Notes on the history of Liouville’s theorem
1 Introduction
We denote by the set of all linear maps . We take it as known that with the operator norm
is a Banach space.
2 Autonomous differential equations
Lemma 1.
If , then
as .
Proof.
Let be the eigenvalues of , repeated according to algebraic multiplicity. For , the eigenvalues of repeated according to algebraic multiplicity are
as . The determinant of a linear map is the product of its eigenvalues according to algebraic multiplicity, so
as . But
as . ∎
Theorem 2.
If , then
Proof.
If , then the flow of the vector field is
For each we have , and by Theorem 2 we have
Let be Lebesgue measure on . If is an open subset of , then
Therefore, is an invariant measure for the flow if and only if , namely, if and only if is skew-symmetric.
3 Nonautonomous differential equations
Suppose that is an open interval and . The set of all functions that satisfy the differential equation
is a vector space. For each we define by . It is apparent that for each the map is linear. For each , by the existence and uniqueness theorem for ordinary differential equations there is a unique for which , hence for each we get that is a bijection, and hence a linear isomorphism.
Suppose that , and for each let be defined by . Then
and hence
(1) |
The Wronskian of the ordered set is the function that assigns to each the oriented volume of the parallelepiped spanned by . That is,
Theorem 3.
Suppose that is an open interval and that . If , then the Wronskian satisfies
One checks that for any ,
is a solution of the differential equation in Theorem 3. For each we have that is linear, and in particular is locally Lipschitz, so by the existence and uniqueness theorem it follows that
4 Jacobi’s formula
Let be the volume form on , and let . One checks that
(2) |
If is an -form on , then there is a unique such that for all ,
Thus, if and we define an -form by
then there is some with which
We define by . Thus, for , we have
(3) |
Hence
therefore
and because this holds for all , it follows that
Furthermore, if , then one checks that for all ,
(4) |
5 Reynolds transport theorem
If is a vector field with flow and is a bounded open subset of with piecewise smooth boundary and is smooth, then with ,
this presumes that . Write . We then have
Writing , we have
Reynolds [73, pp. 12–13, art. 14]
Amann and Escher [4, p. 425, Theorem 2.11]
6 Symplectic geometry
7 Geodesic flow
Invariance of a kinematic measure on the unit tangent bundle.
8 References
Jacobi [42, p. 93]
Truesdell [87, pp. 101, 105, 351]
Whittaker [90, p. 323, §148]
Hartman [35, p. 91]
Barrow-Green [6, p. 83]
Goroff [70, p. I79]
Gray [32, p. 380]
Ostrogradskii [51, pp. 122–123]
Cajori [13, vol. II, p. 101, §464]
Gibbs [30, Chapter XII]
Sklar [77, p. 130] on phase space
Boltzmann [10, pp. 274–290, 443]
Jeans [43, p. 258, §206]
Kac [45, p. 63]
Lenzen [55, p. 129]
References
- [1] (1827) Ueber einige bestimmte Integrale. J. Reine Angew. Math. 2, pp. 22–30. Note: Œuvres complétes, tome premier, second ed., pp. 251–262
- [2] (2002) Global analysis: differential forms in analysis, geometry and physics. Graduate Studies in Mathematics, Vol. 52, American Mathematical Society. Note: Translated from the German by Andreas Nestke
- [3] (2011) What chains does Liouville’s theorem put on Maxwell’s demon?. Philosophy of Science 78 (1), pp. 149–164.
- [4] (2001) Analysis III. Birkhäuser. Cited by: §5.
- [5] (1973) Ordinary differential equations. MIT Press. Note: Translated from the Russian by Richard A. Silverman
- [6] (1997) Poincaré and the three body problem. History of Mathematics, Vol. 11, American Mathematical Society, Providence, RI. Cited by: §8.
- [7] (2007) Variational principles in physics. Springer.
- [8] (2010) Differential equations: theory and applications. second edition, Springer.
- [9] (1903–1921) Kinetische Theorie der Materie. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band V, 1. Teil, A. Sommerfeld (Ed.), pp. 493–557.
- [10] (1995) Lectures on gas theory. Dover Publications. Note: Translated from the German by Stephen G. Brush Cited by: §8.
