Lambert series in analytic number theory
Abstract
Tour of 19th and early 20th century analytic number theory.
1 Introduction
Let denote the number of positive divisors of . For ,
2 Euler
The first use of the term “Lambert series” was by Euler to describe the roots of an equation.
Euler writes in E25 [28] about the particular value of a Lambert series.
3 Lambert
Bullynck [7, pp. 157–158]: “As he recorded in his scientific diary, the Monatsbuch, Lambert started thinking about the divisors of integers in June 1756. An essay by G.W. Krafft (1701–1754) in the St. Petersburg Novi Commentarii seems to have triggered Lambert’s interest [Bopp 1916, p. 17, 40].”
Bullynck [7, p. 163]:
Lambert did more than deliver the factor table. He also addressed the absence of any coherent theory of prime numbers and divisors. Filling such a lacuna could be important for the discovery of new and more primality criteria and factoring tests. For Lambert the absence of such a theory was also an occasion to apply the principles laid out in his philosophical work. A fragmentary theory, or one with gaps, needed philosophical and mathematical efforts to mature.
To this aim [prime recognition] and others I have looked into the theory of prime numbers, but only found certain isolated pieces, which did not seem possible to make easily into a connected and well formed system. Euclid has few, Fermat some mostly unproven theorems, Euler individual fragments, that anyway are farther away from the first beginnings, and leave gaps between them and the beginnings. [Lambert 1770, p. 20]
Bullynck [7, pp. 164–165]:
In 1770, Lambert presented two sketches of what would be needed for something like a theory of numbers. The first dealt mainly with factoring methods [Lambert 1765-1772, II, pp. 1–41], while the second gave a more axiomatic treatment [Lambert 1770, pp. 20–48]. In the first essay, Lambert explained how, for composite number with small factors, Eratosthenes’ sieve could be used and optimised. For larger factors, Lambert explained that approximation from above, starting by division by numbers that are close to the square root of the tested number , was more advantageous. For both methods, Lambert advised the use of tables. The second essay had more theoretical bearings. Lambert rephrased Euclid’s theorems for use in factoring, included the greatest common divisor algorithm, and put the idea of relatively prime numbers to good use. He also noted that binary notation, because of the frequent symmetries, could be helpful. Finally,Lambert also recognized Fermat’s little theorem as a good, though not infallible criterion for primality, “but the negative example is very rar” [Lambert 1770, p. 43].
Monatsbuch, September 1764, “Singula haec in Capp. ult. Ontol. occurunt”, and Anm. 5, Anm. 25, 1764, Anm. 12 1765, Anm. 19, 1765 [2].
Lambert [53, pp. 506–511, §875]
Youschkevitch [87]
Lorey [59, p. 23]
Löwenhaupt [60, p. 32]
4 Krafft
Krafft [50, pp. 244–245]
5 Servois
6 Lacroix
Lacroix [51, pp. 465–466, §1195]
7 Klügel
Klügel [46, pp. 52–53, s.v. “Theiler einer Zahl”, §12]:
Ist , wo , Primzahlen sind; so erhellet auch leicht, daßalle Theiler von , die Einheit und die Zahl selbst mit engeschlossen, durch die Glieder des Products
argestelle werden. Die Anzahl der Glieder dieses Products, d. i. die Anzahl aller Theiler von , ist offenbar . Für das obige Beispiel , wo die Einheit mit engeschlossen ist.
In der aus der Entwickelung von
entspringenden Reihe:
welche Lambert in seiner Architektonik S. 507. mittheilt, enthalt jeder Coefficient so viele Einheiten, als der Exponent der entsprechendenden Potenz von Theiler hat.
8 Stern
Stern [77]
9 Clausen
Clausen [21] states that
and that the right-hand series converges quickly for small . Clausen does prove this expansion, and a proof is later given by Scherk [68]. Scherk’s argument uses the fact
We write
The series is
We sum the terms in the first row and column: the sum of these is
Then, from what remains we sum the terms in the second row and column: the sum of these is
Then, from what remains, we sum the terms in the third row and column: the sum of these is
etc.
