Nonholomorphic Eisenstein series, the Kronecker limit formula, and the hyperbolic Laplacian

Jordan Bell
[email protected]
Department of Mathematics, University of Toronto
January 22, 2022

1 Nonholomorphic Eisenstein series

Let ={x+iy:y>0} For τ=x+iy and s=σ+it,σ>1, we define the nonholomorphic Eisenstein series

G(τ,s)=12(0,0)(m,n)2ys|mτ+n|2s.

The function (τ,a,b)aτ+b is continuous ×S1, and for all τ and (a,b)S1 we have aτ+b0. It follows that if K is a compact subset of then there is some CK>0 such that |aτ+b|CK for all τK, (a,b)S1. Then, for all τK and for all (0,0)(m,n)2,

|mτ+n|2=|mm2+n2τ+nm2+n2|2(m2+n2)CK(m2+n2),

and hence

|ys|mτ+n|2s|=yσ|mτ+n|2σyσ(CK(m2+n2))σ.

Because σ>1,

(0,0)(m,n)21(m2+n2)σ<.

It follows that for any s=σ+it with σ>1, the function τG(τ,s) is continuous .

It is sometimes useful to write G in another way. For τ=x+iy and Res>1, define

E(τ,s)=12(c,d)2,gcd(c,d)=1ys|cτ+d|2s.
Theorem 1.

For all τ and Res>1,

G(τ,s)=ζ(2s)E(τ,s).
Proof.

First we remark that for 0a, gcd(a,0)=|a|. For (0,0)(m,n)2, with ν=gcd(m,n),

gcd(mν,nν)=1.

Then

G(τ,s) =12ν1(m,n)2,gcd(m,n)=νys|mτ+n|2s
=12ν1(c,d)2,gcd(c,d)=1ys|νcτ+νd|2s
=12(c,d)2,gcd(c,d)=1ys|cτ+d|2sν0ν-2s
=ζ(2s)E(τ,s).

2 Modular functions

Theorem 2.

For (abcd)SL2(), τ, and Res>1,

G(aτ+bcτ+d,s)=G(τ,s).
Proof.
aτ+bcτ+d=aτ+bcτ+dcτ¯+dcτ¯+d=ac|τ|2+adτ+bcτ¯+bd|cτ+d|2,

so, for τ=x+iy and aτ+bcτ+d=u+iv, using that ad-bc=1,

u=ac|τ|2+bd+x(ad+bc)|cτ+d|2,v=y|cτ+d|2;

we shall only use the expression for v. Also, for (m,n)2,

m(aτ+bcτ+d)+n=(ma+nc)τ+mb+ndcτ+d.

Then,

G(aτ+bcτ+d,s) =12(0,0)(m,n)2(y|cτ+d|2)s|(ma+nc)τ+mb+ndcτ+d|-2s
=12(0,0)(m,n)2ys|(ma+nb)τ+mb+nd|2s.

But (abcd)SL2() implies that

(m,n)(ma+nc,mb+nd)

is a bijection 2{(0,0)}2{(0,0)}, so

(0,0)(m,n)21|(ma+nb)τ+mb+nd|2s=(0,0)(μ,ν)21|μτ+ν|2s,

and thus we get

G(aτ+bcτ+d,s)=G(τ,s),

completing the proof. ∎

3 Fourier expansion

We now derive the Fourier series of G(,s).11 1 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 211, Theorem 10.4.3. Ks-12 denotes the Bessel function.

Theorem 3.

If τ and Res>1, then

G(τ,s) =ζ(2s)ys+π12Γ(s-12)Γ(s)ζ(2s-1)y-s+1
+2πsΓ(s)n=1ns-1σ-2s+1(n)Fs-12(2πny)cos(2πnx),

where

Fs-12(w)=(2wπ)1/2Ks-12(w).
Proof.

Define

S(z,s)=n|y|s|z+n|2s,z=x+iy,y0,Res>1.

We can write G(τ,s) using this as

G(τ,s)=12n0ys|n|2s+12m0nys|mτ+n|2s=ysζ(2s)+12m0S(mτ,s)|m|s.

The Poisson summation formula22 2 Henri Cohen, Number Theory, vol. I: Tools and Diophantine Equations, p. 46, Corollary 2.2.17. states that if f: is continuous and of locally bounded variation, then for all x,

nf(x+n)=kf^(k)e2πikx,

where

f^(ξ)=e-2πiξtf(t)𝑑t,ξ.

