The symmetric difference metric

Jordan Bell
April 12, 2015

Let (Ω,Σ,μ) be a probability space. For A,BΣ, define

dμ(A,B)=μ(AB).

This is a pseduometric on Σ:

dμ(A,C) =μ(AC)
=μ((AB)(BC))
μ((AB)(BC))
μ(AB)+μ(BC)
=dμ(A,B)+dμ(B,C).

The relation AB if and only if dμ(A,B)=0 is an equivalence relation on Σ, and dμ([A],[B])=dμ(A,B) is a metric on the collection Σμ of equivalence classes. We call dμ the symmetric difference metric.

The following theorem shows that (Σμ,dμ) is a complete metric space.11 1 V. I. Bogachev, Measure Theory, volume I, p. 54, Theorem 1.12.16.

Theorem 1.

If (Ω,Σ,μ) is a probability space, then (Σμ,dμ) is a complete metric space.

Proof.

Suppose that [Bn] is a Cauchy sequence in (Σμ,dμ). As for any Cauchy sequence in a metric space, there is a subsequence [An] of [Bn] such that dμ([Ak],[An])<2-n for kn. Define

En=knAk.

We have

EnAn =k=n+1(AkAn)
=k=n+1(Akj=nk-1Aj)
k=n+1(AkAk-1)
=k=n(Ak+1Ak),

hence

μ(EnAn)=μ(EnAn)k=nμ(Ak+1Ak)<k=n2-k=2-n+1. (1)

Now, define

A=lim supnAn=n=1k=nAk=n=1En,

for which

μ(AnA) =μ(AnA)
=μ(An(k=1Ek)c)
=μ(Ank=1Ekc)
=μ(k=1(AnEkc))
=limkμ(AnEkc)
=limkμ(jk(AnAj))
limkμ(AnAk)
<2-n.

Using (1),

dμ(An,A)μ(EnAn)+μ(AnA)<2-n+1+2-n=32-n,

showing that [An] converges to [A] as n, and because [An] is a subsequence of the Cauchy sequence [Bn], it follows that [Bn] converges to [A] and therefore that (Σμ,dμ) is a complete metric space. ∎

Lemma 2.

For A,BΣ,

|μ(A)-μ(B)|μ(AB).
Proof.
|μ(A)-μ(B)| =|(μ(AB)+μ(AB))-(μ(BA)+μ(BB))|
=|μ(AB)-μ(BA)|
μ(AB)+μ(BA)
=μ((AB)(BA))
μ(AB).

The following theorem connects the metric space (Σμ,dμ) with the Banach space L1(μ).22 2 John B. Conway, A Course in Abstract Analysis, p. 90, Proposition 2.7.13.

Theorem 3.

If (Σμ,dμ) is separable then L1(μ) is separable.