10 Eisenstein
Eisenstein [27] states that for ,
For , Eisenstein states that
is equal to
11 Möbius
Möbius [62]
12 Jacobi
Jacobi’s Fundamenta nova [44, §40, 66 and p. 185]
Chandrasekharan [20, Chapter X]: using Lambert series to prove the four squares theorem.
13 Dirichlet
Dirichlet [25]
Fischer [29]
14 Cauchy
15 Burhenne
Burhenne [8] says the following about Lambert series. For
we have
Define
so that
It is apparent that if , then
hence
The above suggests finding explicit expressions for . Burhenne cites Sohncke [74, pp. 32–33]: for even ,
and for odd ,
where
For and ,
from which
and thus
For even , taking we have
i.e.,
For odd , taking we have
i.e.,
Using the identity, for ,
we get for even ,
For odd ,
16 Zehfuss
Zehfuss [88]
17 Bernoulli numbers
The Bernoulli polynomials are defined by
The Bernoulli numbers are defined by .
We denote by the greatest integer , and we define , namely, the fractional part of . We define , the periodic Bernoulli functions.
18 Euler-Maclaurin summation formula
Euler E47 and E212, §142, for the summation formula. Euler’s studies the gamma function in E368. In particular, in §12 he gives Stirling’s formula, and in §14 he obtains . Euler in §142 of E212 states that
Bromwich [6, Chapter XII]
Poisson and Jacobi on the Euler-Maclaurin summation formula.
19 Schlömilch
For ,
(1) |
For ,
(2) |
and
(3) |
For , (3) tells us
Rearranging,
(5) |
Writing
and using (2) this becomes
We write
and we shall obtain an asymptotic formula for .
We apply the Euler-Maclaurin summation formula. Let , and for we have , and for we have and . Thus the Euler-Maclaurin formula yields
Using the identity and dividing by , this becomes
(6) |
Because for even ,
Since does not change sign on , by the mean-value theorem for integration there is some , , such that (using )
Therefore (6) becomes
i.e.,
20 Voronoi summation formula
The Voronoi summation formula [22, p. 182] states that if is a Schwartz function, then
where and are Bessel functions.
Let . For , we compute
where
the exponential integral. Then the Voronoi summation formula yields
Egger and Steiner [26] give a proof of the Voronoi summation formula involving Lambert series.
Guinand [36]
21 Curtze
Curtze [23]
22 Laguerre
Laguerre [52]
23 V. A. Lebesgue
V. A. Lebesgue [56]:
24 Bouniakowsky
Bouniakowsky [4]
25 Chebyshev
Chebyshev [80]
26 Catalan
Catalan [9]
Catalan [10, p. 89]
27 Pincherle
Pincherle [63]
28 Glaisher
Glaisher [34, p. 163]
29 Günther
30 Stieltjes
Stieltjes [78]
cf. Zhang [89]
31 Rogel
32 Cesàro
Cesàro [15]
Cesàro [16]
Bromwich [6, p. 201, Chapter VIII, Example B, 35]
33 de la Vallée-Poussin
de la Vallée-Poussin [24]
34 Torelli
Torelli [83]
35 Fibonacci numbers
Landau [54]
36 Knopp
Knopp [49]
37 Generating functions
Hardy and Wright [40, p. 258, Theorem 307]:
Theorem 1.
For and ,
if and only if there is some such that
We define the von Mangoldt function by if is some positive integer power of a prime , and otherwise. For example, , , . It is a fact [40, p. 254, Theorem 296] that for any , the von Mangoldt function satisfies
(8) |
38 Mertens
For , we define
We also define
Mertens [61] proves the following.
Theorem 2.
As ,
Proof.
As ,
Taking the logarithm,
(9) |
On the other hand, for ,
and taking the logarithm,
Lemma 3.
For ,
Proof.
For prime and ,
hence
On the one hand,
On the other hand, for we have
Combining these, for ,
∎
Theorem 4.
39 Preliminaries on prime numbers
We define
and
One sees that
As well,
(10) |
there are only finitely many terms on the right-hand side, as if .
Theorem 5.
Proof.
We prove that if then .
Theorem 6.
and
Proof.
Let . For ,
As ,
i.e.,
This yields
and
Since these are true for all , we obtain respectively
and
∎
40 Wiener’s tauberian theorem
Wiener [85, Chapter III].
