Singular integral operators and the Riesz transform

Jordan Bell
November 17, 2017

1 Calderón-Zygmund kernels

Let ωn-1 be the measure of Sn-1. It is

ωn-1=2πn/2Γ(n/2).

Let vn be the measure of the unit ball in n. It is

vn=ωn-1n=2πn/2nΓ(n/2).

For k,N0 and ϕC(n) let

pk,N(ϕ)=max|α|ksupxn(1+|x|)N|(αϕ)(x)|.

A Borel measurable function K:n{0} is called a Calderón-Zygmund kernel if there is some B such that

  1. 1.

    |K(x)|B|x|-n, x0

  2. 2.

    |x|2|y||K(x-y)-K(x)|𝑑xB, y0

  3. 3.

    R1<|x|<R2K(x)𝑑x=0, 0<R1<R2<.

The following lemma gives a tractable condition under which Condition 2 is satisfied.11 1 Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume I, p. 167, Lemma 7.2.

Lemma 1.

If |(K)(x)|C|x|-n-1 for all x0 then for y0,

|x|2|y||K(x-y)-K(x)|𝑑xvn2nC.
Proof.

For |x|>2|y|>0, if 0t1 then

|x-ty||x|-t|y||x|-|y|>|x|-|x|2=|x|2.

Write f(t)=K(x-ty), for which f(t)=-(K)(x-ty)y. By the fundamental theorem of calculus,

K(x-y)-K(x)=f(1)-f(0)=01f(t)𝑑t=-01(K)(x-ty)y𝑑t,

thus

|K(x-y)-K(x)|01|(K)(x-ty)||y|𝑑tC|y|01|x-ty|-n-1𝑑t.

Then using |x-ty|>|x|2,

|K(x-y)-K(x)|C|y|(|x|2)-n-1=2n+1C|y||x|-n-1.

For |y|>0, using spherical coordinates,22 2 See http://individual.utoronto.ca/jordanbell/notes/sphericalmeasure.pdf

|x|2|y||K(x-y)-K(x)|𝑑x |x|2|y|2n+1C|y||x|-n-1𝑑x
=2n+1C|y|2|y|(Sn-1|rγ|-n-1𝑑σ(γ))rn-1𝑑r
=vn2n+1C|y|2|y|r-2𝑑r
=vn2n+1C|y|12|y|
=vn2nC.

For a Calderón-Zygmund kernel K, for f𝒮(n), for xn, and for ϵ>0, using Condition 3 with R1=ϵ and R2=1,33 3 https://math.aalto.fi/~parissi1/notes/harmonic.pdf, p. 115, Lemma 6.15.

|x-y|ϵK(x-y)f(y)𝑑y=ϵ|x-y|1K(x-y)(f(y)-f(x))𝑑y+|x-y|1K(x-y)f(y)𝑑y.

By Condition 1 there is some B such that |K(x)|B|x|-n, and combining this with |f(y)-f(x)|f|y-x|,

|K(x-y)(f(y)-f(x))|Bf|y-x|-n+1,

which is integrable on {|x-y|1}. Then by the dominated convergence theorem,

limϵ0ϵ|x-y|1K(x-y)(f(y)-f(x))𝑑y=|x-y|1K(x-y)(f(y)-f(x))𝑑y.
Lemma 2.

For a Calderón-Zygmund kernel K, for fS(Rn), and for xRn, the limit

limϵ0|x-y|ϵK(x-y)f(y)𝑑y

exists.

2 Singular integral operators

For a Calderón-Zygmund kernel K on n, for f𝒮(n), and for xn, let

(Tf)(x)=limϵ0|x-y|ϵK(x-y)f(y)𝑑y.

We call T a singular integral operator. By Lemma 2 this makes sense.

We prove that singular integral operators are L2L2 bounded.44 4 Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume I, p. 168, Proposition 7.3; Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, p. 35, §3.2, Theorem 2; http://math.uchicago.edu/~may/REU2013/REUPapers/Talbut.pdf

Theorem 3.

There is some Cn such that for any Calderón-Zygmund kernel K and any fS(Rn),

Tf2CnBf2.
Proof.

For 0<r<s< and for ξn define

mr,s(ξ) =ne-2πixξ1r<|x|<s(x)K(x)𝑑x.

Take r<|ξ|-1<s, for which

mr,s(ξ)=r<|x|<|ξ|-1e-2πixξK(x)𝑑x+|ξ|-1<|x|<se-2πixξK(x)𝑑x.

For the first integral, using Condition 3 with R1=r and R2=|ξ|-1 and then using Condition 1,

|r<|x|<|ξ|-1e-2πixξK(x)𝑑x| =|r<|x|<|ξ|-1(e-2πixξ-1)K(x)𝑑x|
|x|<|ξ|-1|e-2πixξ-1||K(x)|𝑑x
|x|<|ξ|-12π|x||ξ||K(x)|𝑑x
2π|ξ||x|<|ξ|-1B|x|-n+1𝑑x
=2π|ξ|vn|ξ|-1.

