The cross-polytope, the ball, and the cube

Jordan Bell
March 28, 2016

1 lq norms and volume of the unit ball

For x,yn,

x,y=j=1nxjyj.

Let e1,,en be the standard basis for n.

x=j=1nxjej=j=1nx,ejej.

For 1q< let

|x|q=(j=1n|xj|q)1/q

and for q= let

|x|=max1jn|xj|.

Then for for 1q let

Bqn={xn:|x|q1}.

For 0kn let λk be k-dimensional Lebesgue measure on n. We calculate the volume of the unit ball with the q norm for 1q<.

Theorem 1.

For n1 and for 1q<,

λn(Bqn)=(2Γ(1q+1))nΓ(nq+1).
Proof.

For R0 let Vqn(R)=λn(RBqn). For n=1,

Vq1(R)=λ1(RBq1)=-Rx1R𝑑λ1(x1)=2R.

By induction, suppose for some n that

Vqn(R)=(2RΓ(1q+1))nΓ(nq+1).

Using Fubini’s theorem and the induction hypothesis and doing the change of variable xn+1=Rt we calculate

Vqn+1(R) =|x1|q++|xn|q+|xn+1|qRq𝑑λn+1(x)
=-Rxn+1R(|x1|q++|xn|qRq-|xn+1|q𝑑λn(x1,,xn))𝑑λ1(xn+1)
=-Rxn+1RVqn((Rq-|xn+1|q)1/q)𝑑λ1(xn+1)
=-Rxn+1R(2(Rq-|xn+1|q)1/qΓ(1q+1))nΓ(nq+1)𝑑λ1(xn+1)
=(2Γ(1q+1))nΓ(nq+1)-1t1(Rq-|Rt|q)n/qR𝑑λ1(t)
=(2Γ(1q+1))nΓ(nq+1)Rn+120t1(1-tq)n/q𝑑λ1(t).

Now, doing the change of variable u=tq, namely t=u1/q with t=1qu1q-1 and using the beta function B(a,b)=01ua-1(1-u)b-1𝑑λ1(u),

0t1(1-tq)n/q𝑑λ1(t) =0u1(1-u)n/q1qu1q-1𝑑λ1(u)
=1qB(1q,nq+1).

But B(a,b)=Γ(a)Γ(b)Γ(a+b), and using Γ(a+1)=aΓ(a),

1qB(1q,nq+1)=1qΓ(1q)Γ(nq+1)Γ(1q+nq+1)=Γ(1q+1)Γ(nq+1)Γ(n+1q+1).

Therefore

Vqn+1(R) =(2Γ(1q+1))nΓ(nq+1)Rn+12Γ(1q+1)Γ(nq+1)Γ(n+1q+1)
=(2RΓ(1q+1))n+1Γ(n+1q+1),

which proves the claim. ∎

B1n is an n-dimensional cross-polytope, B2n is an n-dimensional Euclidean ball, and Bn is an n-dimensional cube.

λn(B1n)=2nn!,λn(B2n)=πn/2Γ(n2+1),λn(Bn)=2n,

using Γ(n+1)=n! and Γ(32)=π2.

2 Intersection of a hyperplane and the cube

Let ξSn-1 and t, and define

Pξ,t={xn:x,ξ=t}.

In particular,

ξ=Pξ,0.

Let

Aξ(t)=λn-1(Pξ,tBn)=Pξ,t1Bn(x)𝑑λn-1(x).
Theorem 2.

For ξSn-1 and t,

Aξ(t)=2nπ0costri=1n2ξirsinξirdr.
Proof.

Then by Fubini’s theorem,

A^ξ(τ) =Aξ(t)e-2πitτ𝑑λ1(t)
=(Pξ,t1Bn(x)e-2πix,ξτ𝑑λn-1(x))𝑑λ1(t)
=n1Bn(x)e-2πix,ξτ𝑑λn(x).

Now,

1Bn(x)=(1B11B1)(x)=i=1n1B1(xi),

whence, by Fubini’s theorem,

n1Bn(x)e-2πix,ξτ𝑑λn(x) =n(i=1n1B1(xi)e-2πixiξiτ)𝑑λn(x)
=i=1n1B1(xi)e-2πixiξiτ𝑑λ1(xi).