Wiener-Ikehara [19]
Rudin [67, p. 229, Theorem 9.7]
We say that a function is slowly decreasing if
Widder [84, p. 211, Theorem 10b]: Wiener’s tauberian theorem tells us that if and is slowly decreasing and if satisfies
then
implies that
It is straightforward to check the following by rearranging summation.
Lemma 7.
If has radius of convergence , then for ,
We follow Widder [84, p. 231, Theorem 16.6].
Theorem 8.
As ,
Proof.
Generally,
Using this with and gives
Using
and
we get
Therefore,
One proves that there is some such that for all ,
whence, with ,
Also,
and thus we have
But
so
∎
Define
and
and
First we show that is slowly decreasing.
Lemma 9.
is slowly decreasing.
Proof.
Using
we have, for and ,
Hence as and ,
which shows that is slowly decreasing. ∎
The following is from Widder [84, pp. 231–232].
Lemma 10.
As ,
Proof.
Let for and for . Writing
we check that for ,
On the other hand, integrating by parts,
The following is from Widder [84, p. 232].
Lemma 11.
Proof.
Using
this becomes
If , then using
we get
If , then
∎
By Wiener’s tauberian theorem, it follows that
Lemma 12.
Proof.
Let for and for . Writing
we have
∎
Thus, we have established that
41 Hermite
Hermite [42]
Hermite [43]
42 Gerhardt
Gerhardt [33, p. 196] refers to Lambert’s Architectonic.
43 Levi-Civita
Levi-Civita [57]
44 Franel
The next theorem shows that the set of points on the unit circle that are singularities of is dense in the unit circle. Titchmarsh [82, pp. 160–161, §4.71].
Theorem 13.
For , define
Suppose that are relatively prime integers. As ,
Proof.
Set and write
On the one hand,
as .
On the other hand, for we have
So far we have not used the hypothesis that . We use it to obtain
With this we have
and therefore, as ,
∎
45 Wigert
The following result is proved by Wigert [86]. Our proof follows Titchmarsh [81, p. 163, Theorem 7.15]. Cf. Landau [55].
Theorem 14.
For and ,
as in any angle .
Proof.
For , ,
Using this, for we have
(12) |
Define . has poles at , and the negative odd integers. (At each negative even integer, has a first order pole but has a second order zero.) First we determine the residue of at . We use the asymptotic formula
the asymptotic formula
and the asymptotic formula
to obtain
Hence the residue of at is
Now we determine the residue of at . The residue of at is , and hence the residue of at is
Finally, for we determine the residue of at . The residue of at is , hence the residue of at is
using
Let , and let be the rectangular path starting at , then going to , then going to , then going to , and then ending at . By the residue theorem,
(13) |
Denote the right-hand sideof (13) by . We have
We shall show that the second and fourth integrals tend to as . For with , Stirling’s formula [82, p. 151] tells us that
As well [81, p. 95], there is some such that in the half-plane ,
Also,
and so for ,
Therefore
and because this tends to as . Likewise,
as . It follows that
Hence,
We bound the integral on the right-hand side. We have
The first integral satisfies
because is continuous on the path of integration. The second integral satisfies
because . This establishes
Using (12) and (13), this becomes
completing the proof. ∎
For example, as , the above theorem tells us that
46 Steffensen
Steffensen [75]
47 Szegő
Szegő [79]
48 Pólya and Szegő
Pólya and Szegő [64]
49 Partition function
Let
Taking the logarithm,
and switching the order of summation gives
On the one hand, for we have and using this,
On the other hand, for we have , and using this, for we have
Thus, for ,
Taking gives
i.e.,
See Stein and Shakarchi [76, p. 311].
50 Hansen
Hansen [39]
51 Kiseljak
Kiseljak [45]
52 Unsorted
In 1892, in volume VII, no. 23, p. 296 of the weekly Naturwissenschaftliche Rundschau, it is stated that for the year 1893, one of the six prize questions for the Belgian Academy of Sciences in Brussels is to determine the sum of the Lambert series
or if one cannot do this, to find a differential equation that determines the function.
Gram [35] on distribution of prime numbers.