For the second integral, let z=ξ2|ξ|2, and

|ξ|-1<|x|<se-2πixξK(x)𝑑x =-|ξ|-1<|x|<se-2πi(x+z)ξK(x)𝑑x
=-|ξ|-1<|x-z|<se-2πixξK(x-z)𝑑x.

Let

R =|ξ|-1<|x|<se-2πixξK(x-z)𝑑x-|ξ|-1<|x-z|<se-2πixξK(x-z)𝑑x
=-|ξ|-1<|x+z|<se-2πixξK(x)𝑑x+|ξ|-1<|x|<se-2πixξK(x)𝑑x,

with which

|ξ|-1<|x|<se-2πixξK(x)𝑑x=12|ξ|-1<|x|<se-2πixξ(K(x)-K(x-z))𝑑x+R2.

On the one hand, applying Condition 2, as |z|=12|ξ|,

||ξ|-1<|x|<se-2πixξ(K(x)-K(x-z))𝑑x| |x|>|ξ|-1|K(x)-K(x-z)|𝑑x
=|x|>2|z||K(x)-K(x-z)|𝑑x
B.

On the other hand, let

D=D1D2={x:|ξ|-1<|x+z|<s}{x:|ξ|-1<|x|<s}.

For xD1 we have

|x||x+z|-|z|>1|ξ|-12|ξ|=12|ξ|,

and for xD2 we have |x|>1|ξ|, so for xD,

|x|>12|ξ|.

Applying Condition 1,

|K(x)|B|x|-n<2nB|ξ|n.

Furthermore, for xD1D2 we have |x||ξ|-1, and for xD2D1 we have

|x||x+z|+|z|=|x+z|+12|ξ|1|ξ|+12|ξ|=32|ξ|.

Hence

D{x:12|ξ|<|x|32|ξ|},

so

λ(D)(32|ξ|)nvn=(32)n|ξ|-nvn.

Therefore

|R|2nB|ξ|n(32)n|ξ|-nvn=3nvnB

and then

||ξ|-1<|x|<se-2πixξK(x)𝑑x|12B+123nvnB,

and finally55 5 The way I organize the argument, I want to use mr,sCnB, while we have only obtained this bound for r<|ξ|-1<s. To make the argument correct I may need to do things in a different order, e.g. apply Fatou’s lemma and then use an inequality instead of using an inequality and then apply Fatou’s lemma.

|mr,s(ξ)|2πvn+12B+123nvnB=CnB.

Define

(Tr,sf)(x)=n1r<|y|<s(y)K(y)f(x-y)𝑑y,xn.

Then

Tr,sf^(ξ) =ne-2πixξ(n1r<|y|<s(y)K(y)f(x-y)𝑑y)𝑑x
=n1r<|y|<s(y)K(y)(ne-2πixξf(x-y)𝑑x)𝑑y
=n1r<|y|<s(y)K(y)e-2πiyξf^(ξ)𝑑y
=mr,s(ξ)f^(ξ),

and so

Tr,sf^22=n|Tr,sf^(ξ)|2𝑑ξ=n|mr,s(ξ)f^(ξ)|2𝑑ξmr,s2f^22,

by Plancherel’s theorem and the inequality we got for |mr,s(ξ)|,

Tr,sf22mr,s2f22(CnB)2f22.

For each xn, (Tr,sf)(x)(Tf)(x) as r0 and s, and thus using Fatou’s lemma,

n|(Tf)(x)|2𝑑xlim infr0,sn|(Tr,sf)(x)|2𝑑x=(CnB)2f22.

That is,

Tf2CnBf2.

3 The Riesz transform

Let

cn=1πvn-1=Γ(n+12)π(n+1)/2.

For 1jn, let

Kj(x)=cnxj|x|n+1.

This is a Calderón-Zygmund kernel. For ϕ𝒮(n) define

(Rjϕ)(x)=limϵ0|y-x|ϵKj(x-y)ϕ(y)𝑑y=limϵ0|y|ϵKj(y)ϕ(x-y)𝑑y.

We call each Rj, 1jn, a Riesz transform.

For 1jn define Wj:𝒮(n) by

Wj,ϕ=Γ(n+12)πn+12limϵ0|y|ϵKj(y)ϕ(y)𝑑y. (1)

For ϵ>0,

|ϵ|y|1Kj(y)ϕ(y)𝑑y| =|ϵ|y|1Kj(y)(ϕ(y)-ϕ(0))𝑑y|
ϵ|y|1cn|y|-nϕ|y|𝑑y
=cnϕωn-1ϵ1r-n+1rn-1𝑑r
=cnϕωn-1(1-ϵ).