But, when ξiτ0,

1B1(xi)e-2πixiξiτ𝑑λ1(xi)=-11e-2πixiξiτ𝑑λ1(xi)=1πξiτsin2πξiτ,

thus

A^ξ(τ)=i=1n1πξiτsin2πξiτ.

By the Fourier inversion theorem, using that A^ξ is an even function,

Aξ(t) =A^ξ(τ)e2πitτ𝑑λ1(τ)
=A^ξ(τ)cos2πtτdλ1(τ)
=20A^ξ(τ)cos2πtτdτ
=20cos2πtτi=1n1πξiτsin2πξiτdτ
=2nπ0costri=1n2ξirsinξirdr.

3 Schwartz functions

Let 𝒮 be the Fréchet space of Schwartz function n and let 𝒮 be the locally convex space of tempered distributions 𝒮. If f:n is locally integrable and there is some N such that

|x|2R|f(x)|𝑑λn(x)=O(RN),R,

it is a fact that

ϕf,ϕ=nf(x)ϕ(x)𝑑λn(x),ϕ𝒮,

is a tempered distribution.

Lemma 3.

For 1q and for 0<h<n, |x|q-h is a tempered distribution.

Proof.

For 1q2,

|x|2|x|qn1q-12|x|2,

and for 2q,

|x|q|x|2n12-1q|x|q.

Then for 1q2 and for 0<h<n, using polar coordinates and as σ(Sn-1)=2π(n+1)/2Γ(n+12),

|x|2R|x|q-h𝑑λn(x) |x|2R|x|2-h𝑑λn(x)
=Sn-1(0r-hrn-1𝑑r)𝑑σ
=2π(n+1)/2Γ(n+12)0Rr-h+n-1𝑑r
=2π(n+1)/2Γ(n+12)r-h+n-h+n|0R
=2π(n+1)/2Γ(n+12)R-h+n-h+n
=O(R-h+n).

For 2q and for 0<r<n,

|x|2R|x|q-h𝑑λn(x) |x|2R(n-12+1q|x|2)-h𝑑λn(x)
=nh2-hq|x|2R|x|2-h𝑑λn(x)
=nh2-hq2π(n+1)/2Γ(n+12)R-h+n-h+n
=O(R-h+n).

For ϕ𝒮 let

ϕ^(ξ)=nϕ(x)e-2πix,ξ𝑑λn(x).

For 1q< define cq: by

cq(z)=e-|z|q,z,

which belongs to 𝒮(), and let γq=c^q.

For a tempered distribution T,

T^,ϕ=T,ϕ^,ϕ𝒮.

Define fq,h(x)=|x|q-h. We calculate the Fourier transform of the tempered distribution fq,h.11 1 Alexander Koldobsky and Vladyslav Yaskin, The Interface between Convex Geometry and Harmonic Analysis, p. 9, Lemma 2.1.

Theorem 4.

Let 0<h<n. For 1q<,

f^q,h(ξ)=qΓ(h/q)0tn-h-1j=1nγq(tξj)dt,

and for q=,

f^,h(ξ)=2nh0tn-h-1j=1nsintξjtξjdt
Proof.

Suppose that 1q<. For x0, doing the change of variable z=t1/q|x|q-1,

0zh-1e-zq|x|qq𝑑z =0(t1/q|x|q-1)h-1e-t|x|q-11qt1q-1𝑑t
=|x|q-hq0thq-1e-t𝑑t
=|x|q-hqΓ(h/q),

i.e. fq,h(x)=qΓ(h/q)0zh-1e-zq|x|qq𝑑z.

For z>0 define Fq,z:n by

Fq,z(x)=e-|zx|qq,xn,

which is a Schwartz function. Doing the change of variable y=zx and using Fubini’s theorem,

F^q,z(ξ) =ne-|zx|qqe-2πix,ξ𝑑λn(x)
=ne-|y1|q--|yn|qe-2πiy,z-1ξz-n𝑑λn(y)
=z-nj=1ne-|yj|qe-2πiyjz-1ξj𝑑λ1(yj)
=z-nj=1nγq(z-1ξj).