Hardy [41]
Bohr and Cramer [1, p. 820]
Flajolet, Gourdon and Dumas [30]
References
- [1] (1923–1927) Die neure Entwicklung der analytischen Zahlentheorie. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band II, 3. Teil, 2. Hälfte, H. Burkhardt, W. Wirtinger, R. Fricke, and E. Hilb (Eds.), pp. 722–849. Cited by: §52.
- [2] (1916) Johann Heinrich Lamberts Monatsbuch mit den zugehörigen Kommentaren, sowie mit einem Vorwort über den Stand der Lambertforschung. Abhandlungen der Königlich Bayerischen Akademie der Wissenschaften. Mathematisch-physikalische Klasse 27, pp. 1–84. Note: 6. Abhandlung Cited by: §3.
- [3] (1992) On the irrationality of certain series. Math. Proc. Camb. Phil. Soc. 112, pp. 141–146. Cited by: §10.
- [4] (1861) Recherches sur quelques fonctions numériques. Mémoires de l’Académie impériale des sciences de St.-Pétersbourg, VIIe série 4 (2), pp. 1–35. Cited by: §24.
- [5] (2004) Elements of mathematics. Functions of a real variable: Elementary theory. Springer. Note: Translated from the French by Philip Spain Cited by: §18.
- [6] (1959) An introduction to the theory of infinite series. second edition, Macmillan, London. Cited by: §18, §32.
- [7] (2010) Factor tables 1657–1817, with notes on the birth of number theory. Revue d’histoire des mathématiques 16 (2), pp. 133–216. Cited by: §3, §3, §3.
- [8] (1852) Ueber das Gesetz der Primzahlen. Archiv der Mathematik und Physik 19, pp. 442–449. Cited by: §15.
- [9] (1842) Sur la sommation de quelques séries. Journal de Mathématiques Pures et Appliquées 7, pp. 1–12. Cited by: §26.
- [10] (1873) Recherches sur quelques produits indéfinis. Mémoires de l’Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 40, pp. 1–127. Cited by: §26.
- [11] (1886) Mélanges mathématiques. Mémoires de la Société Royale des Sciences de Liège, deuxième série 13, pp. 1–404. Cited by: §26.
- [12] (1888) Mélanges mathématiques. Mémoires de la Société Royale des Sciences de Liège, deuxième série 14, pp. 1–275. Cited by: §26.
- [13] (1843) Mémoire sur l’application du calcul des résidus au développement des produits composés d’un nombre infini de facteurs. Comptes rendus hebdomadaires des séances de l’Académie des sciences 17, pp. 572–581. Note: Oeuvres complètes, série 1, tome 8, pp. 55–64 Cited by: §14.
- [14] (1843) Sur la réduction des rapports de factorielles réciproques aux fonctions elliptiques. Comptes rendus hebdomadaires des séances de l’Académie des sciences 17, pp. 825–837. Note: Oeuvres complètes, série 1, tome 8, pp. 97–110 Cited by: §14.
- [15] (1886) Sur les nombres de Bernoulli et d’Euler. Nouvelles annales de mathématiques, troisième série 5, pp. 305–327. Cited by: §32.
- [16] (1888) Sur les transformations de la série de Lambert. Nouvelles annales de mathématiques, troisième série 7, pp. 374–382. Cited by: §32.
- [17] (1893) La serie di Lambert in aritmetica assintotica. Rendiconto delle adunanze e de’ lavori dell’ Accademia Napolitana delle Scienze 7, pp. 197–204. Cited by: §32.
- [18] (1894) Corso di analisi algebrica con introduzione al calcolo infinitesimale. Fratelli Bocca Editori, Turin. Cited by: §32.
- [19] (1968) Introduction to analytic number theory. Die Grundlehren der mathematischen Wissenschaften, Vol. 148, Springer. Cited by: §40.
- [20] (1985) Elliptic functions. Die Grundlehren der mathematischen Wissenschaften, Vol. 281, Springer. Cited by: §12.
- [21] (1828) Beitrag zur Theorie der Reihen. J. Reine Angew. Math. 3, pp. 92–95. Cited by: §9.
- [22] (2007) Number theory, volume II: analytic and modern tools. Graduate Texts in Mathematics, Vol. 240, Springer. Cited by: §20.
