Random trigonometric polynomials

Jordan Bell
April 23, 2016

Borwein and Lockhart [1].

1 L2 norm

Let 𝕋=/, and for f:𝕋 let

fLpp=01|f(θ)|p𝑑θ.

Let X1,X2,:(Ω,,P)(,) be independent identically distributed random variables with mean 0 and variance 1, and define

qn(θ)=j=0n-1Xje2πijθ,θ𝕋.

By Plancherel’s theorem,

qnL22=j=0n-1Xj2.

Let Yj=Xj2-1, which are independent and identically distributed. Then

qnL22-n=j=0n-1Yj.

We have

E(Yj)=E(Xj2)-1=0.

Write

σ2=E(Yj2)=E(Xj4-2Xj2+1)=E(Xj4)-2E(Xj2)+1=E(Xj4)-1,

and let

Zn=j=0n-1Yjσn=qnL22-nσn,

which has mean 0 and variance 1. Because Y1,Y2, are independent and identically distributed with mean 0 and variance σ2, by the central limit theorem, Znγ1 in distribution, where γt2 is the Gaussian measure on with variance t2.

Theorem 1.
E(qnL2)=n-18σ2n+O(n-1),

where σ2=E(Xj4)-1.

Proof.

Because

qnL2=n+σnZn,

we have

qnL2-n=n(1+σZnn-1).

Using the binomial series,

1+σZnn=1+σZn2n-18σ2Zn2n+O(Zn3n3/2),

so

qnL2-n=σZn2-18σ2Zn2n+O(Zn3n). (1)

We expand Zn4: it is

σ-4n-2(jYj4+jkYj3Yk+jkYj2Yk2+jkpYk2YjYp+jkpqYjYkYpYq).

Then, because E(Yj)=0 and E(Yj2)=σ2, we get

E(Zn4)=σ-4n-2(nE(Y14)+n(n-1)σ4).

Now define

τ=E(Yj4),

so

E(Zn4)=σ-4n-2(nτ+n(n-1)σ4)=1+1n(τσ4-1).

But E(|Zn|3)1/3E(|Zn|4)1/4, so

E(|Zn|3)(1+1n(τσ4-1))3/41.

Taking the expectation of (1), because E(Zn)=0 and E(Zn2)=1,

E(qnL2)=n-18σ2n+O(n-1).

2 Berry-Esseen

Theorem 2.
qnL2-nσ2Z

in distribution.

Proof.

Write

ρ=E(|Yj|3)

and

Sn=j=0n-1Yj,

and let

Fn(x)=P(Snσn1/2x)

and

Φ(x)=P(Zx).

The Berry-Esseen theorem [2, p. 262, Theorem 5.6.1] states that there is some C, not depending on the random variables Yj, such that for all n and for all x,

|Fn(x)-Φ(x)|Cρσ3n.

Now,

Zn=1σn1/2j=0n-1Yj=Snσn1/2,

so

Fn(x)=P(Snσn1/2x)=P(Znx).

For A>0,

P(|Zn|A)=P(ZnA)+P(Zn-A)=1-P(Zn<A)+P(Zn-A).
P(|Zn|A)-P(|Z|A)=P(Z<A)-P(Zn<A)+P(ZnA)-P(Z-A).

Then

|P(|Zn|A)-P(|Z|A)||Φ(A)-Fn(A)|+P(Zn=A)+|Fn(-A)-Φ(-A)|,

so by the Berry-Esseen theorem,

|P(|Zn|A)-P(|Z|A)|P(Zn=A)+2Cρσ3n1/2.

Markov’s inequality tells us

P(|Z|A)2πe-A2/2A.

For ϵ>0 and for A=n1/4e1/2,

P(|Z|A)=P(|Z|2n1/2ϵ)2πexp(-n1/2ϵ2)n1/4ϵ1/2.

Therefore Zn2n1/20 in probability and |Zn|3n0 in probability, and because σZn2σ2Z in distribution, it follows that

qnL2-nσ2Z

in distribution. ∎

3 L4 norm

Theorem 3.
E(qnL44)=2n2+n(E(Xj4)-2).
Proof.
qnL44=01qn(θ)2qn(θ)2¯𝑑θ.

Write e(θ)=e2πiθ.

qn2=jXj2e(2jθ)+jkXjXke(jθ+kθ).
qn2qn2¯ =j,pXj2e(2kθ)Xp2e(-2pθ)+pXp2e(-2pθ)jkXjXke(kθ+jθ)
+pqXpXqe(-pθ-qθ)jXj2e(2jθ)
+pqXpXqe(-pθ-qθ)jkXjXke(kθ+jθ).

Then

01qn2qn2¯𝑑θ =jpXj2Xp2δj-p,0
+pjkXp2XjXkδj+k-2p,0
+jpqXj2XpXqδ2j-p-q,0
+jkpqXjXkXpXqδj+k-p-q,0.

That is

qnL44 =jpXj2Xp2δj,p
+pjkXp2XjXkδj+k,2p
+jpqXj2XpXqδp+q,2j
+jkpqXjXkXpXqδj+k,p+q
=jXj4+2pjpkp,kjXp2XjXkδj+k,2p
+jkjpj,pkqp,qj,qkXjXkXpXqδj+k,p+q
+jkjXj2Xk2+jkjXj2Xk2.

Then

E(qnL44) =jE(Xj4)+2jkjE(Xj2)E(Xk2)
=nE(Xj4)+2n2-2n.

4 Gaussian random variables

Suppose that the distribution of each Xj is the standard Gaussian measure on , and write

Sn,θ=j=0n-1Xje2πijθ=j=0n-1Xjcos2πjθ+ij=0n-1Xjsin2πjθ,n1,θ𝕋.

Then for each θ𝕋, there are Zθ and Wθ, each random variables with the standard Gaussian distribution, such that

Sn,θ=(n/2)1/2Zθ+i(n/2)1/2Wθ.

Now, |Zθ+iWθ| has density tte-t2/2, and then

E(|Zθ+iWθ|p)=2p/2Γ(1+p2).

Then

E(|Sn,θ|p)=(n2)p/22p/2Γ(1+p2)=np/2Γ(1+p2).

References

  • [1] P. Borwein and R. Lockhart (2001) The expected Lp norm of random polynomials. Proc. Amer. Math. Soc. 129 (5), pp. 1463–1472. Cited by: Random trigonometric polynomials.
  • [2] M. A. Pinsky (2009) Introduction to Fourier analysis and wavelets. Graduate Studies in Mathematics, Vol. 102, American Mathematical Society, Providence, RI. Cited by: §2.