- [11] (1974) The development of the kinetic theory of gases: VIII. Randomness and irreversibility. Arch. Hist. Exact Sci. 12 (1), pp. 1–88.
- [12] (2007) On symplectic reduction in classical mechanics. In Philosophy of Physics, Part A, J. Butterfield and J. Earman (Eds.), Handbook of the Philosophy of Science, pp. 1–131.
- [13] (1993) A history of mathematical notations, two volumes bound as one. Dover Publications. Cited by: §8.
- [14] (1956) Determinism and indeterminism in modern physics: historical and systematic studies of the problem of causality. Yale University Press. Note: Translated from the German by O. T. Benfey
- [15] (1858) Report on the recent progress of theoretical dynamics. In Report of the Twenty-seventh Meeting of the British Association for the Advancement of Science; held at Dublin in August and September 1857, pp. 1–42. Note: Collected Mathematical Papers, volume III, pp. 156–204
- [16] (1987) The Boltzmann equation and its applications. Applied Mathematical Sciences, Vol. 67, Springer.
- [17] (2006) Riemannian geometry: a modern introduction. second edition, Cambridge Studies in Advanced Mathematics, Vol. 98, Cambridge University Press.
- [18] (1989) Determinism, probability and randomness in classical statistical physics. In Imre Lakatos and Theories of Scientific Change, K. Gavroglu, Y. Goudaroulis, and P. Nicolacopoulos (Eds.), Boston Studies in the Philosophy of Science, Vol. 111, pp. 95–110.
- [19] (2013) “Continuity and change”: representing mass conservation in fluid mechanics. Arch. Hist. Exact Sci. 67 (1), pp. 43–80.
- [20] (2013) The emergence of statistical mechanics. In The Oxford Handbook of the History of Physics, J. Z. Buchwald and R. Fox (Eds.), pp. 765–788.
- [21] (1985) Entropy in relation to incomplete knowledge. Cambridge University Press.
- [22] (2011) Classical mechanics: theory and mathematical modeling. Birkhäuser.
- [23] (2007) Ernst Zermelo: an approach to his life and work. Springer.
- [24] (1907–1914) Begriffliche Grundlagen der statistischen Auffassung in der Mechanik. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band IV, 4. Teilband, Heft 6, F. Klein and C. Müller (Eds.), pp. 3–90.
- [25] (2002) The logic of thermostatistical physics. Springer.
- [26] (1984) Mathematical and conceptual foundations of 20th-century physics. North-Holland Mathematics Studies, Vol. 100, North-Holland, Amsterdam.
- [27] (1964) Ergodic theory in statistical mechanics. Interscience.
- [28] (1973) Differentiation under the integral sign. Amer. Math. Monthly 80 (6), pp. 615–627.
- [29] (1999) Statistical mechanics: a short treatise. Springer.
- [30] (1902) Elementary principles of statistical mechanics. Charles Scribner’s Sons, New York. Cited by: §8.
- [31] (2012) Entropy and the time evolution of macroscopic systems. International Series of Monographs on Physics, Vol. 141, Oxford University Press.
- [32] (2013) Henri Poincaré: a scientific biography. Princeton University Press. Cited by: §8.
- [33] (1998) Analytical mechanics. Cambridge University Press.
- [34] (2004) An introduction to the theory of the Boltzmann equation. Dover Publications.
- [35] (2002) Ordinary differential equations. second edition, Classics in Applied Mathematics, Vol. 38, Society for Industrial and Applied Mathematics. Cited by: §8.
- [36] (2012) The road to Maxwell’s Demon: conceptual foundations of statistical mechanics. Cambridge University Press.
- [37] (1994) Symplectic invariants and Hamiltonian dynamics. Birkhäuser Advanced Texts, Birkhäuser.
- [38] (2005) A differential forms perspective on the Lax proof of the change of variables formula. Amer. Math. Monthly 112 (9), pp. 799–806.
- [39] (1841) De determinantibus functionalibus. J. Reine Angew. Math. 22, pp. 319–359. Note: Gesammelte Werke, Band III, pp. 393–438
- [40] (1841) De formatione et proprietatibus determinatium. J. Reine Angew. Math. 22, pp. 285–318. Note: Gesammelte Werke, Band III, pp. 355–392 Cited by: §4.
