The Euler-Maclaurin summation formula

Jordan Bell
August 22, 2015

Whiteside [62, pp. 44, 257]

Newton and Collins [8, pp. 186, 199]

Domingues [12, p. 44]

Todhunter [54, p. 192]

Estrada and Kanwal [16, p. 36]

Bourbaki [8, Chapter VI]

[17, pp. 45, 160, 337, 475, 531]

[52, pp. XL–XLIX]

Stirling [57, p. 274]

Euler correspondence R. 1998, 236; p. 53, 113, 137, 433

Institutiones calculi differentialis, E212

E19, E20, E25, E43, E47, E55, E125, E130, E247, E352, E368, E393, E432, E642, E746

References

  • [1] W. J. Adams (2009) The life and times of the central limit theorem. second edition, History of Mathematics, Vol. 35, American Mathematical Society, Providence, RI.
  • [2] T. M. Apostol (1999) An elementary view of Euler’s summation formula. Amer. Math. Monthly 106 (5), pp. 409–418.
  • [3] D. H. Arnold (1983) The mécanique physique of Siméon Denis Poisson: the evolution and isolation in France of his approach to physical theory (1800–1840). IX. Poisson’s closing synthesis: traité de physique mathématique. Arch. Hist. Exact Sci. 29 (1), pp. 73–94.
  • [4] D. H. Arnold (1983) The mécanique physique of Siméon Denis Poisson: the evolution and isolation in France of his approach to physical theory (1800–1840). VIII. Applications of the mécanique physique. Arch. Hist. Exact Sci. 29 (1), pp. 53–72.
  • [5] D. H. Arnold (1984) The mécanique physique of Siméon Denis Poisson: the evolution and isolation in France of his approach to physical theory (1800–1840). X. Some perspective on Poisson’s contributions to the emergence of mathematical physics. Arch. Hist. Exact Sci. 29 (4), pp. 287–307.
  • [6] D. R. Bellhouse (2011) Abraham De Moivre: setting the stage for classical probability and its applications. CRC Press.
  • [7] G. Boole (1880) A treatise on the calculus of finite differences. third edition, Macmillan, London.
  • [8] N. Bourbaki (2004) Elements of mathematics: functions of a real variable, elementary theory. Springer. Note: Translated from the French by Philip Spain Cited by: The Euler-Maclaurin summation formula, The Euler-Maclaurin summation formula.
  • [9] M. V. Čirikov (1960) Sur l’histoire des séries asymptotiques. Istor.-Mat. Issled. 13, pp. 441–472.
  • [10] A. I. Dale (1991) Thomas Bayes’s work on infinite series. Historia Math. 18 (4), pp. 312–327.
  • [11] A. I. Dale (2003) Most honourable remembrance: the life and work of Thomas Bayes. Sources and Studies in the History of Mathematics and Physical Sciences, Springer.
  • [12] J. C. Domingues (2008) Lacroix and the calculus. Science Network Historical Studies, Vol. 35, Birkhäuser. Cited by: The Euler-Maclaurin summation formula.
  • [13] J. Dutka (1984) The early history of the hypergeometric function. Arch. Hist. Exact Sci. 31 (1), pp. 15–34.
  • [14] J. Dutka (1991) The early history of the factorial function. Arch. Hist. Exact Sci. 43 (3), pp. 225–249.
  • [15] J. Dutka (1996) On the summation of some divergent series of Euler and the zeta functions. Arch. Hist. Exact Sci. 50 (2), pp. 187–200.
  • [16] R. Estrada and R. P. Kanwal (2002) A distributional approach to asymptotics: theory and applications. second edition, Birkhäuser. Cited by: The Euler-Maclaurin summation formula.
  • [17] E. A. Fellmann and G. K. Mikhajlov (Eds.) (1998) Leonhardi Euleri Opera omnia. Series quarta A: Commercium epistolicum. Volumen secundum: Briefwechsel von Leonhard Euler mit Johann I Bernoulli und Niklaus I Bernoulli. Birkhäuser, Basel. Cited by: The Euler-Maclaurin summation formula.