Then for ϕ𝒮,

f^q,h,ϕ =nfq,h(ξ)ϕ^(ξ)𝑑λn(ξ)
=n(qΓ(h/q)0zh-1e-zq|ξ|qq𝑑z)ϕ^(ξ)𝑑λn(ξ)
=qΓ(h/q)0zh-1(ne-|zξ|qqϕ^(ξ)𝑑λn(ξ))𝑑z
=qΓ(h/q)0zh-1Fq,z,ϕ^𝑑z
=qΓ(h/q)0zh-1F^q,z,ϕ𝑑z
=qΓ(h/q)0zh-1-n(nj=1nγq(z-1ξj)ϕ(ξ)dλn(ξ))𝑑z
=n(qΓ(h/q)0zh-1-nj=1nγq(z-1ξj)dz)ϕ(ξ)𝑑λn(ξ).

This implies, doing the change of variable z=t-1,

f^q,h(ξ) =qΓ(h/q)0zh-1-nj=1nγq(z-1ξj)dz
=qΓ(h/q)0tn-h-1j=1nγq(tξj)dt.

4 Fourier transform

We remind ourselves that cq(z)=e-|z|q, z, and γq=c^q. We prove that γq is positive and logconvex.22 2 Alexander Koldobsky and Vladyslav Yaskin, The Interface between Convex Geometry and Harmonic Analysis, p. 4, Lemma 1.4.

Theorem 5.

For 1q2, γq(z)>0, and zlogγq(z) is convex on 0.

Proof.

Let 0<α1, and for z[0,) let f(z)=expz and g(z)=-zα. Then for k0 and z(0,),

g(k)(z)=-k!(αk)zα-k,sgng(k)(z)=(-1)k.

For n1, Faà di Bruno’s formula tells us

(fg)(n)(z) =(m1,,mn),1m1++nmn=nn!m1!mn!(f(m1++mn)g)(z)
k=1n(g(k)(z)k!)mk.

Then

(-1)n(fg)(n)(z) =(m1,,mn),1m1++nmn=nn!m1!mn!(expg)(z)
k=1n((-1)kg(k)(z)k!)mk
0.

This shows that fg is completely monotone. Furthermore, (fg)(0)=1, so by the Bernstein-Widder theorem there is a Borel probability measure μ on [0,) such that

(fg)(z)=[0,)e-zt𝑑μ(t),z[0,).

With α=q2, there is thus a Borel probability measure μq on [0,) such that

exp(-zq/2)=[0,)e-zt𝑑μq(t),z[0,).

Then for z,

cq(z)=exp(-|z|q)=exp(-(z2)q/2)=[0,)e-z2t𝑑μq/2(t).

For w we calculate, using the Fourier transform of a Gaussian,

γq(w) =e-2πiwzcq(z)𝑑λ1(z)
=e-2πiwz([0,)e-z2t𝑑μq/2(t))𝑑λ1(z)
=[0,)(e-tz2e-2πiwz𝑑λ1(z))𝑑μq/2(t)
=[0,)πtexp(-(πw)2t)𝑑μq/2(t)
=π1/2[0,)t-1/2e-π2w2/t𝑑μq/2(t).

From the final expression it is evident that γk(w)>0. Furthermore, for w1,w2(0,), using the Cauchy-Schwarz inequality,

logγq(w1+w22) =12log(π1/2[0,)t-1/4e-π2w12tt-1/4e-π2w22tdμq/2(t))2
12log(π[0,)t-1/2e-π2w1tdμq/2(t)
[0,)t-1/2e-π2w2tdμq/2(t))
=12log(π1/2[0,)t-1/2e-π2w1t𝑑μq/2(t))
+12log(π1/2[0,)t-1/2e-π2w2t𝑑μq/2(t))
=12logγq(w1)+12logγq(w2).

Because wlogγq(w) is continuous, this suffices to prove that it is convex. ∎