- [41] (1845) Theoria novi multiplicatoris systemati aequationum differentialium vulgarium applicandi. J. Reine Angew. Math. 29, pp. 333–376. Note: Gesammelte Werke, Band IV, pp. 317–509 Cited by: §4.
- [42] (1866) Vorlesungen über Dynamik. Georg Reimer, Berlin. Note: Edited by A. Clebsch Cited by: §8.
- [43] (1940) An introduction to the kinetic theory of gases. Cambridge University Press. Cited by: §8.
- [44] (1998) Calculus of variations. Cambridge Studies in Advanced Mathematics, Vol. 64, Cambridge University Press.
- [45] (1959) Probability and related topics in physical sciences. Interscience Publishers, London. Cited by: §8.
- [46] (1982) Change of variables in multiple integrals: Euler to Cartan. Math. Mag. 55 (1), pp. 3–11.
- [47] (1949) Mathematical foundations of statistical mechanics. Dover Publications. Note: Translated from the Russian by George Gamow
- [48] (1990) The physics of J. Willard Gibbs in his time. In Proceedings of the Gibbs Symposium, Yale University, May 15–17, 1989, D. G. Caldi and G. D. Mostow (Eds.), Providence, RI, pp. 1–21.
- [49] (1970) Paul ehrenfest: the making of a theoretical physicist. Elsevier.
- [50] (1994) From Gauss to Weierstrass: determinant theory and its historical evaluations. In The Intersection of History and Mathematics, S. Chikara, S. Mitsuo, and J. W. Dauben (Eds.), Science Networks. Historical Studies, Vol. 15, pp. 51–66.
- [51] A. N. Kolmogorov and A. P. Yushkevich (Eds.) (1998) Mathematics of the 19th century, volume 3. Birkhäuser. Note: Translated from the Russian by Roger Cooke Cited by: §8.
- [52] (1986) The variational principles of mechanics. fourth edition, Dover Publications.
- [53] (1980) Statistical physics, part 1. third edition, Course of Theoretical Physics, Vol. 5, Pergamon Press. Note: Translated from the Russian by J. B. Sykes and M. J. Kearsley
- [54] (1973) Modern ergodic theory. Physics Today 26 (2), pp. 23–29.
- [55] (1949) Statistical mechanics and its applications to physics. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman (Ed.), pp. 125–142. Cited by: §8.
- [56] (1838) Sur la Théorie de la Variation des constantes arbitraires. J. Math. Pures Appl. 3, pp. 342–349.
- [57] (1983) On the origin and history of ergodic theory. Boll. Storia Sci. Mat. 3 (1), pp. 37–75.
- [58] (1990) Joseph Liouville 1809–1882: master of pure and applied mathematics. Studies in the History of Mathematics and Physical Sciences, Vol. 15, Springer.
- [59] (2013) The interaction of physics, mechanics and mathematics in Joseph Liouville’s research. In The Dialectic Relation Between Physics and Mathematics in the XIXth Century, E. Barbin and R. Pisano (Eds.), History of Mechanism and Machine Science, Vol. 16, pp. 79–97.
- [60] (2003) Time’s arrow: the origins of thermodynamic behavior. Dover Publications.
- [61] (1997) Classical mechanics: transformations, flows, integrable and chaotic dynamics. Cambridge University Press.
- [62] (1997) Solution of linear ordinary differential equations by means of the method of variation of arbitrary constants. Internat. J. Math. Ed. Sci. Tech. 28 (3), pp. 321–331.
- [63] (1960) The theory of determinants in the historical order of development, volume one and volume two. Dover Publications.
- [64] (1998) Gibbs, Einstein and the foundations of statistical mechanics. Arch. Hist. Exact Sci. 53 (2), pp. 147–180.
- [65] (1898–1904) Rationale Funktionen mehrerer Veränderlichen. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band I, 1. Teil, W. F. Meyer (Ed.), pp. 255–282.
- [66] (2010) The tangled tale of phase space. Physics Today 63 (4), pp. 33–38.