Let z=x+iy,y0, let Res>1, and define fy: by

fy(t)=|t+iy|-2s=((t+iy)(t-iy))-s=(t2+y2)-s,t.

Applying the Poisson summation formula we get

n|x+n+iy|-2s=kf^y(k)e2πikx,

i.e.,

S(z,s)=|y|skf^y(k)e2πikx, (1)

with

f^y(k)=e-2πikt(t2+y2)-s𝑑t.

As y0, doing the change of variable t=yu we get

f^y(k) =e-2πikyu(y2u2+y2)-s|y|𝑑u
=|y|-2s+1e-2πikyu(u2+1)-s𝑑u
=2|y|-2s+10cos(2πkyu)(u2+1)-s𝑑u;

the final equality is because the function u(u2+1)-s is even.

We use the following identity:33 3 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 117, Theorem 9.8.9. for a>0 and Res>12,

0cos(au)(u2+1)-s𝑑u=π1/2(a2)s-121Γ(s)Ks-12(a).

For k{0}, using this with a=2π|ky|>0 gives

f^y(k) =2|y|-2s+1π1/2(π|ky|)s-121Γ(s)Ks-12(2π|ky|)
=2|y|-s+12πs|k|s-121Γ(s)Ks-12(2π|ky|).

Therefore (1) becomes

S(z,s) =|y|sf^y(0)+|y|sk02|y|-s+12πs|k|s-121Γ(s)Ks-12(2π|ky|)e2πikx
=|y|sf^y(0)+2|y|12πs1Γ(s)k0|k|s-12Ks-12(2π|ky|)e2πikx
=|y|sf^y(0)+4|y|12πs1Γ(s)k=1ks-12Ks-12(2πk|y|)cos(2πkx).

We use the following identity for the beta function:44 4 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 93, Corollary 9.6.40. For Reb>12Rea>0,

0ua-1(u2+1)-b𝑑u=12B(a2,b-a2)=Γ(a2)Γ(b-a2)2Γ(b).

Using this with a=1 and b=s, and since Γ(12)=π12,

f^y(0)=2|y|-2s+10(u2+1)-s𝑑u=2|y|-2s+1π12Γ(s-12)2Γ(s).

Therefore

S(z,s) =π12|y|-s+1Γ(s-12)Γ(s)
+4|y|12πs1Γ(s)k=1ks-12Ks-12(2πk|y|)cos(2πkx)
=π12|y|-s+1Γ(s-12)Γ(s)
+2πsΓ(s)k=1ks-1Fs-12(2πk|y|)cos(2πkx).

We now express G(τ,s) using this formula for S(z,s). For τ and Res>1, since S(z,s)=S(-z,s),

G(τ,s) =ysζ(2s)+12m0S(mτ,s)|m|s
=ysζ(2s)+m=1S(mτ,s)ms
=ysζ(2s)+π12Γ(s-12)Γ(s)m=1(my)-s+1ms
+2πsΓ(s)m=11msk=1ks-1Fs-12(2πkmy)cos(2πkmx)
=ysζ(2s)+π12Γ(s-12)Γ(s)y-s+1ζ(2s-1)
+2πsΓ(s)k,m1ks-1msFs-12(2πkmy)cos(2πkmx).

As

km=Nks-1ms=km=N(km)s-1m2s-1=Ns-1km=Nm-2s+1=Ns-1σ-2s+1(N),

this can be written as

G(τ,s) =ysζ(2s)+π12Γ(s-12)Γ(s)y-s+1ζ(2s-1)
+2πsΓ(s)N=1Ns-1σ-2s+1(N)Fs-12(2πNy)cos(2πNx),

completing the proof. ∎

We use the above Fourier expansion to establish that for all t, G(τ,s) has a meromorphic continuation to and satisfies a certain functional equation.55 5 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 212, Corollary 10.4.4. The meromorphic continuation and functional equation of G(τ,s) can also be obtained without using its Fourier expansion.66 6 Paul Garrett, The simplest Eisenstein series, http://www.math.umn.edu/~garrett/m/mfms/notes_c/simplest_eis.pdf

Theorem 4.

For any τ, G(τ,s) has a meromorphic continuation to whose only pole is at s=1, which is a simple pole with residue π2. The function

𝒢(τ,s)=π-sΓ(s)G(τ,s)

satisfies the functional equation

𝒢(τ,1-s)=𝒢(τ,s).
Proof.

For ν and for w>0 we have77 7 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 113, Proposition 9.8.6.

