Gaussian integrals

Jordan Bell
August 29, 2015

1 One dimensional Gaussian integrals

For p, let11 1 Eberhard Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics, p. 493, Problem 7.1.

h(p)=e-x2/2e-ipx𝑑x.

Then we check that

h(p)=-ixe-x2/2e-ipx𝑑x=iddx(e-x2/2)e-ipx𝑑x.

Integrating by parts yields

h(p)=-pe-x2/2e-ipx𝑑x=-ph(p).

Since h(p)=-ph(p),22 2 cf. Einar Hille, Ordinary Differential Equations in the Complex Domain.

h(p)=h(0)e-p2/2.

Now, using Fubini’s theorem and then polar coordinates,

h(0)2 =(e-x2/2𝑑x)e-y2/2𝑑y
=2e-(x2+y2)/2𝑑x𝑑y
=0(S1e-r2/2e-r2/2𝑑σ(θ))r𝑑r
=2π0re-r2/2𝑑r
=2π,

so

h(p)=(2π)1/2e-p2/2.

For a>0 and p, doing the change of variable y=a1/2x,

(2π)-1/2e-ax2/2e-ipx𝑑x =(2π)-1/2a-1/2e-y2/2e-ipa-1/2y𝑑y
=(2π)-1/2a-1/2h(pa-1/2)
=a-1/2e-a-1p2/2.

For t>0 and m, doing the change of variable y=x-m, and using the above with a=t-2 and p=0,

(2πt2)-1/2exp(-(x-m)22t2)𝑑x =(2π)-1/2t-1e-ay2/2𝑑x
=t-1a-1/2
=1.
Theorem 1.

For a>0 and p,

(2π)-1/2e-ax2/2e-ipx𝑑x=a-1/2e-a-1p2/2.

For t>0 and m,

(2πt2)-1/2exp(-(x-m)22t2)𝑑x=1.

For t>0 and x, let

pt(x)=(2πt2)-1/2exp(-x22t2).

For ϕ𝒮(), doing the change of variable x=ty,

ϕ(x)pt(x)𝑑x=(2π)-1/2ϕ(ty)e-y2/2𝑑y=ϕ(tx)p1(x)𝑑x.

Then as t0, using the dominated convergence theorem,

ϕ(x)pt(x)𝑑xϕ(0)p1(x)𝑑x=ϕ(0).

For ϕL1(N), let

ϕ^(ξ)=(2π)-N/2Ne-iξ,xϕ(x)𝑑x,ξN.

By Theorem 1, with a=t-2,

p^t(ξ) =(2πt2)-1/2(2π)-1/2e-ax2/2e-iξx𝑑x
=(2πt2)-1/2a-1/2e-a-1ξ2/2
=(2π)-1/2e-t2ξ2/2.

2 Moments

For a>0, define for Z,

Z(J)=a1/2(2π)-1/2e-ax2/2eiJx𝑑x.

By Theorem 1,

Z(J)=e-a-1J2/2. (1)

By the dominated convergence theorem,

Z(n)(J)=a1/2(2π)-1/2inxne-ax2/2eiJx𝑑x,

and so

a1/2(2π)-1/2xne-ax2/2𝑑x=i-ndZdJ(0).

From (1) we calculate

Z(J)=-a-1JZ(J),Z′′(J)=-a-1Z(J)+a-2J2Z(J),

so Z′′(0)=-a-1Z(0)=-a-1, and thus for t>0 and a=t-1,

(2πt)-1/2x2e-t-2x2/2𝑑x=t,

i.e.

x2pt(x)𝑑x=t.

3 N-dimensional Gaussian integrals

Let S(x)=x,x2 for xN. For χ𝒟(N) and t>0, Laplace’s method tells us that

Ne-tS(x)χ(x)𝑑x=(2πt-1)N/2(detHessS(0))-1/2e-tS(0)χ(0)(1+O(t-1))

as t. Here, HessS(x)=I for all x and S(0)=0, so

Ne-tx,x2χ(x)𝑑x=(2πt-1)N/2χ(0)(1+O(t-1))

as t.

For A an N×N matrix, we write A>0 if A is symmetric and has positive eigenvalues. It is proved that

Nexp(-12Ax,x-iξ,x)𝑑x=(detA)-1/2(2π)N/2exp(-12A-1ξ,ξ)

for all ξN, and

Nexp(-12Ax,x+b,x)𝑑x=(detA)-1/2(2π)N/2exp(12A-1b,b).

for all bN. Let

ZA=Ne-12Ax,x𝑑x=(detA)-1/2(2π)N/2.

Let λN be Lebesgue measure on N and let μA be the following Borel probability measure on N:

dμA(x)=1ZAe-12Ax,xdλN(x)=(detA)1/2(2π)-N/2e-12Ax,xdλN(x).

For ξN,

Ne-iξ,x𝑑μA(x) =(detA)1/2(2π)-N/2Ne-12Ax,xe-iξ,x𝑑λN(x)
=(detA)1/2(2π)-N/2(detA)-1/2(2π)N/2e-12A-1ξ,ξ
=e-12A-1ξ,ξ,

and for bN,

Neb,x𝑑μA(x) =(detA)1/2(2π)-N/2Neb,xe-12Ax,x𝑑λN(x)
=(detA)1/2(2π)-N/2(detA)-1/2(2π)N/2e12A-1b,b
=e12A-1b,b.
Theorem 2.