- [23] (1867-1868) Notes diverses sur la série de Lambert et la loi des nombres premiers. Annali di Matematica Pura ed Applicata 1 (1), pp. 285–292. Cited by: §21.
- [24] (1896) Sur la série de Lambert. Annales de la Société Scientifique de Bruxelles 20, pp. 56–62. Cited by: §33.
- [25] (1838) Über die Bestimmung asymptotischer Gesetze in der Zahlentheorie. Bericht über die Verhandlangen der Königlich Preussischen Akademie der Wissenschaften, pp. 13–15. Note: Werke, Band I, pp. 351–356 Cited by: §13.
- [26] (2011) A new proof of the Voronoï summation formula. J. Phys. A 44 (22), pp. 225302. Cited by: §20.
- [27] (1844) Transformations remarquables de quelques séries. J. Reine Angew. Math. 27, pp. 193–197. Note: Mathematische Werke, Band I, pp. 35–44 Cited by: §10.
- [28] (1738) Methodus generalis summandi progressiones. Commentarii Academiae scientiarum Imperialis Petropolitanae 6, pp. 68–97. Note: E25, Opera omnia I.14, pp. 42–72 Cited by: §2.
- [29] (1994) Dirichlet’s contributions to mathematical probability theory. Historia Math. 21, pp. 39–63. Cited by: §13.
- [30] (1995) Mellin transforms and asymptotics: harmonic sums. Theoret. Comput. Sci. 144, pp. 3–58. Cited by: §52.
- [31] (1899) Sur la théorie des séries. Math. Ann. 52, pp. 529–549. Cited by: §44.
- [32] (1899) Sur une formule utile dans la détermination de certaines valeurs asymptotiques. Math. Ann. 51, pp. 369–387. Cited by: §44.
- [33] (1877) Geschichte der Wissenschaften in Deutschland. Neuere Zeit. Siebenzehnter Band. Geschichte der Mathematik. R. Oldenbourg, München. Cited by: §42.
- [34] (1885) On the square of the series in which the coefficients are the sums of the divisors of the exponents. Messenger of Mathematics 14, pp. 156–163. Cited by: §28.
- [35] (1881–1886) Undersøgelser angaaende Mængden af Primtal under en given Grænse. Det Kongelige Danske Videnskabernes Selskabs Skrifter, 6. Række, Naturvidenskabelig og Mathematisk Afdeling 2, pp. 183–308. Cited by: §52.
- [36] (1944) Functional equations and self-reciprocal functions connected with Lambert series. Q. J. Math. 15, pp. 11–23. Cited by: §20.
- [37] (1876) Ziele und Resultate der neueren mathematisch-historischen Forschung. Eduard Besold, Erlangen. Cited by: §29.
- [38] (1881) Die Lehre von den gewöhnlichen und verallgemeinerten Hyperbelfunktionen. Louis Nebert, Halle a. S.. Cited by: §29.
- [39] (1901) Note sur la sommation de la série de Lambert. Mathematische Annalen 54, pp. 604–607. Cited by: §50.
- [40] (1979) An introduction to the theory of numbers. Fifth edition, Oxford University Press. Cited by: §37, §37, §37, §37, §37, §37.
- [41] (1991) Divergent series. second edition, AMS Chelsea Publishing, Providence, RI. Cited by: §52.
- [42] (1884) Sur quelques conséquences arithmétiques des formules de la théorie des fonctions elliptiques. Bulletin de l’Académie impériale des sciences de St.-Pétersbourg 29, pp. 325–352. Note: Œuvres, tome IV, pp. 138–168 Cited by: §41.
- [43] (1886) Sur les valeurs asymptotiques de quelques fonctions numériques. J. Reine Angew. Math. 99, pp. 324–328. Note: Œuvres, tome IV, pp. 209–214 Cited by: §41.
- [44] (1829) Fundamenta nova theoriae functionum ellipticarum. Sumtibus Fratrum Borntraeger, Königsberg. Cited by: §12.
- [45] (1917) Über Anzahlen und Summen von Teilern. Monatshefte für Mathematik und Physik 28 (1), pp. 133–166. Cited by: §51.