Kν(w)=0e-wcoshtcosh(νt)𝑑t

and88 8 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 115, Proposition 9.8.7.

Kν(w)(2wπ)-12e-w,w+.

Using the above identity, one checks that for w>0, the function sKs-12(w) is entire, and that for any s, the function wKs-12(w) belongs to C(>0). We have a fortiori that for any s,

Ks-12(w)=O(e-w),w+.

Let Λ(s)=π-s2Γ(s2)ζ(s). The functional equation for the Riemann zeta function states that Λ has a meromorphic continuation to whose only poles are at s=0 and s=1, which are simple poles, and satisfies, for all s0,1,

Λ(1-s)=Λ(s).

Using the Fourier series for G(,s), we have that for τ and Res>1,

𝒢(τ,s) =π-sΓ(s)G(τ,s)
=Λ(2s)ys+Λ(2s-1)y-s+1
+2n=1ns-1σ-2s+1(n)Fs-12(2πny)cos(2πnx).

The residue of Λ(2s) at s=0 is -12; the residue of Λ(2s) at s=12 is 12; the residue of Λ(2s-1) at s=12 is -12; and the residue of Λ(2s-1) at s=1 is 12. It follows that the residue of 𝒢(τ,s) at s=0 is -12; the residue of 𝒢(τ,s) at s=12 is 12y1/2-12y1/2=0; the residue of 𝒢(τ,s) at s=1 is 12; and these are no other poles of 𝒢(τ,s). Because Γ(s) has a simple pole at s=0, G(τ,s)=πsΓ(s)𝒢(τ,s) does not have a pole at s=0. The residue of G(τ,s) at s=1 is πΓ(1)12=π2, and this is the only pole of G(τ,s).

For s,

n(1-s)-1σ-2(1-s)+1(n) =n-sσ2s-1(n)
=ef=n(ef)-se2s-1
=ef=nes-1f-s
=ef=n(ef)s-1f-2s+1
=ns-1σ-2s+1(n).

Generally, Kν=K-ν, so Fs-12=F(1-s)-12. Thus each term in the series in the above formula for 𝒢(τ,s) is unchanged if s is replaced with 1-s, and together with Λ(1-w)=Λ(w) this yields

𝒢(τ,1-s) =Λ(2-2s)y1-s+Λ(2-2s-1)y-(1-s)+1
+2n=1ns-1σ-2s+1(n)Fs-12(2πny)cos(2πnx)
=Λ(1-(2s-1))y1-s+Λ(1-2s)ys
+2n=1ns-1σ-2s+1(n)Fs-12(2πny)cos(2πnx)
=Λ(2s-1)y1-s+Λ(2s)ys
+2n=1ns-1σ-2s+1(n)Fs-12(2πny)cos(2πnx)
=𝒢(τ,s).

4 Kronecker limit formula

For τ, Theorem 4 shows that G(τ,s) is meromorphic and that its only pole is at s=1, which is a simple pole with residue π2. It follows that G(τ,s) has the Laurent expansion about s=1,

G(τ,s)=π21s-1+a0(τ)+a1(τ)(s-1)+,

and so defining π2C(τ)=a0(τ),

G(τ,s)=π2(1s-1+C(τ)+O(|s-1|)),s1.

We define the Dedekind eta function η: by

η(τ)=eπiτ12n=1(1-qn),τ,

where q=e2πiτ=e-2πye2πix, for τ=x+iy. We now prove the Kronecker limit formula,99 9 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 213, Theorem 10.4.6. which expresses C(τ) in terms of the Dedekind eta function.

Theorem 5.

For τ=x+iy,

G(τ,s)=π2(1s-1+C(τ)+O(|s-1|)),s1,

with

C(τ)=2γ-2log2-logy-4log|η(τ)|.
Proof.

Define

G(s)=π12Γ(s-12)Γ(s)ζ(2s-1)y-s+1.

Then

logG(s)=12logπ+logζ(2s-1)+(-s+1)logy+log(Γ(s-12)Γ(s)). (2)

We use the asymptotic formula

ζ(s)=1s-1+γ+O(|s-1|),s1,

and with

log(1+w)=w+O(|w|2),w1,

this gives, as s1,

logζ(s) =log(1s-1+γ+O(|s-1|))
=-log(s-1)+log(1+γ(s-1)+O(|s-1|2))
=-log(s-1)+γ(s-1)+O(|s-1|2),

and hence

logζ(2s-1)=-log(2s-2)+γ(2s-2)+O(|s-1|2),s1.

