The Hilbert transform on

Jordan Bell
April 24, 2016

1 The principal value integral

Let Aϵ={x:|x|ϵ}. For fϵ>0L1(Aϵ), if Aϵf(x)𝑑x has a limit as ϵ0, we denote it by

PVf(x)𝑑x=limϵ0|x|ϵf(x)𝑑x.

Let 𝒮 be the collection of Schwartz functions and let 𝒮 be its dual space, whose elements are called tempered distributions. For ϕ𝒮, for k>j,

|A1/jϕ(x)x𝑑x-A1/kϕ(x)x𝑑x| =|1/k|x|<1/jϕ(x)x𝑑x|
=|1/k|x|<1/jϕ(x)-ϕ(0)x𝑑x|
1/k|x|<1/jϕb
=ϕb(1j-1k)
=ϕbk-jkj
ϕbj.

Therefore A1/jϕ(x)x𝑑x is a Cauchy sequence in and hence converges. Then the following limit exists:

ϕ,W=PVϕ(x)x𝑑x=limϵ0|x|ϵϕ(x)x𝑑x.

It is apparent that W:𝒮 is linear, and one proves that W𝒮.

For ϕ𝒮, by Hadamard’s lemma, there is a C function ψ: such that ϕ(x)=ϕ(0)+xψ(x) for all x. For ϵ>0,

ϵ1ϕ(x)logxdx =xψ(x)logx|ϵ1-ϵ1(ϕ(x)-ϕ(0))1x𝑑x
=-ϵψ(ϵ)logϵ-ϵ1ϕ(x)x𝑑x-ϕ(0)logϵ

and

-1-ϵϕ(x)log|x|dx =xψ(x)log(-x)|-1-ϵ--1-ϵ(ϕ(x)-ϕ(0))1x𝑑x
=-ϵψ(-ϵ)logϵ--1-ϵϕ(x)x𝑑x+ϕ(0)logϵ.

Hence

ϵ|x|1ϕ(x)log|x|dx=-ϵ(ψ(ϵ)+ψ(-ϵ))logϵ-ϵ|x|1ϕ(x)x𝑑x.

On the other hand,

|x|1ϕ(x)log|x|dx=-|x|1ϕ(x)x𝑑x.

Therefore

PVϕ(x)log|x|dx=-PVϕ(x)x𝑑x.

Let μϕ(x)=ϕ(-x) and τyϕ(x)=ϕ(x-y). Then

τyμϕ(x)=μϕ(x-y)=ϕ(y-x)=τxϕ(y).

Write

ϕ*ψ(x) =ϕ(y)ψ(x-y)𝑑y
=ϕ(y)(τyψ)(x)𝑑y
=ϕ(y)(τxμψ)(y)𝑑y.

For u𝒮 and for ϕ𝒮, define ϕ*u: by

(ϕ*u)(x)=τxμϕ,u.

One proves that ϕ*u is a tempered distribution, and satisfies

ψ,ϕ*u=(μϕ)*ψ,u.

Define τxu𝒮 by

ϕ,τxu=τ-xϕ,u.

2 The Hilbert transform

For ϵ>0, for ϕ𝒮 let

Hϵϕ(x) =1π|y|ϵϕ(x-y)y𝑑y
=1π|y|ϵτyϕ(x)y𝑑y
=1π|y|ϵτxμϕ(y)y𝑑y.

Define

Hϕ(x) =limϵ0Hϵϕ(x)
=1πPVτxμϕ(y)y𝑑y
=1πPVϕ(x-y)y𝑑y
=1πPVϕ(y)x-y𝑑y.

For x,

ϕ*W(x) =τxμϕ,W
=PVτxμϕ(y)y𝑑y
=PVϕ(x-y)y𝑑y
=PVϕ(y)x-y𝑑y
=limϵ0|x|ϵϕ(y)x-y𝑑y.

Thus

Hϕ=1πϕ*W=ϕ*(Wπ).

We calculate

ϕ,W^ =ϕ^,W
=limϵ0ϵ|ξ|1/ϵϕ^(ξ)ξ𝑑ξ
=limϵ0|ξ|ϵ(ϕ(x)e-2πixξ𝑑x)1ξ𝑑ξ
=limϵ0ϕ(x)(ϵ|ξ|1/ϵe-2πixξξ𝑑ξ)𝑑x
=limϵ0ϕ(x)(ϵ|ξ|1/ϵ-isin2πxξξdξ)𝑑x.