  • [18] E. A. Fellmann (1986) Infinite series in the correspondence of Leonhard Euler and John I Bernoulli. Bull. Soc. Math. Belg. Sér. A 38, pp. 191–200 (1987). External Links: ISSN 0037-9476, MathReview (E. J. Barbeau)
  • [19] G. Ferraro (1998) Some aspects of Euler’s theory of series: inexplicable functions and the Euler-Maclaurin summation formula. Historia Math. 25 (3), pp. 290–317.
  • [20] G. Ferraro (1999) The first modern definition of the sum of a divergent series: an aspect of the rise of 20th century mathematics. Arch. Hist. Exact Sci. 54 (2), pp. 101–135.
  • [21] G. Ferraro (2008) The rise and development of the theory of series up to the early 1820s. Sources and Studies in the History of Mathematics and Physical Sciences, Springer.
  • [22] H. H. Goldstine (1977) A history of numerical analysis from the 16th through the 19th century. Studies in the History of Mathematics and Physical Sciences, Vol. 2, Springer.
  • [23] I. A. Golovinskiĭ (1982) The Euler-Boole summation formula. Istor.-Mat. Issled. (26), pp. 52–91. External Links: ISSN 0136-0949, MathReview (E. Stipanić)
  • [24] H. W. Gould (1978) Euler’s formula for nth differences of powers. Amer. Math. Monthly 85 (6), pp. 450–467.
  • [25] R. Gowing (1983) Roger Cotes, natural philosopher. Cambridge University Press.
  • [26] J. V. Grabiner (1997) Was Newton’s calculus a dead end? The continental influence of Maclaurin’s treatise of fluxions. Amer. Math. Monthly 104 (5), pp. 393–410.
  • [27] A. N. Gusev (1968) The derivation of the summation formula in Euler’s writings. Jaroslav. Gos. Ped. Inst. Učen. Zap. Vyp. 60, pp. 50–54.
  • [28] J. Havil (2003) Gamma: exploring Euler’s constant. Princeton University Press.
  • [29] F. B. Hildebrand (1987) Introduction to numerical analysis. second edition, Dover Publications.
  • [30] Jos. E. Hofmann (1957) Zur Entwicklungsgeschichte der Eulerschen Summenformel. Math. Z. 67, pp. 139–146. External Links: ISSN 0025-5874, MathReview
  • [31] J. E. Hofmann (1974) Leibniz in Paris 1672–1676: his growth to mathematical maturity. Cambridge University Press. Note: Translated from the German by A. Prag and D. T. Whiteside
  • [32] H. Jeffreys (1974) Asymptotic approximations and notation. Bull. Inst. Math. Appl. 10 (9-10), pp. 334–339.
  • [33] C. Jordan (1965) Calculus of finite differences. third edition, Chelsea Publishing Company.
  • [34] D. E. Knuth (1997) The art of computer programming, vol. I: fundamental algorithms. third edition, Addison-Wesley.
  • [35] A. N. Kolmogorov and A. P. Yushkevich (Eds.) (1998) Mathematics of the 19th century, volume 3. Birkhäuser.
  • [36] R. Kress (1998) Numerical analysis. Graduate Texts in Mathematics, Vol. 181, Springer.
  • [37] S. G. Langton (2007) Some combinatorics in Jacob Bernoulli’s Ars conjectandi. In Euler at 300, MAA Spectrum, pp. 191–202.
  • [38] V. V. Lihin (1966) First investigations in the theory of summation of functions. In History Methodology Natur. Sci., No. V, Math. (Russian), pp. 219–227.
  • [39] S. Mills (1985) The independent derivations by Leonhard Euler and Colin Maclaurin of the Euler-Maclaurin summation formula. Arch. Hist. Exact Sci. 33 (1-3), pp. 1–13.
  • [40] L. M. Milne-Thomson (2000) The calculus of finite differences. second edition, AMS Chelsea Publishing, Providence, RI.
  • [41] H. L. Montgomery and R. C. Vaughan (2007) Multiplicative number theory I: classical theory. Cambridge Studies in Advanced Mathematics, Vol. 97, Cambridge University Press.
  • [42] A. Ostrowski (1969) Note on Poisson’s treatment of the Euler-Maclaurin formula. Comment. Math. Helv. 44, pp. 202–206.
