Laguerre polynomials and Perron-Frobenius operators

Jordan Bell
April 19, 2016

1 Laguerre polynomials

1.1 Definition and generating functions

Let D=ddx. For α>-1 and n0 let

Lnα(x)=exx-αn!Dn(e-xxn+α),

called the Laguerre polynomials. Using the Leibniz rule for Dn(fg) yields

Lnα(x)=k=0nΓ(n+α+1)Γ(k+α+1)(-x)kk!(n-k)!.

The generating function for the Laguerre polynomials is11 1 N. N. Lebedev, Special Functions and Their Applications, p. 77, §4.17.

w(x,z)=(1-z)-α-1e-xz/(1-z)=n=0Lnα(x)zn,|z|<1.

Define

W(x,y,z)=(1-z)-1e-(x+y)z/(1-z)(xyz)-α/2Iα(2xyz1-z),|z|<1,

where

Iα(x)=i-αJα(ix)=m=01m!Γ(m+α+1)(x/2)2m+α

and

Jα(x)=m=0(-1)mm!Γ(m+α+1)(x/2)2m+α.

W satisfies

W(x,y,z)=n=0n!Lnα(x)Lnα(y)Γ(n+α+1)zn.

1.2 Differential equations satisfied by Laguerre polynomials

w satisfies the ordinary differential equation

(1-z2)zw+(x-(1-z)(1+α))w=0.

This yields, for n1,

(n+1)Ln+1α(x)+(x-α-2n-1)Lnα(x)+(n+α)Ln-1α(x)=0. (1)

w also satisfies the ordinary differential equation

(1-t)xw+tw=0,

which yields, for n1,

DLnα-DLn-1α+Ln-1α=0. (2)

Using (1) and (2) gives

xDLnα=nLnα-(n+α)Ln-1α,n1. (3)

Using (3) and (2) we get, for n0,

xD2Lnα(x)+(α+1-x)DLnα(x)+nLnα(x)=0. (4)

1.3 Integral formulas for Laguerre polynomials

For ν>-1, a>0, b>0, using the series for Jν one calculates22 2 N. N. Lebedev, Special Functions and Their Applications, p. 132, §5.15, Example 2.

0e-a2x2Jν(bx)xν+1𝑑x=bν(2a2)ν+1e-b24a2. (5)

Applying this with ν=n+α, a=1, b=2x, x=t yields

0e-tJn+α(2xt)(t)n+α+112t𝑑t=(2x)n+α2n+α+1e-x,

i.e.

0e-tJn+α(2xt)(xt)n+α𝑑t=e-xxn+α. (6)

Now, it is a fact that

dduuν/2Jν(2u)=u(ν-1)/2Jν-1(2u),

and using this and (6), we get that for α>1 and n0,

Lnα(x)=exx-α/2n!0tn+α/2Jα(2xt)e-t𝑑t. (7)

We remind ourselves that for α>-1 and |z|<1,

(1-z)-α-1e-yt/(1-t)=n=0Lnα(y)zn.

For |z|<13, using this and e-yt1-t-y2=e-2yt+y-yt2(1-t)=e-y(1+t)2(1-t) one checks that

(1-z)-α-10e-y(1+t)2(1-t)yα/2Jα(xy)𝑑y=n=0zn0e-y/2yα/2Jα(xy)Lnα(y)𝑑y.

Then one gets, for |z|<1,

2e-x/2xα/2n=0(-1)nLnα(x)zn=n=0zn0e-y/2yα/2Jα(xy)Lnα(y)𝑑y.

Therefore for α>-1 and n0,

e-x/2xα/2Lnα(x)=(-1)n20Jα(xy)e-y/2yα/2Lnα(y)𝑑y. (8)

1.4 Orthogonality of Laguerre polynomials

Let

ρα(x)=e-xxα.

Let

un=ρα1/2Lnα,n0.

un satisfies the differential equation

(xun)+(n+α+12-x4-α24x)un=0.

Using this we get

x(unum-umun)|0+(n-m)0umun𝑑x=0.