- [67] (1959–1961) Polnoe sobranie trudov, volume 3. Izdatel’stvo Akademii Nauk Ukrainskoi SSR, Kiev.
- [68] (2007) Geometry and topology in Hamiltonian dynamics and statistical mechanics. Springer.
- [69] (2000) Elementary lectures in statistical mechanics. Graduate Texts in Contemporary Physics, Springer.
- [70] (1993) New methods of celestial mechanics: 1. Periodic and asymptotic solutions. History of Modern Physics and Astronomy, Vol. 13, American Institute of Physics. Note: Edited by Daniel L. Goroff Cited by: §8.
- [71] (1904–1935) Die allgemeinen Integrationsmethoden der analytischen Mechanik. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band IV, 2. Teilband, F. Klein and C. Müller (Eds.), pp. 509–804.
- [72] (1999) The direction of time. Dover Publications.
- [73] (1903) Papers on mechanical and physical subjects, volume III: the sub-mechanics of the universe. Cambridge University Press. Cited by: §5.
- [74] (2011) Stability of trajectories from Poincaré to Birkhoff: approaching a qualitative definition. Arch. Hist. Exact Sci. 65 (3), pp. 295–342.
- [75] (2010) Mechanics: from Newton’s laws to deterministic chaos. fifth edition, Springer.
- [76] (1993) Physics and chance: philosophical issues in the foundations of statistical mechanics. Cambridge University Press.
- [77] (2013) Philosophy and the foundations of dynamics. Cambridge University Press. Cited by: §8.
- [78] (1956) Thermodynamics and statistical mechanics. Lectures on Theoretical Physics, Vol. V, Academic Press. Note: Translated from the German by J. Kestin
- [79] (1997) Structure of dynamical systems: a symplectic view of physics. Progress in Mathematics, Vol. 149, Birkhäuser. Note: Translated from the French by C. H. Cushman-de Vries
- [80] (2007) On geometric mechanics. Discrete Contin. Dyn. Syst. 19 (3), pp. 595–607.
- [81] (2010) Physics for mathematicians: Mechanics I. Publish or Perish.
- [82] (2001) Structure and interpretation of classical mechanics. MIT Press.
- [83] (1960) Classical dynamics. In Encyclopedia of Physics, volume III/1: Principles of Classical Mechanics and Field Theory, S. Flügge (Ed.), pp. 1–225.
- [84] (2012) Ordinary differential equations and dynamical systems. Graduate Studies in Mathematics, Vol. 140, American Mathematical Society, Providence, RI.
- [85] (1979) The principles of statistical mechanics. Dover Publications.
- [86] (1962) The ergodic problem in classical statistical mechanics. In Rendiconti della Scuola internazionale di fisica ‘Enrico Fermi’. XIV corso, a cura di P. Caldirola, direttore del corso. Varenna sul Lago di Como, Villa Monastero, 23–31 maggio 1960. Teorie ergodiche, P. Caldirola (Ed.), pp. 21–56.
- [87] (1991) A first course in rational continuum mechanics, volume 1. second edition, Academic Press. Cited by: §8.
- [88] (1899–1916) Gewöhnliche Differentialgleichungen; elementare Integrationsmethoden. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band II, 1. Teil, 1. Hälfte, H. Burkhardt, W. Wirtinger, and R. Fricke (Eds.), pp. 230–293.
- [89] (1899–1916) Partielle Differentialgleichungen. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band II, 1. Teil, 1. Hälfte, H. Burkhardt, W. Wirtinger, and R. Fricke (Eds.), pp. 294–399.
- [90] (1917) A treatise on the analytical dynamics of particles and rigid bodies. second edition, Cambridge University Press. Cited by: §8.
- [91] (1990) On the prescience of J. Willard Gibbs. In Proceedings of the Gibbs Symposium, Yale University, May 15–17, 1989, D. G. Caldi and G. D. Mostow (Eds.), Providence, RI, pp. 23–38.
- [92] (1897) Über den dem Liouville’schen Satze entsprechenden Satz der Gastheorie. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Abteilung 2a 106, pp. 21–32.
- [93] (2010) Lectures on dynamical systems: hamiltonian vector fields and symplectic capacities. EMS Textbooks in Mathematics, European Mathematical Society.