  • [43] A. Ostrowski (1969) On the remainder term of the Euler-Maclaurin formula. J. Reine Angew. Math. 239/240, pp. 268–286.
  • [44] K. Pearson (1978) The history of statistics in the 17th and 18th centuries against the changing background of intellectual, scientific and religious thought. Macmillan.
  • [45] D. J. Pengelley (2007) Dances between continuous and discrete: Euler’s summation formula. In Euler at 300, MAA Spectrum, pp. 169–189.
  • [46] S. S. Petrova (1989) Euler-Maclaurin’s summation formula, and asymptotic series. Istor. Metodol. Estestv. Nauk (36), pp. 103–108.
  • [47] R. Roy (2011) Sources in the development of mathematics. Cambridge University Press, Cambridge. Note: Infinite series and products from the fifteenth to the twenty-first century External Links: ISBN 978-0-521-11470-7, MathReview (Mehdi Hassani)
  • [48] C. Runge and Fr. A. Willers (1909–1921) Numerische und graphische Quadratur und Integration gewöhnlicher partieller Differentialgleichungen. In Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band II, 3. Teil, 1. Hälfte, H. Burkhardt, M. Wirtinger, R. Fricke, and E. Hilb (Eds.), pp. 47–176.
  • [49] I. Schneider (1968) Der Mathematiker Abraham de Moivre (1667–1754). Arch. History Exact Sci. 5 (3-4), pp. 177–317.
  • [50] O. B. Sheynin (1977/78) S. D. Poisson’s work in probability. Arch. History Exact Sci. 18 (3), pp. 245–300.
  • [51] H. K. Sørensen (2010) Throwing some light on the vast darkness that is analysis: Niels Henrik Abel’s critical revision and the concept of absolute convergence. Centaurus 52 (1), pp. 38–72.
  • [52] A. Speiser (Ed.) (1945) Leonhardi euleri opera omnia. series prima, volumen nonum: introductio in analysin infinitorum, tomus secundus. Orell Füssli, Zürich. Cited by: The Euler-Maclaurin summation formula.
  • [53] P. Stäckel (1907) Eine vergessene Abhandlung Leonhard Eulers über die Summe der reziproken Quadrate der natürlichen Zahlen. Bibliotheca mathematica, 3. Folge 8, pp. 37–60.
  • [54] I. Todhunter (1865) A history of the mathematical theory of probability: from the time of Pascal to that of Laplace. Macmillan, Cambridge and London. Cited by: The Euler-Maclaurin summation formula.
  • [55] I. Tweddle (1988) James Stirling. Scottish Academic Press, Edinburgh. Note: “This about series and such things”
  • [56] I. Tweddle (1992) James Stirling’s early work on acceleration of convergence. Arch. Hist. Exact Sci. 45 (2), pp. 105–125.
  • [57] I. Tweddle (2003) James Stirling’s Methodus differentialis: an annotated translation of Stirling’s text. Sources and Studies in the History of Mathematics and Physical Sciences, Springer. Cited by: The Euler-Maclaurin summation formula.
  • [58] I. Tweddle (2007) MacLaurin’s physical dissertations. Sources and Studies in the History of Mathematics and Physical Sciences, Springer.
  • [59] V. S. Varadarajan (2006) Euler through time: a new look at old themes. American Mathematical Society, Providence, RI.
  • [60] V. S. Varadarajan (2007) Euler and his work on infinite series. Bull. Amer. Math. Soc. (N.S.) 44 (4), pp. 515–539.
  • [61] D. T. Whiteside (Ed.) (1971) The mathematical papers of Isaac Newton, volume IV: 1674–1684. Cambridge University Press.
  • [62] D. T. Whiteside (Ed.) (1981) The mathematical papers of Isaac Newton, volume VIII: 1697–1722. Cambridge University Press. Cited by: The Euler-Maclaurin summation formula.
  • [63] E. T. Whittaker and G. Robinson (1924) The calculus of observations: a treatise on numerical mathematics. Blackie and Son, London.