Then

(n-m)0umun𝑑x=0. (9)

Using (1) yields for n2,

n(Lnα)2-(n+α)(Ln-1α)2-(n+1)Ln+1αLn-1α+2LnαLn-1α+(n+α-1)LnαLn-2α=0.

Using this and (9), for n2,

n0e-xxαLnα(x)2𝑑x=(n+α)0e-xxαLn-1α(x)2𝑑x.

Iterating this, for n2,

0e-xxαLnα(x)2𝑑x =(n+α)(n+α-1)(α+2)n(n-2)320e-xxαL1α(x)2𝑑x
=Γ(n+α+1)n!.

1.5 Asymptotics for Laguerre polynomials

It can be proved that for α>-1, with N=n+α+12,33 3 N. N. Lebedev, Special Functions and Their Applications, p. 87, §4.22. for x0,

Lnα(x)Γ(n+α+1)n!ex/2(Nx)-α/2Jα(2Nx),n.

1.6 Laguerre expansions

Suppose that f:>0 is piecewise smooth in every interval [x1,x2], 0<x1<x2<, and fL2(dρα). Let

cn(f)=n!Γ(n+α+1)0f(x)Lnα(x)ρα(x)𝑑x,

ρα(x)=e-xxα. It can be proved that44 4 N. N. Lebedev, Special Functions and Their Applications, p. 88, §4.23, Theorem 3. if f is continuous at x then

n=0Ncn(f)Lnα(x)f(x),N,

and if f is not continuous at x then

n=0Ncn(f)Lnα(x)f(x+0)2+f(x-0)2,N,

which makes sense because f is a priori piecewise continuous.

Let ν>-12(α+1) and f(x)=xν. Integrating by parts,

cn(f) =n!Γ(n+α+1)0xν+αLnα(x)e-x
=1Γ(n+α+1)0xνDn(e-xxn+α)𝑑x
=(-1)nΓ(ν+α+1)Γ(ν+1)Γ(n+α+1)Γ(ν-n+1).

Thus

xν=Γ(ν+α+1)Γ(ν+1)n=0(-1)nLnα(x)Γ(n+α+1)Γ(ν-n+1).

For p a positive integer,

xp=Γ(p+α+1)p!n=0p(-1)nLnα(x)Γ(n+α+1)(p-n)!.

Define

f(x)=(ax)-α/2Jα(2ax),α>-1,a>0,x>0.

Using

(1-z)-α-1e-xz/(1-z)=n=0Lnα(x)zn,|z|<1,

we obtain, as e-xz1-z-x=e-x/(1-z),

(1-z)-α-10e-x/(1-z)(x/a)α/2Jα(2ax)𝑑x=0e-x(x/a)α/2Jα(2ax)n=0Lnα(x)zndx=n=0(0f(x)Lnα(x)ρα(x)𝑑x)zn.

Doing the change of variable 2ax=by with b>0 and then applying (6) with A2=b24a(1-z) and ν=α,

(1-z)-α-10e-x/(1-z)(x/a)α/2Jα(2ax)𝑑x=(1-z)-α-1(2a)-α-1bα+20e-b2y24a(1-z)Jα(by)yα+1𝑑y=(1-z)-α-1(2a)-α-1bα+2bα(2A2)α+1e-b24A2=(1-z)-α-1(2a)-α-1bα+2b-α-2(2a(1-z))α+1e-a(1-z)=e-a(1-z)=e-an=0(az)nn!.

Therefore

e-an=0ann!zn =n=0(0f(x)Lnα(x)ρα(x)𝑑x)zn,

whence, for n0,

cn(f)=n!Γ(n+α+1)0f(x)Lnα(x)ρα(x)𝑑x=n!Γ(n+α+1)e-aann!.

Therefore, for α>-1, a>0, x>0,

(ax)-α/2Jα(2ax)=n=0cn(f)Lnα(x)=e-an=0anΓ(n+α+1)Lnα(x).

2 Integral operators

We remind ourselves that, for α=1,

un(x)=ρ1(x)1/2Ln1(x)=e-x/2x1/2Ln1(x).

