Khinchin’s inequality and Etemadi’s inequality

Jordan Bell
September 4, 2015

1 Khinchin’s inequality

We will use the following to prove Khinchin’s inequality.11 1 Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume I, p. 113, Lemma 5.4.

Lemma 1.

Let X1,,Xn be independent random variables each with the Rademacher distribution. For a1,,anR and λ>0,

P(|Sn|>λ(k=1nak2)1/2)2e-λ2/2,

where

Sn=k=1nakXk.
Proof.

For t,

E(etakXk)=etakxd(12δ-1+12δ1)(x)=12(e-tak+etak)=cosh(tak).

Because the Xk are independent,

E(etSn)=k=1nE(etakXk)=k=1ncosh(tak),

and because coshxex2/2 for all x, we have

E(etSn)k=1net2ak22=exp(t22k=1nak2).

Let σ2=k=1nak2, with which

E(etSn)exp(t2σ22).

Because teλσt is nonnegative and nondecreasing, for t>0 we have

1Sn>λσeλσt<etSn,

which yields P(Sn>λσ)e-λσtE(etSn), and hence

P(Sn>λσ)e-λσtexp(t2σ22)=exp(-λσt+t2σ22).

The minimum of the right-hand side occurs when λσ=tσ2, i.e. t=λσ, at which

P(Sn>λσ)exp(-λ2+λ22)=e-λ2/2.

For t>0,

1Sn<-λσeλσt<e-tSn,

which yields P(Sn<-λσ)e-λσtE(e-tSn), and hence

P(Sn<-λσ)e-λσtexp((-t)2σ22)=exp(-λσt+t2σ22),

whence

P(Sn<-λσ)e-λ2/2.

Therefore

P(|Sn|>λσ)=P(Sn>λσ)+P(Sn<-λσ)2e-λ2/2,

proving the claim. ∎

Corollary 2.

Let X1,,Xn be independent random variables each with the Rademacher distribution. For α1,,αnC and λ>0,

P(|Sn|>λ(k=1n|αk|2)1/2)4e-λ2/2,

where

Sn=k=1nαkXk.
Proof.

Write αk=ak+ibk. If

|Sn(ω)|>λ(k=1n|αk|2)1/2,

then

|Sn(ω)|2>λ2k=1n(ak2+bk2).

But

|Sn(ω)|2=(k=1nakXk(ω))2+(k=1nbkXk(ω))2,

so at least one of the following is true:

|k=1nakXk(ω)|>λ(k=1nak2)1/2,|k=1nbkXk(ω)|>λ(k=1nbk2)1/2.

By Lemma 4,

P(|Sn|>λ(k=1nak2)1/2)2e-λ2/2

and

P(|Sn|>λ(k=1nbk2)1/2)2e-λ2/2,

thus

P(|Sn|>λ(k=1n|αk|2)1/2) P(|Sn|>λ(k=1nak2)1/2)
+P(|Sn|>λ(k=1nbk2)1/2)
4e-λ2/2,

proving the claim. ∎

We now prove Khinchin’s inequality.22 2 Camil Muscalu and Wilhelm Schlag, Classical and Multilinear Harmonic Analysis, volume I, p. 114, Lemma 5.5; Thomas H. Wolff, Lectures on Harmonic Analysis, p. 28, Proposition 4.5.

Theorem 3 (Khinchin’s inequality).

For 1p<, let

C(p)=(21+p2pΓ(p2))1/p,

and let 1p+1q=1. If X1,,Xn are independent random variables each with the Rademacher distribution and a1,,anC, then

C(q)-1(k=1n|ak|2)1/2E(|k=1nakXk|p)1/pC(p)(k=1n|ak|2)1/2.
Proof.

First we remark that it can be computed that

(0ptp-14e-t2/2𝑑t)1/p=(21+p2pΓ(p2))1/p=C(p).

Let σ2=k=1n|ak|2 and let αk=akσ; if σ=0 then the claim is immediate. To prove the claim it is equivalent to prove that

C(q)-1E(|k=1nαkXk|p)1/pC(p).

Write Sn=k=1nαkXk. Using the fact that for a random variable X with P(X0)=1,

E(Xp)=0ptp-1P(Xt)dt,

we obtain, applying Lemma 2,

E(|Sn|p)=0ptp-1P(|Sn|t)dt0ptp-14e-t2/2dt,

and thus

E(|Sn|p)1/pC(p). (1)

Using Hölder’s inequality, because the Xk are independent and E(Xk)=0 and E(|Xk|2)=1,

k=1n|αk|2=E(|k=1nαkXk|2)E(|k=1nαkXk|p)1/pE(|k=1nαkXk|q)1/q.

Applying (1),

E(|k=1nαkXk|q)1/qC(q),

and as k=1n|αk|2=1 we obtain

1C(q)E(|k=1nαkXk|p)1/p.

Thus we have

C(q)-1E(|Sn|p)1/pC(p),

which proves the claim. ∎

2 Etemadi’s inequality

The following is Etemadi’s inequality.33 3 Allan Gut, Probability: A Graduate Course, p. 143, Theorem 7.6.

Theorem 4 (Etemadi’s inequality).

If X1,,Xn are independent random variables, then for any x>0,

P(max1kn|Sk|3x)2P(|Sn|x)+max1knP(|Sk|x)3max1knP(|Sk|x),

where Sk=j=1kXj.

Proof.

For k=1,,n, let

Ak={max1jk-1|Sj|<3x}{|Sk|3x},

with A1={|S1|3x}. A1,,An are disjoint, and

A=k=1nAk={max1kn|Sk|3x}.

For each 1kn,

Ak{|Sn|<x}Ak{|Sn-Sk|>2x},

and also, the events Ak and {|Sn-Sk|>2x} are independent, and thus

P(A) =P(A{|Sn|x})+P(A{|Sn|<x})
P(|Sn|x)+P(A{|Sn|<x})
P(|Sn|x)+k=1nP(Ak{|Sn-Sk|>2x})
=P(|Sn|x)+k=1nP(Ak)P(|Sn-Sk|>2x)
P(|Sn|x)+max1knP(|Sn-Sk|>2x)P(A).

Then, because |a-b|>2x implies that |a|>x or |b|>x,

P(A) P(|Sn|x)+max1knP(|Sn-Sk|>2x)
P(|Sn|x)+max1kn(P(|Sn|>x)+P(|Sk|>x)).

The following inequality is similar enough to Etemadi’s inequality to be placed in this note.44 4 K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 219, Chapter VII, Lemma 4.1.

Lemma 5.

Let ξ1,,ξn be independent random variables with sample space (Ω,F,P). Let ζ0=0 and for 1kn let ξk=i=1kξi. If P(|ζn-ζk|t)α for 0kn then

P(max1kn|ζk|>2t)α-1P(|ζn|>t).
Proof.

For 0kn let

Ak={|ζ1|2t,,|ζk-1|2t,|ζk|>2t},Bk={|ζn-ζk|t},

where A0=Ω. Because |ζn||ζk|-|ζn-ζk|,

AkBk{|ζn|>t},

and so

k=1n(AkBk){|ζn|>t}.

It is apparent that for jk the events Aj and Ak are disjoint, so the sets A1B1,,AkBk are pairwise disjoint, hence

P(|ζn|>t)P(k=1n(AkBk))=k=1nP(AkBk).

For each k, using that ξ1,,ξn are independent one checks that the events Ak and Bk are independent, and using this,

P(|ζn|>t)k=1nP(Ak)P(Bk)αk=1nP(Ak)=αP(k=1nAk),

that is,

P(|ζn|>t)αP(max1kn|ζk|>2t),

proving the claim. ∎