- [46] G. S. Klügel, C. B. Mollweide, and J. A. Grunert (Eds.) (1831) Mathematisches Wörterbuch oder Erklärung der Begriffe, Lehrsätze, Aufgaben und Methoden der Mathematik mit den nöthigen Beweisen und literarischen Nachrichten begleitet in alphabetischer Ordnung. Erste Abtheilung. Fünfter Theil. Erster Band. I und II. E. B. Schwickert, Leipzig. Cited by: §7.
- [47] (1919) On Lambert’s series. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 22 (4), pp. 323–330. Cited by: §20.
- [48] (1922) On analytic functions defined by certain Lambert series. Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings 23 (8), pp. 1226–1233. Cited by: §20.
- [49] (1913) Über Lambertsche Reihen. J. Reine Angew. Math. 142, pp. 283–315. Cited by: §36.
- [50] (1794) Essai sur les nombres premiers. Nova Acta Academiae Scientiarum Imperialis Petropolitanae 12, pp. 217–245. Cited by: §4.
- [51] (1819) Traité du calcul différentiel et du calcul intégral, tome troisième. second edition, Veuve Courcier, Paris. Cited by: §6.
- [52] (1872–1873) Sur quelques théorèmes d’arithmétique. Bulletin de la Société Mathématique de France 1, pp. 77–81. Cited by: §22.
- [53] (1771) Anlage zur Architectonic, oder Theorie des Einfachen und des Ersten in der philosophischen und mathematischen Erkenntniß, 2. Band. Johann Friedrich Hartknoch, Riga. Cited by: §3.
- [54] (1899) Sur la série des inverses des nombres de Fibonacci. Bulletin de la Société Mathématique de France 27, pp. 298–300. Cited by: §35.
- [55] (1918) Über die Wigertsche asymptotische Funktionalgleichung für die Lambertsche Reihe. Archiv der Mathematik und Physik, 3. Reihe 27, pp. 144–146. Note: Collected Works, volume 7, pp. 135–137 Cited by: §45.
- [56] (1853) Démonstration d’une formule d’Euler, sur les diviseurs d’un nombre. Nouvelles annales de mathématiques 12, pp. 232–235. Cited by: §23.
- [57] (1895) Di una espressione analitica atta a rappresentare il numero dei numeri primi compresi in un determinato intervallo. Atti della Reale Accademia dei Lincei, serie quinta. Rendiconti: Classe di scienze fisiche, matematiche e naturali 4, pp. 303–309. Note: Opere matematiche, volume primo, pp. 153–158 Cited by: §43.
- [58] (1997) On the remainder in a series of Mertens. Expo. Math. 15 (5), pp. 467–478. Cited by: §38.
- [59] (1928) Johann Heinrich Lambert. Sitzungsberichte der Berliner Mathematischen Gesellschaft 18, pp. 2–27. Cited by: §3.
- [60] F. Löwenhaupt (Ed.) (1943) Johann Heinrich Lambert: Leistung und Leben. Braun & Co., Mühlhausen. Cited by: §3.
- [61] (1874) Ein Beitrag zur analytischen Zahlentheorie. J. Reine Angew. Math. 78 (1), pp. 46–62. Cited by: §38, §38.
- [62] (1832) Über eine besondere Art von Umkehrung der Reihen. J. Reine Angew. Math. 9 (2), pp. 105–123. Cited by: §11.
- [63] (1882) Sopra alcuni sviluppi in serie per funzioni analitiche. Memorie della Accademia delle Scienze dell’Istituto di Bologna, serie quarta 3, pp. 149–180. Note: Opere scelte, vol. 1, pp. 64–91 Cited by: §27.
- [64] (1976) Problems and theorems in analysis, volume II. Die Grundlehren der mathematischen Wissenschaften, Vol. 216, Springer. Note: Translated from the German by C. E. Billigheimer Cited by: §48.
- [65] (1890) Darstellung der harmonischen Reihen durch Factorenfolgen. Archiv der Mathematik und Physik (2) 9, pp. 297–319. Cited by: §31.
- [66] (1891) Darstellungen zalentheoretischer Functionen durch trigonometrische Reihen. Archiv der Mathematik und Physik (2) 10, pp. 62–83. Cited by: §31.