{un:n0} is an orthonormal basis for L2(0).

For x,y>0 define

k(x,y)=kx(y)=kx(y)=J1(2xy)((ex-1)(ey-1))1/2.

For ϕL2(0) and y>0, define

Kϕ(y) =0ky(x)ϕ(x)𝑑x.

We have established, with α=1,

J1(2xy)=(xy)1/2e-xn=0xn(n+1)!Ln1(y).

Hence

0ky(x)ϕ(x)𝑑x =0ϕ(x)(ex-1)-1/2(ey-1)-1/2(xy)1/2e-x
n=0xn(n+1)!Lnα(y)dx
=n=0(ey-1)-1/2y1/2Ln1(y)(n+1)!0ϕ(x)(ex-1)-1/2x1/2e-xxn𝑑x
=n=0qn(y)ϕ,pn,

for

pn(x)=1(n+1)!(ex-1)-1/2e-xxn+12=1(n+1)!e-x/2(ex-1)-1/2xnun(x)

and

qn(y)=(ey-1)-1/2y1/2Ln1(y)=(1-e-y)-1/2un(y).

Then

Kϕ=n=0qnϕ,pn.

The following states the trace of the operator K:L2(0)L2(0).55 5 cf. A. A. Kirillov, Elements of the Theory of Representations, p. 211, §13, Theorem 2.

Theorem 1.

trK=0k(x,x)𝑑x=0J1(2x)(ex-1)𝑑x=0.7711.

3 Hardy spaces

For x let Px={z:Rez>x}. Let H be the collection of holomorphic functions f:P-1/2 such that for any x>-12, f|Px is bounded and such that

|f(-12+iy)|2𝑑y<.

Define M:L2(0)H, for ϕL2(0), by

Mϕ(z)=0e-zs-s/2ϕ(s)𝑑s.

For fH define

Pλf(z)=k11(z+k)2f(1z+k)  Rez>-12,

called a Perron-Frobenius operator. λ denotes Lebesgue measure.

Let

h(s)=(1-e-ss)1/2

for s>0, with h(0)=1. Because hL(μ), it makes sense to define S:L2(0)L2(0) by

Sϕ(s)=hϕ,ϕL2(0).

Define A:HL2(0) by

A=SM-1.

We prove that Pλ and K are conjugate.66 6 Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 9, Proposition 1.1.1.

Theorem 2.

Pλ=A-1KA.

Proof.

Let ϕL2(0) and set f=Mϕ. Then

A-1KAf=A-1KSϕ.

We calculate

(S-1KSϕ)(x) =h(x)-10kx(y)h(y)ϕ(y)𝑑y
=(x1-e-x)1/20J1(2xy)((ex-1)(ey-1))1/2(1-e-yy)1/2ϕ(y)𝑑y
=0(xy)1/2ex/2(ex-1)1/2(ey-1)1/2ey/2J1(2xy)((ex-1)(ey-1))1/2ϕ(y)𝑑y
=0(xy)1/2e(x-y)/2ex-1J1(2xy)ϕ(y)𝑑y.

Then

(MS-1KSϕ)(z)=0e-zx-x/2(S-1KSϕ)(x)𝑑x=0e-zx-x/2((xy)1/2e(x-y)/2ex-1J1(2xy)ϕ(y)dy)𝑑x=

It is a fact that for Rez>-1 and for t0,

k0(z+k)-2exp(-tz+k)=0(st-1)1/2e-zsJ1(2st)es-1𝑑s.

Using this,

(MS-1KSϕ)(z) =0e-y/2(0(xy-1)1/2e-zxJ1(2xy)ex-1𝑑x)ϕ(y)𝑑y
=0e-y/2k1(z+k)-2exp(-yz+k)ϕ(y)dy
=k1(z+k)-2(0exp(-yz+k-y2)ϕ(y)𝑑y)
=k1(z+k)-2Mϕ(1z+k).

Thus, as f=Mϕ,

(MS-1KSM-1f)(z)=k1(z+k)-2f(1z+k)=Pλf(z),

that is,

A-1KAf(z)=Pλf(z).