Check that

limϵ0ϵ|ξ|1/ϵsin2πxξξ𝑑ξ=πsgnx.

Then, using the dominated convergence theorem,

ϕ,W^=ϕ(x)-iπsgnxdx.

Thus, W^=-πisgn.

Now,

ϕ*u^=ϕ^u^.

Then

Hϕ^(ξ)=1πϕ*W^(ξ)=1πϕ^(ξ)W^(ξ)=ϕ^(ξ)-isgn(ξ).

Let

mH(ξ)=-isgn(ξ),

with which

Hϕ^=mHϕ^.

Writing Fϕ=ϕ^,

FHϕ=mHFϕ.

So

Hϕ=F-1(mHFϕ),

and hence

H2ϕ=F-1(mHFHϕ)=F-1(mHmHFϕ).

For ξ0, mH(ξ)2=-1, which yields

H2ϕ=F-1(-Fϕ)=-ϕ.

Thus H2=-id. Therefore HϕL2=ϕL2.

Thus it makes sense to define H:L2()L2(). For f,gL2(), by Plancherel’s theorem, and as mH¯=-mH,

Hf,g =Hf^,g^
=Hf^(ξ)g^(ξ)¯𝑑ξ
=mH(ξ)f^(ξ)g^(ξ)¯𝑑ξ
=-f^(ξ)mH(ξ)g^(ξ)¯𝑑ξ
=-f^(ξ)Hg^(ξ)¯𝑑ξ
=-f,Hg.

But Hf,g=f,H*g, so

f,H*g=f,-Hg,

which implies that H*g=-Hg and thus H*=-H. Furthermore,

H*g^(ξ)=-Hg^(ξ)=-mH(ξ)g^(ξ)=isgn(ξ)g^(ξ).

3 The Poisson kernel

For y>0, calculate

e2πiξxe-2πy|ξ|𝑑ξ =12πix+2πy-12πix-2πy
=2πix-2πy-2πix-2πy-4π2x2-4π2y2
=yπ(x2+y2)

and

-ie2πiξxsgn(ξ)e-2πy|ξ|𝑑ξ =i2πix+2πy+i2πix-2πy
=i(2πix-2πy+2πix+2πy)-4π2x2-4π2y2
=-4πx-4π2x2-4π2y2
=xπ(x2+y2).

For y>0 let

Py(x)=1πyx2+y2

and

Qy(x)=1πxx2+y2.

Then

P^y(ξ)=e-2πy|ξ|

and

Q^y(ξ)=-isgn(ξ)e-2πy|ξ|.

Also,

Py(x)+iQy(x)=1πy+ixx2+y2=1π1y-ix.

For a Borel measurable function f: for which the integral exists,

(Py*f)(x) =Py(x-t)f(t)𝑑t
=f(t)yπ((x-t)2+y2)𝑑t
=f(x-t)yπ(t2+y2)𝑑t

and

(Qy*f)(x) =Qy(x-t)f(t)𝑑t
=f(t)x-tπ((x-t)2+y2)𝑑t
=f(x-t)tπ(t2+y2)𝑑t.

Then

Py*f(x)+iQy*f(x) =f(x-t)1π1y-it𝑑t
=f(t)1π1y-ix+it𝑑t
=iπf(t)x+iy-t𝑑t.

For y1,y2>0,

Py1*Py2^(ξ) =Py1^(ξ)Py2^(ξ)
=e-2πy1|ξ|e-2πy2|ξ|
=e-2π(y1+y2)|ξ|
=Py1+y2^(ξ).

Therefore (Py)y>0 is a semigroup using convolution: for y1,y2>0,

Py1*Py2=Py1+y2.

Let ={z:Imz>0} and for ϕ𝒮 let

Fϕ(z)=iπϕ(t)z-t𝑑t,z,

which is a complex analytic function. For z=x+iy,

Py*ϕ(x)+iQy*ϕ(x)=iπϕ(t)x+iy-t𝑑t=Fϕ(z).

It is proved that for 1p< and fLp(), Qϵ*f-Hϵf0 in Lp as ϵ0, and that for almost all x, Qϵ*f(x)-Hϵf(x)0 as ϵ0.11 1 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 254, Theorem 4.1.5.

For 1<p<, it can be proved that there is some Cp such that

HϕLpCpϕLp

for all ϕ𝒮, with Cp2p for 2p< and Cp2pp-1 for 1<p2.22 2 Loukas Grafakos, Classical Fourier Analysis, second ed., p. 255, Theorem 4.1.7.