For |y|1,

|y|1|Kj(y)ϕ(y)|𝑑y cn|y|1|y|-n(1+|y|2)-1/2p0,1(ϕ)𝑑y
=cnωn1r-n(1+r)-1rn-1𝑑r
=cnωnlog2.

It then follows from the dominated convergence theorem that the limit

limϵ0|y|ϵKj(y)ϕ(y)𝑑y

exists, which shows that the definition (1) makes sense. It is apparent that Wj is linear. Then prove that if ϕkϕ in 𝒮(n) then Wj,ϕkWj,ϕ. This being true means that Wj𝒮(n), namely that each Wj is a tempered distribution.

For a function f:n, write

f~(x)=f(-x),(τyf)(x)=f(x-y).

For u𝒮(n) and h𝒮(n), define

h*u,ϕ=u,h~*ϕ,ϕ𝒮(n).

It is a fact that h*u𝒮(n), and this tempered distribution is induced by the C function xu,τxh~.66 6 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 116, Theorem 2.3.20. The Fourier transform of a tempered distribution u is defined by

u^,ϕ=u,ϕ^,ϕ𝒮(n),

where

ϕ^(ξ)=ne-2πixξϕ(x)𝑑x,ξn.

It is a fact that u^ is itself a tempered distribution. Finally, for a tempered distribution u and a Schwartz function h, we define

hu,ϕ=u,hϕ,ϕ𝒮(n).

It is a fact that hu is itself a tempered distribution. It is proved that77 7 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 120, Proposition 2.3.22.

ϕ*u^=ϕ^u^.

The left-hand side is the Fourier transform of the tempered distribution ϕ*u, and the right-hand side is the product of the Schwartz function ϕ^ and the tempered distribution u^.

Lemma 4.

For 1jn, for ϕS(Rn), and for xRn,

(Rjϕ)(x)=(ϕ*Wj)(x).

We will use the following identity for integrals over Sn-1.88 8 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 261, Lemma 4.1.15.

Lemma 5.

For ξ0 and for 1jn,

Sn-1sgn(ξθ)θj𝑑σ(θ)=2ωn-2n-1ξj|ξ|.
Proof.

It is a fact that

Sn-1sgn(θk)θj𝑑σ(θ)={0kjSn-1|θj|𝑑σ(θ)k=j. (2)

It suffices to prove the claim when ξSn-1. For 1jn there is Aj=(ai,k)i,kSOn() such that99 9 http://www.math.umn.edu/~garrett/m/mfms/notes/08_homogeneous.pdf

Ajej=ξ,

for which ai,j=ξi. Using that AjT=Aj-1 and that σ is invariant under O(n) we calculate

Sn-1sgn(ξθ)θj𝑑σ(θ) =Sn-1sgn(Ajejθ)(AA-1θ)j𝑑σ(θ)
=Sn-1sgn(ejAj-1θ)(AA-1θ)j𝑑σ(θ)
=Sn-1sgn(ejθ)(Aθ)jd(Aj-1*σ)(θ)
=Sn-1sgn(ejθ)(Aθ)j𝑑σ(θ)
=Sn-1sgn(θj)k=1naj,kθkdθ.

Applying Lemma 2 and aj,j=ξj, this becomes

Sn-1sgn(ξθ)θj𝑑σ(θ)=Sn-1ξj|θj|𝑑σ(θ)=ξj|ξ|Sn-1|θj|𝑑σ(θ).

Hence for each 1jn,

Sn-1sgn(ξθ)θj𝑑σ(θ)=ξj|ξ|Sn-1|θ1|𝑑σ(θ).

It is a fact that1010 10 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 441, Appendix D.2.

RSn-1f(θ)𝑑σ(θ)=-RRR2-s2Sn-2f(s,ϕ)𝑑ϕRdsR2-s2.

Using this with f(θ)=f(θ1,,θn)=|θ1| and using that the measure of RSn-2 is Rn-2ωn-1, we calculate

Sn-1|θ1|𝑑σ(θ) =-111-s2Sn-2|s|𝑑ϕds1-s2
=-11(1-s2)n-22-12ωn-2|s|𝑑ϕ
=2ωn-201(1-s2)n-32s𝑑s
=ωn-201un-32𝑑u
=2ωn-2n-1.

We now calculate the Fourier transform of the Wj. We show that the Fourier transform of the tempered distribution Wj is induced by the function ξ-iξj|ξ|.1111 11 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 260, Proposition 4.1.14.

Theorem 6.

For 1jn and for ϕS(Rn),

W^j,ϕ=n-iϕ(x)xj|x|dx.
Proof.