For ξN,

Ne-iξ,x𝑑μA(x)=e-12A-1ξ,ξ,

and for bN,

Neb,x𝑑μA(x)=e12A-1b,b.

Let33 3 See http://www.math.ucsd.edu/~bdriver/247A-Winter2012/

L=LA=j,k=1NAj,k-1jk.

We work out the semigroup whose infinitesimal generator is L/2.

Theorem 3.

For fC1(N) that is μA-integrable and for t>0,

(etL/2f)(x)=Nf(x-t1/2y)𝑑μA(y),xN.
Proof.

For ξN define f(x)=eξ,x=eξ1x1++ξNxN. On the one hand,

Lf=j,k=1nAj,k-1ξjξkf=A-1ξ,ξf.

Then

exp(tL/2)f=exp(12tA-1ξ,ξ)f.

On the other hand, for xN, applying Theorem 2,

Nf(x-t1/2y)𝑑μA(y) =Neξ,x-t1/2y𝑑μA(y)
=eλ,xNe-t1/2ξ,y𝑑μA(y)
=eλ,xe12A-1(-t1/2ξ),(-t1/2ξ)
=e12tA-1ξ,ξf.

Therefore

Nf(x-t1/2y)𝑑μA(y)=etL/2f.

4 Concentration of measure

Let γN be the Borel probability measure on N defined by

dγN(x)=(2π)-N/2e-12x,xdλN(x).

We estimate the mass γN assigns to a spherical shell about the sphere of radius N1/2.44 4 Alexander Barvinok, Measure Concentration, http://www.math.lsa.umich.edu/~barvinok/total710.pdf, p. 5, Proposition 2.2.

Theorem 4.

For δ0,

γN{xN:x2N+δ}(NN+δ)-N/2e-δ/2,

and for 0<δN,

γN{xN:x2N-δ}(NN-δ)-N/2eδ/2.
Proof.

For 0<λ<1, if x2N+δ then λx2/2λ(N+δ)/2 and then eλx2/2eλ(N+δ)/2. Hence

γN{xN:x2N+δ} =e-λ(N+δ)/2x2N+δeλ(N+δ)/2𝑑γN(x)
e-λ(N+δ)/2x2N+δeλx2/2𝑑γN(x)
e-λ(N+δ)/2Neλx2/2𝑑γN(x)
=e-λ(N+δ)/2(2π)-N/2Neλx2/2e-12x2𝑑λN(x)
=e-λ(N+δ)/2k=1N(2π)-1/2e(λ-1)u2/2𝑑u.

For a=-λ+1>0, we have by Theorem 1

(2π)-1/2e-au2/2𝑑u=a-1/2,

so

γN{xN:x2N+δ}e-λ(N+δ)/2a-N/2=e-λ(N+δ)/2(1-λ)-N/2.

For λ=δN+δ this is

γN{xN:x2N+δ}e-δ/2(NN+δ)-N/2.

Let ΣN={xN:x=N1/2}, and let μN be the unique SO(N)-invariant Borel probability measure on SN-1 (any Borel probability measure on a metric space is regular so we need not explicitly demand this to ensure uniqueness). Let πN:ΣN be the projection

πN(x)=πN(x1,,xN)=x1,

and let νN=(πN)*μN, the pushforward measure which is itself a Borel probability measure on . The following theorem states that the measures νN converges strongly to the standard Gaussian measure γ1.55 5 Alexander Barvinok, Measure Concentration, http://www.math.lsa.umich.edu/~barvinok/total710.pdf, p. 54, Theorem 13.2.

Theorem 5.

For A a Borel set in ,

νN(A)γ1(A)

as N.

5 Zeta functions

Let A>0, with eigenvalues λ1,,λN, counted according to multiplicity. For s, define66 6 Eberhard Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics, p. 434, §7.23.3.

ζA(s)=k=1Nλk-s=k=1Ne-slogλk.

The derivative of ζA is

ζA(s)=k=1N-logλkλk-s,

so

ζA(0)=-k=1Nlogλk,

hence

e-ζA(0)=k=1Nλk=detA.
Theorem 6.

For ξN,

(2π)-N/2Nexp(-12Ax,x-iξ,x)𝑑x=eζA(0)/2exp(-12A-1ξ,ξ).

Let λk>0, k1, and let Aek=λkek, and if it makes sense let

detA=k=1λk.

For those complex s for which the expression makes sense, let

ζA(s)=k=1λk-s=k=1e-slogλk.

Then, if the above makes sense in a neighborhood of s=0,

ζA(0)=-k=1logλk,

so

e-ζA(0)=detA.

We calculate, doing the change of variables t=λku,

Γ(s)ζA(s) =0ts-1e-t𝑑tk=1λk-s
=k=1λk-s0ts-1e-t𝑑t
=k=1λk-s0(λku)s-1e-λkuλk𝑑u
=k=10us-1e-λku𝑑u.

Thus

ζA(s)=1Γ(s)0us-1k=1e-λkudu.

For γ>0, the eigenvalues of γA are γλk, and doing the change of variables v=γu,

ζγA(s) =1Γ(s)0us-1k=1e-γλkudu
=1Γ(s)0γ-svs-1k=1e-λkvdv
=γ-sζA(s).

Taking the derivative,

ζγA(s)=-logγγ-sζA(s)+γ-sγA(s),

and then

ζγA(0)=-logγζA(0)+ζA(0).

Then

det(γA)=e-ζγA(0)=elogγζA(0)-ζA(0)=γζA(0)detA.