- [67] (1991) Functional analysis. second edition, International Series in Pure and Applied Mathematics, McGraw-Hill. Cited by: §40.
- [68] (1832) Bemerkungen über die Lambertsche Reihe .. J. Reine Angew. Math. 9, pp. 162–168. Cited by: §9.
- [69] (1861) Ueber die Lambert’sche Reihe. Zeitschrift für Mathematik und Physik 6, pp. 407–415. Cited by: §19.
- [70] (1863) Extrait d’une Lettre adressée à M. Liouville par M. Schlömilch. Journal de Mathématiques Pures et Appliquées (2) 8, pp. 99–101. Cited by: §19.
- [71] (1874) Compendium der höheren Analysis, zweiter Band. second edition, Friedrich Vieweg und Sohn, Braunschweig. Cited by: §19.
- [72] (1814) Essai sur un nouveau mode d’exposition des principes du calcul différentiel. P. Blachier-Belle, Nismes. Cited by: §5.
- [73] (1814-1815) Réflexions sur les divers systèmes d’exposition des principes du calcul différentiel, et, en particulier, sur la doctrine des infiniment petits. Annales de Mathématiques pures et appliquées 5, pp. 141–170. Cited by: §5.
- [74] (1850) Sammlung von Aufgaben aus der Differential- und Integralrechnung. H. W. Schmidt, Halle. Cited by: §15.
- [75] (1914) Über Potenzreihen, im besonderen solche, deren Koeffizienten zahlentheoretische Funktionen sind. Rendiconti del Circolo Matematico di Palermo 38 (1), pp. 376–386. Cited by: §46.
- [76] (2003) Complex analysis. Princeton Lectures in Analysis, Vol. II, Princeton University Press. Cited by: §49.
- [77] (1840) Beiträge zur Combinationslehre und deren Anwendung auf die Theorie der Zahlen. J. Reine Angew. Math. 21, pp. 177–192. Cited by: §8.
- [78] (1886) Recherches sur quelques séries semi-convergentes. Annales scientifiques de l’École Normale Supérieure, Sér. 3 3, pp. 201–258. Note: Œuvres complètes, tome II, pp. 2–58 Cited by: §30.
- [79] (1920) Über Potenzreihen, deren Koeffizienten zahlentheoretische Funktionen sind. Mathematische Zeitschrift 8, pp. 36–51. Cited by: §47.
- [80] (1851) Note sur différentes séries. Journal de Mathématiques Pures et Appliquées 16, pp. 337–346. Note: Œuvres, tome I, pp. 99–108 Cited by: §25.
- [81] (1986) The theory of the Riemann zeta-function. second edition, Clarendon Press, Oxford. Cited by: §45, §45.
- [82] (2002) The theory of functions. second edition, Oxford University Press. Cited by: §44, §45.
- [83] (1901) Sulla totalità dei numeri primi fino ad un limite assegnato. Atti dell’Accademia delle scienze fisiche e matematiche. Sezione della Società Reale di Napoli (2) 11 (1), pp. 1–222. Cited by: §34.
- [84] (1946) The Laplace transform. Princeton Mathematical Series, Vol. 6, Princeton University Press. Cited by: §40, §40, §40, §40.
- [85] (1933) The Fourier integral and certain of its applications. Cambridge University Press. Cited by: §40.
- [86] (1916) Sur la série de Lambert et son application à la théorie des nombres. Acta Math. 41, pp. 197–218. Cited by: §45.
- [87] (1979) Lambert et Léonard Euler. In Colloque international et interdisciplinaire Jean-Henri Lambert, Mulhouse, 26–30 septembre 1977, R. Oberle, A. Thill, and P. Levassort (Eds.), pp. 211–224. Cited by: §3.
- [88] (1858) Mathematische Miscellen. Zeitschrift für Mathematik und Physik 3, pp. 247–249. Cited by: §16.
- [89] (2011) On the modular behaviour of the infinite product . C. R. Math. Acad. Sci. Paris 349 (13-14), pp. 725–730. Cited by: §30.
- [90] (2002) Remarks on irrationality of -harmonic series. Manuscripta Math. 107 (4), pp. 463–477. Cited by: §10.