+ 32r3— 8r2—24r 4+26=
16744+ 327344072+ 1672407 +25 :
and as on both sides the first two terms and the last
destroy each other, we shall have
— 8r—24=+40r+16r+40, or
—24r —24 =+40r=+40.

Here, if we admit the upper sign, we shall have
—24r—24=40r +40, or 0=64r+64, or
O=r+1; thatis, r=—1, and p=—1; but this is a case
already known, and we should not have found a different

one by making use of the other sign.

4. Let now the root be 5+fr+gr?, and let us deter-
mine f and g so, that the first three terms may vanish :
then, since
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25—24r — 872 +32r3 +167¢=
254 10fr+ 101272 + 10972 4 2fgr® + gor4,
we shall first have 10f=—24, so that f=—12; then
—8—f2 =344 172
10 — 250 125
When, therefore, we have substituted and divided the
remaining terms by 7%, we shall have

32+ 16r=2fg+g%r, and r =

10g+f?=—8, or g =

2fg—32
16—¢2°

Now, the numerator 2fg—32 becomes here

24x172—32x 625 _ —32x496  —16x32x31

and

5x 126 - 625 - 625 ?
the denominator
R 8x32x41x21
16—g*=@—g)x (4 +9) =334 x 3¢ =— 5 =
so that r = — 4520; and hence we conclude that
P =— %2314, by means of which we obtain a new value

of x, because z=p?—1.

223. Question 8. To find a number, z, which, added to
each of three given numbers, a, b, ¢, produces a square.

Since here the three formule, x+4, x+5, and z+c,
must be squares, let us make the first z +a=2% and we
shall have x=2°—aq, and the two other formule will, by
substitution, be changed into 22+ b—a, and 22+c—a.

It is now required for each of these to be a square ; but
this does not admit of a general solution ; the problem is
frequently impossible, and its possibility entirely depends
on the nature of the numbers b —a and c—a. For
example, if b—a=1, and c—a=-—1, that is to say, if
b=a+]1, and c=a—1, it would be required to make
2241, and 22—1, squares, and, consequently, that 2 should

be a fraction; so that we should make z =2 It would
be farther necessary that the two formule, p®+¢%, and
p*—¢?%, should be squares, and, consequently, that their

product also, p*—g*, should be a square. Now, we have
already shewn (Art. 202) that this is impossible.

Were we to make b—a=2, and c—a=—2; that is,
b=a+2, and c=a—2; and also, if z=£, we should

‘have the two formule, p?+2¢%, and p?—2¢%, to transform
into squares ; consequently, it would also be necessary for
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their product, p*—4g*, to become a square ; but this we
have likewise shewn to be impossible. (Art. 209.)

In general, let b—a=m, c—a=n, and z=2L: then

the formule, p?+ mq? and p?+ ng?, must become squares ;
but we have seen that this is impossible, both when
m=+1,and n=—1, and when m=+2, and n=—2.

It is also impossible, when m =%, and n =— f?; for,
in that case, we should have two formule, whose product
would be =p*—f*g*, that is to say, the difference of two
biquadrates; and we know that such a difference can
never become a square.

Likewise, when m =2f%, and n=—2f% we have the
two formule, p?+ 2f%¢?, and p*?— 2f%?* which cannot
both become squares, because their product p*—4f%¢*
must become a square. Now, if we make fg =r, this
produet is changed into p*—4s%, a formula, the impossi-
bility of which has been already demonstrated.

If we suppose m=1, and n=2, so that it is required to
reduce to squares the formule, p?+¢?, and p®+2¢%, we
shall make p?+ ¢* =172, and p? + 2¢°= s®; the first
equation will give p?=r?—g¢?, and the second will give
¢ +¢?=5?; and therefore both 7? —¢2% and 7%+ ¢°
must be squares: but the impossibility of this is proved,
since the product of these formule, or 7*—g*, cannot be-
come a square.

These examples are sufficient to shew, that it is not easy
to choose such numbers for m and n as will render the
solution possible. The only means of finding such values
of m and =, is to imagine them, or to determine them by
the following method.

Let us make f*+ mg?=~42, and f* + mg®= A%; then

2 2

f , and, by the

we have, by the former equation, m= yg'
2

2
latter, n= k g'f ; this being done, we have only to take

for f, g, &, and %, any numbers at pleasure, and we shall
have values of m and = that will render the solution
possible.

For example, let 2=3, k=5, f=1, and g=2, we
shall have m=2, and n=6; and we may now be certain
that it is possible to reduce the formule, p* + 2¢%, and
p® +6¢%, to squares, since it takes place when p=1,
and ¢=2. But the first formula generally becomes a
square, if p=7r?—2¢ and ¢=2rs; for then p?+2¢?=
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(*+2s?)%.  The latter formula also becomes p?+6g%=
r4 420722 4+ 4s*; and we know a case in which it becomes
a square, namely, when p=1, and ¢=2, which gives
r=1, and s=1; or generally, r=s; so that the formula
is 256s*. Knowing this case, therefore, let us make r=s+¢;
and we shall then have 7% = s>+ 2st + 2, or ré=s* +
453t + 6522+ 4st3 + ¢4 so that our formula will become
25s* + 44s% + 26522 + 4s¢® + ¢*: and, supposing its root
to be 5s°+ fst+¢°, we shall make it equal to the square
255+ 10fs3t 4 f2s%2 + 10522 + 2fst® + ¢4, by which means
the first and last terms will be destroyed. Let us likewise
make 2f=4, or f=2, in order to remove the last terms
but one, and we shall obtain the equation,

44s + 26t = 10fs + 10¢ + (% = 20s + 14¢, or 25 = — ¢,

and?:—-}; therefore s=—1, a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>