The Taylor series for logΓ(z) about z=12 is

logΓ(z)=12logπ-(2log2+γ)(z-12)+k=2(-1)k(2k-1)ζ(k)k(z-12)k,

for |z-12|<12, and the Taylor series of logΓ(1+z) about z=0 is

logΓ(1+z)=-γz+k=2(-1)kζ(k)kzk,

for |z|<1. Using these we have

logΓ(s-12)=12logπ-(2log2+γ)(s-1)+O(|s-1|2),s1

and

logΓ(s)=-γ(s-1)+O(|s-1|2),s1.

Applying these approximations with (2) we get, as s1,

logG(s) =12logπ-log(2s-2)+γ(2s-2)+O(|s-1|2)+(-s+1)logy
+12logπ-(2log2+γ)(s-1)+O(|s-1|2)
+γ(s-1)+O(|s-1|2)
=logπ-log2-log(s-1)+2γ(s-1)+(-s+1)logy
-(2log2+γ)(s-1)+γ(s-1)+O(|s-1|2)
=logπ2-log(s-1)+(2γ-2log2-logy)(s-1)+O(|s-1|2).

Taking the exponential and using

ew=1+w+O(|w|2),w0,

as s1 we have

G(s) =π21s-1(1+(2γ-2log2-logy)(s-1)+O(|s-1|2))
=π21s-1+π2(2γ-2log2-logy)+O(|s-1|).

Using this and the fact that

ζ(2s)ys=π26y+O(|s-1|),s1,

Theorem 3 thus yields that as s1,

G(τ,s) =π26y+π21s-1+π2(2γ-2log2-logy)+O(|s-1|)
+2πsΓ(s)n=1ns-1σ-2s+1(n)Fs-12(2πny)cos(2πnx).

We have

πsΓ(s)=π+O(|s-1|),s1.

As well,

ns-1=1+O(|s-1|),s1,

and

σ-2s+1(n)=d|nd-2s+1=d|n(d-1+O(|s-1|))=σ-1(n)+O(|s-1|),s1.

Finally, we use the fact that that for all t>0,1010 10 Henri Cohen, Number Theory, vol. II: Analytic and Modern Tools, p. 112, Theorem 9.8.5.

K12(t)=π2te-t,

giving

F12(t)=(2tπ)12K12(t)=e-t,

and hence

Fs-12(2πny)=e-2πny+O(|s-1|),s1.

Therefore, as s1,

G(τ,s) =π26y+π21s-1+π2(2γ-2log2-logy)
+2πn=11σ-1(n)e-2πnycos(2πnx)+O(|s-1|).

This implies that the constant term in the Laurent expansion of G(τ,s) about s=1 is

a0(τ)=π26y+π2(2γ-2log2-logy)+2πn=1σ-1(n)e-2πnycos(2πnx).

But, with q=e2πiτ,

Re(n=1σ-1(n)qn) =n=1σ-1(n)Re(e2πinτ)
=n=1σ-1(n)Re(e-2πnye2πinx)
=n=1σ-1(n)e-2πnycos(2πnx),

so

a0(τ)=π26y+π2(2γ-2log2-logy)+2πS(τ),

where

S(τ)=Re(n=1σ-1(n)qn).

Using the power series for log(1+z) about z=0,

logn=1(1-qn) =n=1log(1-qn)
=-n=1m=1qnmm
=-N=1d|NqNd
=-N=1σ-1(N)qN,

so

S(τ)=-Re(logn=1(1-qn)).

Then, because

Relogz=log|z|

and because

|η(τ)|=|eπiτ12n=1(1-qn)|=e-πy12n=1|1-qn|,

this becomes

S(τ)=-logn=1|1-qn|=-πy12-log|η(τ)|.

Thus

a0(τ) =π26y+π2(2γ-2log2-logy)-π26y-2πlog|η(τ)|
=π2(2γ-2log2-logy)-2πlog|η(τ)|,

so

C(τ)=2γ-2log2-logy-4log|η(τ)|,

completing the proof. ∎

5 Hyperbolic Laplacian

For fC2(), we define Δf: by

(Δf)(τ)=-y2(x2f+y2f)(τ),τ=x+iy.

For more on Δ see the below references.1111 11 Daniel Bump, Spectral Theory and the Trace Formula, http://sporadic.stanford.edu/bump/match/trace.pdf; Fredrik Strömberg, Spectral theory and Maass waveforms for modular groups– from a computational point of view, http://www.cams.aub.edu.lb/events/confs/modular2012/files/lecture_notes_spectral_theory.pdf; cf. Anton Deitmar, Automorphic Forms, p. 54, Lemma 2.7.3.