We calculate

Wj,ϕ^ =Γ(n+12)πn+12limϵ0|ξ|ϵKj(ξ)ϕ^(ξ)𝑑ξ
=Γ(n+12)πn+12limϵ0ϵ|ξ|1/ϵKj(ξ)ϕ^(ξ)𝑑ξ
=Γ(n+12)πn+12limϵ0ϵ|ξ|1/ϵ(ne-2πixξϕ(x)𝑑x)ξj|ξ|n+1𝑑ξ
=Γ(n+12)πn+12limϵ0nϕ(x)(ϵ|ξ|1/ϵe-2πixξξj|ξ|n+1𝑑ξ)𝑑x.

For the inside integral, because θcos(-2πrxjθj)θj is an odd function,

ϵ|ξ|1/ϵe-2πixξξj|ξ|n+1𝑑ξ =ϵr1/ϵ(Sn-1e-2πix(rθ)rθjrn+1𝑑σ(θ))rn-1𝑑r
=ϵr1/ϵ(Sn-1e-2πirxθθj𝑑σ(θ))r-1𝑑r
=ϵr1/ϵ(Sn-1isin(-2πrxθ)θj𝑑σ(θ))r-1𝑑r
=-iϵr1/ϵ(Sn-1sin(2πrxθ)θj𝑑σ(θ))r-1𝑑r
=-iSn-1(ϵr1/ϵsin(2πrxθ)r-1𝑑r)θj𝑑σ(θ).

Call the whole last expression fϵ(x). It is a fact that for 0<a<b<,

|absintt𝑑t|4,

thus for x0,

|fϵ(x)|4ωn-1.

As1212 12 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 263, Exercise 4.1.1.

limϵ0fϵ(x)=-iSn-1sgn(xθ)π2θj𝑑σ(θ),

applying the dominated convergence theorem yields

limϵ0nϕ(x)(ϵ|ξ|1/ϵe-2πixξξj|ξ|n+1𝑑ξ)𝑑x=nϕ(x)(-iSn-1sgn(xθ)π2θj𝑑σ(θ))𝑑x=-iπ2nϕ(x)(Sn-1sgn(xθ)θj𝑑σ(θ))𝑑x.

Then using Lemma 5 and putting the above together we get

Wj,ϕ^ =Γ(n+12)πn+12-iπ2nϕ(x)(Sn-1sgn(xθ)θjdσ(θ))dx
=-iπ2Γ(n+12)πn+12nϕ(x)2ωn-2n-1xj|x|𝑑x.

We work out that

π2Γ(n+12)πn+122ωn-2n-1=1,

and therefore

Wj,ϕ^=-inϕ(x)xj|x|𝑑x,

completing the proof. ∎

Because Rjh=h*Wj,

Rjh^,ϕ=h^W^j,ϕ=W^j,h^ϕ=n-ih^(ξ)ϕ(ξ)ξj|ξ|dξ.
Theorem 7.

For 1jn and for hS(Rn),

Rjh^(ξ)=-iξj|ξ|h^(ξ),ξn.

In other words, the multiplier of the Riesz transform Rj is mj(ξ)=-iξj|ξ|.

4 Properties of the Riesz transform

Theorem 8.
-I=j=1nRj2,

where I(h)=h for hS(Rn).

Proof.

For h𝒮(n),

Rj2h^(ξ)=-iξj|ξ|Rjh^(ξ)=-iξj|ξ|-iξj|ξ|h^(ξ)=-ξj2|ξ|2h^(ξ),

hence

j=1nRj2h^=-h^.

Taking the inverse Fourier transform,

j=1nRj2h=-h,

i.e.

j=1nRj2=-I.

For a tempered distribution u, for 1jn, we define

ju,ϕ=(-1)u,jϕ,ϕ𝒮(n).

It is a fact that ju is itself a tempered distribution. One proves that

ju^=(2πiξj)u^.

Each side of the above equation is a tempered distribution. Then

Δu^=j=1nj2u^=j=1n(2πiξj)2u^=-4π2j=1nξj2u^=-4π2|ξ|2u^.

Suppose that f is a Schwartz function and that u is a tempered distribution satisfying

Δu=f,

called Poisson’s equation. Then

-4π2|ξ|2u^=f^.

For 1j,kn,

jku =-1((jku))
=-1((2πiξj)(2πiξk)u^)
=-1(-4π2ξjξkf^-4π2|ξ|2)
=-1(ξjξk|ξ|2f^).

Using Theorem 7,

RjRkf =-1(RjRkf)
=-1(-iξj|ξ|Rkf^)
=-1(-iξj|ξ|-iξk|ξ|f^)
=-1(-ξjξk|ξ|2f^).

Therefore

jku=-RjRkf.
Theorem 9.

If f is a Schwartz function and u is a tempered distribution satisfying

Δu=f,

then for 1j,kn,

jku=-RjRkf.