Let (0,0)(m,n)2 and Res>1, and define f: by

f(x,y)=ys|mx+n+imy|-2s=ys(mx+n+imy)-s(mx+n-imy)-s.

Write

g(x,y)=(mx+n+imy)-s(mx+n-imy)-s.

We calculate

(xg)(x,y) =-s(mx+n+imy)-s-1m(mx+n-imy)-s
-s(mx+n+imy)-s(mx+n-imy)-s-1m,

and

(x2g)(x,y) =s(s+1)(mx+n+imy)-s-2m2(mx+n-imy)-s
+s2(mx+n+imy)-s-1(mx+n-imy)-s-1m2
+s2(mx+n+imy)-s-1m2(mx+n-imy)-s-1
+s(s+1)(mx+n+imy)-s(mx+n-imy)-s-2m2
=s(s+1)m2(mx+n+imy)-2g(x,y)
+2s2m2(mx+n+imy)-1(mx+n-imy)-1g(x,y)
+s(s+1)m2(mx+n-imy)-2g(x,y),

from which we have

(x2f)(x,y) =s(s+1)m2(mx+n+imy)-2f(x,y)
+2s2m2|mτ+n|-2f(x,y)
+s(s+1)m2(mx+n-imy)-2f(x,y).

We also calculate

(yg)(x,y) =-s(mx+n+imy)-s-1im(mx+n-imy)-s
-s(mx+n+imy)-s(mx+n-imy)-s-1(-im),
(y2g)(x,y) =s(s+1)(mx+n+imy)-s-2(-m2)(mx+n-imy)-s
+s2(mx+n+imy)-s-1(mx+n-imy)-s-1m2
+s2(mx+n+imy)-s-1(im)(mx+n-imy)-s-1(-im)
+s(s+1)(mx+n+imy)-s(mx+n-imy)-s-2(-im)2
=-s(s+1)m2(mx+n+imy)-2g(x,y)
+2s2m2(mx+n+imy)-1(mx+n-imy)-1g(x,y)
-s(s+1)m2(mx+n-imy)-2g(x,y).

Now,

(yf)(x,y)=sys-1g(x,y)+ys(yg)(x,y)

and

(y2f)(x,y) =s(s-1)ys-2g(x,y)+2sys-1(yg)(x,y)
+ys(y2g)(x,y),

from which we have

(y2f)(x,y) =s(s-1)ys-2g(x,y)
-2s2imys-1(mx+n+imy)-1g(x,y)
+2s2imys-1(mx+n-imy)-1g(x,y)
-s(s+1)m2ys(mx+n+imy)-2g(x,y)
+2s2m2ys(mx+n+imy)-1(mx+n-imy)-1g(x,y)
-s(s+1)m2ys(mx+n-imy)-2g(x,y)
=s(s-1)y-2f(x,y)
-2s2imy-1(mx+n+imy)-1f(x,y)
+2s2imy-1(mx+n-imy)-1f(x,y)
-s(s+1)m2(mx+n+imy)-2f(x,y)
+2s2m2|mτ+n|-2f(x,y)
-s(s+1)m2(mx+n-imy)-2f(x,y).

Combining the above expressions we get

(x2f+y2)(x,y) =m2f(x,y)(2s2|mτ+n|-2+2s2|mτ+n|-2)
+s(s-1)y-2f(x,y)
-2s2imy-1(mx+n+imy)-1f(x,y)
+2s2imy-1(mx+n-imy)-1f(x,y)
=m2f(x,y)(2s2|mτ+n|-2+2s2|mτ+n|-2)
+s(s-1)y-2f(x,y)-4s2m2|mτ+n|-2f(x,y)
=s(s-1)y-2f(x,y).

Thus

(Δf)(x,y)=s(s-1)f(x,y),

i.e.,

Δf=s(s-1)f.

Thus we immediately get that for Res>1,

ΔG(,s)=s(s-1)G(,s).

Because the coefficients of the differential operator L=Δ-s(s-1) are real analytic, a function f: satisfying Lf=0 is real analytic.1212 12 Lipman Bers and Martin Schechter, Elliptic Equations, in Lipman Bers, Fritz John, and Martin Schechter, eds., Partial Diferential Equations, pp. 207–210, Chapter 4, Appendix. Therefore, for Res>1, G(,s) is real analytic.